Lecture: Graph—Pased
Genome Scaffolding

Mathias Weller

mathias.weller@univ-mlv.fr

Morrtpellier, 2011

mathias.weller@univ-mlv.fr

b o
AN

base pair

hydrogen bonds

Adenine (A)
. Thymine (T)
I Cytosine (O)

Guanine (G)

DNA

- dourle strand
- inside nucleus (safe)

RNA

single strand
outside nucleus

transfers genetic code
Thymine (T — Uracil (LY

2./33

b o
AN

base pair

hydrogen bonds

Adenine (A)
. Thymine (T)
I Cytosine (O)

Guanine (G)

DNA

- dourle strand
- inside nucleus (safe)

RNA

single strand

outside nucleus

- transfers aenetic code
Thymine (T — Uracil (LY

Polywerase

N

Polymerase
domain

3
3= 5
exonuclease
domain

2./33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGACCTGCCCAGTCTGTACTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGACCTGCCCAGTCTGTACTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA

Sanager Seaquencing
| split helix + create thousands of copies

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

Sanager Seaquencing
| split helix + create thousands of copies

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

Sanager Seaquencing

l. split helix = create thousands of copies
72 add polywmerase < floatina Rases: A C G T
3. add a special Base: A* (polymerase cannot extend)

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

Sanager Seaquencing

l. split helix = create thousands of copies

72 add polywmerase < floatina Rases: A C G T

3. add a special Base: Ax (POlywmerase cannot extend)
4. stir = let polymerase act

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

Sanager Seaquencing

l. split helix = create thousands of copies

72 add polywmerase < floatina Rases: A C G T

3. add a special Base: Ax (POlywmerase cannot extend)
4. stir = let polymerase act

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

GGAx*
GGACCTGCCCA*

Sanaer Sequencing

l. split helix = create thousands of copies

72 add polywmerase < floatina Rases: A C G T

3. add a special Base: A* (polymerase cannot extend)
4 stir = let polywerase act

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

GGAx*
GGACCTGCCCA*
GGACCTGCCCAGTCTGTA*

Sanaer Sequencing

l. split helix = create thousands of copies

72 add polywmerase < floatina Rases: A C G T

3. add a special Base: A* (polymerase cannot extend)
4 stir = let polywerase act

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

GGACCTGCCCA*

GGACCTGCCCAGTCTGTA*

Sanager Seaquencing

| split helix & create thousands of copies
72 add polywmerase < floatina Rases: A C G T
3. add a special Base: Ax (POlywmerase cannot extend)
4. stir = let polymerase act
S. measure the lenath of each fraament
~ each lenath is the position of a T in the template

3/33

Sanaer Sequencina [Sanaer et al "1T]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

GGACCTGCCCA*

GGACCTGCCCAGTCTGTA*

Sanager Seaquencing

| split helix & create thousands of copies
72 add polywmerase < floatina Rases: A C G T
3. add a special Base: Ax (POlywmerase cannot extend)
4. stir = let polymerase act
S. measure the lenath of each fraament
~ each lenath is the position of a T in the template

(g%

unreliagle after a couple hundred gp
~s chop up DNA into pieces and read those

3/33

Next Generation Sequencing (i D

4 /33

Next Generation Sequencing (i D

ACTCA...... ACCTC

|. chop DNA into smaller pieces

4 /33

Next Generation Sequencing (i D

ACTCA...... ACCTC

|. chop DNA into smaller pieces
2. add anchors to each end of each piece

4 /33

Next Generation Sequencing (i D

ACTCA...... ACCTC N

|. chop DNA into smaller pieces
2. add anchors to each end of each piece
3. "flow cell" containina anchor places

4 /33

Next Generation Sequencing (i D

ACTCA...... ACCTC

l. chop DNA into smaller pieces

72 add anchors to each end of each piece

3. "flow cell" containing anchor places

4. strand anchors its two ends to two anchor places

4 /33

Next Generation Sequencing (i D

...AccTe

..., .ACTCA

l. chop DNA into smaller pieces

72 add anchors to each end of each piece

3. "flow cell" containing anchor places

4. strand anchors its two ends to two anchor places

4 /33

Next Generation Sequencing (i D

... TGGAG
~ . ACCTC

% TGAGT
... ACTCA

l. chop DNA into smaller pieces
72 add anchors to each end of each piece
3. "flow cell" containing anchor places
4. strand anchors its two ends to two anchor places
S. polyvmerase completes the strand into dousle-strand

4 /33

Next Generation Sequencing (i D

ACTCA...... ACCTC

G AG G TGAGT

l. chop DNA into smaller pieces

72 add anchors to each end of each piece

3. "flow cell" containing anchor places

4. strand anchors its two ends to two anchor places
S. polyvmerase completes the strand into dousle-strand
L. dourle strand is denaturized into sinale strands

4 /33

Next Generation Sequencing (i D

ACTCA...... ACCTC

G AG G TGAGT

l. chop DNA into smaller pieces

72 add anchors to each end of each piece

3. "flow cell" containing anchor places

4. strand anchors its two ends to two anchor places
S. polyvmerase completes the strand into dousle-strand
L. dourle strand is denaturized into sinale strands

1. rinse, repeat (last 3 steps) until flow chip is "full”

4 /33

Next Generation Sequencing (i D

ACTCA...... ACCTC

G AG G TGAGT

l. chop DNA into smaller pieces

72 add anchors to each end of each piece

3. "flow cell" containing anchor places

4. strand anchors its two ends to two anchor places

S. polyvmerase completes the strand into dousle-strand
L. dourle strand is denaturized into sinale strands

1. rinse, repeat (last 3 steps) until flow chip is "full”

8. read all strands £rom their anchor points outwards

4 /33

Next Generation Sequencing (i D

ACTCA...... ACCTC

G AG G TGAGT

l. chop DNA into smaller pieces

72 add anchors to each end of each piece

3. "flow cell" containing anchor places

4. strand anchors its two ends to two anchor places

S. polyvmerase completes the strand into dousle-strand
L. dourle strand is denaturized into sinale strands

1. rinse, repeat (last 3 steps) until flow chip is "full”

8. read all strands £rom their anchor points outwards

~ Paired-Eind reads (distance retween reads = “insert size"

4 /33

Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

5/33

Seaquence Assemgly: Overview

Goal: reconstruct sequence
ldea: overlap reads

5/33

Seaquence Assemgly: Overview

GCCCCTGAACTTCGC CGACACTCCTTGGGTTTT GGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

SYACE)

Seaquence Assemgly: Overview

GCCCCTGAACTTCGC CGACACTCCTTGGGTTTT GGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem |: parts of the seauence might Not Be covered By reads

SYACE)

Seaquence Assemgly: Overview

Goal: reconstruct sequence
ldea: overlap reads

Proelem |: parts of the seauence might Not Be covered By reads
~ seQuence with "hiagh coverage”

SYACE)

Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem |: parts of the seauence might Not Be covered By reads
~ seQuence with "hiagh coverage”

SYACE)

Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 2: Shortest Common Superstring is NP-hard
~ "Overlap-Layout-Consensus" assemglers

SYASE)

Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
|dea: overlap reads

Proelem 2: Shortest Common Superstring is NP-hard
~ "Overlap-Layout-Consensus" assemglers

l. produce Best pairwise overlaps

2. layout the reads according to the overlaps

3. for each position, compute consensus Base

SYASE)

Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
|dea: overlap reads

Proelem 2: Shortest Common Superstring is NP-hard
~ "Overlap-Layout-Consensus" assemglers

l. produce Best pairwise overlaps

2. layout the reads according to the overlaps

3. for each position, compute consensus Base

SYASE)

Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 2: Shortest Common Superstring is NP-hard
~ "Overlap-Layout-Consensus" assemglers

Proelem: ©(n?) too slow in practice

~> DeBruijn-araph Based assemaly

SYASE)

Seaquence Assemgly: Overview

TGAACTTCGCTAGEETTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 2: Shortest Common Superstring is NP-hard
~ "Overlap-Layout-Consensus" assemglers
Proelem: ©(n?) too slow in practice

~> DeBruijn-araph Based assemaly

l. chop all reads into "k-mers"

2. ruilds overlap araph
("DePruijn araph™

3. find path using all overlaps

Seaquence Assemgly: Overview

TGAACTTCGCTAGEETTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 2: Shortest Common Superstring is NP-hard
~ "Overlap-Layout-Consensus" assemglers
Proelem: ©(n?) too slow in practice

~> DeBruijn-araph Based assemaly

l. chop all reads into "k-mers"

2. ruilds overlap araph
("DePruijn araph™

3. find Eulerian path

Seaquence Assemgly: Overview

TGAACTTCGCTAGEETTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 2: Shortest Common Superstring is NP-hard
~ "Overlap-Layout-Consensus" assemglers
Proelem: ©(n?) too slow in practice

~> DeBruijn-araph Based assemaly

l. chop all reads into "k-mers"

2. ruilds overlap araph
("DePruijn araph™

3. find Eulerian path

SYACE)

Seaquence Assemgly: Overview

TGAACTTCGCTAGEETTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 2: Shortest Common Superstring is NP-hard
~ "Overlap-Layout-Consensus" assemglers

Proelem: ©(n?) too slow in practice
~> DeBruijn-araph Based assemaly

l. chop all reads into "k-mers"

2. ruilds overlap araph
("DePruijn araph™

3. find Eulerian path

Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
|dea: overlap reads

Proelem 3: repeats (common in DNA) make assemply ampiauous

5/33

Seaquence Assemgly: Overview

GGTTCTCTA GGTTCTCTA

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
|dea: overlap reads

Proelem 3: repeats (common in DNA) make assemply ampiauous

5/33

Seaquence Assemgly: Overview

GGTTCTCTA GGTTCTCTA

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
|dea: overlap reads

Proelem 3: repeats (common in DNA) make assemply ampiauous

5/33

Seaquence Assemgly: Overview

GGTTCTCTA GGTTCTCTA

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 3: repeats (common in DNA) make assemBly amBiGuous
~ end product is a set of "contiGguous regions”

5/33

Seaquence Assemgly: Overview
GGTTCTCTA GGTTCTCTA

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 3: repeats (common in DNA) make assemply ampiauous
~ end product is a set of "contiauous reaions”
Proelem: "contia soup” not very useful

5/33

Seaquence Assemgly: Overview
GGTTCTCTA GGTTCTCTA

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 3: repeats (common in DNA) make assemBly amBiGuous
~ end product is a set of "contiguous reaions”
Proelem: "contia soup” not very useful

But: we have paired-end information!

5/33

Seaquence Assemgly: Overview
GGTTCTCTA GGTTCTCTA
GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGNNNNCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
ldea: overlap reads

Proelem 3: repeats (common in DNA) make assemply ampiauous
~ end product is a set of "contiauous reaions”
Proelem: "contia soup” not very useful

But: we have paired-end information!

5/33

Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

- SOPR.A [Dayarian, Michsel, Senaupta, BMC Bioing. I, (01
> removes reads in hich-coverace area (likely repeats)
» orientation step (heuristic) + ordering step (heuristic)
» coded in Pearl (1IN
» (OBserved sparse contia araph)

/33

Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

- SOPR.A [Dayarian, Michael, Sencupta, BMC Bioing. II, 101
- SSPACE (Boetzer < al, Bioing. 2714, I

» heuristic contia extension
» ‘reasonaele time"

/33

Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

(Dayarian, Michael, Senaupta, BMC Bicint. I, ’lO]

- SOPRA
- SSPACE (Boetzer = al, Bioing 27704, Il
- OPERA (G50, Suna, Naarajs, JCB. 18D, I

» P 20 time (p =Hkedae-deletions (> feedrack edae set))
» MOst work done By a heuristic "araph contraction”

/33

Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

- SOPR.A [Dayarian, Michsel, Senaupta, BMC Bioing. I, (01
- SSPACE (Boetzer < al, Bioing. 271, M
- OPERA (G50, Suna, Naarajs, JCB. 18D, I
- GRASS (Gritsenko # al, Bioing. 2.8(D, 2]

» Mixed-Intecer Quadratic Proarammina
» deals with uncertain data (slack variagles)

~ "intractaele even for small 3k of contias”

» heuristic workaround:
> solve relaxed formulation < use slack values ~ ILP

/33

Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

- SOPR.A [Dayarian, Michsel, Senaupta, BMC Bioing. I, (01
- SSPACE (Boetzer < al, Bioing. 271, M
- OPERA (G50, Suna, Naarajs, JCB. 18D, I
- GRASS (Gritsenko # al, Bioing. 2.8(D, 2]
- SCARPA [(Donmez, Brudno, Bicing. 294, 31

» orientation step: use FPT alao for Odd Cycle Transersal
» orderina step: heuristic

/33

Genome Scaffolding: Previous \Work

Goal: order = orient contias
ldea: use pairina information on reads to "link" contias toaether

- SOPR.A [Dayarian, Michsel, Senaupta, BMC Bioing. I, (01
- SSPACE (Boetzer < al, Bioing. 271, M
- OPERA (G50, Suna, Naarajs, JCB. 18D, I
- GRASS (Gritsenko # al, Bioing. 2.8(D, 2]
- SCARPA [(Donmez, Brudno, Bicing. 294, 31

I [Huson =+ al., JACM,’O21INieuwersurah = al., NAR_, '[2]

/33

Graph—Pased Scaffolding

GTTAAT
GT
CCGAGCAYXAAACTCTGG
TTGee

GTACTGAACTTGGGTTCCATAGGACCCAGA

G
7z
e}
e
07004 AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
€2,

1/33

Graph—Pased Scaffolding

GTTAAT
GT
CCGAGCAYXAAACTCTGG
TTGee

GTACTGAACTTGGGTTCCATAGGACCCAGA

G
7z
e}
6
06’7004 AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
(77

Strateay
l. map reads into contias

1/33

Graph—Pased Scaffolding

GTTAAT
GT
CCGAGCAY]AAACTCTGG
TTGee

GTACTGAACTTGGGTTCCATAGGACCCAGA

G
7z
e}
6
06’7004 AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
C2¢

Strateay
l. map reads into contias

1/33

Graph-Based Scaffolding

. 6TTY
w@cﬂ& TGTCcGAGCATA A44cr,
5068 CT6GTTGg,
C
1
pC¥
o ? GTACTGAACTTGGGTTCCATAGGACCCAGA
RS
g,
Gy,
770000
Sz, AGAGCTTGACAGTAACACATTTAGGAGCACGCG
4’?0700
7

Strateay
l. map reads into contias

1/33

Graph—Pased Scaffolding

GTTAAT
GT
CCGAGCATXAAACTCTGG
TTGge

GTACTGAACTTGGGTTCCATAGGACCCAGA

G
7z
e}
e
"7004 AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
€2,

Strateay

l. map reads into contias
2. pair contias according to read-pairing (weighted)

1/33

Graph—Pased Scaffolding

GTTAAT
GT
CCGAGCATXAAACTCTGG
TTGge

GTACTGAACTTGGGTTCCATAGGACCCAGA

G
7z
e}
e
07004 AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
€2,

Strateay

l. map reads into contias
2. pair contias according to read-pairing (weighted)

1/33

Graph—Pased Scaffolding

Strateay

l. map reads into contias
2. pair contias according to read-pairing (weighted)

1/33

Graph—Pased Scaffolding

Strateay

l. map reads into contias

2. pair contias according to read-pairing (weichted)

3. cover "scatfold araph” with (heavy) arternating paths
each path corresponds tO a chromosome

1/33

Graph—Pased Scaffolding

Gcc,co OTTAATGT
R CCeAGeTy,
c,sﬂ“ﬁ AACTCTGGTTGG
G
5eC*
perC
<o Q, @G TACTGAACTTGGGTTCCATAGGACCCAGAQ)
'O 40000 I
%y 76 E
e,
007004 /OAGCTTGACAGTAACACATTTAGGAGCACG
Gy,
Gy,
‘© |4
Strateay

l. map reads into contias

2. pair contias according to read-pairing (weichted)

3. cover "scatfold araph” with (heavy) arternating paths
each path corresponds tO a chromosome

1/33

Graph—Pased Scaffolding

O O,
xc,c&" AATGTCCGAG
¢ C.
O ATAAAACTC
T6GTTGg

(@FGTACTGAACTTGGGTTCCATAGGACCCAGAQ)

77
047,?
UO@C
07'(‘04 AGCTTGACAGTAACACATTTAGGAGCACG
(&
e 1t

Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0, € N

Question: Can G Be covered By
<o, alternating paths

of total weight > k?

1/33

Graph—Pased Scaffolding

0 OTTAATGTC
R CoAGCATAY Nt
CC'Y&GGG“ o
@ 3
o e (@GTACTGAACTTGGGTTCCATAGGACCCAGA
g
'O 4’00477
L
006’»0% /OAGCTTGACAGTAACACATTTAGGAGCACG
007'
007
‘© |4
Scaffolding

Input: Graph G, perfect matchina M, weiakts w, k,0,,0. € N
Question: Can G Be covered By
<o, alternating paths =
<o. aHernating cyaes
of total weight > k?

1/33

Graph—Pased Scaffolding

s OTTAATGTCCGAGCA
O TAAAgc:
o TCTGerTgq
5c0s™ 3
¢
O
O&G—_o% (@GTACTGAACTTGGGTTCCATAGGACCCAGA
e,
(@) e
G,
77 &
G
7z
(e
e
&
Zee, =
s,

/OAGCTTGACAGTAACACATTTAGGAGCACG
7%,
e I

Exact Scaffolding
Input: Graph G, perfect matchina M, weiakts w, k,0,,0. € N
Question: Can G Be covered By
op aiternating paths +
oc aHternating cyales
of total weight > k?

1/33

7L

9

8/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Construction

Given a directed araph D.
l. make a copy of D

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Construction

Given a directed araph D.
l. make a copy of D
2_. duplicate all vertices ~» M

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Construction

Given a directed araph D.

l. make a copy of D

2. duplicate all vertices ~~ M

3. "slide" down all arrow tips < iaNore directions

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Lenmma

D admits a directed -Hamiltonian path < M can e covered with a
single aHternating path in G.

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Lenmma

D admits a directed -Hamiltonian path < M can e covered with a
single aHternating path in G.

"=" replace each v in the Hamittonian path BY v — Viow.

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Lenmma

D admits a directed -Hamiltonian path < M can e covered with a
single aHternating path in G.

"=" replace each v in the Hamittonian path BY v — Viow.
akternating v covers M v

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Lenmma

D admits a directed -Hamiltonian path < M can e covered with a
single aHternating path in G.

"<" contract each matching edae in the covering aternating path.

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Lenmma

D admits a directed -Hamiltonian path < M can e covered with a
single aHternating path in G.

"<" contract each matching edae in the covering aternating path.
hits all vertices exactly once v is valid directed path v

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Theorem

Scaftolding is NP-hard, even restricted to
e Bipartite araphs

o (0p,0c) € {(0,1),(1,0)} and

e w: E — {0}

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Theorem

Scatfolding is NP-hard, even restricted to
e superaraphs Of Bipartite araphs

o (0p,0c) € {(0,1),(1,0)} and

e w:E— {01}

9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Theorem

Scaftolding is NP-hard, even restricted to
e superaraphs Of Bipartite araphs

o (0p,0c) € {(0,1),(1,0)} and

e w:E— {01}

Corollary

Scaftoldina with 2 weiahts is NP-hard in any

sufficiently dense araph class.
9/33

Hardness \Warmm up: Hamiltonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can G Be covered By < 0, alternating paths <+
< 0. aiternating cycles of total weiaht > k?

Theorem

Exact Scaftolding is NP-hard, even restricted to
e superaraphs Of Bipartite araphs

o (0p,0c) € {(0,1),(1,0)} and

e w:E— {01}

Corollary

Exact Scatfolding with 2 weicghts is NP-hard in any

sufficiently dense araph class.
9/33

Scaffolding in Co-Bipartites

10/33

Scaffolding in Co-Bipartites
7’

1
’\‘, o
Wait, what? A

I©/33

Scaffolding in Co-Bipartites

7

1
’\‘, o
Wait, what? A

X

R.ecap: Corollary

Scatfolding with 2 weiahts is NP-hard in any -
sufficiently dense araph class.

I©/33

Scaffolding in Co-Bipartites

7

N -~
Wait, what? ‘

X

[
‘ ‘_‘Q-‘.

R.ecap: Corollary

Scatfolding with 2 weiahts is NP-hard in any -
sufficiently dense araph class.

~ Unweighted!

I©/33

Scaffolding iIn Unweichted Co-Bipartites

Orservation

NO edaes Between X < Y ~» need 2 ogjects (paths/cycles)
otherwise ~ can always cover G with | path

TODO

decide i we can cover with | cyale

/33

Scaffolding iIn Unweichted Co-Bipartites

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]

/33

Scaffolding iIn Unweichted Co-Bipartites

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]

/33

Scaffolding iIn Unweichted Co-Bipartites

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatching edaes retween X = Y even (and > 0) ~ v

/33

Scaffolding iIn Unweichted Co-Bipartites

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatching edaes retween X = Y even (and > 0) ~ v

/33

Scaffolding iIn Unweichted Co-Bipartites

Oerservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatching edaes retween X = Y even (and > 0) ~ v
H4Ematching edaes retween X < Y odd

/33

Scaffolding iIn Unweichted Co-Bipartites

Oerservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatching edaes retween X = Y even (and > 0) ~ v
H4Ematching edaes retween X < Y odd

~ £ind any non-matching edee Between X < Y

/33

Scaffolding iIn Unweichted Co-Bipartites

Oerservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatching edaes retween X = Y even (and > 0) ~ v
H4Ematching edaes retween X < Y odd

~ £ind any non-matching edee Between X < Y

/33

Scaffolding iIn Unweichted Co-Bipartites

Oerservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatching edaes retween X = Y even (and > 0) ~ v
H4Ematching edaes retween X < Y odd

~ £ind any non-matching edee Between X < Y

/33

Scaffolding iIn Unweichted Co-Bipartites

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatcohing edaes retween X = Y even (and > 0) ~
HEmatching edaes retween X < Y odd

~ £ind any non-matching edee Between X < Y
HEmatching edaes retween X < Y is O

/33

Scaffolding iIn Unweichted Co-Bipartites

)

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatcohing edaes retween X = Y even (and > 0) ~
HEmatching edaes retween X < Y odd

~ £ind any non-matching edee Between X < Y
HEmatcehing edges retween X < Y is O

/33

Scaffolding iIn Unweichted Co-Bipartites

)

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatcohing edaes retween X = Y even (and > 0) ~
HEmatching edaes retween X < Y odd

~ £ind any non-matching edee Between X < Y
HEmatcehing edges retween X < Y is O

/33

Scaffolding iIn Unweichted Co-Bipartites

)

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

HEmatcohing edaes retween X = Y even (and > 0) ~
HEmatching edaes retween X < Y odd

~ £ind any non-matching edee Between X < Y
HEmatching edaes retween X < Y is O

/33

Scaffolding iIn Unweichted Co-Bipartites

)

Orservation

3 aHternating cycle with non-matching edae X
~» extend to cover all M in G[X]
Oerservation

dEmatching edaes Between X < Y even (and > 0) ~
dEmatching edges Between X < Y odd
~ £ind any non-matching edee Between X < Y
HEmatcehing edges retween X < Y is O
all other cases are (tedious case analysis)

/33

Scaffolding in Unweighted Co-Bipartites

Theorem
Scatfolding can Be solved in O(n + m) time on co-sipartite araphs

/33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Oerservation
consider a lowest leaf ¢

tO

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Oerservation

consider a lowest leaf ¢
M is perfect ~ £ matched

tO

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Oerservation

consider a lowest leaf ¢
M is perfect ~ £ matched

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Oerservation

consider a lowest leaf ¢
M is perfect ~ £ matched
parent p of ¢ has only | child

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Oerservation

consider a lowest leaf ¢
M is perfect ~ £ matched
parent p of ¢ has only | child

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched
parent p of ¢ has only | child

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched

parent p of ¢ has only | child 1
Case |
parent g of p is matched "Below” L

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched

parent p of ¢ has only | child 1
Case |
parent g of p is matched "Below” L

~ g is matched to a leaf ¢

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched

parent p of ¢ has only | child 1
Case |
parent g of p is matched "Below” L

~ g is matched to a leaf ¢
~ always take (—p—g—{'

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched

parent p of ¢ has only | child 1
Case |
parent g of p is matched "Below” L

~ g is matched to a leaf ¢
~ always take (—p—g—{'

Case 2

parent g of p is matched "arove”

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation

consider a lowest leaf ¢
M is perfect ~ £ matched
parent p of ¢ has only | child

Case |

parent g of p is matched "Below”
~ g is matched to a leaf ¢

~ always take (—p—g—{'

Case 2

parent g of p is matched "arove”
either pis the only child of g

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g C{

consider a lowest leaf ¢
M is perfect ~ £ matched
parent p of ¢ has only | child

Case |

parent g of p is matched "Below”
~ g is matched to a leaf ¢

~ always take (—p—g—{'

Case 2
parent g of p is matched "arove”
either pis the only child of g ~ delete ¢/ = g and reduce k

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched

parent p of ¢ has only | child 1
Case |
parent g of p is matched "Below” L

~ g is matched to a leaf ¢
~ always take (—p—g—{'
Case 2L

parent g of p is matched "arove”

either pis the only child of g ~ delete ¢/ = g and reduce k
or g has another child u

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched

parent p of ¢ has only | child 1
Case |
parent g of p is matched "Below” L

~ g is matched to a leaf ¢

~ always take (—p—g—{'

Case 2

parent g of p is matched "arove”

either pis the only child of g ~ delete ¢/ = g and reduce k
or g has another child u ~ u matched "Below”

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched

parent p of ¢ has only | child 1
Case |
parent g of p is matched "Below” L

~ g is matched to a leaf ¢
~ always take (—p—g—{'
Case 2L

parent g of p is matched "arove”
either pis the only child of g ~ delete ¢/ = g and reduce k

or g has another child u ~» u matched "Below” ~» 3 "done” of g—p—/

12./33

Scaffolding in Unweighted Trees

Oerservation
NO akHternating cyales in a tree

Orservation g

consider a lowest leaf ¢
M is perfect ~ £ matched

parent p of ¢ has only | child 1
Case |
parent g of p is matched "Below” L

~ g is matched to a leaf ¢
~ always take (—p—g—{'
Case 2L

parent g of p is matched "arove”
either pis the only child of g ~ delete ¢/ = g and reduce k

or g has another child u ~» u matched "Below” ~» 3 "done” of g—p—/

~ take p—/

12./33

Scaffolding in Unweighted Trees

Theorem
Scaffolding can re solved in O(n) time on unweichted trees

12./33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[p, x]y = max. weiaht collected
gelow v with p finished paths
‘under x"

0] Vs

Vi Vg
Va. V3

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[p, x]y = max. weiaht collected
gelow v with p finished paths
‘under x"

0] Vs

R_ecurrence vy V4
. ———————— Vo v3

Let vi,vo,..., v Bﬁ):ﬂﬁ :Qlé.lldrer\n%tlx V. Z ...
P1, P2, ..., Pe 1<icc XStV

>pi=p

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semanttics b
[p, x]y = max. weiaht collected
gelow v with p finished paths
under x — &
Vo 5
R_ecurrence Vi O < ‘

Vo V3

Let vi,vo,..., v Bﬁ):ﬂﬁ :Ql:wlldrer\n%ﬁx V. Z ...
P1,pP2,...,Pc 1§i§cxE ¥

>pi=p

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R_ecurrence

Let vi,va,..., v Be the children of v.

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R_ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

U, p, x]v :=max
pi<p

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R_ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pj7]Vj7[pj7]vj}+U_17P—Pj,X]v [VVJ’%“M

U, p, x]v :=max
pi<p

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R_ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pj7]Vj7[pj7]vj}+U_17P—Pj,X]v [VVJ’%“M

b wwj) +[p+1, Ay +li—-1p—pj, v #x=vFw¢M
» v-_P'<P

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R_ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pj7]Vj7[pj7]vj}+U_17P—Pj,X]v [wWj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, 1y #x=vFw¢M
) i — 1, :

{[pj Ay }+[_i—1,p—pj,x]v i v e M

pi<p
[pj -1,]V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

o —Fpaths used relow v 0 S
e v incident with non-matchina?

Semanttics

[/, p, x], = max. weicht collected 9 \b

gelow v with p finished paths 3

‘under x" up to v;
(arBrev: last child ~ [p, x],)

R ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0
max{[pja\/]vﬁ[pja]vj}+U_17P—Pj,X]v [VVJ’%“M
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - g 1 ”]
{[p, Ay }—I—[j—l,p—pj,x]v i v e M

pi<p
[pj o 17 \/1V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pja\/]vﬁ[pja]vj}+U_17P—Pj,X]v i$ wj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - _1 ”]

{[p, Ay }—I—[j—l,p—pj,x]v i v e M

pi<p
[pj o 17 \/1V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pja\/]vﬁ[pja]vj}+U_17P—Pj,X]v i$ wj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - _1 ”]

{[p, Ay }—I—[j—l,p—pj,x]v i v e M

pi<p
[pj o 17 \/1V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pja\/ivﬁ[pja]vj}+U_17P—Pj,X]v [wWj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - _1 ”]

{[p, Ay }+[j—1,p—pj,x]v i v e M

pi<p
[pj o 17 \/1V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pja\/ivﬁ[pja]vj}+U_17P—Pj,X]v [wWj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - _1 ”]

{[p, Ay }+[j—1,p—pj,x]v i v e M

pi<p
[pj o 17 \/1V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pja\/ivﬁ[pja]vj}+U_17P—Pj,X]v [wWj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - _1 ”]

{[p, Ay }+[j—1,p—pj,x]v i v e M

pi<p
[pj o 17 \/1V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pja\/ivﬁ[pja]vj}+U_17P—Pj,X]v [wWj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - _1 ”]

{[p, Ay }+[j—1,p—pj,x]v i v e M

pi<p
[pj o 17 \/1V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pja\/ivﬁ[pja]vj}+U_17P—Pj,X]v [wWj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - _1 ”]

{[p, Ay }+[j—1,p—pj,x]v i v e M

pi<p
[pj o 17 \/1V_,'

3/33

Scaffolding in Weiahted Trees

Dynamic Proaramming ldea

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

R_ecurrence

Let vi,va,..., v Be the children of v.
[0,0,], :=0

max{[pja\/ivﬁ[pja]vj}+U_17P—Pj,X]v [wWj ¢J’Vl
b wwj) +[p+1, Ay +li—-1,p—pj, v #x=vFw¢M
LN] v - _1 ”]

{[p, Ay }+[j—1,p—pj,x]v i v e M

pi<p
[pj o 17 ‘/]V_,'

3/33

Scaffolding in Weighted Trees ——

Dynamic Proaramming ldea s

BOttom-up traversal; in each
vertex v, need to rememeer:

e dkpaths used relow v

e v incident with noNn-matching?

Semarttics

[/, p, x], = max. weicht collected
gelow v with p finished paths
‘under x" up to v;

(arBrev: last child ~ [p, x],)

Tl EFEFwwwe

Recurrence
Let vi,va,..., v Be the children of v. o
[0,0,], :=0
max{[pja\/ivﬁ[pja]vj}+U_17P—Pj,X]v i$ VVJ’%“M
[, p. Al = max w(\[f\/j) +1[pj]+ Ly +li-Lp=py] W¥x=vFw¢gM
- {p, 17 ,V" }+[j—1,p—pj,x]v i$ w; e M
[pi — 1,y 3/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

)
X%C/o

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/D O\O Approximate Scalfolding

X | sort all edaes By weicht

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

X possisle
&V

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

X possisle
&V

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

X possisle
SNE

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

X possisle
SNE

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

X possisle
-

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

X possisle
-

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
=1

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
=1

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
-~

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
o

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
o

Gy = 1, Gz = 17

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
o

Gy = 1, Gz = 17
Proo#
ResuHt S* is a valid solution

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
o

Gy = 1, Gz = 17
Proo#

Result S* is a valid solution
Note: taking an edae foreids < 3 OPT edaes

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
o

Gy = 1, Gz = 17
Proo#

Result S* is a valid solution
Note: taking an edae foreids < 3 OPT edaes

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
o

Gy = 1, Gz = 17
Proo#

Result S* is a valid solution
Note: taking an edae foreids < 3 OPT edaes

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

pOssiBle

Gy = 1, Gz = 17
Proo#
ResuHt S* is a valid solution

Note: taking an edae foreids < 3 OPT edaes

~ mark the < 3 OPT-edaes when taking an edce e
~ e Is heaviest amona them

~ 3w(S*) > OPT

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edee, i$

i} possisle
o

Gy = 1, Gz = 17

Theorem

Scatfoldina iIn complete araphs can Be
3-approximated in O(|V|log|V]) time.

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edae, if

i} possisle
o

Gy = 1, Gz = 17

Theorem

Scatfoldina iIn complete (ripartite) araphs can re
3-approximated in O(|V|log|V]) time.

/33

3-Approximation in Dense Graphs

C/) O\O Approximate Scalfolding

| sort all edaes By weicht
X 2. repeatedly take heaviest edee, i$

i} possisle
o

Gy = 1, Gz = 17

Theorem

Scatfoldina iIn complete (ripartite) araphs can re
3-approximated in O(|V|log|V]) time.

R.emark

For Exact Scaffolding, we have to keep an eye on the numeer of
components too.

/33

2 -Approximation in Dense Graphs

f O\O Approximate Exact Scaftolding

|
)

@ = 1, Gz = 17

5/33

2 -Approximation in Dense Graphs

C/D O\O Approximate Exact Scaftolding

|. compute max-weicht

@ = 1, Gz = 17

~ 5 UM is collection of cycles

5/33

2 -Approximation in Dense Graphs
Approximate Exact Scaffolding
|. compute max-weicht

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle

@ = 1, Gz = 17

5/33

2 -Approximation in Dense Graphs

|. compute max-weicht

C/D O\O Approximate Exact Scaftolding

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-

d-oyale intersecting 2 cycles
until at most o¢ + o, cycles remain

@ = 1, Gz = 17

5/33

2 -Approximation in Dense Graphs

Approximate Exact Scaffolding
l. compute max-weight

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-

d-oyale intersecting 2 cycles
until at most o¢ + o, cycles remain

@ = 1, Gz = 17

5/33

2 -Approximation in Dense Graphs

|. compute max-weicht

C/) O\O Approximate Exact Scaftolding

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-

d-oyale intersecting 2 cycles
until at most o¢ + o, cycles remain

@ = 1, Gz = 17

5/33

2 -Approximation in Dense Graphs

C/JO\O
X%f

@ = 1, Gz = 17

Approximate Exact Scaffolding

|. compute max-weicht

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-
d-oyale intersecting 2 cycles
until at most o¢ + o, cycles remain
4. repeatedly remove lightest non-
cycle—edce
unttil at most o, eyales remain

5/33

2 -Approximation in Dense Graphs

C/JO\O
X%f

@ = 1, Gz = 17

Approximate Exact Scaffolding

|. compute max-weicht

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-
d-oyale intersecting 2 cycles
until at most o¢ + o, cycles remain
4. repeatedly remove lightest non-
cycle—edce
unttil at most o, eyales remain

5/33

2 -Approximation in Dense Graphs

O\O Approximate Exact Scaffolding
C/D l. compute max-weight

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-
d-oyale intersecting 2 cycles
f until at most o¢ + o, cycles remain
O\O 4. repeatedly remove lightest non-

cycle—edce

@ = 1, Gz = 17 A .
unttil at most o, cyales remain

Proo#
Result S* is a valid solution

5/33

2 -Approximation in Dense Graphs

O\O Approximate Exact Scaffolding
C/D l. compute max-weight

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-
d-oyale intersecting 2 cycles
f until at most o¢ + o, cycles remain
O\O 4. repeatedly remove lightest non-

cycle—edce

@ = 1, Gz = 17 A .
unttil at most o, cyales remain

Proo#

Result S* is a valid solution
w(S*) > w(fix) > w(5)/2 > OPT /5

5/33

2 -Approximation in Dense Graphs

O\O Approximate Exact Scaffolding
C/D l. compute max-weight

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-
d-oyale intersecting 2 cycles
f until at most o¢ + o, cycles remain
O\O 4. repeatedly remove lightest non-
op=1,0c=1? cycle-edae :
unttil at most o, cyales remain

Theorem

Exact Scaffolding in complete araphs can e
2-approximated in O(|V|?) time.

5/33

2 -Approximation in Dense Graphs

O\O Approximate Exact Scaffolding
C/D l. compute max-weight

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-
d-oyale intersecting 2 cycles
f until at most o¢ + o, cycles remain
O\O 4. repeatedly remove lightest non-
op=1,0c=1? cycle-edae :
unttil at most o, cyales remain

Theorem

Exact Scaflolding in complete (Ripartite) araphs can re
2-approximated in O(|V|?) time.

5/33

2 -Approximation in Dense Graphs

O\O Approximate Exact Scaffolding
C/D l. compute max-weight

~ 5 UM is collection of cycles
2. "fix" all But lichtest edze per cycle
3. repeatedly £lip any lichtest non-
d-oyale intersecting 2 cycles
f until at most o¢ + o, cycles remain
O\O 4. repeatedly remove lightest non-
op=1,0c=1? cycle-edae :
unttil at most o, cyales remain

Theorem

Exact Scaflolding in complete (Ripartite) araphs can re
2-approximated in O(|V|?) time.

R.emark

For Scaffolding, replace Step 3 By either meraing cycles or
removing lightest edge, whatever |[0oses less weight

5/33

Exact Algorithms |: Brute Forcece

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

/33

Exact Algorithms I: Brute Force
04;0\—0 O Qum®— Qumm® Q@ Q=)

. Mmax. weiaht collectirle refore v; with p = ¢
[p,c.Jli = %
P& J1i = paths/cydles plus one path starting at v

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

/33

Exact Algorithms I: Brute Force
04;0\—0 O Qum®— Qumm® Q@ Q=)
j Ly i

. Mmax. weiaht collectirle refore v; with p = ¢
[p,c.Jli = %
P& J1i = paths/cydles plus one path starting at v

[p,c,jli =[p, ¢, jlic2 + w(viavii1) W j<i—2%viovi1€E

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

/33

Exact Algorithms |: Brute Forcece

04;0\—0 O Q@ Qum® e Q=

/] i—2 i
[= max. weight collectigle Before v; with p < ¢
P& J1i = paths/cydles plus one path starting at v
[p,c,jli =[p, ¢, jli—a + w(viavi—1) #j<i—2% viovi1€E

. [pf 17Caj]i—2
1], =
[p,c,i—1]; J;T?_Xz{
j even

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

/33

Exact Algorithms |: Brute Forcece

@—o OO Qum® Q) O Q=

i i—2 i

[= max. weight collectigle Before v; with p < ¢
P& J1i = paths/cydles plus one path starting at v

[p,c,jli =[p, ¢, jlic2 + w(viavii1) W j<i—2%viovi1€E

{[P -~ 17 Caj]i—2

p,c,i —1]; = max b .
[] [p,c—1,jlica +w(vjvi—2) # vjvip, € E

j<i—=2
j even

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

/33

Exact Algorithms |: Brute Forcece

@—o OO Qum® Q) O Q=

i i—2 i

[= max. weight collectigle Before v; with p < ¢
P& J1i = paths/cydles plus one path starting at v

[p,c,jli =[p, ¢, jlic2 + w(viavii1) W j<i—2%viovi1€E

{[P -~ 17 Caj]i—2

p,c,i —1]; = max b .
[] [p,c—1,jlica +w(vjvi—2) # vjvip, € E

j<i—=2
j even

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

~ try all O(n!) certificates

/33

Exact Algorithms |: Brute Forcece

@o OO Qum® Q) O Q=

i i—2 i

[= max. weight collectigle Before v; with p < ¢
P& J1i = paths/cydles plus one path starting at v

[p,c,jli =[p, ¢, jlic2 + w(viavii1) W j<i—2%viovi1€E

{[P -~ 17 Caj]i—2

p,c,i —1]; = max b .
[] [p,c—1,jlica +w(vjvi—2) # vjvip, € E

j<i—=2
j even

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

~ try all O(n!) certificates
contias foree every other vertex ~» O(nl!)
/33

Exact Algorithms |: Brute Forcece

04—0\—0 O Q@ Qumm® Q= D=

j i—2 i

[= max. weight collectigle Before v; with p < ¢
P> & J1i = paths/cycles plus one path starting at v;

[p,c,jli =[p, ¢, jli—a + w(viavi—1) #j<i—2% viovi1€E

{[P -~ 17 Caj]i—2

p,c,i —1]; = max b .
[] [p,c—1,jlica +w(vjvi—2) # vjvip, € E

j<i—=2
j even

Oeservation
An orderina of V(G) certifies YES-instances of Scaffoldine.

~ try all O(n!) certificates
contias force every other vertex ~ O(v2" - n/a!)
/33

Exact Alaorithms [l: Dynamic Proaramming

Semantics

[S, p, ¢, u, v] = max. weiaht collectigle in G[S] By p att. paths, ¢
alt. aycles and an att. path starting at u = ending at v

1/33

Exact Algorithms ll: Dynamic Proaranmming

S—xy

Semantics

[S, p, ¢, u, v] = max. weiaht collectigle in G[S] By p att. paths, ¢
alt. aycles and an att. path starting at u = ending at v

Computation
Let xy € M. Then, [{xy},0,0,x,y] :=0 and

S,p,c,u,yl ;= max [S—xy,p,c,u,w]+
[5: Py y] = e e R R A)
u#£w

1/33

Exact Algorithms ll: Dynamic Proaranmming

S—xy

Semantics

[S, p, ¢, u, v] = max. weiaht collectigle in G[S] By p att. paths, ¢
alt. aycles and an att. path starting at u = ending at v

Computation
Let xy € M. Then, [{xy},0,0,x,y] :=0 and

S,p,c,u,yl ;= max [S—xy,p,c,u,w]+
[5: Py y] = e e R R A)
u#£w

S,p,c,x,y] == max
[L” y] u,w€eG[S—xy]

{[5—xy,p—1,c, u, w]

1/33

Exact Algorithms ll: Dynamic Proaranmming

S—xy

Semantics

[S, p, ¢, u, v] = max. weiaht collectigle in G[S] By p att. paths, ¢
alt. aycles and an att. path starting at u = ending at v

Computation
Let xy € M. Then, [{xy},0,0,x,y] :=0 and

5) , Gy U, = ma S — » P, C, U,
[& y] WGG[S)ixy][el “ W] +W(WX)

u#£w
[S—xy,p—1,¢c,u,w]

S? 9)) o= -
[5,p, %] u,weng;?.%(—xy] {[S —xy,p,c—1u,w]+w(wu) £ wueE(G)\ M

1/33

Exact Algorithms ll: Dynamic Proaranmming

S—xy

Semantics

[S, p, ¢, u, v] = max. weiaht collectigle in G[S] By p att. paths, ¢
alt. aycles and an att. path starting at u = ending at v

Theorem
Scaffolding can Be solved in O(ﬂnn%pac) tive.

1/33

Sparse Graphs: Quasi-Forest

R_ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity !
G is Quasi—forest & G — M is forest

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi—forest & G — M is forest

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest
Oerservation

Each leaf v of G — M has dearee 2 in G
~ 1§ unweiaghted, can we take BoOth?

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest
Oerservation

Each leaf v of G — M has dearee 2 in G
~ 1§ unweiaghted, can we take BoOth?

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest
Oerservation

Each leaf v of G — M has dearee 2 in G
~ 1§ unweiaghted, can we take BoOth?

u Orservation

e vinpath + uin cycle ~ | path
e vin path ¢ uin path ~ 2 paths

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest
Orservation

Each leaf v of G — M has dearee 2 in G
~ 1§ unweiaghted, can we take BoOth?

u Oerservation

e vinpath + uin cycle ~ | path

o vin path + uin path ~ 2 paths
v unless it's the same path!

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest
Oerservation

Each leaf v of G — M has dearee 2 in G
~ 1§ unweiaghted, can we take BoOth?

u Orservation

e vinpath + uin cycle ~ | path
e vin path ¢ uin path ~ 2 paths

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest
Oerservation

Each leaf v of G — M has dearee 2 in G
~ I8 0, =0, we have to take BOth!

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest
Oerservation

Each leaf v of G — M has dearee 2 in G
~ I8 0, =0, we have to take BOth!
~ remove all non-matcehing edaes from parent u, except uv

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity
G is Quasi-forest & G — M is forest
Orservation

Each leaf v of G — M has dearee 2 in G
~ I8 0, =0, we have to take BOth!
~ remove all non-matcehing edaes from parent u, except uv

Corollary
Scaffoldina can e solved in O(n) on Quasi-forests i o, = 0.

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest & G — M is forest

Oerservation

Each leat v Of G — M has dearee 2 in G

~ I8 0, =0, we have to take BOth!

~ remove all non-matcehing edaes from parent u, except uv
Corollary

Scaffoldina can e solved in O(n) on Quasi-forests i o, = 0.
Scaftolding can e solved in O(n*?»1) in quasi-forests.

18&/33

Sparse Graphs: Quasi-Forest

R ecall

e Scaffolding is hard in any sufficiently
dense araph class
e Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest & G — M is forest

Oerservation

Each leat v Of G — M has dearee 2 in G

~ I8 0, =0, we have to take BOth!

~ remove all non-matcehing edaes from parent u, except uv
Corollary

Scaffoldina can e solved in O(n) on Quasi-forests if o, = O‘.
Scaftolding can e solved in O(n*?»1) in quasi-forests. /

/

‘W

But is it even NP-hard? T A
18&/33

Sparse Graphs: Quasi-Forest

Welichted 2-SAT
Input: @ on X in 2-CNF, weiahts w: X x {0,1} - N, ke N

Question: is there a satisfying assianment for ¢ of weicht < k?

19/33

Sparse Graphs: Quasi-Forest

Weiaghted 2-SAT
Input: @ on X in 2-CNF, weiahts w: X x {0,1} - N, ke N

Question: is there a satisfying assianment for ¢ of weicht < k?

R.emark
Independent Set is special case of Weiahted 2-SAT

19/33

Sparse Graphs: Quasi-Forest

19/33

Sparse Graphs: Quasi Eore.s—t

LTTTTITIT]

19/33

Sparse Graphs: Quasi-Forest

19/33

Sparse C-arapks Quasi -Forest

[11 I\&IIIE

19/33

Sparse Graphs: Quasi-Forest

19/33

Sparse Graphs: Quasi-Forest

19/33

Sparse Graphs: Quasi-Forest

19/33

Sparse Graphs: Quasi-Forest

19/33

Sparse Graphs: Quasi-Forest

19/33

Sparse Graphs: Quasi-Forest

19/33

Sparse Graphs: Quasi-Forest

)

Oerservation
3 weiaht-k satisfying assiacnvent

=

3 weiaht-k cover with < n
aHternating paths

19/33

Sparse Graphs: Quasi-Forest

) -

Oerservation
3 weiaht-k satisfying assiacnvent

=

3 weiaht-k cover with < n
aHternating paths

Theorem

Scaffolding is NP-hard even if G — M
is 8 collection of paths with weights
O/l

19/33

Sparse Graphs: Quasi-Forest

) -

Oerservation
3 weiaht-k satisfying assiacnvent

=

3 weiaht-k cover with < n
aHternating paths

Theorem

Scaffolding is NP-hard even if G — M
is 8 collection of paths with weights
O/l

Corollary

no 2°(mtmM—tinme alaorithm (ETH)
no n°K—time alaorithm (FPTAWLED

19/33

Other Forms of Tree-Likeness

Tree Decompositions

tree T, each vertex | associated to some X; C V(G) s+t
 Vee€ E(G), there is some i € V(T) with e € X;

2. Vv e V(G), raas containing v induce a connected sustree
treewidth tw = size of lareest Bag - |

20/33

Other Forms of Tree-Likeness

Tree Decompositions

tree T, each vertex | associated to some X; C V(G) s+t
 Vee€ E(G), there is some i € V(T) with e € X;

2. Vv e V(G), raas containing v induce a connected sustree
treewidth tw = size of lareest Bag - |

Hope
Practical instances of Scaffolding have low treewidth (they
originate from linear structure)

20/33

Other Forms of Tree-Likeness

Tree Decompositions

tree T, each vertex | associated to some X; C V(G) s+t
 Vee€ E(G), there is some i € V(T) with e € X;

2. VveV(G),raas containing v induce a connected sugtree
treewidth tw = size of larcest Baa - |

Hope

Practical instances of Scaffolding have low treewidth (they
oriainate from linear structure)

Nice Decompositions

leaf: X =0

Introduce v: i has sinale child j and X; \ X; = {v}

Foraet v: i has sinale child j and X; \ X; = {v}

Introduce uv: i has sinale child j and uv C X; = X;
(each edee introduced exactly onece)

Join: j has 2 children j and ¢ and X; = X; = X,

20/33

How do Solutions Interact with Baas?

21/33

How do Solutions Interact with Baas?

21/33

How do Solutions Interact with Baas?

21/33

How do Solutions Interact with Baas?

21/33

Inaredients
e degree-function d: X — {0,1,2}

e "pairinag" C () UX

e dkpaths and dkcycles completed “relow the Rag"

21/33

Inaredients

e degree-function d: X — {0,1,2}
o "pairing" C (§) UX ~ dEmatchinas possisilities ~ O(|X|1X1/2)
o dkpaths and dkcycles completed “relow the Rag"

21/33

Inaredients

e degree-function d: X — {0,1,2}
e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"
Semanttics
[d, P, p, c]i = max weiaht of any S with M N E(G;) C S C E(G;) and
[each vertex v € X; has dearee d(v) in G[S],
2. for each uv € P, Gi[S] contains an atternating path. ..
u=v:.. $rom uavoidina d *(1)
u#Fv:...from uto v
3. Gi[S] contains < avoidina d (1)

21/33

Inaredients
e degree-function d: X — {0,1,2}

o "pairing" C (§) UX ~ dEmatchinas possisilities ~ O(|X|1X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Leat Bag

[2,2,0,0; =0

21/33

Inaredients
e degree-function d: X — {0,1,2}

o "pairing" C (§) UX ~ dEmatchinas possisilities ~ O(|X|1X1/2)
o dkpaths and dkcycles completed “relow the Rag"
Introduce v (single child D

[da Pvp’ C]i = [d|V*>J_>P7p7 C]j

21/33

Inaredients
e degree-function d: X — {0,1,2}

o "pairing" C (§) UX ~ dEmatchinas possisilities ~ O(|X|1X1/2)
o dkpaths and dkcycles completed “relow the Rag"
Introduce vy (single child)

Case |- d(u) =d(v) =2

U4

21/33

Inaredients
e degree-function d: X — {0,1,2}

o "pairing" C (§) UX ~ dEmatchinas possisilities ~ O(|X|1X1/2)
o dkpaths and dkcycles completed “relow the Rag"
Introduce vy (single child)

Case |- d(u) =d(v) =2

4 [d7 Papv C]i = [d|u—)1,v—>17 P Sin uv,p,c —]-]J

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"
Introduce uv (sinele child D

Case |: d(u) =

= 3w o

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Foraet v (sinale child

[d, P, p, c]; = max

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Foraet v (sinale child

v
[dlv=1,P+w,p—1,c];
[d, P, p, c]; = max

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Foraet v (sinale child

%
[dlv=1,P+w,p—1,c];

[d, P, p.cls = max§ 2l (P = wu) + v, p.)

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Foraet v (sinale child

v

JFQ‘LL [dlv»1, P+ w,p—1,c];
[d, P, p, cl; = max{ Max[dlv-n, (P —uu)+uv,p,c];

dv X3P7 J j
e Pr01)

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Join Bag (children j < 0N

[dv'Dava]i: LEDS max [dijjapj7Cj]j+[d_dijva_pij_Cj]E
d;,Pj.pj,cj Py
Pj_lP[= (P

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Join Bag (children j < 0N

[dv'Dava]i: LEDS max [dijjapj7Cj]j+[d_dijva_pij_Cj]E
d;,Pj.pj,cj Py
Pj_lP[= (P

~ O(3™ - tw /2.0, - 0.) tarle entries

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Join Bag (children j < 0N

[dv'Dava]i: LEDS max [dijjapj7Cj]j+[d_dijva_pij_Cj]E
d;,Pj.pj,cj Py
Pj_lP[= (P

~ O™ - twV /2.5, - 0.) tarle entries

21/33

Inaredients

e degree-function d: X — {0,1,2}

e "pairinG" C (5) UX ~ Hmatchinas possisilities ~ O(|X|X1/2)
o dkpaths and dkcycles completed “relow the Rag"

Join Bag (children j < 0N

[dv'Dava]i: LEDS max [dijjapj7Cj]j+[d_dijva_pij_Cj]E
d;,Pj.pj,cj Py
Pj_lP[= (P

~ O™ - tw /2.5, - 0.) tarle entries and O((tw +2)™ - 0, - 0. - n) time

21/33

22./33

Intecer Linear Proaram Formulation

A
1%

23/33

Intecer Linear Proaram Formulation

t
47\ - chromosomes = disjoint s-t-paths

23/33

Intecer Linear Proaram Formulation

- chromosomes = disjoint s-t-paths

- BIN variagles Yo =1 & u — v used

X{u‘v} = Yuv = Yvu
- force contias: WAveMXuy —-1
- path preservation: LEEDD N v — D, Yav
- path Bounds: DY, Vvt < O

23/33

Intecer Linear Proaram Formulation

- chromosomes = disjoint s-t-paths

- BIN variagles Yo =1 & u — v used

X{u,v} = Yuv + Yvu
- force contias: VuvemXuy =1
- path preservation: LEEDD N v — D, Yav
- path Bounds: >onwe<o
- foreid cydles (row aeneration via callBack):

V cyale C: > yw < |C|
nze

23/33

Intecer Linear Proaram Formulation

- chromosomes = disjoint s-t-paths

- BIN variagles Yo =1 & u — v used

X{u,v} = Yuv aF Yvu

- force contias: VavemXuy =1

- path preservation: LEEDD N v — D, Yav

- path Bounds: >onwe<o

- foreid cydles (row aeneration via callBack):

V cyale C: > yw < |C|

nze

- oBjective: max > Xy} - w(e)
ecE

23/33

Intecer Linear Proaram Formulation

tp

chromosomes = disjoint s-t-paths

BiN. variagles Yo =1 & u — v used
X{u,v} = Yuv aF Yvu
force contias: Vovemxu =1

path preservation: LEEDD N v — D, Yav
path Bounds: >onwe<o
foreid cycles (row aeneration via callrack):

V cyale C: > yw < |C|
uveC
oBjective: max > Xy} - w(e)
eckE

23/33

Intecer Linear Proaram Formulation

tp

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yo =1 & u — v used
X{u,v} = Yuv aF Yvu

force contias: VuvemXuy =1

path preservation: Vs i, e D, Yvu = 2, Yuv

path < cycle BOUNds: oWt < Oipe)

foreid cycles (row generation via callBack):

V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE
aycle consistency: VuYute < You

23/33

Extension: Contia Jumps

Mean read lenath: T0OBp
Mean insert size: 4+T12rp

24/33

Extension: Contia Jumps

Mean read lenath: T0OBp
Mean insert size: 4+T12rp

£9

8
s Ls
:
37
4O

s

7L

Extension: Contia Jumps

Mean read lenath: T0OBp
Mean insert size: 4+T12rp

Extension: Contia Jumps

Mean read lenath: 10=p 33
Mean insert size: 4128p

I
& H+O

49
252

391
24/33

Intecer Linear Proaram Formulation

t

P
chromosomes = disjoint s—{t,, tc }-paths
BiN. variagles Yuw =1 & u— v used

X{u,v} = Yuv aF Yvu
force contias: Vuvemxuy =1
path preservation: Vs i, e D, Yvu = 2, Yuv
path < cycle BOUNds: Do Wty < Ofpe}
foreid cycles (row generation via callBack):
V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE
te aycle consistency: VuYute < Ysu

VASYACE!

Intecer Linear Proaram Formulation

t

P
chromosomes = disjoint s—{t,, tc }-paths
BiN. variagles Yuw =1 & u— v used

X{u,v} = Yuv aF Yvu
force contias: VuvemXuy =1
path preservation: Vs i, e D, Yvu = 2, Yuv
path < cycle BOUNds: Do Wty < Ofpe}
foreid cycles (row aeneration via callrack):
v eycle C: > (Yav—yue.) < |C]|
uveC
OB jective: max > Xy} - w(e)
ecE
te aycle consistency: i =

VASYACE!

Intecer Linear Proaram Formulation

t

P
chromosomes = disjoint s—{t,, tc }-paths
BiN. variagles Yuw =1 & u— v used

X{u,v} = Yuv aF Yvu
force contias: VuvemXuy =1
path preservation: Vs i, e D, Yvu = 2, Yuv
path < cycle BOUNds: Do Wty < Ofpe}
foreid cycles (row aeneration via callrack):
v eycle C: > Yav—yur.) < |C]
uveC
OB jective: max > Xy} - w(e)
ecE
te aycle consistency: i =

VASYACE!

Intecer Linear Proaram Formulation

t

P
chromosomes = disjoint s—{t,, tc }-paths
BiN. variagles Yuw =1 & u— v used

X{u,v} = Yuv aF Yvu
force contias: Vuvemxuy =1
path preservation: Vs i, e D, Yvu = 2, Yuv
path < cycle BOUNds: Do Wty < Ofpe}
foreid cycles (row generation via callBack):
V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE

te aycle consistency: VuYute < Ysu

) o) o

U \ U \

VASYACE!

Intecer Linear Proaram Formulation

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yuw =1 & u— v used
X{u,v} = Yuv aF Yvu

force contias: Vuvemxuy =1

path preservation: Vs i, e D, Yvu = 2, Yuv

path < cycle BOUNds: Do Wty < Ofpe}

foreid cycles (row generation via callBack):

V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE
aycle consistency: VuYute < You

VASYACE!

Intecer Linear Proaram Formulation

tp

for each non-contia uv,

| introduce a variagle

2. construct

3. add

to X{u,v}

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yo =1 & u — v used
X{u,v} = Yuv aF Yvu

force contias: VuvemXuy =1

path preservation: Vuisi,.eo Do, You = D, Yuv

path < cycle Bounds: Do Yotipe S Opc}

foreid cycles (row aeneration via callrack):

V cycle C: > (Yav—yue) < |C]|
uveC
OB jective: max > Xy} - w(e)
ecE
aycle consistency: VuYute < Ysu

Between u and v that fits in the aap

extra: preprocess instance to finish incomplete jumps

VASYACE!

Intecer Linear Proaram Formulation

tp

S te

Jump Mechanics
for each non-contia uv,
| introduce a variagle z,,

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yo =1 & u — v used
X{u,v} = Yuv ar qu+lev + Zuu

force contias: VuvemXuy =1

path preservation: Vs i, e D, Yvu = 2, Yuv

path < cycle BOUNds: oWt < Oipe)

foreid cycles (row generation via callBack):

V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE
cycle consistency: i =

Jumvip mechanies

2. construct "jumvp network” petween u and v that fits in the cap

3. add Zy to X{u,v}

extra: preprocess instance to finish incomplete jumps

VASYACE!

Extension: Contia Jumps

Mean read lenath: 10=p 33
Mean insert size: 4128p

I
& H+O

49
252

391
2L/33

Extension: Contia Jumps

Mean read lenath: T0OBp
Mean insert size: 4+T12rp

391
2L/33

Extension: Contia Jumps

Mean read lenath: T0OBp
Mean insert size: 4+T12rp

2L/33

ILP Extension: Multiplicities

GGTGCGAGAGAGGTCATGGATTGCAACGA

GGTGCGAGAGGCCACTCCAATTGCAACGA

21/33

ILP Extension: Multiplicities

21/33

ILP Extension: Multiplicities

X2 X2

x1

21/33

Q

==

P Extension: Muttiplicities

{

\

\ &+
\

{

o
1 . ILP Extension: Muttiplicities

)

28/33

Intecer Linear Proaram Formulation

S

Multiplicities

tp

chromosomes = disjoint s—{t,, tc }-paths

BiN. variagles Yo =1 & u — v used

X{u,v} = Yuv + YvutZuv + Zvu
force contias: VuvemXuy =1
path preservation: Vs i, e D, Yvu = 2, Yuv
path < cycle BOUNds: oWt < Oipe)
foreid cycles (row generation via callBack):

V eyde C: > (Yuv—yur) <[C|
uveC
OB jective: max > Xy} - w(e)
eckE

aycle consistency: VuYute < You

Jumvip mechanies

L make yu, X{u,v} Inteaers in domain [0, m({u, v})]

2. change callrack.

29/33

Intecer Linear Proaram Formulation

S

Multiplicities

tp

chromosomes = disjoint s—{t,, tc }-paths

int. variagles y,, ={< u— v used { times
X{u,v} = Yuv + YvutZuv + Zvu

force contias: VuvemXu>1
path preservation: Vuisi,.eo Do, You = D, Yuv
path < cycle Bounds: Do Yotipe S Opc}
foreid cycles (row generation via callBack):
Y Cye'e C: Z Yuv S |C| * Mmax ° Zyuv
uveC ueC,v¢C
OB jective: max > Xy} - w(e)
ecE
coycle consistency: VuYute < Ysu

jump mechanies i

L make yu, X{u,v} Inteaers in domain [0, m({u, v})]

2. change callrack.

29/33

Linearization of Solutions

Proeglem
NO uniQue chromosome-contiauration explaining solution

30/33

Linearization of Solutions

Proeglem
NO uniQue chromosome-contiauration explaining solution

30/33

Linearization of Solutions

Proeglem
NO uniQue chromosome-contiauration explaining solution

30/33

Linearization of Solutions
Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

30/33

Linearization of Solutions

Theorem
(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proo#
"=" contraposition; let p = ameicous path

30/33

Linearization of Solutions

Theorem
(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proo#
"=" contraposition; let p = ameicous path

30/33

Linearization of Solutions

Theorem
(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proo#
"=" contraposition; let p = ameicous path

30/33

Linearization of Solutions

Theorem
(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proo#
"=" contraposition; let p = ameicous path

~ (G, M, m) not uniquely linearizagle

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proo#

"<" let (G, M, m) Be free Of ampiaous paths
R_eduction (does Nnot decrease numerer Of linearizations):

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proo#

"<" let (G, M, m) Be free Of ampiaous paths
R_eduction (does Nnot decrease numerer Of linearizations):

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proo#

"<" let (G, M, m) Be free Of ampiaous paths
R_eduction (does Nnot decrease numerer Of linearizations):

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proo#

"<" let (G, M, m) Be free of ampicous paths
Reduction (does not decrease numeer of linearizations):

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proo#f

"<" let (G, M, m) Be free of ampicous paths
Reduction (does not decrease numeer of linearizations):

SR
=4 3 e
Ly 7S
9 N

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proo#$

"<" let (G, M, m) Be free of ampicous paths
Reduction (does not decrease numeer of linearizations):

SR
=4 3 e
Ly 7S
9 N

~ resutt is collection of alternating paths = cycles

30/33

Linearization of Solutions

Theorem
(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals

30/33

Linearization of Solutions

Theorem
(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals
l. decide areitrarily

30/33

Linearization of Solutions

Theorem
(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals
|. decide areitrarily ~ missassemsly

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals

|. decide areitrarily ~ missassemsly
2. isolate each amBiGuity

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals

| decide argitrarily ~ missassemply
2. isolate each amBiGuity ~ information loss

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals

|. decide areitrarily ~ missassemsly
2. isolate each amBiGuity ~ information loss
3. cut as few ends as possikle

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals

|. decide areitrarily ~ missassemsly
2. isolate each amBiGuity ~ information loss
3. cut as few ends as possikle ~~ computationally hard

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possikle ~~ computationally hard

4 cut as few multiplicities as possigle

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possikle ~~ computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possikle ~~ computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

Muttiplicities
one <
4Enon-matching adj. to contia

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possigle ~» computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

Muttiplicities
one <
4Enon-matching adj. to contia

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals

|. decide areitrarily ~ missassemsly
2. isolate each amBiGuity ~ information loss
3. cut as few ends as possigle ~» computationally hard
4. cut as few multiplicities as possigle ~~ computationally hard
Ommm()——
Multiplicities
one <
4Enon-matching adj. to contia

o

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possigle ~» computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

Muttiplicities
one <
4Enon-matching adj. to contia

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possikle ~~ computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

s,

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possikle ~~ computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

AN

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possikle ~~ computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

A\

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u = each end incident to non-contia <)
Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possikle ~~ computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

30/33

Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u = each end incident to non-contia <)

Proposals

|. decide areitrarily ~ missassemsly

2. isolate each amBiGuity ~ information loss

3. cut as few ends as possikle ~~ computationally hard

4. cut as few multiplicities as possigle ~~ computationally hard

30/33

Conclusion

What we saw

- 3-step sequencing techniqQue:
. produce paired-end reads
7. assemgle reads to contias
3. scabfold contias to chromosomes using read-pairinas

31/33

Conclusion

What we saw

- 3-step sequencing techniqQue:
l. produce paired-end reads
7. assemgle reads to contias
3. scaffold contias tO chromosomes using read-pairinas
- computationally hard proelem £or dense araphs with weights O/I
- NO constant-factor approx or sugexponenttial—time alaorithm
for linear Quasi trees with weiahts O/I

31/33

Conclusion

What we saw

- 3-step sequencing techniqQue:
l. produce paired-end reads
7. assemgle reads to contias
3. scaffold contias tO chromosomes using read-pairinas
- computationally hard proelem £or dense araphs with weights O/I
- NO constant-factor approx or sugexponenttial—time alaorithm
for linear Quasi trees with weiahts O/I
- 0(n?) time on unweichted diQues/co-gipartite/split

31/33

Conclusion

What we saw

- 3-step sequencing techniqQue:
l. produce paired-end reads
7. assemgle reads to contias
3. scaffold contias tO chromosomes using read-pairinas
- computationally hard proelem £or dense araphs with weights O/I
- NO constant-factor approx or sugexponenttial—time alaorithm
for linear Quasi trees with weiahts O/I
- 0(n?) time on unweichted diQues/co-gipartite/split
= O(n-op-0.) time £or constant treewidth

31/33

Conclusion

What we saw

- 3-step sequencing techniqQue:
l. produce paired-end reads
7. assemgle reads to contias
3. scaffold contias tO chromosomes using read-pairinas
- computationally hard proelem £or dense araphs with weights O/I
- NO constant-factor approx or sugexponenttial—time alaorithm
for linear auasi trees with weichts O/I
- 0(n?) time on unweichted diQues/co-gipartite/split
= O(n-op-0.) time £or constant treewidth
- 2-approximasle in cliques/complete gipartite in O(n?) time

31/33

Conclusion

What we saw

- 3-step sequencing techniqQue:
l. produce paired-end reads
2. assemerle reads to contias
3. scaffold contias tO chromosomes using read-pairinas
- computationally hard proelem £or dense araphs with weights O/I
- NO constant-factor approx or sugexponenttial—time alaorithm
for linear auasi trees with weichts O/I
- 0(n?) time on unweichted diQues/co-gipartite/split
= O(n-op-0.) time £or constant treewidth
- 2-approximasle in cliques/complete gipartite in O(n?) time
- 0(v2" poly(n)) time exact alaorithm

31/33

Conclusion

What we saw

- 3-step sequencing techniqQue:
l. produce paired-end reads
7. assemgle reads to contias
3. scaffold contias tO chromosomes using read-pairinas
- computationally hard proelem £or dense araphs with weights O/I
- NO constant-factor approx or sugexponenttial—time alaorithm
for linear auasi trees with weichts O/I
- 0(n?) time on unweichted diQues/co-gipartite/split
= O(n-op-0.) time £or constant treewidth
- 2-approximasle in cliques/complete gipartite in O(n?) time
O(v/2" poly(n)) time exact alaorithm
ILP formulation with < multiplicities

31/33

Conclusion

What we saw

- 3-step sequencing techniqQue:
l. produce paired-end reads
2. assemerle reads to contias
3. scaffold contias tO chromosomes using read-pairinas
- computationally hard proelem £or dense araphs with weights O/I
- NO constant-factor approx or surexponential—time alaorithm
for linear auasi trees with weichts O/I
- 0(n?) time on unweichted diQues/co-gipartite/split
= O(n-op-0.) time £or constant treewidth
- 2-approximasle in cliques/complete gipartite in O(n?) time
O(v/2" poly(n)) time exact alaorithm
ILP formulation with < multiplicities
Linearization proglem raised By multiplicities in solution

31/33

Conclusion

Outlook

- 3™ generation seauencina: Packio, Oxford Nanopore
produces lona reads (I0-I1Skep), But error-prone
~ correction using small reads?

32./33

Conclusion

Outlook

- 3™ generation seauencina: Packio, Oxford Nanopore
produces lona reads (I0-I1Skep), But error-prone
~ correction using small reads?

- @enerally: multi-lisrary scaffolding

32./33

Conclusion

Outlook

- 3™ generation seauencina: Packio, Oxford Nanopore
produces lona reads (I0-I1Skep), But error-prone
~ correction using small reads?

- @enerally: multi-lisrary scaffolding

- other sources for contia-connections (phyloaenetic
information?)

32./33

Conclusion

Outlook

- 3™ generation seauencina: Packio, Oxford Nanopore
produces lona reads (I0-I1Skep), But error-prone
~ correction using small reads?

- @enerally: multi-lisrary scaffolding

- other sources for contia-connections (phyloaenetic
information?)

- Better parameters for Scaffoldinag and Scaffold Linearization
~ analyze practical instances

32./33

Conclusion

Outlook

- 3™ generation seauencina: Packio, Oxford Nanopore
produces lona reads (I0-I1Skep), But error-prone
~ correction using small reads?
- @enerally: multi-lisrary scaffolding
- other sources for contia-connections (phyloaenetic
information?)
- Better parameters for Scaffoldinag and Scaffold Linearization
~ analyze practical instances
approximation/heuristics for Scatffold Linearization

32./33

33/33

