Algebraic properties of some statistics on permutations

V. Vong

Laboratoire d'Informatique Gaspard-Monge - Université Paris-Est Marne-la-Vallée

March 26, 2013

Outline

- Background
- Some statistics on permutations
- Some combinatorial objects and these statistics
- The algebra FQSym
- Quotient by an equivalence relation
- The different quotients
- Zoology
- Sketch of the proof
- New products on 2-colored Motzkin paths and Dyck paths
- A product on 2-colored Motzkin paths
- A bijection between 2-colored Motzkin paths and Dyck paths
- A product on Dyck paths

Background

Some statistics on permutations

Let σ be in \mathfrak{S}_{n}. By convention, $\sigma(0)=0$, and $\sigma(n+1)=0$. Let i be a position between $\{1, \cdots, n\}$. The value σ_{i} is a:

Background

Example: $\sigma=859723416$

$$
\begin{array}{ccc}
P(\sigma)= & \{8,9,4,6\} \\
V(\sigma)= & \{5,2,1\} \\
\operatorname{Dr}(\sigma)= & \{3\} \\
\operatorname{Dd}(\sigma)= & \{7\}
\end{array}
$$

Background

2-colored Motzkin path: example

Background

Connection between statistics on permutations on 2-colored Motzkin paths

Consider the following map ϕ from permutations to paths. If σ is a permutation, the i-th step of $\phi(\sigma)$ is a:

Background

For $\sigma=859723416$, here is $\phi(\sigma)$:

$$
\begin{array}{ccc}
P(\sigma)= & \{8,9,4,6\} \\
V(\sigma)= & \{5,2,1\} \\
\operatorname{Dr}(\sigma)= & \{3\} \\
\operatorname{Dd}(\sigma)= & \{7\}
\end{array}
$$

Background

Increasing binary tree of $\sigma=859723416$:

peak	\longleftrightarrow leaf
valley	\longleftrightarrow node with two children
double rise	\longleftrightarrow node with a right child
double descent	\longleftrightarrow node with a left child

Background

The algebra FQSym

FQSym is a graded algebra whose components of weight n have dimensions $n!$. One can index the bases by permutations. The product on the basis F_{σ} is given by the shifted shuffle:

$$
F_{\sigma} F_{\tau}=\sum_{s \in \sigma \bar{\varpi} \tau} F_{s}
$$

Example

If $\sigma=312$, and $\tau=12$, we have:

$$
F_{312} F_{12}=F_{31245}+F_{31425}+\cdots+F_{45312}
$$

Background

Quotient by an equivalence relation

- Let \sim be an equivalence relation on permutations.
- Consider the vector space \mathcal{I} generated by $\left(F_{\sigma}-F_{\tau}\right)_{\sigma \sim \tau}$
- Is it a two-sided ideal ?
- If so, FQSym $/ \mathcal{I}$ is a well-defined quotient algebra.

Proving that \mathcal{I} is a two-sided ideal if and only if:

$$
\text { if } \sigma \sim \tau\left\{\begin{array}{l}
\exists \phi_{s}: \sigma \bar{\Psi} s \rightarrow \tau \bar{\Psi} s \text { a bijection such that } \phi_{s}(p) \sim p, \\
\exists \psi_{s}: s \bar{\varpi} \sigma \rightarrow s \bar{\varpi} \tau \text { a bijection such that } \psi_{s}(p) \sim p .
\end{array}\right.
$$

Background

Examples of equivalence relation

Notations	Definitions	Examples
$(P, V, \operatorname{Dr} \cup D d)$	same peaks, valleys, union of double rises and double descents sets	4132 and 2413
$(P \cup$ Dd, $V \cup D r)$	same union of peaks and double descents, same union of valleys and double rises sets	35142 and 13542

The different quotients and their properties

quotient by	dimensions	quotient algebras	free algebras
$(\mathrm{P}, \mathrm{V}, \mathrm{Dr}, \mathrm{Dd})$	C_{n}	yes	yes
$(\mathrm{P}, \mathrm{V}, \mathrm{Dr} \cup \mathrm{Dd})$	M_{n-1}	yes	yes
$(\mathrm{P}, \mathrm{V} \cup \mathrm{Dr} \cup \mathrm{Dd})$	$\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor}$	no	no
$(\mathrm{P} \cup \vee \cup \mathrm{Dr}, \mathrm{Dd})$	2^{n-1}	no	no
$(\mathrm{P} \cup \mathrm{V}, \mathrm{Dr}, \mathrm{Dd})$	$\frac{3^{n-1}+1}{2}$	no	no
$(\mathrm{P}, \mathrm{Dr}, \mathrm{V} \cup \mathrm{Dd})$	A_{n-1}	no	no
$(\mathrm{P} \cup \mathrm{V}, \mathrm{Dr} \cup \mathrm{Dd})$	2^{n-2}	no	no
$(\mathrm{P} \cup \mathrm{Dd}, \mathrm{V} \cup \mathrm{Dr})$	2^{n-1}	yes	yes
$(\mathrm{P} \cup \vee \cup \mathrm{Dr} \cup \mathrm{Dd})$	1	yes	yes

Sketch of the proof

What do we have to prove?

- Step 1: if $\sigma \sim \tau$, find a bijection ϕ from $\sigma \bar{\Psi} s$ to $\tau \bar{\Psi} s$ such that $\phi(p) \sim p$.
- Step 2: if $\sigma \sim \tau$, find a bijection ψ from $s \bar{\varpi} \sigma$ to $s \bar{\varpi} \tau$ such that $\psi(p) \sim p$.

Step 1

- Interpretation of the shifted shuffle in term of trees
- Example of construction of the bijection

Step 2

- Factorization of permutations and statistics
- Example of construction of the bijection

Sketch of the proof

shifted shuffle and increasing binary trees: example

For $\sigma_{1}=52341, s=3421, \sigma=859723416 \in \sigma_{1} \bar{\amalg} s$, we have:

Sketch of the proof

The grafting operation and the bijection ϕ_{s}

Thanks to the element σ, we have a decomposition of s, and graft locations in the increasing tree of σ_{1}. In the tree of σ_{2}, we have the same graft locations. So we graft at the places the blocks of s.

$$
\sigma_{1}=52341, s=3421 \quad \sigma_{2}=35241, s=3421, \phi(\sigma):
$$

Sketch of the proof

The different steps of the bijection ψ_{s}
$\sigma_{1}=52341$ and $\sigma_{2}=35241$ and $s=4132, \sigma=964173852 \in s \bar{\varpi} \sigma_{1}$, and the construction of the corresponding τ :
(1) the factorization of σ_{1} by deleting letter of s in $\sigma: 52|3| 41$,
(2) the corresponding factorization for $\sigma_{2}: 3|52| 41$,
(3) the factorization of s by deleting letters of shifted σ_{1} in $\sigma:|41| 3 \mid 2$,
(9) the corresponding $\tau: 741963852$.

Sketch of the proof

A useful factorization on permutations (seen as words)

Let σ and τ two permutations having the same four statistics. Let $\sigma=v_{1} \cdots v_{r}$. Then there exists a unique factorization of $\tau=w_{1} \cdots w_{r}$ such that each letter i in v_{k}, has the same status in a w_{l}.

An example of the factorization algorithm:
$\sigma=859723416$

$$
\tau=956138724
$$

Sketch of the proof

A useful factorization on permutations (seen as words)

Let σ and τ two permutations having the same four statistics. Let $\sigma=v_{1} \cdots v_{r}$. Then there exists a unique factorization of $\tau=w_{1} \cdots w_{r}$ such that each letter i in v_{k}, has the same status in a w_{l}.

An example of the factorization algorithm:

$$
\sigma=85 \mid 9723416
$$

$$
\tau=95 \mid 6138724
$$

Sketch of the proof

A useful factorization on permutations (seen as words)

Let σ and τ two permutations having the same four statistics. Let $\sigma=v_{1} \cdots v_{r}$. Then there exists a unique factorization of $\tau=w_{1} \cdots w_{r}$ such that each letter i in v_{k}, has the same status in a w_{l}.

An example of the factorization algorithm:

$$
\sigma=85|972| 3416
$$

$$
\tau=95|613872| 4
$$

Sketch of the proof

A useful factorization on permutations (seen as words)

Let σ and τ two permutations having the same four statistics. Let $\sigma=v_{1} \cdots v_{r}$. Then there exists a unique factorization of $\tau=w_{1} \cdots w_{r}$ such that each letter i in v_{k}, has the same status in a w_{l}.

An example of the factorization algorithm:

$$
\sigma=85|972| 3 \mid 416
$$

$$
\tau=95|613| 872 \mid 4
$$

Sketch of the proof

A useful factorization on permutations (seen as words)

Let σ and τ two permutations having the same four statistics. Let $\sigma=v_{1} \cdots v_{r}$. Then there exists a unique factorization of $\tau=w_{1} \cdots w_{r}$ such that each letter i in v_{k}, has the same status in a w_{l}.

An example of the factorization algorithm:

$$
\sigma=85|972| 3|41| 6
$$

$$
\tau=95|61| 3|872| 4
$$

New products on 2-colored Motzkin paths and Dyck paths

Product on 2-colored Motzkin paths: example

Bijection between 2-colored Motzkin paths and Dyck paths

New products on 2-colored Motzkin paths and Dyck paths

Product on Dyck paths: example

For $C_{1}=U U D U D D$ and $C_{2}=U D U U D D$ we have the following product:

$$
C_{1} \cdot C_{2}=\sum_{C=U U * U * * * D * * D D} C
$$

