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Sanaer Sequencina [Sanaer et al "1T]
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CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

GGACCTGCCCA*

GGACCTGCCCAGTCTGTA*

Sanager Seaquencing

| split helix & create thousands of copies
72 add polywmerase < floatina Rases: A C G T
3. add a special Base: Ax (POlywmerase cannot extend)
4. stir = let polymerase act
S. measure the lenath of each fraament
~ each lenath is the position of a T in the template

(g%

unreliagle after a couple hundred gp
~s chop up DNA into pieces and read those
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Next Generation Sequencing (i D

ACTCA...... ACCTC

G AG G TGAGT

l. chop DNA into smaller pieces

72 add anchors to each end of each piece

3. "flow cell" containing anchor places

4. strand anchors its two ends to two anchor places

S. polyvmerase completes the strand into dousle-strand
L. dourle strand is denaturized into sinale strands

1. rinse, repeat (last 3 steps) until flow chip is "full”

8. read all strands £rom their anchor points outwards

~ Paired-Eind reads (distance retween reads = “insert size"
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Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads
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Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

- SOPR.A [Dayarian, Michsel, Senaupta, BMC Bioing. I, (01
> removes reads in hich-coverace area (likely repeats)
» orientation step (heuristic) + ordering step (heuristic)
» coded in Pearl (1IN
» (OBserved sparse contia araph)

/33



Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

- SOPR.A [Dayarian, Michael, Sencupta, BMC Bioing. II, 101
- SSPACE (Boetzer < al, Bioing. 2714, I

» heuristic contia extension
» ‘reasonaele time"

/33
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Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

(Dayarian, Michael, Senaupta, BMC Bicint. I, ’lO]

- SOPRA
- SSPACE (Boetzer = al, Bioing 27704, Il
- OPERA (G50, Suna, Naarajs, JCB. 18D, I

» P 20 time (p =Hkedae-deletions (> feedrack edae set))
» MOst work done By a heuristic "araph contraction”
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Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

- SOPR.A [Dayarian, Michsel, Senaupta, BMC Bioing. I, (01
- SSPACE (Boetzer < al, Bioing. 271, M
- OPERA (G50, Suna, Naarajs, JCB. 18D, I
- GRASS (Gritsenko # al, Bioing. 2.8(D, 2]

» Mixed-Intecer Quadratic Proarammina
» deals with uncertain data (slack variagles)

~ "intractaele even for small 3k of contias”

» heuristic workaround:
> solve relaxed formulation < use slack values ~ ILP
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Goal: order = orient contias
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- SCARPA [(Donmez, Brudno, Bicing. 294, 31

» orientation step: use FPT alao for Odd Cycle Transersal
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Graph—Pased Scaffolding
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Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Construction

Given a directed araph D.
l. make a copy of D

9/33



Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Construction

Given a directed araph D.
l. make a copy of D
2_. duplicate all vertices ~» M

9/33



Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Construction

Given a directed araph D.

l. make a copy of D

2. duplicate all vertices ~~ M

3. "slide" down all arrow tips < iaNore directions
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Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
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Scaffolding in Unweighted Co-Bipartites

Theorem
Scatfolding can Be solved in O(n + m) time on co-sipartite araphs
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Theorem
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Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R_ecurrence

Let vi,va,..., v Be the children of v.
[0,0, ], :=0
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b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN ] v - _1 ” ]

{[p, Ay }+[j—1,p—pj,x]v i v e M

pi<p
[pj o 17 ‘/]V_,'

3/33



Scaffolding in Weighted Trees ——

Dynamic Proaramming ldea s

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

Tl EFEFwwwe

Recurrence
Let vi,va,..., v Be the children of v. o
[0,0, ], :=0
max{[pja\/ivﬁ[pja ]vj}+U_17P—Pj,X]v i$ VVJ’%“M
[, p. Al = max w(\[f\/j) +1[pj]+ Ly +li-Lp=py ] W¥x=vFw¢gM
- {p, 17 ,V" }+[j—1,p—pj,x]v i$ w; e M
[pi — 1,y 3/33
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3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

pOssiBle

Gy = 1, Gz = 17
Proo#
ResuHt S* is a valid solution

Note: taking an edae foreids < 3 OPT edaes

~ mark the < 3 OPT-edaes when taking an edce e
~ e Is heaviest amona them

~ 3w(S*) > OPT
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3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edee, i$

i} possisle
o

Gy = 1, Gz = 17

Theorem

Scatfoldina iIn complete (ripartite) araphs can re
3-approximated in O(|V|log|V]) time.

R.emark

For Exact Scaffolding, we have to keep an eye on the numeer of
components too.
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f until at most o¢ + o, cycles remain
O\O 4. repeatedly remove lightest non-

cycle—edce

@ = 1, Gz = 17 A .
unttil at most o, cyales remain

Proo#

Result S* is a valid solution
w(S*) > w(fix) > w(5)/2 > OPT /5
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O\O Approximate Exact Scaffolding
C/D l. compute max-weight

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-
d-oyale intersecting 2 cycles
f until at most o¢ + o, cycles remain
O\O 4. repeatedly remove lightest non-
op=1,0c=1? cycle-edae :
unttil at most o, cyales remain

Theorem

Exact Scaflolding in complete (Ripartite) araphs can re
2-approximated in O(|V|?) time.

R.emark

For Scaffolding, replace Step 3 By either meraing cycles or
removing lightest edge, whatever |[0oses less weight
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[ = max. weight collectigle Before v; with p < ¢
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Exact Algorithms |: Brute Forcece

04—0\—0 O Q@ Qumm® Q= D=

j i—2 i

[ = max. weight collectigle Before v; with p < ¢
P> & J1i = paths/cycles plus one path starting at v;

[p,c,jli =[p, ¢, jli—a + w(viavi—1) #j<i—2% viovi1€E

{[P -~ 17 Caj]i—2

p,c,i —1]; = max b .
[ ] [p,c—1,jlica +w(vjvi—2) # vjvip, € E

j<i—=2
j even

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

~ try all O(n!) certificates
contias force every other vertex ~ O(v2" - n/a!)
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Computation
Let xy € M. Then, [{xy},0,0,x,y] :=0 and

S,p,c,u,yl ;= max [S—xy,p,c,u,w]+
[5: Py y] = e e R R A )
u#£w

S,p,c,x,y] ==  max
[ L” y] u,w€eG[S—xy]

{[5—xy,p—1,c, u, w]
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Exact Algorithms ll: Dynamic Proaranmming

S—xy

Semantics

[S, p, ¢, u, v] = max. weiaht collectigle in G[S] By p att. paths, ¢
alt. aycles and an att. path starting at u = ending at v

Computation
Let xy € M. Then, [{xy},0,0,x,y] :=0 and

5) , Gy U, = ma S — » P, C, U,
[ & y] WGG[S)ixy][ el “ W] +W(WX)

u#£w
[S—xy,p—1,¢c,u,w]

S? 9 ) ) o= -
[5,p, %] u,weng;?.%(—xy] {[S —xy,p,c—1u,w]+w(wu) £ wueE(G)\ M
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Exact Algorithms ll: Dynamic Proaranmming

S—xy

Semantics

[S, p, ¢, u, v] = max. weiaht collectigle in G[S] By p att. paths, ¢
alt. aycles and an att. path starting at u = ending at v

Theorem
Scaffolding can Be solved in O(ﬂnn%pac) tive.
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Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest & G — M is forest

Oerservation

Each leat v Of G — M has dearee 2 in G

~ I8 0, =0, we have to take BOth!

~ remove all non-matcehing edaes from parent u, except uv
Corollary

Scaffoldina can e solved in O(n) on Quasi-forests if o, = O‘.
Scaftolding can e solved in O(n*?»1) in quasi-forests. /

/

‘W 

But is it even NP-hard? T A
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Sparse Graphs: Quasi-Forest

Weiaghted 2-SAT
Input: @ on X in 2-CNF, weiahts w: X x {0,1} - N, ke N

Question: is there a satisfying assianment for ¢ of weicht < k?

R.emark
Independent Set is special case of Weiahted 2-SAT

19/33



Sparse Graphs: Quasi-Forest

19/33



Sparse Graphs: Quasi Eore.s—t

LTTTTITIT]

19/33



Sparse Graphs: Quasi-Forest

19/33



Sparse C-arapks Quasi -Forest

[ 11 I\&IIIE

19/33



Sparse Graphs: Quasi-Forest

19/33



Sparse Graphs: Quasi-Forest

19/33



Sparse Graphs: Quasi-Forest

19/33



Sparse Graphs: Quasi-Forest

19/33



Sparse Graphs: Quasi-Forest

19/33



Sparse Graphs: Quasi-Forest

19/33



Sparse Graphs: Quasi-Forest

)

Oerservation
3 weiaht-k satisfying assiacnvent

=

3 weiaht-k cover with < n
aHternating paths

19/33



Sparse Graphs: Quasi-Forest

) -

Oerservation
3 weiaht-k satisfying assiacnvent

=

3 weiaht-k cover with < n
aHternating paths

Theorem

Scaffolding is NP-hard even if G — M
is 8 collection of paths with weights
O/l

19/33



Sparse Graphs: Quasi-Forest

) -

Oerservation
3 weiaht-k satisfying assiacnvent

=

3 weiaht-k cover with < n
aHternating paths

Theorem

Scaffolding is NP-hard even if G — M
is 8 collection of paths with weights
O/l

Corollary

no 2°(mtmM—tinme alaorithm (ETH)
no n°K—time alaorithm (FPTAWLED
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Other Forms of Tree-Likeness

Tree Decompositions

tree T, each vertex | associated to some X; C V(G) s+t
 Vee€ E(G), there is some i € V(T) with e € X;

2. VveV(G),raas containing v induce a connected sugtree
treewidth tw = size of larcest Baa - |

Hope

Practical instances of Scaffolding have low treewidth (they
oriainate from linear structure)

Nice Decompositions

leaf: X =0

Introduce v: i has sinale child j and X; \ X; = {v}

Foraet v: i has sinale child j and X; \ X; = {v}

Introduce uv: i has sinale child j and uv C X; = X;
(each edee introduced exactly onece)

Join: j has 2 children j and ¢ and X; = X; = X,
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e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"
Semanttics
[d, P, p, c]i = max weiaht of any S with M N E(G;) C S C E(G;) and
[ each vertex v € X; has dearee d(v) in G[S],
2. for each uv € P, Gi[S] contains an atternating path. ..
u=v:.. $rom uavoidina d *(1)
u#Fv:...from uto v
3. Gi[S] contains < avoidina d (1)
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Leat Bag

[2,2,0,0; =0
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Case |- d(u) =d(v) =2
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e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Foraet v (sinale child

%
[dlv=1,P+w,p—1,c];

[d, P, p.cls = max§ 2l (P = wu) + v, p. )
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Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Foraet v (sinale child

v

JFQ‘LL [dlv»1, P+ w,p—1,c];
[d, P, p, cl; = max{ Max[dlv-n, (P —uu)+uv,p,c];

dv X3P7 J j
e Pr01)
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Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Join Bag (children j < 0N

[dv'Dava]i: LEDS max [dijjapj7Cj]j+[d_dijva_pij_Cj]E
d;,Pj.pj,cj Py
Pj\_lP[ = (P

~ O™ - tw /2.5, - 0.) tarle entries and O((tw +2)™ - 0, - 0. - n) time
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Intecer Linear Proaram Formulation

tp

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yo =1 & u — v used
X{u,v} = Yuv aF Yvu

force contias: VuvemXuy =1

path preservation: Vs i, e D, Yvu = 2, Yuv

path < cycle BOUNds: oWt < Oipe)

foreid cycles (row generation via callBack):

V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE
aycle consistency: VuYute < You
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Intecer Linear Proaram Formulation

tp

for each non-contia uv,

| introduce a variagle

2. construct

3. add

to X{u,v}

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yo =1 & u — v used
X{u,v} = Yuv aF Yvu

force contias: VuvemXuy =1

path preservation: Vuisi,.eo Do, You = D, Yuv

path < cycle Bounds: Do Yotipe S Opc}

foreid cycles (row aeneration via callrack):

V cycle C: > (Yav—yue) < |C]|
uveC
OB jective: max > Xy} - w(e)
ecE
aycle consistency: VuYute < Ysu

Between u and v that fits in the aap

extra: preprocess instance to finish incomplete jumps

VASYACE!



Intecer Linear Proaram Formulation

tp

S te

Jump Mechanics
for each non-contia uv,
| introduce a variagle z,,

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yo =1 & u — v used
X{u,v} = Yuv ar qu+lev + Zuu

force contias: VuvemXuy =1

path preservation: Vs i, e D, Yvu = 2, Yuv

path < cycle BOUNds: oWt < Oipe)

foreid cycles (row generation via callBack):

V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE
cycle consistency: i =

Jumvip mechanies

2. construct "jumvp network” petween u and v that fits in the cap

3. add Zy to X{u,v}

extra: preprocess instance to finish incomplete jumps

VASYACE!
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ILP Extension: Multiplicities

GGTGCGAGAGAGGTCATGGATTGCAACGA

GGTGCGAGAGGCCACTCCAATTGCAACGA
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Intecer Linear Proaram Formulation

S

Multiplicities

tp

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yo =1 & u — v used

X{u,v} = Yuv + YvutZuv + Zvu
force contias: VuvemXuy =1
path preservation: Vs i, e D, Yvu = 2, Yuv
path < cycle BOUNds: oWt < Oipe)
foreid cycles (row generation via callBack):

V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE

aycle consistency: VuYute < You

Jumvip mechanies

L make yu, X{u,v} Inteaers in domain [0, m({u, v})]

2. change callrack.
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Intecer Linear Proaram Formulation

S

Multiplicities

tp

chromosomes = disjoint s—{t,, tc }-paths

int. variagles y,, ={< u— v used { times
X{u,v} = Yuv + YvutZuv + Zvu

force contias: VuvemXu>1
path preservation: Vuisi,.eo Do, You = D, Yuv
path < cycle Bounds: Do Yotipe S Opc}
foreid cycles (row generation via callBack):
Y Cye'e C: Z Yuv S |C| * Mmax ° Zyuv
uveC ueC,v¢C
OB jective: max > Xy} - w(e)
ecE
coycle consistency: VuYute < Ysu

jump mechanies i

L make yu, X{u,v} Inteaers in domain [0, m({u, v})]

2. change callrack.
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=alt. path of uniform multiplicity u = each end incident to non-contia < )

Proo#
"=" contraposition; let p = ameicous path

~ (G, M, m) not uniquely linearizagle
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Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia < )
Proo#$

"<" let (G, M, m) Be free of ampicous paths
Reduction (does not decrease numeer of linearizations):

SR
=4 3 e
Ly 7S
9 N

~ resutt is collection of alternating paths = cycles
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