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Abstract

In this article, we generalize the Gandhi polynomials in a non-commutative way. We show
that surjective pistols arise naturally from our non-commutative polynomials.This method also
enables us to explain the combinatorial interpretations of different generalizations of the Gandhi
polynomials.

1 Introduction

The Genocchi numbers (G2n)n∈N, Taylor coefficients of the exponential series x tan(x
2 ), have been

studied in several ways. First, their relations with the Euler numbers (coefficients of tan(x)) have been
studied by Viennot in [Vie82] who gave an overview of their combinatorial properties. But they can
also be studied from one of their refinements, the Gandhi polynomials. Gandhi in [Gan70] conjectured
that the sequence of polynomials defined by C0 = 1 and Cn+1(x) = x2Cn(x+ 1)− (x− 1)2Cn(x) are
polynomials such that Cn(1) = G2n+2. This statement was proved independently by Carlitz in [Car71],
by Riordan and Stein in [RS73]. Later, these polynomials were generalized by Dumont and Foata in
[DF76] as follows: DF1 = 1, and DFn+1(x, y, z) = (x+ z)(y+ z)DFn(x, y, z+ 1)− z2DFn. In order to
give a combinatorial interpretation of these, they introduced the surjective pistols, surjective maps p
from {1, · · · , 2n} onto {2, 4, · · · , 2n} such that p(i) ≥ i, one of the combinatorial objects enumerated by
the Genocchi numbers. They showed that the different parameters x, y, and z correspond to different
statistics on surjective pistols. Another interesting property of these polynomials is their symmetry on
the three variables x, y, z. It has been proved by Dumont and Foata in [DF76], and Carlitz gave an
explicit symmetric formula in [Car80]. Han in [Han96] provided another combinatorial interpretation
of these polynomials, and found back the interpretation of Dumont and Foata. Then, Dumont defined
a generalization with six parameters. Independently, Zeng and Randrianarivony respectively in [Zen96]
and [Ran94] provided different properties about these. Finally, Han and Zeng in [HZ99] showed that
the Gandhi polynomials admit a q-analog, and provided several combinatorial interpretations of their
coefficients.

In this paper, we use the non-commutative paradigm to find back the combinatorial interpretations
of Gandhi polynomials and their generalizations in terms of surjective pistols. We will see that the sur-
jective pistols arise naturally from our non-commutative definition of Gandhi polynomials. Moreover,
we obtain new interpretations of the q-analog.

2 The Gandhi polynomials and their different generalizations

In this section, we recall the definition of the Gandhi polynomials and different generalizations as the
Dumont-Foata polynomials, and the polynomials with six parameters given by Dumont in [Dum95].
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Instead of the original definition of the Gandhi polynomials, we introduce an equivalent definition of
those. Then we give a non-commutative version of these polynomials and justify their relation with the
surjective pistols, which are one of the combinatorial interpretations of the Gandhi polynomials [DF76].
Finally, we get back to the different combinatorial interpretations obtained in [DF76], [Han96], and
[Ran94] about Gandhi polynomials, the Dumont-Foata polynomials and the six-parameter polynomials.

2.1 The Gandhi polynomials

Let us define the Gandhi polynomials, denoted by (Cn)n≥1, as follows:{
C1(x) = 1
Cn+1(x) = ∆(Cn(x) · x2) if n ≥ 1,

(1)

where ∆(f(x)) = f(x+ 1)−f(x), for any function f .

Example 1. For n=1, 2, 3, we have:

C1(x) = 1
C2(x) = 2x+ 1
C3(x) = 6x2 + 8x+ 3.

(2)

It is known from [DF76], that these polynomials have a combinatorial interpretation in terms of
surjective pistols, which are defined by:

Definition 2.1.1. A surjective pistol p of size 2n is a surjective map from {1, · · · , 2n} onto {2, 4, · · · , 2n}
such that for each i in {1, · · · , 2n}, p(i) ≥ i.

The set of surjective pistols of size 2n is denoted by P2n. From now on, a surjective pistol p of size
2n is represented by a word w of size 2n such that the i-th letter of w is the value p(i).

Example 2. The word w = 226466 represents the surjective pistol of size 6 sending 1 to 2, 2 to 2, 3
to 6, 4 to 4, 5 to 6 and 6 to 6.

The name pistol comes from one of its graphical representation:

X X X

X X

X

Figure 1: Graphical representation of the surjective pistol p = 264466.

Note that from a surjective pistol p of size 2n, we obtain a surjective pistol of size 2n+2 by con-
catenating twice 2n+2 to the right of p. This operation essentially mimics the multiplication by x2 on
the induction formula of Gandhi polynomials (1). We cannot obtain all surjective pistols of size 2n+2
by this process. However if we substitute in the word p · (2n+2) · (2n+2), some but not all values 2n by
2n+2, we still have a surjective pistol. For example, if p = 226466, then 22646688, 22846688, 22648688,
22646888, 22848688, 22846888 and 22648888 are indeed surjective pistols. The substitution process
essentially mimics the finite difference on words. Indeed, as we shall see, the set P2n+2 is generated in
this way, each surjective pistol appearing exactly once in this construction.
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The non-commutative polynomials will help us formalize the previous ideas. We proceed as follows:
we build a non-commutative analog of the Gandhi polynomials and see that surjective pistols arise
naturally from these.

Definition 2.1.2. Let A be an alphabet. The R−algebra of non-commutative polynomials over A,
denoted by R <A>, is the algebra generated by the elements of A equipped with the concatenation
product. In particular a linear basis is given by the finite words on A.

From now on, our alphabet is A = {ai, for i ∈ N∗} ∪ {a∞}, and R = R. Let us give a sense to
”having a non-commutative analog”. There is a natural projection Π from R<A> onto R[x]: Π(a∞) = x,

Π(ai) = 1, for i ∈ N∗,
Π(w1 · · ·wn) = Π(w1) · · ·Π(wn).

(3)

Then an element P of R<A> is a non-commutative analog of a polynomial P if Π(P) is equal to
P . In the same way, if L is a linear operator on R[x], we say that L is a non-commutative analog of
L, if Π ◦L is equal to L ◦Π. Since the Gandhi polynomials are built from the operator ∆, one way to
have non-commutative Gandhi polynomials is to construct these from non-commutative analogs of ∆.
Since the operator ∆ is related the operator consisting in shifting by 1 (denoted by T ), it is natural
to build first the non-commutative analog of T . Let us denote by Ti the algebra homomorphism such
that: {

Ti(a∞) = a∞ + ai,
Ti(aj) = aj , for j in N∗. (4)

For each positive integer i, we have indeed

T ◦Π = Π ◦Ti. (5)

Then, we define ∆i by ∆i = Ti − IdR<A>.

Example 3. For example, if w = a2a2a∞a4a∞a∞, then we have:

∆6(w) = a2a2a6a4a∞a∞ + a2a2a∞a4a6a∞ + a2a2a∞a4a∞a6

+ a2a2a6a4a6a∞ + a2a2a∞a4a6a6 + a2a2a6a4a∞a6 + a2a2a6a4a6a6.
(6)

Note that for a word w, the terms of ∆i(w) are exactly the words obtained by replacing at least
one of the a∞ of w by an ai. Now, let us define the non-commutative Gandhi polynomials as follows:{

C1 = 1
Cn+1 = ∆2n(Cna∞a∞) if n > 1.

(7)

In particular, we have:

C2 = a2a2 + a2a∞ + a∞a2

C3 = a2a2a4a4 + a2a2a∞a4 + a2a2a4a∞ + a2a4a4a4 + a2a∞a4a4

+ a2a4a∞a4 + a2a4a4a∞ + a2a4a∞a∞ + a2a∞a4a∞
+ a2a∞a∞a4 + a4a2a4a4 + a∞a2a4a4 + a4a2a∞a4

+ a4a2a4a∞ + a4a2a∞a∞ + a∞a2a4a∞ + a∞a2a∞a4.

(8)

Now, surjective pistols of positive size appear naturally through this definition. Indeed, let us define
an embedding i from surjective pistols of positive size onto R<A>. If p is a surjective pistol of size
2n (with n ≥ 1), then i(p) is equal to the word w of size 2n−2 where the i-th letter of w is a∞ if p(i)
is equal to 2n, and is ap(i) otherwise.
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Example 4. If p = 22646688, then i(p) = a2a2a6a4a6a6. If p = 22, then i(p) = ε, the empty word,
and if p = 28648688, then i(p) = a2a∞a6a4a∞a6.

The map i is clearly an injective map: let w be a word of size 2n in the image of i. We obtain the
corresponding surjective pistol by replacing the a∞ by a2n+2, by reading the indices of the new word,
and by adding twice to the right the letter 2n+2. In the sequel, we denote by p the word i(p). We
have

Proposition 2.1. Let n ≥ 1. Then:

Cn =
∑

p∈P2n

p. (9)

Proof. By induction on n. The statement is satisfied for n = 1. Assume that it is true for n ≥ 1. By
induction hypothesis on Cn, we have:

Cn+1 = ∆2n(Cna∞a∞)
= ∆2n(

∑
p∈P2n

p a∞a∞)

=
∑

p∈P2n
∆2n(p a∞a∞).

Let p be a surjective pistol of size 2n. Then the elements of ∆2n(p a∞a∞) are the words associated
with surjective pistols of size 2n+2: they are words w = w1 · · ·w2n of size 2n, such that at least one a∞
of p a∞a∞ is replaced by a2n, and such that wi = ap(i) if p(i) ≤ 2n−2, and wi = a2n or a∞ otherwise.
They are then associated with surjective pistols p′ of size 2n+2, where for i ≤ 2n, if p(i) ≤ 2n−2, then
p′(i) = p(i), and p′(i) = 2n or 2n+2 otherwise. Conversely, if p′ is a surjective pistol of size 2n+2
such that p′(i) = p(i) if p(i) < 2n, and p′(i) = 2n or p′(i) = 2n+2 otherwise, then p′ is a term of
∆2n(p a∞a∞).

Let us denote by Dp the set of pistols p′ such that p′ is a term of ∆2n(p a∞a∞). By the previous
observation, Dp is in fact the following set:

Dp =

{
p′ ∈ P2n+2 | p′(i) = p(i) if i < 2n+1 and p(i) < 2n,

p′(i) = 2n or 2n+2 otherwise.

}
(10)

We have: P2n+2 = tp∈P2n
Dp. Indeed, let p′ be in P2n+2. By deleting the last two letters and

replacing the 2n+2 by 2n, we obtain a surjective pistol p of size 2n, and p′ is in Dp. So P2n+2 =
∪p∈P2n

Dp. Let now p and p′ be two different surjective pistols of size 2n. Then, there exists an i
such that p(i) is different from p′(i). By symmetry, we assume that p(i) < p′(i) ≤ 2n. Then for each
element q in Dp, we have q(i) = p(i), and for each q′ in Dp′ , we have q′(i) ≥ p′(i). In particular,
q(i) < q′(i), so Dp ∩ Dp′ is empty. We deduce that:

Cn+1 =
∑

p∈P2n
∆2n(p a∞a∞)

=
∑

p∈P2n

∑
p′∈Dp

p′

=
∑

p′∈P2n+2
p′.

(11)

2.2 The Dumont-Foata polynomials

Dumont and Foata defined in [DF76] a generalization of Gandhi polynomials. They proved that these
polynomials count different statistics on surjective pistols. Han in [Han96] found other statistics on
surjective pistols that gave back the Dumont-Foata polynomials. Moreover, with his method, he got
back the result of Dumont-Foata. With the non-commutative method, we give a new direct proof of
the previous combinatorial interpretations. In this section, we present the Dumont-Foata polynomials,
their non-commutative analogs, and their combinatorial interpretations.
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Definition 2.2.1. The Dumont-Foata polynomials are defined by induction as follows:{
DF1(x, y, z) = 1
DFn+1(x, y, z) = DFn(x+ 1, y, z)(x+ z)(x+ y)−DFn(x, y, z)x2, if n ≥ 1.

(12)

Since DFn(1, 1, 1) = #P2n, the different variables x, y and z record some statistics on surjective
pistols.

Definition 2.2.2. Let p be a surjective pistol of size 2n. A position i is:
- a fixed point if p(i) = i ,
- a surfixed point if p(i) = i+ 1,
- a max point if p(i) ≥ p(j) ∀j ∈ {1, · · · , 2n},
- a saillance point if for any j < i, then p(j) < p(i), and i is not a max point.

If p is size of 2n, we denote by fix(p) (resp. surfix(p), max(p), sai(p)) the number of fixed (resp.
surfixed, max, saillance) points of p smaller than 2n−1.

Example 5. If p = 42468688, 2 and 6 are fixed points, 3 is a surfixed point, 1 and 4 are saillance
points, and 5 is a max point. And we have: fix(p) = 2, surfix(p) = 1, sai(p) = 2, and max(p) = 1.

Theorem 2.2. [DF76] The Dumont-Foata polynomials have the following combinatorial interpreta-
tions:

DFn(x, y, z) =
∑

p∈P2n

xmax(p)yfix(p)zsurfix(p) =
∑

p∈P2n

xmax(p)yfix(p)zsai(p). (13)

In order to get back Theorem 2.2, we build two non-commutative analogs of the Dumont-Foata
polynomials that project naturally onto both combinatorial interpretations. In the sequel, we work
with the same alphabet as before, and with the ring R = Q[y, z].

Definition 2.2.3. The non-commutative Dumont-Foata polynomials are defined as follows:{
DF1 = 1
DFn+1 = T2n(DFn)(a∞ + za2n)(a∞ + ya2n)−DFna∞a∞, if n ≥ 1.

(14)

Example 6. The first polynomials are:

DF2 = yz · a2a2 + z · a2a∞ + y · a∞a2

DF3 = y2z2 · a2a2a4a4 + y2z · a2a2a∞a4 + yz2 · a2a2a4a∞
+ yz2 · a2a4a4a4 + yz2 · a2a∞a4a4 + yz · a2a4a∞a4 + z2 · a2a4a4a∞
+ z · a2a4a∞a∞ + z2 · a2a∞a4a∞ + yz · a2a∞a∞a4

+ y2z · a4a2a4a4 + y2z · a∞a2a4a4 + y2 · a4a2a∞a4 + yz · a4a2a4a∞
+ y · a4a2a∞a∞ + yz · a∞a2a4a∞ + y2 · a∞a2a∞a4.

(15)

Proposition 2.3. Let n ≥ 1. Then we have:

DFn =
∑

p∈P2n

yfix(p)zsurfix(p)p. (16)

Proof. By induction on n. It is true for n = 1. Assume that the statement is true for a given n ≥ 1.
By definition of DFn+1, we have:

DFn+1 = T2n(DFn)(a∞ + za2n)(a∞ + ya2n)−DFna∞a∞

= ∆2n(DFn)a∞a∞ + zT2n(DFn)a2na∞

+ yT2n(DFn)a∞a2n + yzT2n(DFn)a2na2n.

Let p be a surjective pistol of size 2n. By using the inverse of i, we deduce that:
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• The surjective pistols p′ corresponding to words in ∆2n(p)a∞a∞ are the elements p′ of Dp where
p′(2n−1) = p′(2n) = 2n+2. Since the elements p′ have the same fixed and surfixed points as p,
we have:

∆2n(yfix(p)zsurfix(p)p)a∞a∞ =
∑
p′ ∈ Dp,

p′(2n−1) = 2n+2,
p′(2n) = 2n+2

yfix(p′)zsurfix(p′)p′. (17)

• The surjective pistols p′ associated with the words in T2n(p)a∞a2n are surjective pistols p′ in
Dp where p′(2n−1) = 2n, and p′(2n) = 2n+2. In this case, the elements p′ have one more fixed
point than p. So:

yT2n(yfix(p)zsurfix(p)p)a∞a2n =
∑
p′ ∈ Dp,

p′(2n−1) = 2n+2,
p′(2n) = 2n

yfix(p′)zsurfix(p′)p′. (18)

• The surjective pistols p′ corresponding to the words which appeared in T2n(p)a2na∞ are in Dp,
and satisfy p′(2n−1) = 2n and p′(2n) = 2n+2. Thus, they have one more surfixed point than p.
Then:

zT2n(yfix(p)zsurfix(p)p)a2na∞ =
∑
p′ ∈ Dp,

p′(2n−1) = 2n,
p′(2n) = 2n+2

yfix(p′)zsurfix(p′)p′. (19)

• The surjective pistols p′ corresponding to the words which appeared in T2n(p)a2na2n are in Dp,
and satisfy p′(2n−1) = 2n and p′(2n) = 2n. Thus, they have one more fixed and surfixed point
than p. Then:

yzT2n(yfix(p)zsurfix(p)p)a2na2n =
∑
p′ ∈ Dp,

p′(2n−1) = 2n,
p′(2n) = 2n

yfix(p′)zsurfix(p′)p′. (20)

By summing all Equations (17), (18), (19), (20), we get:∑
p′∈Dp

yfix(p′)zsurfix(p′)p′ = ∆2n(yfix(p)zsurfix(p)p)a∞a∞ + yT2n(yfix(p)zsurfix(p)p)a∞a2n

+zT2n(yfix(p)zsurfix(p)p)a2na∞ + yzT2n(yfix(p)zsurfix(p)p)a2na2n.
(21)

By using the induction hypothesis, the previous equality, and the fact that P2n+2 is equal to
tp∈P2nDp, we conclude that:

DFn+1 =
∑

p∈P2n+2

yfix(p)zsurfix(p)p. (22)

Since the number of a∞ in p is equal to max(p) we get back the first combinatorial interpretation
by applying Π to (16). Now, we build another non-commutative Dumont-Foata polynomials that
projects naturally onto the second interpretation. In order to do that, we have to define a linear map
on non-commutative polynomials.
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Definition 2.2.4. Let i be an integer and w = w1 · · ·wn be a word. Let j (if it exists) be the smallest
value such that wj is either a∞ or ai. The linear map Si on R<A> is defined as follows:

Si(w) =

{
w1 · · ·wj−1wn−1wj+1 · · ·wn−2wjwn if j exists,

w otherwise.
(23)

Example 7. If w = a2a6a4a∞a∞a6, then S6(w) = a2a∞a4a∞a6a6.

Definition 2.2.5. The second non-commutative polynomials of Dumont-Foata are defined as follows:{
DF ′1 = 1
DF ′n+1 = S2n

(
T2n(DF ′n)(a∞ + ya2n)(a∞ + za2n)

)
−DF ′na∞a∞, if n ≥ 1.

(24)

Example 8. The first polynomials are:

DF ′2 = yz · a2a2 + y · a2a∞ + z · a∞a2

DF ′3 = y2z2 · a2a2a4a4 + yz2 · a2a2a∞a4 + y2z · a2a2a4a∞
+ y2z · a2a4a4a4 + yz · a2a∞a4a4 + y2z · a2a4a∞a4 + y2 · a2a4a4a∞
+ y2 · a2a4a∞a∞ + y · a2a∞a4a∞ + yz · a2a∞a∞a4

+ yz2 · a4a2a4a4 + z2 · a∞a2a4a4 + yz2 · a4a2a∞a4 + yz · a4a2a4a∞
+ yz · a4a2a∞a∞ + z · a∞a2a4a∞ + z2 · a∞a2a∞a4.

(25)

Proposition 2.4. For n ≥ 1, we have the following equality:

DF ′n =
∑

p∈P2n

ysai(p)zfix(p)p. (26)

Proof. By induction on n. The proposition is true for n = 1. Assume it is true for a given n ≥ 1. By
definition,

DF ′n+1 = S2n

(
T2n(DF ′n)(a∞ + ya2n)(a∞ + za2n)

)
−DF ′na∞a∞. (27)

Since the letter a2n does not appear in words of DF ′na∞a∞, it is invariant by S2n. So:

DF ′n+1 = S2n

(
T2n(DF ′n)(a∞ + ya2n)(a∞ + za2n)−DF ′na∞a∞

)
. (28)

Let p be a surjective pistol of size 2n. Then define H(p) by:

H(p) = S2n

(
ysai(p)zfix(p)T2n(p)(a∞ + ya2n)(a∞ + za2n)− ysai(p)zfix(p)p a∞a∞

)
. (29)

If p = ua∞v, with u without a∞ and size of i, then:

H(p) = ysai(p)zfix(p)u(a∞ + ya2n)T2n(va∞)(a∞ + za2n)− ysai(p)zfix(p)p a∞a∞
= ysai(p)zfix(p)u

(
a∞∆2n(va∞)a∞ + ya2nT2n(va∞)a∞

+ za∞T2n(va∞)a2n + yza2nT2n(va∞)a2n

)
.

(30)

The four terms of the previous sum correspond to partition the words w of Dp into four sets, depending
whether the values of wi+1 and w2n are 2n or 2n+2. Moreover, since u has no a∞, all values wj with
j ≤ i are smaller than 2n. In particular, there is an extra power of y if and only if position i+1 is a
saillance point. As before, there is an extra power of z if and only if 2n is fixed point. Then,

H(p) =
∑

p′∈Dp

ysai(p′)zfix(p′)p′. (31)
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If p has no a∞, since it does not contain a2n, we have:

H(p) = ysai(p)zfix(p)p (y · a2na∞ + z · a2na∞ + yz · a2na2n) (32)

In particular,

H(p) =
∑

p′∈Dp

ysai(p′)zfix(p′)p′. (33)

Then, by induction hypothesis, the previous computation, and the fact that tp∈P2n
Dp = P2n+2, we

conclude.

By applying Π to (26), we get back the second interpretation of the Dumont-Foata polynomials.

Remark. In order to find the statistics associated with the parameters x, y, z in the Dumont-Foata
polynomials, by defining a sequence of non-commutative polynomials which projects on them, guessing
the statistics in non-commutative polynomials is much easier than guessing them in the algebra of
formal power series. Indeed, the words in the non-commutative polynomials appear only once with a
monomial in x, y, z whereas in the Dumont-Foata polynomials we have less information because of
the multiplicity of terms.

2.3 A generalization with six parameters

In [Dum95], Dumont gave a generalization with six parameters, and some conjectures about it. Inde-
pendently, Zeng in [Zen96] and Randrianarivony in [Ran94] proved these conjectures. In order to do
that, they first found the induction satisfied by these polynomials. In this section, we get back the
induction with the non-commutative method.

Definition 2.3.1. Let p be a surjective pistol of size 2n. Then i is:
- a double fixed point if p(i) = i and there exists j 6= i where p(j) = i,
- a non double fixed point if p(i) = i and i is not a double fixed point,
- a double surfixed point if p(i) = i+ 1 and there exists j 6= i where p(j) = i+ 1,
- a non double surfixed point if p(i) = i and i is not a double surfixed point,
- an even max point if i is even and p(i) = 2n,
- an odd max point if i is odd and p(i) = 2n.
Let us respectively denote by dfix(p), ndfix(p), dsurfix(p), ndsurfix(p), emax(p) and omax(p) the

number of double fixed points, non double fixed points, double surfixed points, non double surfixed
points, even max points, odd max points smaller than 2n−2.

Example 9. If p = 248468 then dfix(p) = 1, ndfix(p) = 1, dsurfix(p) = 0, ndsurfix(p) = 1, emax(p) = 1,
omax(p) = 1.

Definition 2.3.2. Let n be a positive integer. The six parameters of Dumont polynomials are defined
as follows:

Γn(x, y, z, x, y, z) =
∑

p∈P2n

xemax(p)ydfix(p)zdsurfix(p)xomax(p)yndfix(p)zndsurfix(p). (34)

Zeng and Randrianarivony proved that (Γn) satisfies the following induction:

Γ1 = 1
Γn+1(x, y, z, x, y, z) = Γn(x+ 1, y, z, x+ 1, y, z)(z + x)(y + x)

−Γn(x, y, z, x, y, z) (x (y − y) + (z − z)x+ xx) .
(35)
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Let us adapt the non-commutative formalism to find this definition by induction. In order to do so,
we change slightly the alphabet A, and the ring R. In this section, A = {ai, i ∈ N∗} ∪ {a∞, b∞}, the
projection Π sends ai to 1, a∞ and b∞ respectively to x and x, and R = Q[y, y, z, z]. We extend Ti

by sending b∞ to (b∞ + ai). One has to modify slightly the map i: an odd max point corresponds to
b∞. If p = 24846888, then p is equal to a2a4b∞a4a6a∞. Then define the linear map f2n on words as
follows:

f2n(w) = T2n(w)(b∞ + za2n)(a∞ + ya2n)− w ((y − y) a∞a2n + (z − z)b∞a2n + b∞a∞) . (36)

Now, define our non-commutative Γn as follows:

Definition 2.3.3. Let n be a positive integer. Let us define the following sequence of polynomials:{
Γ1 = 1
Γn+1 = f2n (Γn) if n ≥ 1.

(37)

Example 10. The first polynomials are:

Γ2 = yz · a2a2 + z · a2a∞ + y · a∞a2

Γ3 = y2z2 · a2a2a4a4 + yyz · a2a2a∞a4 + yzz · a2a2a4a∞
+ yzz · a2a4a4a4 + yzz · a2a∞a4a4 + yz · a2a4a∞a4 + yzz · a2a4a4a∞
+ yz · a2a4a∞a∞ + y2 · a2a∞a4a∞ + yz · a2a∞a∞a4

+ yyz · a4a2a4a4 + yyz · a∞a2a4a4 + yy · a4a2a∞a4 + yz · a4a2a4a∞
+ y · a4a2a∞a∞ + yz · a∞a2a4a∞ + y2 · a∞a2a∞a4.

(38)

Proposition 2.5. We have the following identity:

Γn =
∑

p∈P2n

ydfix(p)yndfix(p)zdsurfix(p)zndsurfix(p)p. (39)

Proof. By induction on n. It is true for n = 1. Assume the statement for a given n. By using the fact
that T2n = Id+∆2n, we have:

f2n(w) = ∆2n(w)b∞a∞ + ywb∞a2n + zwa2na∞
+ y∆2n(w)b∞a2n + z∆2n(w)a2nb∞ + yz∆2n(w)a2na2n.

(40)

Let p be a surjective pistol of size 2n. Then, by using the inverse of i, the six terms of f2n(p) correspond
to a partition of Dp in six (possibly empty) sets, depending whether positions 2n−1 and 2n are (non)
double surfixed points or not, (non) double fixed points or not. If p′ appears in f2n(p), one can check
that its coefficient is equal to yaybzczd, with a, b, c, d equal to 1 or 0, depending whether 2n is a
double fixed or not, a non double fixed point or not, and 2n−1 a double surfixed point or not, a non
double surfixed point or not. So we have:

f2n

(
ydfix(p)yndfix(p)zdsurfix(p)zndsurfix(p)p

)
=
∑

p′∈Dp

ydfix(p′)yndfix(p′)zdsurfix(p′)zndsurfix(p′)p′. (41)

Then by the same arguments as before, we deduce (39).

Now, by applying Π to (39), we get back the inductive definition of the Gandhi polynomials with
six parameters. For a surjective pistol p, it is clear that the number of occurrences of a∞ and the
occurrences of b∞ in p are respectively equal to emax(p) and omax(p).
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The previous generalizations correspond to recording some statistics on the induction relation. There
is another way to obtain interesting generalizations of a sequence: use a q-analog. In [HZ99], Han and
Zeng give a q-analog of the Gandhi polynomials and a combinatorial interpretation of them. In the
next section, by using again our non-commutative method, we find another combinatorial interpreta-
tion of this q-analog of Gandhi polynomials. They have in fact a q-analog of a generalization of Gandhi
polynomials. By slightly adapting the non-commutative method, we find a direct combinatorial inter-
pretation of these polynomials.

3 The q-analog of Gandhi polynomials

In this section, the ring R is Q, the alphabet A is {ai, i ∈ N∗}∪{a∞}, and the projection Π sends the
letters ai to one, and a∞ to x.

3.1 A q-analog of the finite difference operator

Let us denote by ∆q the following q-analog of the operator of finite difference:

∆q(f)(x) =
f(xq + 1)− f(x)

1 + (q − 1)x
. (42)

Example 11. If f(x) = xn, we have:

∆q(f)(x) =
(xq + 1)n − xn

1 + (q − 1)x
=

(1 + qx− x)
(∑n−1

k=0(1 + qx)kxn−1−k
)

1 + (q − 1)x

=

n−1∑
k=0

(1 + qx)kxn−1−k.

(43)

By expanding (1 + qx)k and by regrouping by powers of x, we have:

∆q(f)(x) =

n−1∑
i=0

(
n−1∑
k=i

(
k

i

)
qk−i

)
xn−1−i. (44)

3.2 The q-projection and the q-Gandhi polynomials

Definition 3.2.1. The q-Gandhi polynomials are defined as follows:{
C1(x, q) = 1
Cn+1(x, q) = ∆q(Cnx

2) for n ≥ 1.
(45)

Example 12. Here are the first terms:

C2 = (q + 1)x+ 1,
C3 =

(
q3 + 2q2 + 2q + 1

)
x2 +

(
2q2 + 4q + 2

)
x+ q + 2.

(46)

Since we have defined non-commutative Gandhi polynomials, in order to obtain Cn, we have to
find a q-version Πq of the map Π, such that Πq(Cn) = Cn. By induction and linearity, it is enough to
find Πq such that for p a surjective pistol of size 2n, we have:

Πq ◦∆2n(p a∞a∞) = ∆q

(
Πq(p)x2

)
. (47)
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From the previous remark, it is enough to define Πq on words w of the form w = p and w = p a∞a∞
where p is associated with a surjective pistol. Equation (47) indicates that we can fix a surjective
pistol p, and work on Dp. Let p be a surjective pistol, we search Πq such that:

Πq(p) = qstat(p)Π(p)
Πq(p a∞a∞) = qstat(p)Π(p)x2.

(48)

Now, we have to find a function stat. One way to proceed is to note that Π(p) = xmax(p), then, compute
both of (47), and deduce a condition on stat. Note that the construction of the n-th polynomial only
depends on the letters a2n and a∞. So we can search a statistic satisfying:

stat(p) =

n∑
i=1

stat(p, 2i). (49)

Example 13. For the case n = 2, we have C2 = (q + 1)x + 1. So the possible distribution of the
parameter q over P4 are:

x 1
1 2444 2244
q 4244

or
x 1

1 4244 2244
q 2444

.

The first case is related to the special inversion, whereas the second to the special non inversion.
In another context, Novelli, Thibon and Williams in [NTW10] defined the statistic that we use. It is
closely related to the statistic defined by Han and Zeng in [HZ99].

Definition 3.2.2. Let w be a word of size 2n containing a2, · · · , a2n−2. Let j2, · · · , j2n−2 be the
positions of the last occurrence of a2, . . . , a2n−2. Then a special inversion of w is a pair (i, j) with i < j
such that j is one of the jk and wi > wj . We denote by sinv(w, aj) the number of special inversions
of w such that the letter corresponding to the second coordinate is aj , and by sinv(w) the number of
special inversions of w.

Example 14. If w = a4a2a6a4a∞a6, we have sinv(w, a2) = 1, sinv(w, a4) = 1, sinv(w, a6) = 1, and
sinv(w) = 3.

Definition 3.2.3. Let p be a surjective pistol. We set:

Πq(p) = qsinv(p)Π(p) = qsinv(p)xmax(p),
Πq(p a∞a∞) = qsinv(p)Π(p a∞a∞) = qsinv(p)xmax(p)+2.

(50)

Theorem 3.1. Let Πq be defined as previously. Then we have the identity

Πq (Cn) = Cn, (51)

for all n in N.

The following proposition helps us to prove the theorem 3.1.

Proposition 3.2. Let p be a surjective pistol of size 2n, and l be the number of a∞ in w=p a∞a∞.
Then we have the following identities:

Π(p a∞a∞) = xl, (52)

∆q (Π(w)) =

l−1∑
i=0

(
l−1∑
k=i

(
k

i

)
qk−i

)
xl−1−i, (53)
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and

Π

 ∑
p′∈Dp

qsinv(p′,a2n)p′

 =

l−1∑
i=0

(
l−1∑
k=i

(
k

i

)
qk−i

)
xl−1−i = ∆q (Π(w)) . (54)

Proof. The first identity comes from the fact that the number of a∞ in pa∞a∞ is l. Then, we deduce
the second one thanks to (44).

For the third one, we regroup the elements of Dp according to the number of occurrences of a∞,
and by the value sinv(. , a2n). Thus, two surjective pistols p′ and p” are in the same class if and only
if they have same number k of a∞ and sinv(p′, a2n)=sinv(p”, a2n)=j. Since in p′ and p”, the letter
a∞ is the only letter greater than a2n, by denoting {n1, · · · , nl} the positions of a∞ in w, we deduce
that the position of the rightmost a2n of p′ and p” is the same and is equal to ij+l−k, since l−k is the
number of a2n in p′ and p” . Note that if one p′ in Dp has l−i− 1 letters equal to a∞, then the value
sinv(p′, a2n) is between 0 and l−i− 1. So,

∑
p′∈Dp

p′ =

l−1∑
i=0

l−1∑
k=i

∑
p′ ∈ Dp

oc(p′, a∞) = l − 1− i
sinv(p′, a2n) = k − i

qk−ip′, (55)

where oc(p′, a∞) is the number of a∞ in p′. Let us enumerate one equivalence class. If p′ has l−i−1
maximal letters, and sinv(p′, a2n) is equal to k− i, then the rightmost a2n is at the same position nk+1

for all elements of the class.
To the left of the position nk+1, we know that there are k−i letters equal to a∞ thanks to the

equality
sinv (p′, a2n)=k − i, (56)

and i letters equal to a2n. So this class has
(
k
i

)
elements. By applying Π to (55), we find (54).

Let us now prove Theorem 3.1.

Proof. By induction in n. If n is equal to 1, Theorem 3.1 is true. Assume that is true for n. So we
have:

Πq (Cn) = Cn. (57)

Since
Cn+1 = ∆q

(
Cnx

2
)
, (58)

we deduce that
Cn+1 = ∆q

(
Πq (Cn)x2

)
. (59)

By definition of Πq, of Cn and linearity of ∆q we have

∆q

(
Πq (Cn)x2

)
=
∑

p∈P2n

qsinv(p)∆q (Π(pa∞a∞)) . (60)

Then, by applying Equality (54) of Proposition 3.2, we obtain

∑
p∈P2n

qsinv(p)∆q (Π(pa∞a∞)) =
∑

p∈P2n

qsinv(p)Π

 ∑
p′∈Dp

qsinv(p′,a2n)p′

 . (61)

Note that for p′ in Dp we have

sinv(p′) = sinv(p) + sinv(p′, a2n), (62)
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and since P2n+2 =tp∈P2n
Dp we deduce that

∑
p∈P2n

qsinv(p)Π

 ∑
p′∈Dp

qsinv(p′,a2n)p′

 =
∑

p′∈P2n+2

qsinv(p′)p′ = Πq (Cn+1) , (63)

so the theorem is true for n+1.

3.3 Another generalization of the q-Gandhi polynomials
and a new q-projection

In [HZ99], Han and Zeng define the following generalization of Gandhi polynomials:

Dn+1(x) =

{
1 if n = 0,

∆q(Dn(x)x2) + (y − 1)Dn(x)x if n ≥ 1.
(64)

They also give some combinatorial interpretations of these polynomials. With our non-commutative
method, we see that the parameter y corresponds to non double fixed point, and another q-statistic
arises naturally.

Definition 3.3.1. Let w be a word containing the letters a1, · · · , an. A special non inversion is a pair
(i, j) such that i < j ≤ k, and wi < wj , where wi = ak, and the factor w1 · · ·wi−1 does not contain
the letter ak. We denote by snv(w) the number of special non inversions in w, and by snv(w, ak) the
number of special non inversions where wi =ak.

Example 15. If w = a4a2a6a4a∞a6, then snv(w, a2) = 0, snv(w, a4) = 1, snv(w, a6) = 1, and
snv(w) = 2.

Thanks to this statistic, we have a new q-projection.

Definition 3.3.2. Let n be an integer, and p be a surjective pistol of size 2n. We set

Π′q(p) = qsnv(p)Π(p). (65)

In the same way as before, we have the following theorem.

Theorem 3.3.

Π′q

 ∑
p∈P2n

yndfix(p)p

 = Dn(x). (66)

The proof is the same as the proof of Theorem 3.1. First, we establish a proposition which relates
the special non inversions with the operator ∆q. Then, we prove by induction the theorem 3.3.

Proposition 3.4. Let p be a surjective pistol of size 2n, and w be equal to p a∞a∞. Let l be the
number of occurrences of the letter a∞ in w. Then:

Π(w) = xl, (67)

∆q (Π(w)) =

l−1∑
i=0

(
l−1∑
k=i

(
k

i

)
qk−i

)
xl−1−i, (68)

and ∑
p′∈Dp

qsnv(p′,a2n)Π(p′) =

l−1∑
i=0

(
l−1∑
k=i

(
k

i

)
qk−i

)
xl−1−i = ∆q(Π(w)). (69)
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Proof. The first identity comes from the fact that the number of a∞ in w is l. Then, we deduce the
second one thanks to (44).

For the third one, we regroup the elements of Dp according to the number of a∞, and to the value
of snv(. , a2n). Thus, two surjective pistols p′ and p” are in the same class if and only if they have
same number k of a∞ and same value j of snv(., a2n). Since in p′ and p”, the letter a∞ is the only
letter greater than a2n, by denoting {n1, · · · , nl} the positions of a∞ in w, we deduce that the position
of the leftmost a2n of p′ and p” is the same and is equal to ik−j+1, because l−k is the number of a2n

in p′ and p”. Note that if one p′ in Dp has l−i− 1 letters equal to a∞, then the value sinv(p′, a2n) is
between 0 and l−i− 1. So,

∑
p′∈Dp

p′ =

l−1∑
i=0

l−1∑
k=i

∑
p′ ∈ Dp

oc(p′, a∞) = l − 1− i
sinv(p′, a2n) = k − i

qk−ip′, (70)

where oc(p′, a∞) is the number of a∞ in p′. Let us enumerate one equivalence class. If p′ has l−i−1
maximal letters, and snv(p′, a2n) is equal to k − i, then the leftmost a2n is at the same position nl−k
for all elements of the class.

To the right of the position nl−k, we know that there are k−i letters equal to a∞ thanks to the
equality

snv (p′, a2n)=k − i, (71)

so there are i letters equal to a2n. Therefore, this class has
(
k
i

)
elements. By applying Π to (70), we

find (69).

Let us now prove Theorem 3.3.

Proof. It is straightforward that the sequence

Dn =
∑

p∈P2n

yndfix(p)p (72)

satisfies the induction

Dn+1 =

{
1 if n = 0,

∆2n(Dna∞a∞) + (y − 1)Dna∞a2n if n ≥ 1.
(73)

Indeed, it is a particular case of the sequence (Γn)n≥1 with y=1, y=y, z=1, z=1, and b∞=a∞. Let
us now prove Theorem 3.3 by induction in n. For n equal to 1, the theorem is true. Assume that is
true for n. So we have:

Π′q (Dn) = Dn. (74)

Since
Dn+1 = ∆q

(
Dnx

2
)

+ (y − 1)Dnx, (75)

we deduce that
Dn+1 = ∆q

(
Π′q (Dn)x2

)
+ (y − 1)Π′q (Dn)x. (76)

By definition of Π′q, of Dn, and linearity of ∆q we have

∆q

(
Π′q (Dn)x2

)
=
∑

p∈P2n

qsnv(p)yndfix(p)∆q (Π(pa∞a∞)) . (77)
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Then, by applying Equality (69) of Proposition 3.4, we obtain

∑
p∈P2n

qsnv(p)yndfix(p)∆q (Π(pa∞a∞)) =
∑

p∈P2n

qsnv(p)yndfix(p)Π

 ∑
p′∈Dp

qsnv(p′,a2n)p′

 . (78)

Note that for p′ in Dp we have

snv(p′) = snv(p) + snv(p′, a2n), (79)

and since P2n+2 =tp∈P2n
Dp we deduce that

∑
p∈P2n

qsnv(p)yndfix(p)Π

 ∑
p′∈Dp

qsnv(p′,a2n)p′

 =
∑

p∈P2n

∑
p′∈Dp

qsnv(p′)yndfix(p)Π (p′) . (80)

All surjective pistols in Dp have the same number of non double fixed point as p but p a∞a2n which
has one more. Moreover, snv(p a∞a2n, a2n) is equal to zero. Then we have

(y − 1)Π′q (Dn)x = (y − 1)
∑

p∈P2n

yndfix(p)Π (p a∞a2n) . (81)

By adding the right members of (80) and (81), we obtain∑
p∈P2n

∑
p′∈Dp

qsnv(p′)yndfix(p)Π (p′) + (y − 1)
∑

p∈P2n

yndfix(p)Π (p a∞a2n) =
∑

p∈P2n+2

qsnv(p)yndfix(p)Π (p) .

(82)
Since ∑

p∈P2n+2

qsnv(p)yndfix(p)Π (p) = Π′q (Dn+1) , (83)

we deduce the statement for n+1.
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