Algebraic properties of some statistics on permutations

Vincent Vong
Laboratoire d'Informatique Gaspard-Monge - Université Paris-Est Marne-la-Vallée 5 bd Descartes - 77454 Marne-la-Vallée Cedex 2 - France

Motivation and goals

 thanks to the peaks, valleys, double rises and double descents on permutations

- Does these statistics have nice interpretations in FQSym
- If so, is it related to others known combinatorial algebras?

1. Bijection, combinatorial objects and statistics

Definition of some statistics on permutations
Let σ be in \mathfrak{S}_{n}. By convention, $\sigma_{0}=0$, and $\sigma_{n+1}=0$. Let i be a position between 1 and n. The value σ_{i} is a:

Increasing binary trees

Let w be a word without repetition on an alphabet A totally ordered. If w is empty, the associated increasing tree is the empty ree. Otherwise, let a be the smallest letter. We have: $w=w_{1} a w_{2}$. So we build recursively the associated increasing binary tree of w as follow:

Finally, replace the last ∞ by n.

Increasing binary trees and statistics [Fla80]: example
peak \longleftrightarrow leaf
valley \longleftrightarrow node with two children
double rise \longleftrightarrow node with a right child
double descent \longleftrightarrow node with a left child

2. Algebraic background and combinatorics

The algebra FQSym [DHT02]

FQSym is a graded algebra whose components of weight n have dimensions $n!$ and the bases are indexed by permutations. The product on the basis \mathbf{F}_{σ} is given by the shifted shuffle:

$$
\mathbf{F}_{\sigma} \mathbf{F}_{\tau}=\sum_{s \in \sigma \varpi \tau} \mathbf{F}_{s}
$$

For example, if $\sigma=3142$, and $\tau=42135$, we have:
$\mathbf{F}_{3142} \cdot \mathbf{F}_{42135}=\mathbf{F}_{314286579}+\mathbf{F}_{314862579}+\mathbf{F}_{314865279}+\cdots+\mathbf{F}_{318654792}+\cdots+\mathbf{F}_{865793142}$ For $s=4213$, and $\tau=42135$, we have

$$
\mathbf{F}_{4213} \cdot \mathbf{F}_{42135}=\mathbf{F}_{428657913}+\mathbf{F}_{486257913}+\mathbf{F}_{486527913}+\cdots+\mathbf{F}_{865479213}+\cdots+\mathbf{F}_{421865793} .
$$

The permutations σ and s have the same peaks, valleys, double rises, and double descents. We see this in their increasing binary trees:

Figure: Increasing binary trees of σ, \boldsymbol{s}, and τ.
What happens when shuffling these elements with τ ?

3. Sketch of proof by example

We set $\sigma_{1}=52341, \sigma_{2}=35241, s=3421$, and $\sigma=859723416$ in $\sigma_{1} \bar{\Psi} s$. Observe that σ_{1} and σ_{2} have the same four statistics. Let us build σ^{\prime} in $\sigma_{2} \bar{\amalg} s$ such that σ^{\prime} and σ have the same four statistics.
Figure: Construction of the increasing binary tree of σ from σ_{1} and s.

Increasing binary trees of a product and graft
Some increasing binary trees coming from $\sigma \bar{\varpi} \tau$:

Some increasing binary trees coming from $s \bar{\Psi} \tau$:

