CV

Accueil Recherche CV Enseignement Divers

Formation


2023-
Doctorat sous la direction de Jean-Christophe Novelli et Wenjie Fang, LIGM, Université Gustave Eiffel
2022-2023
M2 Math-Info, Université Gustave Eiffel
Stage sous la direction de Jean-Christophe Novelli, Combinatoire des triangles de Gelfand-Tsetlin et lien avec des conjectures sur les matrices à signes alternants
2021-2022
M2 Préparation à l'agrégation, Université de Strasbourg
Agrégation de Mathématiques (Classement 54/338)
2020-2021
M1 Mathématiques fondamentales, Université de Strasbourg
2018-2020
Licence de Mathématiques, Université de Strasbourg
2017-2018
Première année CPGE MPSI, Lycée Albert Schweitzer, Mulhouse

Publications


En cours de publication
Ludovic Schwob, On the enumeration of double cosets and self-inverse double cosets, arXiv 2506.04007, 2025.

Présentations


2025
Middle orders: all distributive lattices between weak and Bruhat orders à l'EJCIFM 2025, Caen, Juin 2025. Slides
Abstract

Abstract: The weak order and Bruhat order are well-known posets on permutations, the weak order being a lattice which is contained in the Bruhat order. Recently a new distributive lattice on permutations called „middle order“ was discovered, containing the weak order and contained in the Bruhat order. We generalize this result by constructing C_{n-1} distributive lattices on permutations of size n with the same property, using a simple bijection between permutations and ideals of posets. We then show these lattices are the only distributive lattices between weak and Bruhat orders, and we also consider generalizations of middle orders in other Coxeter groups.



Lattice structures of Gog and Magog triangles au séminaire d'équipe GALAC, LRI, Paris-Saclay, Avril 2025. Slides
Abstract

Abstract: Gog and Magog triangles are simple combinatorial objects which are equienumerated. Howewer, the problem of finding an explicit bijection between these has been an open problem since the 80’s. These are related to other interesting objects such as alternating sign matrices, plane partitions or aztec diamond tillings. All these objects can be ordered in such a way that the obtained posets are distributive lattices. We will present Gog and Magog triangles under a lattice-theoretic point of view, giving new explanations of the link between alternating sign matrices and aztec diamond tillings, or between the lattice of Gog triangles, the Bruhat and weak orders on permutations.


Langues


Je parle français (natif), allemand (couramment), anglais (couramment).