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émanant des établissements d’enseignement et de
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SEMAINE D’ETUDE MATHÉMATIQUES ET ENTREPRISES,

CIRM - MARSEILLE 14–18 AVRIL 2014

————————–

TESTING THE RELIABILITY OF A TRUE RANDOM

GENERATOR AT RUN TIME

FLORIAN CAULLERY(1), ALEXANDER GETMANENKO(2), VITO MANDORINO(3),
AND VINCENT VONG(4)

Abstract. We tackle the problem of deciding at run time if the output of a
true random generator seems reliable or not. We must consider the context,
namely the limited available memory and the need to answer yes or no in
a very short time. We explore three points of view: a Boolean functions
based approach by the way of the study of the non-linearity, an algebraic
and computational approach by the way of sub word complexity and then a
spectral approach by the way of Fourier transform and statistical analysis of
the Fourier transformed sequence by the Shapiro–Wilk test.
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1. Introduction - Industrial context

1.1. True random number generators. In various algorithmic applications,
there arises a need for sequences of numbers with good properties of randomness.
Often, as in many programming languages, an algorithm producing pseudo random
sequences is sufficient. For more advanced purposes such as information security, an
analogue (as opposed to purely digital) hardware unit generating random numbers
is attached to the processor. The resulting sequence of numbers possesses random-
ness due to resumed thermal white noise present in a simple physical system; such
a sequence is not predictable algorithmically in principle and therefore is called a
true random number sequence.

Applications of true random number generators (TRNG) include generation of
cryptographic keys and Counter-measures against Physical Attacks (e.g. Side Chan-
nel Attacks, Fault Injection).

An important task is therefore to be able to diagnose whether a given hardware
unit generating random numbers functions properly, which means that the ran-
dom numbers “behave as a sequence independent identically distributed random
variables" – an expression whose formal meaning will be addressed later in this
report.

Of particular concern for the needs of cryptographic security is a possibility that
the TRNG is put under a physical attack to become more predictable, e.g. it is
exposed to a laser field, electromagnetic injection, alpha particles, or is malfunc-
tioning due to e.g. power supply or clock glitches. Predictability of a TRNG may
lead to vulnerability to cryptographic keys that it generates.

Let us remark that the random number generated by the TRNG are post-
processed digitally to make any malfunctioning of the TRNG as little exploitable
as possible. It is the testing at run time of the quality of random numbers before
any digital post-processing takes place that will be the subject of this report.

1.2. Mathematical problem. Imagine a small TRNG unit inside a small elec-
tronic device (think: cell phone) that needs to quickly diagnose itself before sending
an encrypted message. A relatively short sequence of numbers may be generated,
there are limitations of memory and processing time, and the cost of a false alarm
is potentially the need to replace a part of a cell phone.

Obviously, a sequence that contains too many consecutive 0’s or too many con-
secutive 1’s should be rejected, as well as sequences with strong periodic patterns
such as 010101010..., as well as sequences where the portion of 1’s is significantly
different from 50 percent. Other possible tokens of malfunctioning TRNG have been
studied, e.g., in [1]. Theoretical developments with respect to this problem include
concepts of complexity theory, pseudo-randomness of finite sequences, numerical
evaluation of Kolmogorov of short strings, non-linearity of Boolean functions.

The enterprise has quantified the constraints as follows:
– one needs to make a yes/no decision with respect to proper functioning of a
TRNG based on a string of up to 512 bit (0 or 1) that it has generated.
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– 2 kb - 512 bits of memory available for running computations
– programs and relevant constants can be stored in a different, larger memory

Further, we have concentrated on detecting periodic regularities in the random
sequence, which would correspond to exposure of the TRNG to a periodic pertur-
bation (e.g., by a periodic electromagnetic field).

Rather then trying to write a new chapter in the theory of randomness, we have
tested various approaches similar to the existing ones but with a focus on the above
mentioned concern and constraints.

2. An algebraic point of view

2.1. Boolean functions based approach. Let F2
∼= (Z/2Z,+,×) be the finite

field with two elements and F
n
2 be the vector space of dimension n over F2. A

function f from F
n
2 to F2 is called a Boolean function. Such functions are en-

tirely determined their truth table and admit a representation as a polynomial in
F2[x1, . . . , xn] which is called the algebraic normal form of f .

One can see a sequence of length l = 2n as the truth table of a Boolean func-
tion. Hence every sequence define a unique Boolean function and our problem is
transformed into deciding if a Boolean function is random. There exists various
indicators on a Boolean functions. We have selected two of them to measure their
level of “randomness”: the non-linearity and the absolute indicator. The decision to
consider the non-linearity was motivated by the work of Schmidt and Rodier on the
asymptotic distribution of non-linearity of random Boolean function [7, 8]. On the
other hand, there is no theoretical background on the distribution of the absolute
indicator of random Boolean functions and the decision to consider the absolute
indicator entirely relied on numerical experiments.

2.1.1. Non-linearity. Before defining the non-linearity of a Boolean function we
need to define the Hamming distance of two functions and the affine functions.

Definition 2.1. Let f and g be two Boolean functions from F
n
2 to F2. The Ham-

ming distance d(f, g) between f and g is defined as:

d(f, g) =
∑

x∈Fn

2

f(x) + g(x).

This distance is actually the number of time where f(x) and g(x) have a different
output.

Definition 2.2. A function A : Fn
2 7→ F2 is said affine if the total degree of the

algebraic normal form of A is at most one.

The non-linearity of a Boolean function is defined as follow:

Definition 2.3. The non-linearity NL(f) of a Boolean function is the Hamming
distance between f and the set of affine functions:

NL(f) = min
A affine

(A, f)

To compute the non-linearity of a function, we use the following formula.

Proposition 2.4. We have:

NL(f) = 2m−1 −
1

2
sup
v∈Fn

2

∣

∣

∣

∣

∣

∣

∑

x∈Fn

2

(−1)f(x)+v.x

∣

∣

∣

∣

∣

∣

.

http://en.wikipedia.org/wiki/Truth_table
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The computation of the non-linearity can be done in a linear time 0(l) where
l = 2n is the length of the sequence. The details of the algorithm can be found in
http://robert.rolland.acrypta.com/telechargements/algebre/Hadamard.pdf

In our study, we focused on sequences of length 29 = 512. We computed the
non-linearity of 50, 000 random Boolean functions and obtain the following table
and graph:

Mean 219.1854
Median 220
Variance 15.1837

Standard deviation 3.8966
Numerical experiments on non-linearity

Non-linearity distribution

From this experiments, we could deduce the following test:

(1) Consider a sequence of length 512 as the truth table of f : F9
2 7→ F2

(2) calculate the non-linearity of f
(3) if it is between 215 and 225 keep it
(4) don’t use it otherwise

This test enabled us to discard sequences with a period up to 260.

2.1.2. Absolute indicator. The absolute indicator of a Boolean function f is de-
fined as the maximum absolute value of its auto-correlation function. The auto-
correlation function measure the similarities of f with f composed with a shift.

Definition 2.5. Let f : Fn
2 7→ F2 be a Boolean function. The auto-correlation

function ACf of f is defined as

ACf (a) =
∑

x∈Fn

2

(−1)f(x)+f(x+a).

Definition 2.6. Let f : Fn
2 7→ F2 be a Boolean function. The absolute indicator

AI(f) of f is defined as

AI(f) = max
a∈Fn

2
−{0}

ACf (a).

The computation of absolute indicator is made in O(22n) operation where 2n is
the length of the sequence.

http://robert.rolland.acrypta.com/telechargements/algebre/Hadamard.pdf
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Again, we focused on sequences of length 29 = 512. We computed the absolute
indicator of 10, 000 random Boolean functions and obtain the following table and
graph:

Mean 100.0625
Median 100

Standard deviation 24.1242
Numerical experiments on absolute indicator

Absolute indicator distribution

From this experiments, we could deduce the following test:

(1) Consider a sequence of length 512 as the truth table of f : F9
2 7→ F2

(2) calculate the absolute indicator of f
(3) if it is between 85 and 115 keep it
(4) don’t use it otherwise

This test enabled us to discard sequences with a period up to 280.

2.1.3. Summary. The second test we proposed seems a bit better since it discards
sequences with longer period but it is also slower. One shall also remark that the
non-linearity can be obtain from the computation of the absolute indicator without
additional operation. Hence, the combination of the two tests could be a good
option if the microchip resources allow it. Otherwise, the non-linearity test seems
the best option with this approach.

2.2. Algebraic and computational approach. One of the good notions in order
to measure if a sequence is random, is the Kolmogorov complexity. But this quantity
is not computable. So, instead of it, we can use other complexity which can be
computed, in order to have an approximation of the notion “be random”. In our
context, we just want to reject two types of binary sequences:

• the periodic ones,
• the linear Boolean functions.

The method is classical: we have to find some functions on words, such that they
have an expected behavior on random words, but not for periodic and linear ones.

One of the given approach is based on a simple notion, the sub word com-
plexity [2]. The another one will be based on the computation of the Lempel-Ziv
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complexity [5]. In the sequel, a sequence of bits is seen as a word over the alphabet
{0, 1}.

2.2.1. Sub word complexity and pseudo-randomness. Let w = w1w2 · · ·wn be a
word over {0, 1}. Let us define the sub word complexity of a word.

Definition 2.7. Let f and w be two finite words. The word f is a factor of w if
there exists two words u and v such that w = ufv.

Example 2.8. If w = 1011011, then f = 1101 is a factor of w, since w = 10 · f · 1.

Definition 2.9. Let w be a finite word. The subword complexity of w is the
number of the different factors of w. We denote by CF (w) the sub word complexity
of w, by CFk(w), the number of factors of size k of w, and by Factork(w) the set
of factors of size k of w.

Example 2.10. If w = 01001101, then:

Factor4(w) = {0100, 1001, 0011, 0110, 1101},

and CF4(w) = 5.

Let w be a random word of size 512, and let us consider the finite sequence
(CFk(w))k≤512. By computer test, we observe the following graph:

.

For w a random 300 periodic binary word of size 512, here is the behavior:

.

For w a random linear Boolean function of size 512, here is the behavior:

.

By heuristic, we directly see that by studying the sequence (CFk(w)), we can
determine a form of randomness. As we can observe, only the first terms of the
sequence are important, in order to discriminate if a sequence is random. Then, we
deduce the following algorithm:
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(1) calculate the first terms of the factor complexity (≤ 30)
(2) if the behavior is similar to the random one, keep it
(3) don’t use it otherwise.

Here is some test for words of length 512:

k CFk of a LBF CFk of 70 PW CFk of 150 PW CFk of 400 PW CFk of RW

3 6 8 8 8 8

5 10 32 32 32 32

7 14 58 91 124 124

15 30 70 150 400 493

25 66 70 150 400 488

30 86 70 150 400 483

LBF: linear Boolean functions. PW: periodic words. RW: random words.

As we can see, for a random word w of size 512, generally CF25(w) is greater
than 450, but for “special” words, is lesser than 400. So we have a good test in
order to reject periodic words, and linear Boolean functions.

2.2.2. The Lempel-Ziv complexity. Complexity theory is also intimately related to
the compression one. Indeed, in this context, a random word is word which com-
pression rate is “bad”. Since the Lempel-Ziv complexity is related to a compression
algorithm, one can test if this notion gives some results in our problem. Let us
recall some definitions, in order to compute the Lempel-Ziv complexity for a word.

Definition 2.11. Let w = w1w2 · · ·wn be a finite word. We denote by w(i, j) the
factor wi · · ·wj . The exhaustive history of w is the factorization withe the most
factors of w = f1 · · · fk, such that for i < k, fi is a word satisfying the following
properties :

(1)

• if we set fi = a1 · · · aj (ai is a letter), then fi is not a factor of
w′ = f1f2 · · · fi−1a1a2 · · · aj−1,

• but a1a2 · · · aj−1 is a factor of v = f1f2 · · · fi−1a1a2 · · · aj−2.

The factor fk satisfies the second property.
The factors fi are the components of the exhaustive history, and the Lempel-Ziv

complexity of w is the number k, denoted by LZ(w).

The following algorithm determines the exhaustive history of a word
w = w1 · · ·wn:

• initialization: f1 = w1

• if we have find f1, f2,...,fi, we have w = f1 · · · fiv. Then, we search the
shortest proper prefix p of v satisfying the conditions (1). If p exists, then
fi+1 = p. Otherwise, fi+1 = v, and the algorithm is finished.

Example 2.12. If we set w = 0010100111000, we have:

• initialization: f1 = w1 = 0. Then, w = 0 · 010100111000.
• 01 is the shortest proper prefix of 010100111000, satisfying (1). Then,

f2 = 01, and w = 0 · 01 · 0100111000.
• By the same arguments, we have f3 = 0100, f4 = 11, and f5 = 1000.
• Finally, w = 0 · 01 · 0100 · 11 · 1000, and LZ(w) = 5.



8 F. CAULLERY, A. GETMANENKO, V. MANDORINO, AND V. VONG

In the following histogram, we represent the Lempel-Ziv complexity of random
binary sequences of size 512, and linear Boolean functions of same size:

As we can see, for a random sequence, the value is between 50 and 60. But, for a
linear Boolean function, the value is lesser than 20. For one thousand 100-periodic
word, we have the following histogram:

So, we deduce that a binary word of size 512 may be random if its Lempel-Ziv
complexity is between 50 and 60. By the criteria, we can see that linear Boolean
function and small periodic word are not random.

3. Identification of deviance of a random number generator -

Spectral approaches

As the device generating random numbers is likely to be subjected to a periodic
electromagnetic field due to either an influence of the environment, or by malig-
nant attack, methods based on the Fourier transform (FT) appear to be a natural
choice for detecting such perturbation. Such methods are referred to as “spectral
methods".

The work that we accomplished and that we are reporting in this section, can
be summarized as follows:
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Given the goal of detecting periodic perturbations,
the size of the data 512 bit,
and memory constraints ∼ 2Kb,
we have performed a comparative study of various methods inspired by
Fourier transform.

There is a whole family of such methods differing by:

- a choice of a Fourier transform among various versions, and
- a choice of a statistical criterion for quantifying anomalies in the resulting

FT coefficients.

3.1. Discrete Fourier Transform and Fast Fourier Transform. Our starting
point was the paper [1] where the authors propose to use the discrete Fourier
transform (DFT) technique to analyze for periodic patterns. Let us recall the
definition:

Definition. For a sequence v0, ..., vN−1 of complex numbers, define

(2) Fj =

N
∑

k=0

vke
2π

√
−1kj/N ∈ C.

For the sake of exposition and intuition, it is more convenient to encode the
string of random bits v0, .., vN−1 as ±1 rather than 0 and 1. Since all vj are real,
the resulting sequence Fj will have the following symmetry:

(3) Fj = FN−j ,

thus effectively containing only N real numbers.
DFT gives a measure of several periodic components in a discrete sequence, see

[1, Sec.3.6] and figures therein.
While a straightforward implementation of the formula (2) has time complexity

O(N2), the Fast Fourier Transform (FFT) algorithm reduces the complexity to
O(N logN).

To briefly review the idea of the FFT algorithm following [4, Ch.8], let us rewrite
the formula (2) in the matrix notation as

F = Av

and suppose for simplicity that column vectors F and v have length 2γ . Here, the
matrix A has entries

Ajk = (ζj×k)j,k, ζ = e2πi/N .

Morally (see [4] for a precise statement), the matrix A can be represented as a
product

A(log
2
N)...A(1)

where matrices A(k) are very sparse (and, of course, independent of the vector v).
Multiplication by a constant sparse matrix requires the number of operations equal
to the number of its nonzero entries; log2 N matrix multiplication by matrices each
containing O(N) nonzero entries gives the times complexity of O(N logN) of the
FFT algorithm.

Let us now analize the memory needs of the FFT algorithm. Let us write

F(0) = v

F(j) = A(j)F(j−1)
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Assuming that the matrices A(j) are pre-calculated and stored in the permanent
memory as a part of the algorithm, at each step of the algorithm described in [4] we
need to store vectors F(j) and F(j−1) which makes the total of 2N complex numbers,
or 4N real numbers, plus a few loop counters etc. We expect that symmetry reduces
this to 2N real numbers.

Let us elaborate a little on the point of symmetry of the complex vectors F(j)

originating from the fact that the initial vector v is real. At this point we are not
ready to give a precise general statement, but we expect that it may be known
to specialists. In a particular example of N = 8, i.e. γ = 3, and using [4, eqs
(8.40)-(8.43)], we have in our notation that

F(0),k ∈ R, k = 0, ...7

F(1),k ∈ R, k = 0, ...7

F(2),k ∈ R, k = 0, ...3; F(2),4 = F(2),k+2, k = 4, 5

and F(3),k has symmetries corresponding to (3). For a particular N that will be
used in an implementation of the algorithm, an ad hoc description of the symmetries
will suffice.

In the particular case of N = 512, allocating 4 bytes per real number, the FFT
algorithm will require 4 Kilobytes plus a few bytes to store loop counters etc. This
is twice as much as is available according to the constraints set by the industrial
partner; one solution may be to reduce N to 256 (this approach will be analyzed
below in sec.3.6), another – to implement real numbers using 2 bytes only which
may be feasible as the real numbers in question are of approximately the same order
of magnitude and as the precision-sensitive operation of the division of reals never
enters the algorithm.

3.2. Statistical analysis of the Fourier transformed sequence by the Sha-
piro–Wilk test. It is well-known, or at least widely accepted, see [1] that if vn ∈
{±1} are independent random variables, then ReFn, ImFn are independent normal

random variables with mean 0 and the standard deviation
√

N
2 :

ReFn, ImFn ∼ N

(

0,

√

N

2

)

.

Several tests for normality of a sample are available in the literature: Anderson-
Darling test, Lilliefors test, Kolmogorov-Smirnov test, Pearson’s chi-squared test,
and the test that we have chosen based on its good reputation – the Shapiro-Wilk
test. With respect to other tests, the Shapiro-Wilk test has the lowest rate of false
negatives and it performs well for recommended for sample size up to 3000 – the
range that includes our sample size of 512.

Let us briefly review the Shapiro-Wilk test following [3]. The basic idea is to com-
pare the sorted sample with an expected sorted sample from the normal distribu-
tion. Starting with a sorted sample of real numbers y = (y1, ..., yN ), y1 ≤ ... ≤ yN ,
the test is based on the quantity

W =
(
∑N

i=1 aiyi)
2

∑N
i=1(yi −m)

,

where
m = meany,
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and the coefficients ai are independent of the sample, well-studied real constants
(see [6]) that can be stored as a part of the algorithm. The quantiles of the test
quantity for a given sample size are also well-known.

The R language provides a function shapiro.test. The calculation of W in-
volves sorting of N numbers, which takes time of O(N log2 N), while for N = 512
the memory of 1 Kb will clearly be enough.The sum of N real numbers takes time
of order O(N) and a negligible and constant amount of memory.

3.3. Selection of test examples and confidence level. To evaluate and com-
pare performance of different methods of detecting periodic regularities in a se-
quence of random numbers, we have generated perturbed random sequences ac-
cording to the formula

(4) vn = sign(N (0, 1) + b ∗ sin(kn))

where N (0, 1) are pseudo random numbers, normally distributed around the origin
with unit variance, generated by the programming language R, and

b = 0, 0.01, 0.02, ... 2.00 strength of the perturbation

k = 0, 0.1, ..., 3.2 frequency of the perturbation

Note this choice includes perturbations with non-integer period.
We will reject a sequence as non-random if the P -value of a given statistical test

is < 0.001.

3.4. Implementing the FFT + Shapiro-Wilk test. We implemented our al-
gorithm in the R language. Both Fast Fourier transform and the Shapiro-Wilk
test are available as standard functions of the language. Here is the code for the
algorithm.

1

2 # as s i gn i ng the l ength o f our sequences
3

4 l en = 512
5

6 # i n i t i a l i z e the vec to r o f i n t e r e s t which counts the number o f s t r i n g s
accepted as random

7 # fo r a g iven per turbat i on s t r ength b . We use 201 p o s s i b l e va lue s f o r
b .

8

9 count = matrix (0 , nrow = 201 , nco l = 1)
10

11 # loop ing on d i f f e r e n t va lue s o f the pe r turbat i on s t r ength b and o f
the f requency j .

12 # For each couple o f va lue s (b , j ) we repeat the t e s t 15 t imes
13

14 f o r (b in 0 : 200 ) { f o r ( j in 0 : 32 ) { f o r (h in 1 : 15 ) {
15 sequence = s i gn ( rnorm ( l en )+(b/ 100) ∗ cos ( ( j / 10) ∗c ( 0 : ( len −1) ) ) )
16 #generate a pseudo−random sequence accord ing to formula (4)
17 c o e f f s = f f t ( sequence ) #use the Fast Four i e r Transform to get the

Four i e r c o e f f i c i e n t s o f the sequence
18 SW_Data = c (Re( c o e f f s [ 1 : ( f l o o r ( l en / 2)+1) ] ) , Im( c o e f f s [ 2 : f l o o r ( l en / 2)

] ) )
19 #get r i d o f the symmetries (3)
20 #to get the vec to r which i s to be fed to the Shapiro−Wilk t e s t
21 SW_Pval = shap i ro . t e s t (SW_Data ) $p . va lue
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22 #get the p−value g iven by the Shapiro−Wilk t e s t . We are going to
accept the sequence as random

23 #i f i t s p−value i s >= 0.001
24 count [ b+1] = count [ b+1] + (SW_Pval >= 0 .001 )
25 #count the number o f accepted s t r i n g s under pe r tu rbat i on s t r ength b
26 }}}
27

28 percent = count ∗ (100 /33∗ 15) #convert count ing to percentages f o r
p l o t purposes

29

30 p lo t ( percent )

.

One of the runs of the algorithm gave the data in fig. 1.

Figure 1. Performance of the Discrete Fourier Transform fol-
lowed by the Shapiro-Wilk test. Here the horizontal axis corre-
sponds to the strength of the periodic perturbation b as in (4).

We can see that for values of the strength parameter b in (4) which are below
approximately 0.2 the test does not detect any deterioration in the quality of the
random bits, while almost all strings generated with b ≥ 0.7 are rejected as non-
random at significance level 0.001.

3.5. Variant #1: Hadamard-Walsh Transform. Having proposed and tested
one possibility for the detection of periodic perturbations, we continued with ex-
ploration of various variants of this approach.

The first variant is to run the Shapiro-Wilk test on the data coming not from
the Discrete Fourier Transform, but rather from the Hadamard-Walsh transform
(HWT) of the sequence of bits v.

In case of strings of bits of length N = 512, the Hadamard-Walsh transform can

be thought of an analogue of the DFT with the group
(

Z

2Z

)9
replacing Z

512Z
Indeed,

the DFT described above is equivalent to calculating

Fχ =
∑

k

vnχ(n)

for every character χ of the discrete group Z/512Z

χ : Z/512Z → C.
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Hadamard transform repackages the 512 numbers vn as parametrized by {0, 1}9.
The HWT is thus calculated by the formula

(5) Hχ =
∑

n

vnχ(n)

for every character χ of the group (Z/2Z)9:

χ : (Z/2Z)9 → {±1} ⊂ C.

There is an analogue of the FFT algorithm for the HWT with the complexity
of O(N logN). However, the advantage of the HWT is that it computes with
integers only which saves time and relieves the memory shortage difficulty that we
encountered in the analysis of the usual DFT algorithm, page 10. One may expect
however that a method based on the HWT will heavily stress periods of length 2k.

An experimental comparison of the methods based on FFT and HWT, in both
cases followed by the Shapiro-Wilk test with significance level 0.001, is presented
on figure 2.

Figure 2. Comparison between the FFT + Shapiro-Wilk test (red
curve) and HWT + Shapiro-Wilk test (blue curve), same axes as
on fig. 1

Here is the R code for this method. The Hadamard-Walsh transform is available
in the package boolfun.

1 l en = 512
2 count = matrix (0 , nrow = 201 , nco l = 1)
3

4 f o r (b in 0 : 200 ) { f o r ( j in 0 : 32 ) { f o r (h in 1 : 15 ) {
5 sequence = ( s i gn ( rnorm ( l en )+(b/100) ∗ cos ( ( j / 10) ∗c ( 0 : ( len −1) ) ) ) >= 0 )
6 #we go back to sequences o f 0 ’ s and 1 ’ s s i n c e t h i s i s the proper

s e t t i n g f o r HWT
7 SW_Data = walshTransform ( sequence )
8 SW_Pval = shap i ro . t e s t (SW_Data ) $p . va lue
9 count [ b+1] = count [ b+1] + (SW_Pval >= 0 .001 )

10 }}}
11

12 percent = count ∗ (100 /33∗ 15)
13 p lo t ( percent )
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.

3.6. Variant #2: halving the string length. As the FFT algorithm proposed
earlier struggles with memory constraints, see page 10, we have also considered and
evaluated the possibility to start with only 256-bit strings of 0’s and 1’s. Halving
the input data size naturally leads to somewhat lower performance, fig 3.

Figure 3. FFT + Shapiro-Wilk test for 512-bit and 256-bit
strings, respectively, as well as HWT + Shapiro-Wilk test for 512-
bit and 256-bit strings.

3.7. Variant #3: Hadamard-Walsh Transform + non-linearity test. The
Non-linearity test discussed in the framework of algebraic methods, sec. PUT A
CROSS-REFERENCE HERE!, fits in the picture of the spectral methods as
follows.

For a sequence of vn=0,...,N−1 with N = 2γ , the non-linearity can be equivalently
defined as

N(v) = max
χ:(Z/2Z)γ→C

|Hχ|

where the maximum is taken over all characters of the group (Z/2Z)γ and Hχ is
the Hadamard-Walsh transform as in (5).

Unusually low values of non-linearity is a sign of low quality of generated random
numbers.

To our knowledge, the distribution of N(v) is not yet fully understood theoret-
ically, so we have calculated the histogram of its distribution in case N = 512 by
using the R pseudo-random numbers, fig. 4

We found experimentally the 0.001-quantile to be 203, thus in our test we are
going to reject a string as non-random if its non-linearity is ≤ 203.

The advantage of non-linearity is that it can be calculated within the time O(N)
working entirely with integers; however the first order statistics is a much cruder
test of normality than the more expensive Shapiro-Wilk test. The performance
of Non-linearity test compared to other tests presented earlier is given on figure
5, followed by the related R code which uses the nl function from the boolfun

package.
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Figure 4. The experimental histogram for the distribution N(v)
provided the entries v are i.i.d. binomial random variables with
equal probability of ±1.

Figure 5. Comparative performance of the non-linearity test

1 l en = 512
2 count = matrix (0 , nrow = 201 , nco l = 1)
3

4 f o r (b in 0 : 200 ) { f o r ( j in 0 : 32 ) { f o r (h in 1 : 15 ) {
5 sequence = ( s i gn ( rnorm ( l en )+(b/100) ∗ cos ( ( j / 10) ∗c

( 0 : ( len −1) ) ) ) >= 0 )
6 NonLin = nl ( BooleanFunction ( sequence ) )
7 count [ b+1] = count [ b+1] + (NonLin > 203)
8 }}}
9

10 percent = count ∗ (100 /33∗ 15)
11 p lo t ( percent )

.

A quick look at the data (not shown here) suggests that the non-linearity test
has some particular “blind spots" by not detecting strong perturbations (large b)
for some special values of the frequency parameter j of the equation (4).
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3.8. Concluding remarks. Above, we have listed different spectral methods of
testing for periodic regularities in a sequence of bits. We can see a clear progression
from more sensitive and costly (in terms of time and memory) to less sensitive but
lighter, and it is up to the engineers to find where to strike the balance.

We note that the DFT method taken directly from [1, sec.3.6] performs signifi-
cantly less well than our other methods

The combination of the DFT and the maximum absolute value statistics

(vn)
512
n=1

DFT
→ (Fk)

511
k=0 → max

k
|Fk|

remains to be tested.
We also reiterate our opinion that a FFT transform bases on 2-byte real arith-

metic should also be tested.
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