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DNA

- double strand

- inside nucleus (safe)

RNA

- single strand

- outside nucleus

- transfers genetic code

- Thymine (T) → Uracil (U)

Polymerase
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Sanger Sequencing [Sanger et al ’77]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGACCTGCCCAGTCTGTACTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA

GGA*
GGACCTGCCCA*
GGACCTGCCCAGTCTGTA*

Sanger Sequencing

1. split helix & create thousands of copies

2. add polymerase & floating bases: A C G T
3. add a special base: A* (polymerase cannot extend)

4. stir & let polymerase act

5. measure the length of each fragment

 each length is the position of a T in the template

Problem

unreliable after a couple hundred bp

 chop up DNA into pieces and read those
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Next Generation Sequencing ( )

ACCA

AGTCTGGAGAGTC

TGAGTACCA

ACTCA......ACCTCTGGTACTCA......ACCTCTCAG
TGGTACTCA......ACCTCTCAGACCTCTCAG

ACTCATGGT
CTGAGAGGT......TGAGTACCA

TGGTACTCA......ACCTCTCAG

1. chop DNA into smaller pieces

2. add anchors to each end of each piece

3. “flow cell” containing anchor places

4. strand anchors its two ends to two anchor places

5. polymerase completes the strand into double-strand

6. double strand is denaturized into single strands

7. rinse, repeat (last 3 steps) until flow chip is “full”

8. read all strands from their anchor points outwards

 Paired-End reads (distance between reads = “insert size”)
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Sequence Assembly: Overview

TTTGCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTAC

TTTGCCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGACA

TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGACACTCCTTGGGTTTTTAC

TTTGCCCCTGAACTTCGC CGACACTCCTTGGGTTTT GGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTAC
TTTGCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTACTTTGCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTACTTTGCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGNNNNCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTAC

Goal: reconstruct sequence

Idea: overlap reads
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Problem 2: Shortest Common Superstring is NP-hard

 “Overlap-Layout-Consensus” assemblers

Problem: Θ(n2) too slow in practice

 DeBruijn-graph based assembly

1. chop all reads into “k-mers”

2. builds overlap graph

(“DeBruijn graph”)

3. find

k = 4

GAAC

AACT

ACTT
CTTC

TTCG

TCGC

CGCT

CCTT

CTTG

TTGG
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Problem 3: repeats (common in DNA) make assembly ambiguous

 end product is a set of “contiguous regions”

Problem: “contig soup” not very useful

But: we have paired-end information!
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Genome Scaffolding: Previous Work

Goal: order & orient contigs

Idea: use pairing information on reads to “link” contigs together

- SOPRA [Dayarian, Michael, Sengupta, BMC Bioinf. 11, ’10]

I removes reads in high-coverage area (likely repeats)
I orientation step (heuristic) + ordering step (heuristic)
I coded in Pearl (!!!)
I (observed sparse contig graph)

- SSPACE [Boetzer & al., Bioinf. 27(4), ’11]

- OPERA [Gao, Sung, Ngaraja, JCB. 18(11), ’11]

- GRASS [Gritsenko & al., Bioinf. 28(11), ’12]

- SCARPA [Donmez, Brudno, Bioinf. 29(4), ’13]

- . . . [Huson & al., JACM, ’02][Nieuwerburgh & al., NAR, ’12]
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I np+O(1) time (p =#edge-deletions (≥ feedback edge set))
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I Mixed-Integer Quadratic Programming
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Graph-Based Scaffolding
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Hardness Warm up: Hamiltonian Path

Recall: Scaffolding

Input: Graph G , perfect matching M, weights ω, k, σp, σc ∈ N
Question: Can G be covered by ≤ σp alternating paths &

≤ σc alternating cycles of total weight ≥ k?

Construction

Given a directed graph D .

1. make a copy of D

2. duplicate all vertices  M
3. “slide” down all arrow tips & ignore directions
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Recall: Scaffolding

Input: Graph G , perfect matching M, weights ω, k, σp, σc ∈ N
Question: Can G be covered by ≤ σp alternating paths &

≤ σc alternating cycles of total weight ≥ k?

Theorem

Scaffolding is NP-hard, even restricted to

• bipartite graphs

• (σp, σc) ∈ {(0, 1), (1, 0)} and

• ω : E → {0}.

Corollary

Scaffolding with 2 weights is NP-hard in any

sufficiently dense graph class.
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Hardness Warm up: Hamiltonian Path

Recall: Scaffolding

Input: Graph G , perfect matching M, weights ω, k, σp, σc ∈ N
Question: Can G be covered by ≤ σp alternating paths &

≤ σc alternating cycles of total weight ≥ k?

Theorem

Exact Scaffolding is NP-hard, even restricted to

• supergraphs of bipartite graphs

• (σp, σc) ∈ {(0, 1), (1, 0)} and

• ω : E → {0, 1}.

Corollary

Exact Scaffolding with 2 weights is NP-hard in any

sufficiently dense graph class.
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Scaffolding in Co-Bipartites

?
??

?

Wait, what?

Recap: Corollary

Scaffolding with 2 weights is NP-hard in any

sufficiently dense graph class.

 Unweighted!
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Scaffolding in Unweighted Co-Bipartites

X Y

forbidden!

Observation

no edges between X & Y  need 2 objects (paths/cycles)

otherwise  can always cover G with 1 path

TODO

decide if we can cover with 1 cycle
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 find any non-matching edge between X & Y
#matching edges between X & Y is 0

all other cases are X (tedious case analysis)
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Scaffolding in Unweighted Co-Bipartites

X Y

forbidden!

Theorem

Scaffolding can be solved in O(n + m) time on co-bipartite graphs

11 / 33



Scaffolding in Unweighted Trees

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf `

M is perfect  ` matched

parent p of ` has only 1 child

Case 1
parent g of p is matched “below”

 g is matched to a leaf `′

 always take `−p−g−`′

g

p

`

Case 2
parent g of p is matched “above”

either p is the only child of g  delete ` & g and reduce k
or g has another child u  u matched “below”  ∃ “clone” of g−p−`
 take p−`
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Scaffolding in Weighted Trees

Dynamic Programming Idea

bottom-up traversal; in each

vertex v , need to remember:

• #paths used below v
• v incident with non-matching?

Semantics

[p, x ]v = max. weight collected

below v with p finished paths

“under x ”

up to vj
(abbrev: last child  [p, x ]v)

v

v0

v1 v2 v3
v4

v5

v

vj

12
5

9 6

3

1 1 X 0

1 X 0

1 X 0
1 X 0

1 X 01 0 X 9

1 1 X 0

2 1 X 9

2 2 X 0

1 X 9

2 X 0

1 1 X 0

2 1 X 3

2 2 X 0

1 X 3

2 X 0

1 2 X 9

1 3 X 0

1 2 X 9

1 3 X 0

2 3 X 12

2 3 X 21

2 4 X 9

2 4 X 12

2 5 X 0

. . . .

Recurrence

Let v1, v2, . . . , vc be the children of v .
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max
x∈{X,X}

[pi , x ]vi

BAD IDEA!
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

max{[pj ,X]vj , [pj ,X]vj }+ [j − 1, p − pj , x ]v if vvj /∈M
ω(vvj ) + [pj + 1,X]vj + [j − 1, p − pj ,X]v if x = X& vvj /∈M{

[pj − 1,X]vj
[pj − 1,X]vj

}
+ [j − 1, p − pj , x ]v if vvj ∈M
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Scaffolding in Weighted Trees

Dynamic Programming Idea

bottom-up traversal; in each

vertex v , need to remember:

• #paths used below v
• v incident with non-matching?

Semantics

[j , p, x ]v = max. weight collected

below v with p finished paths

“under x ” up to vj
(abbrev: last child  [p, x ]v)

v

v0

v1 v2 v3
v4
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3-Approximation in Dense Graphs

σp = 1, σc = 1?

Approximate Scaffolding

1. sort all edges by weight

2. repeatedly take heaviest edge, if

possible
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Proof

Result S∗ is a valid solution X

Note: taking an edge forbids ≤ 3 OPT edges

 mark the ≤ 3 OPT-edges when taking an edge e
 e is heaviest among them

 3ω(S∗) ≥ OPT
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3-Approximation in Dense Graphs

σp = 1, σc = 1?

Approximate Scaffolding
1. sort all edges by weight

2. repeatedly take heaviest edge, if

possible

Theorem

Scaffolding in complete graphs can be

3-approximated in O(|V | log |V |) time.

Remark

For Exact Scaffolding, we have to keep an eye on the number of

components too.
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2-Approximation in Dense Graphs

σp = 1, σc = 1?

Approximate Exact Scaffolding

1. compute max.-weight perfect

matching S
 S ∪M is collection of cycles

2. “fix” all but lightest edge per cycle

3. repeatedly flip any lightest non-fix

4-cycle intersecting 2 cycles

until at most σc + σp cycles remain

4. repeatedly remove lightest non-fix

cycle-edge

until at most σc cycles remain
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Result S∗ is a valid solution X

ω(S∗) ≥ ω(fix) ≥ ω(S)/2 ≥ OPT/2
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until at most σc cycles remain
Theorem

Exact Scaffolding in complete graphs can be

2-approximated in O(|V |2) time.

Remark

For Scaffolding, replace Step 3 by either merging cycles or

removing lightest edge, whatever looses less weight
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Exact Algorithms I: Brute Force

j ii − 2j ii − 2j ii − 2

[p, c , j ]i :=
max. weight collectible before vi with p & c
paths/cycles plus one path starting at vj

[p, c , j ]i =[p, c , j ]i−2 + ω(vi−2vi−1) if j < i − 2 & vi−2vi−1 ∈ E

[p, c , i − 1]i = max
j<i−2
j even

{

[p − 1, c , j ]i−2

[p, c − 1, j ]i−2 + ω(vjvi−2) if vjvi−2 ∈ E

Observation

An ordering of V (G ) certifies YES-instances of Scaffolding.

 try all O(n!) certificates

contigs force every other vertex  O(n!!)
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 try all O(n!) certificates

contigs force every other vertex  O(
√
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Exact Algorithms II: Dynamic Programming

S − xy

x yw

u

Semantics

[S , p, c , u, v ] = max. weight collectible in G [S ] by p alt. paths, c
alt. cycles and an alt. path starting at u & ending at v

Computation

Let xy ∈M. Then, [{xy}, 0, 0, x , y ] := 0 and

[S , p, c , u, y ] := max
w∈G [S−xy ]

u 6=w

[S − xy , p, c , u,w ] + ω(wx)

[S , p, c , x , y ] :=

max
u,w∈G [S−xy ]

{

[S − xy , p − 1, c , u,w ]

[S − xy , p, c − 1, u,w ] + ω(wu) if wu ∈ E (G ) \M
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[S , p, c , u, y ] := max
w∈G [S−xy ]

u 6=w

[S − xy , p, c , u,w ] + ω(wx)

[S , p, c , x , y ] := max
u,w∈G [S−xy ]

{
[S − xy , p − 1, c , u,w ]

[S − xy , p, c − 1, u,w ] + ω(wu) if wu ∈ E (G ) \M
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Semantics

[S , p, c , u, v ] = max. weight collectible in G [S ] by p alt. paths, c
alt. cycles and an alt. path starting at u & ending at v

Theorem

Scaffolding can be solved in O(
√

2
n
n3σpσc) time.
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Sparse Graphs: Quasi-Forest

Recall

• Scaffolding is hard in any sufficiently

dense graph class

• Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest ⇔ G −M is forest

Observation

Each leaf v of G −M has degree 2 in G
 if unweighted, can we take both?

 remove all non-matching edges from parent u, except uv

But is it even NP-hard?
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Sparse Graphs: Quasi-Forest

Weighted 2-SAT
Input: ϕ on X in 2-CNF, weights ω : X × {0, 1} → N, k ∈ N

Question: is there a satisfying assignment for ϕ of weight ≤ k?

Remark

Independent Set is special case of Weighted 2-SAT

19 /33
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Sparse Graphs: Quasi-Forest

Observation

∃ weight-k satisfying assignment

⇔

∃ weight-k cover with ≤ n
alternating paths

Theorem

Scaffolding is NP-hard even if G −M
is a collection of paths with weights

0/1

Corollary

no 2o(n+m)-time algorithm (ETH)

no no(k)-time algorithm (FPT 6=W[t])
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Other Forms of Tree-Likeness

Tree Decompositions

tree T , each vertex i associated to some Xi ⊆ V (G ) s.t.

1. ∀ e ∈ E (G ), there is some i ∈ V (T ) with e ∈ Xi
2. ∀ v ∈ V (G ), bags containing v induce a connected subtree

treewidth tw = size of largest bag - 1

Hope

Practical instances of Scaffolding have low treewidth (they

originate from linear structure)

Nice Decompositions

Leaf: X = ∅
Introduce v : i has single child j and Xi \ Xj = {v}
Forget v : i has single child j and Xj \ Xi = {v}
Introduce uv : i has single child j and uv ⊆ Xi = Xj

(each edge introduced exactly once)

Join: i has 2 children j and ` and Xi = Xj = X`

20/33
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How do Solutions Interact with Bags?

Xi

Gi [S ]

Ingredients

• degree-function d : X → {0, 1, 2}
• “pairing” ⊆

(X
2

)
∪ X

 #matchings possibilities  O(|X ||X |/2)

• #paths and #cycles completed “below the bag”
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• degree-function d : X → {0, 1, 2}
• “pairing” ⊆

(X
2

)
∪ X  #matchings possibilities  O(|X ||X |/2)

• #paths and #cycles completed “below the bag”

Semantics

[d ,P, p, c]i = max. weight of any S with M∩ E (Gi ) ⊆ S ⊆ E (Gi ) and

1. each vertex v ∈ Xi has degree d(v) in Gi [S ],
2. for each uv ∈ P , Gi [S ] contains an alternating path. . .

u = v : . . . from u avoiding d−1(1)
u 6= v : . . . from u to v

3. Gi [S ] contains p alt. paths & c alt. cycles avoiding d−1(1)
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Ingredients

• degree-function d : X → {0, 1, 2}
• “pairing” ⊆

(X
2

)
∪ X  #matchings possibilities  O(|X ||X |/2)

• #paths and #cycles completed “below the bag”

Leaf Bag

[∅,∅, 0, 0]i = 0
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2

)
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• #paths and #cycles completed “below the bag”

Introduce v (single child j)
[d ,P, p, c]i = [d |v→⊥,P, p, c]j
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Join Bag (children j & `)

[d ,P, p, c]i = max
dj ,Pj ,pj ,cj

max
P`

Pj t P` = P

[dj ,Pj , pj , cj ]j + [d − dj ,P`, p − pj , c − cj ]`

 O(3tw · twtw /2 ·σp · σc) table entries

and O((tw +2)tw · σp · σc · n) time
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Too slow

in prac-

tice!
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Integer Linear Program Formulation

s

tc

t

p
- chromosomes = disjoint s-t-paths
- bin. variables yuv = 1⇔ u → v used

x{u,v} = yuv + yvu

- force contigs: ∀uv∈Mxuv = 1
- path preservation: ∀u 6=s,t

∑
v yvu =

∑
v yuv

- path bounds:
∑

v yvt ≤ σ
- forbid cycles (row generation via callback):

∀ cycle C :
∑

uv∈C
yuv < |C |

- objective: max
∑
e∈E

x{u,v} · ω(e)

- cycle consistency: ∀uyutc ≤ ysu

- jump mechanics

!!!
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Integer Linear Program Formulation

s tc
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- bin. variables yuv = 1⇔ u → v used

x{u,v} = yuv + yvu+zuv + zvu

- force contigs: ∀uv∈Mxuv = 1
- path preservation: ∀u 6=s,tp ,tc

∑
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∑
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- path & cycle bounds:
∑

v yvt{p,c} ≤ σ{p,c}
- forbid cycles (row generation via callback):

∀ cycle C :
∑

uv∈C
(yuv−yutc ) < |C |

- objective: max
∑
e∈E

x{u,v} · ω(e)

- cycle consistency: ∀uyutc ≤ ysu

- jump mechanics

!!!

Multiplicities
1. make yuv , x{u,v} integers in domain [0,m({u, v})]
2. change callback

29/33



Integer Linear Program Formulation

s tc

tp
- chromosomes = disjoint s-{tp, tc}-paths
- int. variables yuv = `⇔ u → v used ` times

x{u,v} = yuv + yvu+zuv + zvu

- force contigs: ∀uv∈Mxuv≥1
- path preservation: ∀u 6=s,tp ,tc

∑
v yvu =

∑
v yuv

- path & cycle bounds:
∑

v yvt{p,c} ≤ σ{p,c}
- forbid cycles (row generation via callback):

∀ cycle C :
∑

uv∈C
yuv ≤ |C | ·mmax ·

∑
u∈C ,v /∈C

yuv

- objective: max
∑
e∈E

x{u,v} · ω(e)

- cycle consistency: ∀uyutc ≤ ysu

- jump mechanics !!!
Multiplicities
1. make yuv , x{u,v} integers in domain [0,m({u, v})]
2. change callback

29/33



Linearization of Solutions

Problem

no unique chromosome-configuration explaining solution

Proof

30/33



Linearization of Solutions

Problem

no unique chromosome-configuration explaining solution

Proof

30/33



Linearization of Solutions

Problem

no unique chromosome-configuration explaining solution

Proof

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

3 2 2 1 3 3 5 5 7
1

2 1 2 1

Proof

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇒”: contraposition; let p = ambigous path

2 2 2
1

1
1

 (G ,M,m) not uniquely linearizable

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇒”: contraposition; let p = ambigous path

2 2 2
1

1
1

 (G ,M,m) not uniquely linearizable

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇒”: contraposition; let p = ambigous path

2 2 2
1

1
1

 (G ,M,m) not uniquely linearizable

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇒”: contraposition; let p = ambigous path

2 2 2
1

1
1

 (G ,M,m) not uniquely linearizable

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇐”: let (G ,M,m) be free of ambigous paths

Reduction (does not decrease number of linearizations):

5

2

2
2

 result is collection of alternating paths & cycles

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇐”: let (G ,M,m) be free of ambigous paths

Reduction (does not decrease number of linearizations):

3 3 3

5

2

2
2

 result is collection of alternating paths & cycles

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇐”: let (G ,M,m) be free of ambigous paths

Reduction (does not decrease number of linearizations):

3

5

2

2
2

 result is collection of alternating paths & cycles

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇐”: let (G ,M,m) be free of ambigous paths

Reduction (does not decrease number of linearizations):

3

5

2

2
2

 result is collection of alternating paths & cycles

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇐”: let (G ,M,m) be free of ambigous paths

Reduction (does not decrease number of linearizations):

3

3

2
2

 result is collection of alternating paths & cycles

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇐”: let (G ,M,m) be free of ambigous paths

Reduction (does not decrease number of linearizations):

3

3

2
2

 result is collection of alternating paths & cycles

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily

 missassembly

2. isolate each ambiguity

 information loss

3. cut as few ends as possible

 computationally hard

4. cut as few multiplicities as possible

 computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily

 missassembly

2. isolate each ambiguity

 information loss

3. cut as few ends as possible

 computationally hard

4. cut as few multiplicities as possible

 computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity

 information loss

3. cut as few ends as possible

 computationally hard

4. cut as few multiplicities as possible

 computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity

 information loss

3. cut as few ends as possible

 computationally hard

4. cut as few multiplicities as possible

 computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible

 computationally hard

4. cut as few multiplicities as possible

 computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible

 computationally hard

4. cut as few multiplicities as possible

 computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible

 computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible

 computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

Multiplicities
one &

#non-matching adj. to contig

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

Multiplicities
one &

#non-matching adj. to contig

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

Multiplicities
one &

#non-matching adj. to contig

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

Multiplicities
one &

#non-matching adj. to contig

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

30/33



Linearization of Solutions

Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proposals

1. decide arbitrarily  missassembly

2. isolate each ambiguity  information loss

3. cut as few ends as possible  computationally hard

4. cut as few multiplicities as possible  computationally hard

30/33



Conclusion

What we saw

- 3-step sequencing technique:

1. produce paired-end reads

2. assemble reads to contigs

3. scaffold contigs to chromosomes using read-pairings

- computationally hard problem for dense graphs with weights 0/1

- no constant-factor approx or subexponential-time algorithm

for linear quasi trees with weights 0/1

- O(n2) time on unweighted cliques/co-bipartite/split

- O(n · σp · σc) time for constant treewidth

- 2-approximable in cliques/complete bipartite in O(n3) time

- O(
√

2
n

poly(n)) time exact algorithm

- ILP formulation with contig jumps & multiplicities

- Linearization problem raised by multiplicities in solution
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Conclusion

Outlook

- 3rd generation sequencing: PacBio, Oxford Nanopore
produces long reads (10-15kbp), but error-prone

 correction using small reads?

- generally: multi-library scaffolding

- other sources for contig-connections (phylogenetic

information?)

- better parameters for Scaffolding and Scaffold Linearization

 analyze practical instances

- approximation/heuristics for Scaffold Linearization
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