Lecture: Graph-Based Genome Scaffolding

Mathias Weller mathias.weller@univ-mlv.fr

Montpellier, 2017

DNA

- double strand
- inside nucleus (safe)

RNA

- single strand
- outside nucleus
- transfers genetic code
- Thymine (T) → Uracil (U)

DNA

- double strand
- inside nucleus (safe)

RNA

- single strand
- outside nucleus
- transfers genetic code
- Thymine (T) → Uracil (U)

[Sanger et al '77]

 ${\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAATGGACCTGCCCAGTCTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA}$

[Sanger et al '77]

 ${\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAATGACCTGCCCAGTCTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA}$

Sanger Sequencing

1. split helix & create thousands of copies

[Sanger et al '77]

 $\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT$

Sanger Sequencing

1. split helix ≠ create thousands of copies

[Sanger et al '77]

 $\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT$

- 1. split helix & create thousands of copies
- 2. add polymerase & floating Bases: A C G T
- 3. add a special Base: A* (polymerase cannot extend)

 $\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT$

- 1. split_helix ← create thousands of copies
- 2. add polymerase & floating Bases: A C G T
- 3. add a special Base: A* (polymerase cannot extend)
- 4. stir ≠ let polymerase act

 $\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAATGGA*$

- 1. split helix & create thousands of copies
- 2. add polymerase & floating Bases: A C G T
- 3. add a special Base: A* (polymerase cannot extend)
- 4. stir \(\dip \) let polymerase act

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT GGA* GGACCTGCCCA*

- 1. split helix & create thousands of copies
- 2. add polymerase & floating Bases: A C G T
- 3. add a special Base: A* (polymerase cannot extend)
- 4. stir \(\dip \) let polymerase act

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT GGA* GGACCTGCCCA* GGACCTGCCCAGTCTGTA*

- 1. split helix & create thousands of copies
- 2. add polymerase & floating Bases: A C G T
- 3. add a special Base: A* (polymerase cannot extend)
- 4. stir \(\dip \) let polymerase act

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT GGA* GGACCTGCCCA* GGACCTGCCCAGTCTGTA*

- 1. split helix & create thousands of copies
- 2. add polymerase & floating Bases: A C G T
- 3. add a special Base: A* (polymerase cannot extend)
- 4. stir ≠ let polymerase act
- 5. measure the length of each fragment
 - ightharpoonup each length is the position of a T in the template

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT GGA* GGACCTGCCCA* GGACCTGCCCAGTCTGTA*

Sanger Sequencing

- 1. split helix & create thousands of copies
- 2. add polymerase & floating Bases: A C G T
- 3. add a special Base: A* (polymerase cannot extend)
- 4. stir ≠ let polymerase act

Problem

unreliable after a couple hundred bp

→ chop up DNA into pieces and read those

ACTCA....ACCTC

I. chop DNA into smaller pieces

TGGTACTCA....ACCTCTCAG

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece

TGGTACTCA.....ACCTCTCAG

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece
- 3. "flow cell" containing anchor places

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece
- 3. "flow cell" containing anchor places
- 4. strand anchors its two ends to two anchor places

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece
- 3. "flow cell" containing anchor places
- 4. strand anchors its two ends to two anchor places

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece
- 3. "flow cell" containing anchor places
- 4. strand anchors its two ends to two anchor places
- 5. polymerase completes the strand into double-strand

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece
- 3. "flow cell" containing anchor places
- 4. strand anchors its two ends to two anchor places
- 5. polymerase completes the strand into double-strand
- 6. double strand is denaturized into single strands

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece
- 3. "flow cell" containing anchor places
- 4. strand anchors its two ends to two anchor places
- 5. polymerase completes the strand into double-strand
- 6. double strand is denaturized into single strands
- 7. rinse, repeat (last 3 steps) until flow chip is "full"

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece
- 3. "flow cell" containing anchor places
- 4. strand anchors its two ends to two anchor places
- 5. polymerase completes the strand into double-strand
- 6. double strand is denaturized into single strands
- 7. rinse, repeat (last 3 steps) until flow chip is "full"
- 8. read all strands from their anchor points outwards

```
TGGTACTCA.....ACCTCTCAG

CTGAGAGGT.....TGAGTACCA
```

- I. chop DNA into smaller pieces
- 2. add anchors to each end of each piece
- 3. "flow cell" containing anchor places
- 4. strand anchors its two ends to two anchor places
- 5. polymerase completes the strand into double-strand
- 6. double strand is denaturized into single strands
- 7. rinse, repeat (last 3 steps) until flow chip is "full"
- 8. read all strands from their anchor points outwards
- → Paired-End reads (distance Between reads = "insert size")

Goal: reconstruct sequence

ldea: Overlap reads

Goal: reconstruct sequence

ldea: overlap reads

GCCCTGAACTTCGCTA GCCCCTGAACTT ACTTCGC

TAACGACACTCCTTGGGTTTT CGACACTCCTTGGGTTTT

CGACACTCCTTGGGTTTT

CTAGGCCATTGATTGCGGGTC GGTTCTCT GGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence

ldea: overlap reads

Goal: reconstruct sequence

Idea: Overlap reads

Problem 1: parts of the sequence might not be covered by reads

Goal: reconstruct sequence

Idea: overlap reads

Problem 1: parts of the sequence might not be covered by reads sequence with "high coverage"

Goal: reconstruct sequence

Idea: overlap reads

Goal: reconstruct sequence

Idea: overlap reads

Goal: reconstruct sequence

ldea: overlap reads

Problem 2: Shortest Common Superstring is NP-hard

→ "Overlap-Layout-Consensus" assemblers

l. produce Best pairwise overlaps

2. layout the reads according to the overlaps

3. for each position, compute consensus base

Goal: reconstruct sequence

ldea: overlap reads

Problem 2: Shortest Common Superstring is NP-hard

→ "Overlap-Layout-Consensus" assemblers

I. produce Best pairwise overlaps

2. layout the reads according to the overlaps

3. for each position, compute consensus base

Goal: reconstruct sequence

Idea: overlap reads

Problem 2: Shortest Common Superstring is NP-hard

→ "Overlap-Layout-Consensus" assemblers

Problem: $\Theta(n^2)$ too slow in practice \sim DeBruijn-Graph based assembly

Goal: reconstruct sequence

ldea: overlap reads

Problem 2: Shortest Common Superstring is NP-hard \sim "Overlap-Layout-Consensus" assemblers Problem: $\Theta(n^2)$ too slow in practice \sim DeBruijn-graph based assembly

2. Builds overlap graph ("DeBruijn graph")

3. find path using all overlaps

I. chop all reads into "k-mers"

("DeBruijn Graph")

3. find Eulerian path

Goal: reconstruct sequence Idea: Overlap reads Problem 2: Shortest Common Superstring is NP-hard → "Overlap-Layout-Consensus" assemblers Problem: $\Theta(n^2)$ too slow in practice k = 4→ DeBruijn-Graph Based assembly ACT" I. chop all reads into "k-mers" 2. Builds Overlap Graph AACT TCGC

GAAC

Goal: reconstruct sequence Idea: Overlap reads Problem 2: Shortest Common Superstring is NP-hard → "Overlap-Layout-Consensus" assemblers Problem: $\Theta(n^2)$ too slow in practice k = 4→ DeBruijn-Graph Based assembly TTCG ACT" I. chop all reads into "k-mers" 2. Builds Overlap Graph AACT CTTG TCGC ("DeBruijn Graph") 3. find Eulerian path GAAC CCTT TTGG CGCT

Goal: reconstruct sequence

Idea: overlap reads

Problem 2: Shortest Common Superstring is NP-hard \rightarrow "Overlap-Layout-Consensus" assemblers

Problem: $\Theta(n^2)$ too slow in practice

DeBruijn-Graph Based assembly

l. chop all reads into "k-mers"

1. Chop all reads into k-mer 2. Builds overlap Graph

"L Builds Overlap Graph")
("DeBruijn Graph")

3. find Eulerian path

GCCCTGAACTI CGCIAGGGTTCICIAACGACACTCCTIGGGTTTTTACGTCGCGGTTCTTAGGCCATIGATIGCGGGTCCAGGTGTTGCAACGA GCCCCTGAACTT CGACACTCCTTGGGTTTT TAGGCCATTGATTGGGGGTC ACTTCGC GGTCCAGGTGCTCAACGA TTTACGTCGCGG GGTCCAGGTGCTGCAACGA TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGA

Goal: reconstruct sequence

Idea: overlap reads

Problem 3: repeats (common in DNA) make assembly ambiguous

Goal: reconstruct sequence

ldea: overlap reads

Problem 3: repeats (common in DNA) make assembly ambiguous

Goal: reconstruct sequence

Idea: overlap reads

Problem 3: repeats (common in DNA) make assembly ambiguous

Goal: reconstruct sequence

Idea: overlap reads

Problem 3: repeats (common in DNA) make assembly ambiguous when a product is a set of "contiguous regions"

Goal: reconstruct sequence

ldea: overlap reads

Problem 3: repeats (common in DNA) make assembly ambiguous

ightarrow end product is a set of "contiguous regions"

Problem: "contig soup" not very useful

GCCCTGAACTTCGCTAG**GGTTCTCTA**ACGACACTCCTTGGGTTTTTACGTCGC**GGTTCTTA**GGCCATTGATTGCGGGTCCAGGTGCTGTCAACGA GCCCTGAACTT CTAGGCCATTGATTGCGGGTC ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGA TGGCTAGGGTTCTCTAACGA TTTACGTCGCGG

Goal: reconstruct sequence

Idea: overlap reads

Problem 3: repeats (common in DNA) make assembly ambiguous

 \leadsto end product is a set of "contiguous regions"

<u>Problem</u>: "contig soup" not very useful But: we have paired-end information!

Goal: reconstruct sequence

ldea: overlap reads

Problem 3: repeats (common in DNA) make assembly ambiguous

 \leadsto end product is a set of "contiguous regions"

Problem: "contig soup" not very useful But: we have paired-end information!

Goal: order & orient contigs

Idea: use pairing information on reads to "link" contigs together

- SOPRA

[Dayarian, Michael, Sengupta, BMC Bioinf. II, '10]

- removes reads in high-coverage area (likely repeats)
- ► orientation step (heuristic) + ordering step (heuristic)
- ► coded in Pearl (!!!)
- ► (Observed sparse contig graph)

Goal: order & orient contigs

Idea: use pairing information on reads to "link" contigs together

- SOPRA

[Dayarian, Michael, Sengupta, BMC Bioinf. II, '10]

- SSPACE

[Boetzer & al., Bioinf. 27(4), 'II]

- ► heuristic contig extension
- "reasonable time"

Goal: order & orient contigs

Idea: use pairing information on reads to "link" contigs together

- SOPRA

[Dayarian, Michael, Sengupta, BMC Bioinf. II, '10]

- SSPACE

[Boetzer & al., Bioinf. 27(4), 'II]

- OPERA

[Gao, Sung, Ngaraja, JCB. 18(11), '11]

 $\rightarrow n^{p+O(1)}$ time $(p=\pm \text{edge-deletions})$

▶ most work done by a heuristic "graph contraction"

Goal: order & orient contigs

Idea: use pairing information on reads to "link" contigs together

- SOPRA
- SSPACE
- OPERA
- GRASS

[Dayarian, Michael, Sengupta, BMC Bioinf. II, '10]

[Boetzer & al., Bioinf. 27(4), 'II]

[Gao, Sung, Ngaraja, JCB. 18(11), '11]

[Gritsenko & al., Bioinf. 28(11), 12]

- ► Mixed-Integer Quadratic Programming
- deals with uncertain data (slack variables)
 - → "intractable even for small # of contigs"
- ► heuristic workaround:
 - ▶ solve relaxed formulation \ use slack values \ LP

Goal: order & orient contigs

Idea: use pairing information on reads to "link" contigs together

- SOPRA
- SSPACE
- OPERA
- GRASS
- SCARPA
 - CARPA

- [Dayarian, Michael, Sengupta, BMC Bioinf. II, '10]
 - [Boetzer & al., Bioinf. 27(4), 'll]
 - [Gao, Sung, Ngaraja, JCB. 18(11), '11]
 - [Gritsenko & al., Bioinf. 28(11), '12]
 - [Donnez, Brudno, Bioinf, 29(4), '13]
- ► orientation step: use FPT algo for Odd Cycle Transersal
- ► ordering step: heuristic

Goal: order & orient contigs

Idea: use pairing information on reads to "link" contigs together

- SOPRA

- SSPACE

- OPERA

- GRASS

- SCARPA

- ...

[Dayarian, Michael, Sengupta, BMC Bioinf. II, '10]

[Boetzer \ al., Bioinf. 27(4), 'll]

[Gao, Sung, Ngaraja, JCB. 18(11), '11]

[Gritsenko & al., Bioinf. 28(11), 12]

[Donmez, Brudno, Bioinf. 29(4), '13]

[Huson & al., JACM, 'O2][Nieuwerburgh & al., NAR, '12]

Strategy

l. map reads into contigs

Strategy

l. map reads into contigs

Strategy

l. map reads into contigs

- I. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)

- I. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)

- I. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)

- I. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)
- 3. cover "scaffold graph" with (heavy) alternating paths each path corresponds to a chromosome

- I. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)
- 3. cover "scaffold graph" with (heavy) alternating paths each path corresponds to a chromosome

Scaffolding Input: Graph G, perfect matching M, weights ω , k, $\sigma_p \in \mathbb{N}$ Question: Can G be covered by

 $\leq \sigma_p$ alternating paths

of total weight $\geq k$?


```
Scaffolding Input: Graph G, perfect matching M, weights \omega, k, \sigma_p, \sigma_c \in \mathbb{N} Question: Can G be covered by \leq \sigma_p alternating paths \neq \leq \sigma_c alternating cycles of total weight \geq k?
```


Exact Scaffolding Input: Graph G, perfect matching M, weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by σ_p alternating paths \neq σ_c alternating cycles of total weight $\geq k$?

Recall: Scaffolding

Input: Graph G, perfect matching \mathcal{M} , weights $\omega, k, \sigma_p, \sigma_c \in \mathbb{N}$

Question: Can G be covered by $\leq \sigma_p$ alternating paths \neq $\leq \sigma_c$ alternating cycles of total weight $\geq k$?

Construction

Given a directed graph D. I. make a copy of D

Recall: Scaffolding

Input: Graph G, perfect matching M, weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths \rightleftharpoons

 $<\sigma_c$ alternating cycles of total weight > k?

Construction

Given a directed Graph D.

- I. make a copy of D
- 2. duplicate all vertices $\rightsquigarrow M$

Recall: Scaffolding

Input: Graph G, perfect matching M, weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths \rightleftharpoons

: Lan 6 be covered by $\leq \sigma_p$ afternating paths $\leq \sigma_c$ alternating cycles of total weight $\geq k$?

Construction

Given a directed graph D.

- I. make a copy of D
- 2. duplicate all vertices $\rightsquigarrow M$
- 3. "slide" down all arrow tips & ignore directions

Recall: Scaffolding

Input: Graph G, perfect matching \mathcal{M} , weights ω , $k, \sigma_p, \sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths \rightleftharpoons

 $\leq \sigma_c$ alternating cycles of total weight $\geq k$?

Lemma

D admits a directed Hamiltonian path $\Leftrightarrow M$ can be covered with a single alternating path in G.

Recall: Scaffolding

Input: Graph G, perfect matching \mathcal{M} , weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths $\stackrel{\Leftarrow}{=}$ $\leq \sigma_c$ alternating cycles of total weight > k?

Lemma

D admits a directed Hamiltonian path $\Leftrightarrow M$ can be covered with a single alternating path in G.

" \Rightarrow ": replace each v in the Hamiltonian path by $v_{\sf up} o v_{\sf low}.$

Recall: Scaffolding

Input: Graph G, perfect matching \mathcal{M} , weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths $\stackrel{\Leftarrow}{=}$ $\leq \sigma_c$ alternating cycles of total weight > k?

Lemma

D admits a directed Hamiltonian path $\Leftrightarrow M$ can be covered with a single alternating path in G.

" \Rightarrow ": replace each v in the Hamiltonian path by $v_{\rm up} o v_{\rm low}$.

alternating \checkmark covers M \checkmark

Recall: Scaffolding

Input: Graph G, perfect matching M, weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths $\stackrel{\Leftarrow}{=}$ $\leq \sigma_c$ alternating cycles of total weight > k?

Lemma

D admits a directed Hamiltonian path $\Leftrightarrow M$ can be covered with a single alternating path in G.

" \Leftarrow ": contract each matching edge in the covering alternating path.

Recall: Scaffolding

Input: Graph G, perfect matching M, weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths $\stackrel{\Leftarrow}{=}$ $\leq \sigma_c$ alternating cycles of total weight > k?

Lemma

D admits a directed Hamiltonian path $\Leftrightarrow M$ can be covered with a single alternating path in G.

" \Leftarrow ": contract each matching edge in the covering alternating path. hits all vertices exactly once \checkmark is valid directed path \checkmark

Recall: Scaffolding

Input: Graph G, perfect matching \mathcal{M} , weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths $\stackrel{\Leftarrow}{=}$ $\leq \sigma_c$ alternating cycles of total weight > k?

- · Bipartite Graphs
- $(\sigma_p, \sigma_c) \in \{(0,1), (1,0)\}$ and
- $\omega: E \to \{0\}$.

Recall: Scaffolding

Input: Graph G, perfect matching \mathcal{M} , weights ω , k, σ_p , $\sigma_c \in \mathbb{N}$ Question: Can G be covered by $\leq \sigma_p$ alternating paths $\stackrel{\Leftarrow}{=}$ $\leq \sigma_c$ alternating cycles of total weight > k?

- supergraphs of Bipartite Graphs
- $(\sigma_p, \sigma_c) \in \{(0,1), (1,0)\}$ and
- $\omega : E \to \{0, 1\}.$

Recall: Scaffolding

Input: Graph G, perfect matching \mathcal{M} , weights $\omega,\,k,\sigma_p,\sigma_c\in\mathbb{N}$

Question: Can G be covered by $\leq \sigma_p$ alternating paths $\leq \sigma_c$ alternating cycles of total weight $\geq k$?

- supergraphs of Bipartite Graphs
- $(\sigma_p, \sigma_c) \in \{(0,1), (1,0)\}$ and
- $\omega : E \to \{0, 1\}.$

Corollary

Scaffolding with 2 weights is NP-hard in any sufficiently dense graph class.

Recall: Scaffolding

Input: Graph G, perfect matching \mathcal{M} , weights $\omega,\,k,\sigma_p,\sigma_c\in\mathbb{N}$

Question: Can G be covered by $\leq \sigma_p$ alternating paths $\leq \sigma_c$ alternating cycles of total weight $\geq k$?

- supergraphs of Bipartite Graphs
- $(\sigma_p, \sigma_c) \in \{(0,1), (1,0)\}$ and
- $\omega : E \to \{0, 1\}.$

Corollary

Exact Scaffolding with 2 weights is NP-hard in any sufficiently dense graph class.

Wait, what?

Wait, what?

Recap: Corollary

Scaffolding with 2 weights is NP-hard in any sufficiently dense graph class.

Wait, what?

Recap: Corollary

Scaffolding with 2 weights is NP-hard in any sufficiently dense graph class.

~ Unweighted!

Observation

no edges between $X \neq Y \rightsquigarrow$ need 2 objects (paths/cycles) otherwise \rightsquigarrow can always cover G with I path

TODO

decide if we can cover with I cycle

Observation

 \exists alternating cycle with non-matching edge X \rightsquigarrow extend to cover all M in G[X]

Observation

 \exists alternating cycle with non-matching edge X \leadsto extend to cover all $\mathcal M$ in G[X]

Observation

 \exists alternating cycle with non-matching edge X \rightsquigarrow extend to cover all M in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\rightsquigarrow \checkmark$

Observation

 \exists alternating cycle with non-matching edge X \rightsquigarrow extend to cover all M in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\rightsquigarrow \checkmark$

Observation

 \exists alternating cycle with non-matching edge X \rightsquigarrow extend to cover all M in G[X]

Observation

#matching edges between $X \notin Y$ even (and > 0) $\rightsquigarrow \checkmark$ #matching edges between $X \notin Y$ odd

Observation

 \exists alternating cycle with non-matching edge X \leadsto extend to cover all \mathcal{M} in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\leadsto \checkmark$ #matching edges between $X \neq Y$ odd

 \rightsquigarrow find any non-matching edge between $X \neq Y$

Observation

 \exists alternating cycle with non-matching edge X \leadsto extend to cover all \mathcal{M} in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\rightsquigarrow \checkmark$ #matching edges between $X \neq Y$ odd \rightsquigarrow find any non-matching edge between $X \neq Y$

Observation

 \exists alternating cycle with non-matching edge X \rightsquigarrow extend to cover all M in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\rightsquigarrow \checkmark$ #matching edges between $X \neq Y$ odd \rightsquigarrow find any non-matching edge between $X \neq Y$

1/33

Observation

 \exists alternating cycle with non-matching edge X \rightsquigarrow extend to cover all \mathcal{M} in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\rightsquigarrow \checkmark$ #matching edges between $X \neq Y$ odd \rightsquigarrow find any non-matching edge between $X \neq Y$ #matching edges between $X \neq Y$ is O

Observation

 \exists alternating cycle with non-matching edge X \leadsto extend to cover all \mathcal{M} in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\rightsquigarrow \checkmark$ #matching edges between $X \neq Y$ odd

 \rightarrow find any non-matching edge between $X \neq Y$

#matching edges between X & Y is O

Observation

 \exists alternating cycle with non-matching edge X \rightsquigarrow extend to cover all M in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\rightsquigarrow \checkmark$

#matching edges between $X \neq Y$ odd

 \rightarrow find any non-matching edge between $X \neq Y$

#matching edges between $X \notin Y$ is O

Observation

 \exists alternating cycle with non-matching edge X \rightsquigarrow extend to cover all M in G[X]

Observation

#matching edges between $X \neq Y$ even (and > 0) $\rightsquigarrow \checkmark$

#matching edges between $X \neq Y$ odd

 \rightarrow find any non-matching edge between $X \neq Y$

#matching edges between $X \notin Y$ is O

Observation

 \exists alternating cycle with non-matching edge X \leadsto extend to cover all \mathcal{M} in G[X]

Observation

```
#matching edges between X \notin Y even (and > 0) \rightsquigarrow \checkmark
#matching edges between X \notin Y odd
\rightsquigarrow find any non-matching edge between X \notin Y
#matching edges between X \notin Y is O
```

all other cases are √ (tedious case analysis)

Theorem

Scaffolding can be solved in O(n+m) time on co-bipartite graphs

Observation

no alternating cycles in a tree

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ \mathcal{M} is perfect $\rightsquigarrow \ell$ matched

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ \mathcal{M} is perfect $\rightsquigarrow \ell$ matched

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ M is perfect $\leftrightarrow \ell$ matched parent p of ℓ has only l child

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ M is perfect $\leftrightarrow \ell$ matched parent p of ℓ has only l child

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ \mathcal{M} is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ M is perfect $\leftrightarrow \ell$ matched parent p of ℓ has only l child

Case 1

parent g of p is matched "below"

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ \mathcal{M} is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Case 1

parent g of p is matched "below" $\rightsquigarrow g$ is matched to a leaf ℓ'

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ M is perfect $\leftrightarrow \ell$ matched parent p of ℓ has only I child

Case I

parent g of p is matched "below" $\Rightarrow g$ is matched to a leaf ℓ' \Rightarrow always take $\ell-p-g-\ell'$

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ M is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Case 1

parent g of p is matched "Below" $\leadsto g$ is matched to a leaf ℓ' \leadsto always take $\ell-p-g-\ell'$

Case 2

parent g of p is matched "above"

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ \mathcal{M} is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Case I

parent g of p is matched "Below" $\leadsto g$ is matched to a leaf ℓ' \leadsto always take $\ell-p-g-\ell'$

Case 2

parent g of p is matched "above" either p is the only child of g

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ \mathcal{M} is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Case I

parent g of p is matched "Below" $\leadsto g$ is matched to a leaf ℓ' \leadsto always take $\ell-p-g-\ell'$

Case 2

parent g of p is matched "above" either p is the only child of $g \rightsquigarrow$ delete $\ell \notin g$ and reduce k

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ \mathcal{M} is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Case I

parent g of p is matched "Below" $\leadsto g$ is matched to a leaf ℓ' \leadsto always take $\ell-p-g-\ell'$

Case 2

parent g of p is matched "above" either p is the only child of $g \rightsquigarrow$ delete $\ell \not\models g$ and reduce k or g has another child u

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ \mathcal{M} is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Case I

parent g of p is matched "below" $\Rightarrow g$ is matched to a leaf ℓ' \Rightarrow always take $\ell-p-g-\ell'$

Case 2

parent g of p is matched "above" either p is the only child of $g \leftrightarrow$ delete $\ell \not\models g$ and reduce k or g has another child $u \leftrightarrow u$ matched "below"

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ M is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Case I

parent g of p is matched "below" $\Rightarrow g$ is matched to a leaf ℓ' \Rightarrow always take $\ell-p-g-\ell'$

Case 2

parent g of p is matched "above" either p is the only child of $g \leadsto$ delete $\ell \not = g$ and reduce k or g has another child $u \leadsto u$ matched "below" $\leadsto \exists$ "clone" of $g - p - \ell$

Observation

no alternating cycles in a tree

Observation

consider a lowest leaf ℓ M is perfect $\leadsto \ell$ matched parent p of ℓ has only l child

Case 1

parent g of p is matched "Below" $\leadsto g$ is matched to a leaf ℓ' \leadsto always take $\ell-p-g-\ell'$

Case 2

parent g of p is matched "above" either p is the only child of $g \leadsto$ delete $\ell \not = g$ and reduce k or g has another child $u \leadsto u$ matched "below" $\leadsto \exists$ "clone" of $g - p - \ell$ \leadsto take $p - \ell$

Theorem

Scaffolding can be solved in O(n) time on unweighted trees

Dynamic Programming Idea

BOTTOM-UP TRAVERSAL; IN Each vertex v, need to remember:

- #paths used Below v
- · v incident with non-matching?

Dynamic Programming Idea

BOTTOM-UP TRAVERSAL; IN Each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[p,x]_v = max$ weight collected Below v with p finished paths "under x"

Dynamic Programming Idea

Bottom-up traversal; in each vertex v, need to remember:

- #paths used Below v
- · v incident with non-matching?

Semantics

 $[p,x]_v = \text{Max}$ weight collected Below v with p finished paths "under x"

Recurrence

Let
$$v_1, v_2, \dots, v_c$$
 be the children of v .
$$p_1, p_2, \dots, p_c \quad \sum_{1 \leq i \leq c} \max_{x \in \{\sqrt{i}, \sqrt{i}\}} [p_i, x]_{v_i}$$

$$\sum_{p_i = p} p_i = p$$

Dynamic Programming Idea

BOTTOM-up traversal: in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[p,x]_v = \text{max.}$ weight collected Below v with p finished paths "under x"

Recurrence

$$\sum p_i, p_2, \ldots, p_n \equiv p$$

Dynamic Programming Idea

Bottom-up traversal; in each vertex v, need to remember:

- #paths used Below v
- · v incident with non-matching?

Semantics

 $[j,p,x]_v = \text{max}$ weight collected Below v with p finished paths "under x" up to v_j (aBBrev: last child $\leadsto [p,x]_v$)

Recurrence

Dynamic Programming Idea

Bottom-up traversal; in each vertex v, need to remember:

- #paths used Below v
- · v incident with non-matching?

Semantics

 $[j,p,x]_v = \text{Max}$ weight collected Below v with p finished paths "under x" up to v_j (abbrev: last child $\leadsto [p,x]_v$)

Recurrence

Let v_1, v_2, \dots, v_c be the children of v. $[0,0,\infty]_v := 0$

$$[j,p,x]_{v}:=\max_{p_{j}\leq p}\left\langle \right.$$

 $\max\{[p_j, \sqrt{v_i}, [p_j, \sqrt{v_i}] + [j-1, p-p_j, x]_v \mid \text{if } vv_j \notin \mathcal{M}$

Dynamic Programming Idea

BOTTOM-UP TRAVERSAL; IN Each vertex v, need to remember:

- #paths used Below v
- · v incident with non-matching?

Semantics

 $[j,p,x]_v = \text{Max}$ weight collected Below v with p finished paths "under x" up to v_j (abbrev: last child $\leadsto [p,x]_v$)

Recurrence

Let v_1, v_2, \dots, v_c be the children of v. $[0, 0, >]_v := 0$

$$[j,p,x]_{v} := \max_{p_{j} \leq p}$$

Dynamic Programming Idea

Bottom-up traversal; in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[j,p,x]_v =$ max weight collected Below v with p finished paths "under x" up to v_j (abbrev: last child $\leadsto [p,x]_v$)

Recurrence

Let v_1, v_2, \dots, v_c be the children of v. $[0,0,\infty]_v := 0$

$$[j,p,x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j},\sqrt]_{v_{j}},[p_{j},\sqrt]_{v_{j}}\} + [j-1,p-p_{j},x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1,\sqrt]_{v_{j}} + [j-1,p-p_{j},\sqrt]_{v} & \text{if } x = \sqrt{+} vv_{j} \notin \mathcal{M} \end{cases}$$

Dynamic Programming Idea

Bottom-up traversal; in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[j,p,x]_v = \text{Max}$ weight collected Below v with p finished paths "under x" up to v_j (abbrev: last child $\leadsto [p,x]_v$)

Recurrence

Let v_1, v_2, \dots, v_c be the children of v. $[0,0,\times]_v := 0$

$$[j,p,x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j},\sqrt]_{v_{j}},[p_{j},\sqrt]_{v_{j}}\} + [j-1,p-p_{j},x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1,\sqrt]_{v_{j}} + [j-1,p-p_{j},\sqrt]_{v} & \text{if } x = \sqrt{\hat{\tau}} \ vv_{j} \notin \mathcal{M} \\ \left\{ \begin{bmatrix} p_{j}-1,\sqrt]_{v_{j}} \\ [p_{j}-1,\sqrt]_{v_{j}} \end{bmatrix} \right\} + [j-1,p-p_{j},x]_{v} & \text{if } vv_{j} \in \mathcal{M} \end{cases}$$

Dynamic Programming Idea

BOTTOM-UP Traversal: in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[i, p, x]_v = \text{max}$ weight collected Below v with p finished paths "under x" up to v_i (abbrev: last child $\rightsquigarrow [p,x]_v$)

Recurrence

Let
$$v_1, v_2, \ldots, v_c$$
 be the children of v .
$$[0,0,\cdot]_v := 0$$

$$\left\{ \begin{aligned} &\max\{[p_j,\sqrt]_{v_j},[p_j,\sqrt]_{v_j}\} + [j-1,p-p_j,x]_v & \text{if } vv_j \notin \mathcal{M} \\ &\omega(vv_j) + [p_j+1,\sqrt]_{v_j} + [j-1,p-p_j,\sqrt]_v & \text{if } x = \sqrt e vv_j \notin \mathcal{M} \end{aligned} \right.$$

$$\left\{ \begin{aligned} &[p_j-1,\sqrt]_{v_j} \\ &[p_j-1,\sqrt]_{v_j} \end{aligned} \right\} + [j-1,p-p_j,x]_v & \text{if } vv_j \in \mathcal{M} \end{aligned}$$

Dynamic Programming Idea

BOTTOM-UP Traversal: in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[i, p, x]_v = \text{max}$ weight collected Below v with p finished paths "under x" up to v_i (abbrev: last child $\rightsquigarrow [p,x]_v$)

Recurrence

$$[0,0,]_{v} := 0$$

$$[j,p,x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j},\sqrt]_{v_{j}},[p_{j},\sqrt]_{v_{j}}\} + [j-1,p-p_{j},x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1,\sqrt]_{v_{j}} + [j-1,p-p_{j},x]_{v} & \text{if } x = \sqrt{+} vv_{j} \notin \mathcal{M} \\ \left\{[p_{j}-1,\sqrt]_{v_{j}}\right\} + [j-1,p-p_{j},x]_{v} & \text{if } vv_{j} \in \mathcal{M} \end{cases}$$

Dynamic Programming Idea

BOTTOM-UP Traversal: in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[i, p, x]_v = \text{max}$ weight collected Below v with p finished paths "under x" up to v_i (abbrev: last child $\rightsquigarrow [p,x]_v$)

Recurrence

$$[0,0,]_{v} := 0$$

$$[j,p,x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j},\sqrt]_{v_{j}},[p_{j},\sqrt]_{v_{j}}\} + [j-1,p-p_{j},x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1,\sqrt]_{v_{j}} + [j-1,p-p_{j},x]_{v} & \text{if } x = \sqrt{+} vv_{j} \notin \mathcal{M} \\ \left\{[p_{j}-1,\sqrt]_{v_{j}}\right\} + [j-1,p-p_{j},x]_{v} & \text{if } vv_{j} \in \mathcal{M} \end{cases}$$

Dynamic Programming Idea

BOTTOM-UP Traversal: in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[i, p, x]_v = \text{max}$ weight collected Below v with p finished paths "under x" up to v_i (abbrev: last child $\rightsquigarrow [p,x]_v$)

Recurrence

$$[0,0,]_{v}:=0$$

$$[j,p,x]_{\mathbf{v}} := \max_{p_j \leq p} \begin{cases} \max\{[p_j,\sqrt]_{v_j},[p_j,\sqrt]_{v_j}\} + [j-1,p-p_j,x]_{\mathbf{v}} & \text{if } vv_j \notin \mathcal{M} \\ \omega(vv_j) + [p_j+1,\sqrt]_{v_j} + [j-1,p-p_j,\sqrt]_{\mathbf{v}} & \text{if } x = \sqrt{+} vv_j \notin \mathcal{M} \\ \left\{[p_j-1,\sqrt]_{v_j}\right\} + [j-1,p-p_j,x]_{\mathbf{v}} & \text{if } vv_j \in \mathcal{M} \end{cases}$$

Dynamic Programming Idea

Bottom-up traversal; in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[j,p,x]_v = \text{max}$ weight collected below v with p finished paths "under x" up to v_j (abbrev: last child $\leadsto [p,x]_v$)

Recurrence

$$[0,0,]_{\nu}:=0$$

$$[j,p,x]_{v} := \max_{p_{j} \leq p} \left\{ egin{align*} \max\{[p_{j},\sqrt]_{v_{j}},[p_{j},\sqrt]_{v_{j}}\} + [j-1,p-p_{j},x]_{v} & ext{if } vv_{j}
otin X = \sqrt{n} & \text{if } vv_$$

Dynamic Programming Idea

Bottom-up traversal; in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[j,p,x]_v = \text{max}$ weight collected Below v with p finished paths "under x" up to v_j (abbrev: last child $\rightsquigarrow [p,x]_v$)

Recurrence

$$[0,0,]_{v}:=0$$

$$[j, p, x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j}, \downarrow]_{v_{j}}, [p_{j}, \searrow]_{v_{j}}\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1, \searrow]_{v_{j}} + [j-1, p-p_{j}, \searrow]_{v} & \text{if } x = \sqrt{\hat{\tau}} \ vv_{j} \notin \mathcal{M} \\ \left\{ [p_{j}-1, \searrow]_{v_{j}} \right\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \in \mathcal{M} \end{cases}$$

Dynamic Programming Idea

Bottom-up traversal; in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[j, p, x]_v = \text{max}$ weight collected Below v with p finished paths "under x" up to v_i

(abbrev: last child $\rightsquigarrow [p,x]_v$)

Recurrence

$$[0,0,]_{\nu}:=0$$

$$[j, p, x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j}, \sqrt{]}v_{j}, [p_{j}, \sqrt{]}v_{j}\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1, \sqrt{]}v_{j} + [j-1, p-p_{j}, \sqrt{]}v & \text{if } x = \sqrt{+} vv_{j} \notin \mathcal{M} \\ \left\{[p_{j}-1, \sqrt{]}v_{j} \\ [p_{j}-1, \sqrt{]}v_{j}\right\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \in \mathcal{M} \end{cases}$$

Dynamic Programming Idea

BOTTOM-UP Traversal: in each vertex v, need to remember:

- #paths used Below v
- v incident with non-matching?

Semantics

 $[i, p, x]_v = \text{max.}$ weight collected Below v with p finished paths "under x" up to v_i

(abbrev: last child $\rightsquigarrow [p, x]_v$)

Recurrence

$$[0,0,]_{v}:=0$$

$$[j, p, x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j}, \sqrt{]_{v_{j}}}, [p_{j}, \sqrt{]_{v_{j}}}\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1, \sqrt{]_{v_{j}}} + [j-1, p-p_{j}, \sqrt{]_{v}} & \text{if } x = \sqrt{+} vv_{j} \notin \mathcal{M} \\ \left\{[p_{j}-1, \sqrt{]_{v_{j}}}\right\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \in \mathcal{M} \end{cases}$$

Dynamic Programming Idea

BOTTOM-UP TRAVERSAL; IN Each vertex v, need to remember:

- \bullet #paths used Below v
- v incident with non-matching?

Semantics

 $[j, p, x]_v = \text{Max}$ weight collected Below v with p finished paths "under x" up to v_i

(abbrev: last child $\rightsquigarrow [p, x]_v$)

Recurrence

$$[0,0,]_{v}:=0$$

$$[j, p, x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j}, \sqrt{]}v_{j}, [p_{j}, \sqrt{]}v_{j}\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1, \sqrt{]}v_{j} + [j-1, p-p_{j}, \sqrt{]}v & \text{if } x = \sqrt{+} vv_{j} \notin \mathcal{M} \\ \left\{[p_{j}-1, \sqrt{]}v_{j}\right\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \in \mathcal{M} \end{cases}$$

$$= \begin{cases} [p_{j}-1, \sqrt{]}v_{j} \\ [p_{j}-1, \sqrt{]}v_{j} \end{cases}$$

Dynamic Programming Idea

BOTTOM-UP TRAVERSAL; IN EACH VERTEX V. NEED TO REMEMBER:

- \bullet #paths used Below v
- v incident with non-matching?

Semantics

 $[j, p, x]_v = \text{max}$ weight collected Below v with p finished paths "under x" up to v_j (abbrev: last child $\leftrightarrow [p, x]_v$)

Recurrence

$$[0,0,]_{v}:=0$$

$$[j, p, x]_{v} := \max_{p_{j} \leq p} \begin{cases} \max\{[p_{j}, \sqrt{]_{v_{j}}}, [p_{j}, \sqrt{]_{v_{j}}}\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \notin \mathcal{M} \\ \omega(vv_{j}) + [p_{j}+1, \sqrt{]_{v_{j}}} + [j-1, p-p_{j}, \sqrt{]_{v}} & \text{if } x = \sqrt{+} vv_{j} \notin \mathcal{M} \\ \left\{[p_{j}-1, \sqrt{]_{v_{j}}}\right\} + [j-1, p-p_{j}, x]_{v} & \text{if } vv_{j} \in \mathcal{M} \end{cases}$$

Approximate Scaffolding

1. sort all edges by weight

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

- l. sort all edges by weight
- repeatedly take heaviest edge, if possible

- l. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

- l. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

- I. sort all edges by weight
- repeatedly take heaviest edge, if possible

Approximate Scaffolding

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

Approximate Scaffolding

- I. sort all edges by weight
- repeatedly take heaviest edge, if possible

Approximate Scaffolding

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

Approximate Scaffolding

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

Proof

Result S^* is a valid solution \checkmark

Approximate Scaffolding

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

Proof

Result S^* is a valid solution \checkmark Note: taking an edge forbids ≤ 3 OPT edges

Approximate Scaffolding

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

Proof

Result S^* is a valid solution \checkmark Note: taking an edge forbids ≤ 3 OPT edges

Approximate Scaffolding

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

Proof

Result S^* is a valid solution \checkmark Note: taking an edge forbids ≤ 3 OPT edges

Approximate Scaffolding

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

Proof

Result S^* is a valid solution \checkmark

Note: taking an edge for Bids ≤ 3 OPT edges

 \sim mark the \leq 3 OPT-edges when taking an edge e

 \rightarrow e is heaviest among them

 $\rightsquigarrow 3\omega(S^*) \ge OPT$

Approximate Scaffolding

- I. sort all edges by weight
- repeatedly take heaviest edge, if possible

Theorem

Scaffolding in complete graphs can be 3-approximated in $O(|V|\log|V|)$ time.

Approximate Scaffolding

- I. sort all edges by weight
- repeatedly take heaviest edge, if possible

Theorem

Scaffolding in complete (Bipartite) graphs can be 3-approximated in $O(|V|\log|V|)$ time.

Approximate Scaffolding

- I. sort all edges by weight
- 2. repeatedly take heaviest edge, if possible

Theorem

Scaffolding in complete (Bipartite) graphs can be 3-approximated in $O(|V|\log|V|)$ time.

Remark

For Exact Scaffolding, we have to keep an eye on the number of components too.

Approximate Exact Scaffolding

I. compute max-weight perfect
matching 5

~> SUM is collection of cycles

 $\sigma_p = 1$, $\sigma_c = 1$?

- I compute max-weight perfect matching S
- $\sim S \cup M$ is collection of cycles 2. "Ax" all But lightest edge per cycle

 $\sigma_p = 1$, $\sigma_c = 1$?

- 1. compute max-weight perfect matching 5
- $ightsquigarrow 5 \cup \mathcal{M}$ is collection of cycles
- 2. "Ax" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix 4-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_p$ cycles remain

- I. compute max-weight perfect matching S
- $ightsquigarrow 5 \cup \mathcal{M}$ is collection of cycles
- 2. "Ax" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix 4-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_p$ cycles remain

 $\sigma_p = 1$, $\sigma_c = 1$?

- I. compute max-weight perfect matching 5
- $\leadsto S \cup \mathcal{M}$ is collection of cycles
- 2. "Ax" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix 4-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_B$ cycles remain

- I compute max-weight perfect matching S
- $ightsquigarrow 5 \cup \mathcal{M}$ is collection of cycles
- 2. "Aix" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix +-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_p$ cycles remain
- 4. repeatedly remove lightest non- μ x cycle-edge until at most σ_c cycles remain

- I compute max-weight perfect matching S
- $ightsquigarrow 5 \cup \mathcal{M}$ is collection of cycles
- 2. "Aix" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix +-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_p$ cycles remain
- 4. repeatedly remove lightest non- μ x cycle-edge until at most σ_c cycles remain

Approximate Exact Scaffolding

I compute max-weight perfect

 $\rightsquigarrow 5 \cup \mathcal{M}$ is collection of cycles

- 2. "Aix" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix 4-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_p$ cycles remain
- 4. repeatedly remove lightest non-fix cycle-edge

until at most σ_c cycles remain

Result S^* is a valid solution \checkmark

Proof

Approximate Exact Scaffolding

l. compute max-weight perfect matching 5

 $\sim S \cup M$ is collection of cycles 2. "Ax" all But lightest edge per cycle

3. repeatedly flip any lightest non-fix +-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_b$ cycles remain

4. repeatedly remove lightest non- $\Re x$ cycle-edge until at most σ_c cycles remain

Proof

Result S^* is a valid solution \checkmark $\omega(S^*) \geq \omega(\text{fix}) \geq \omega(S)/2 \geq OPT/2$

Approximate Exact Scaffolding

I. compute max-weight perfect matching S

 $ightarrow 5 \cup \mathcal{M}$ is collection of cycles

- 2. "Ax" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix +-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_p$ cycles remain
- H. repeatedly remove lightest non-fix cycle-edge until at most σ_c cycles remain

Theorem

Exact Scaffolding in complete graphs can be 2-approximated in $O(|V|^2)$ time.

Approximate Exact Scaffolding

1. compute max-weight perfect matching 5

 $ightarrow 5 \cup \mathcal{M}$ is collection of cycles

- 2. "Ax" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix +-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_p$ cycles remain
- H. repeatedly remove lightest non-fix cycle-edge until at most σ_c cycles remain

Theorem

Exact Scaffolding in complete (Bipartite) graphs can be 2-approximated in $O(|V|^2)$ time.

Approximate Exact Scaffolding

I. compute max-weight perfect matching S

 \rightarrow $S \cup M$ is collection of cycles

- 2. "Ax" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-fix +-cycle intersecting 2 cycles until at most $\sigma_c + \sigma_p$ cycles remain
- 4. repeatedly remove lightest non- \Re x cycle-edge until at most σ_c cycles remain

Theorem

Exact Scaffolding in complete (Bipartite) graphs can be 2-approximated in $O(|V|^2)$ time.

Remark

For Scaffolding, replace Step 3 by either merging cycles or removing lightest edge, whatever looses less weight

Observation

 $[p,c,j]_i:=\max_{paths/cycles}\max_{paths/cycles}\max_{paths/cycles}\max_{path}\max_{paths/cycles}\max_{path}\max$

Observation

$$[p, c, j]_i = [p, c, j]_{i-2} + \omega(v_{i-2}v_{i-1})$$
 if $j < i-2 \neq v_{i-2}v_{i-1} \in E$

Observation

$$[p,c,j]_i := \max_{\substack{p \text{ max} \\ j < i-2 \\ i \text{ even}}} \max_{j \in i-2} \max_{\substack{j < i-2 \\ i \text{ even}}} \{p,c,j]_i := \max_{\substack{j < i-2 \\ i \text{ even}}} \{[p,c,j]_{i-2} + \omega(v_{i-2}v_{i-1}) \quad \text{if } j < i-2 \not = v_{i-2}v_{i-1} \in E \}$$

Observation

$$\begin{split} [p,c,j]_i &:= \max_{\substack{p \text{ at } x \text{ weight collectible Before } v_i \text{ with } p \notin c} \\ [p,c,j]_i &:= [p,c,j]_{i-2} + \omega(v_{i-2}v_{i-1}) \quad \text{if } j < i-2 \notin v_{i-2}v_{i-1} \in E \end{split}$$

$$[p,c,i-1]_i &= \max_{\substack{j < i-2 \\ j \text{ even}}} \begin{cases} [p-1,c,j]_{i-2} \\ [p,c-1,j]_{i-2} + \omega(v_jv_{i-2}) \quad \text{if } v_jv_{i-2} \in E \end{cases}$$

Observation

$$\begin{split} [p,c,j]_i &:= \max_{\substack{p \text{ at } x \text{ weight collectible Before } v_i \text{ with } p \notin c} \\ [p,c,j]_i &:= [p,c,j]_{i-2} + \omega(v_{i-2}v_{i-1}) \quad \text{if } j < i-2 \notin v_{i-2}v_{i-1} \in E \end{split}$$

$$[p,c,i-1]_i &= \max_{\substack{j < i-2 \\ j \text{ even}}} \begin{cases} [p-1,c,j]_{i-2} \\ [p,c-1,j]_{i-2} + \omega(v_jv_{i-2}) \quad \text{if } v_jv_{i-2} \in E \end{cases}$$

Observation

An ordering of V(G) certifies YES-instances of Scaffolding.

 \rightsquigarrow try all O(n!) certificates

$$\begin{split} [p,c,j]_i &:= \max_{\substack{p \text{ at } x \text{ weight collectible Before } v_i \text{ with } p \notin c} \\ [p,c,j]_i &:= [p,c,j]_{i-2} + \omega(v_{i-2}v_{i-1}) \quad \text{if } j < i-2 \notin v_{i-2}v_{i-1} \in E \end{split}$$

$$[p,c,i-1]_i &= \max_{\substack{j < i-2 \\ j \text{ even}}} \begin{cases} [p-1,c,j]_{i-2} \\ [p,c-1,j]_{i-2} + \omega(v_jv_{i-2}) \quad \text{if } v_jv_{i-2} \in E \end{cases}$$

Observation

An ordering of V(G) certifies YES-instances of Scaffolding.

 \rightsquigarrow try all O(n!) certificates conties force every other vertex \rightsquigarrow O(n!!)

$$\begin{split} [p,c,j]_i &:= \max_{\substack{p \text{ at } x \text{ weight collectible Before } v_i \text{ with } p \notin c} \\ [p,c,j]_i &:= [p,c,j]_{i-2} + \omega(v_{i-2}v_{i-1}) \quad \text{if } j < i-2 \notin v_{i-2}v_{i-1} \in E \end{split}$$

$$[p,c,i-1]_i &= \max_{\substack{j < i-2 \\ j \text{ even}}} \begin{cases} [p-1,c,j]_{i-2} \\ [p,c-1,j]_{i-2} + \omega(v_jv_{i-2}) \quad \text{if } v_jv_{i-2} \in E \end{cases}$$

Observation

An ordering of V(G) certifies YES-instances of Scaffolding.

 \rightsquigarrow try all O(n!) certificates conties force every other vertex $\rightsquigarrow O(\sqrt{2}^n \cdot n/2!)$

Semantics

[S, p, c, u, v] = max weight collectible in G[S] by p alt. paths, c alt. cycles and an alt. path starting at $u \neq \text{ending}$ at v

Semantics

[S,p,c,u,v]= max weight collectible in G[S] by p alt. paths, c alt. cycles and an alt. path starting at $u \neq e$ nding at v

Computation

Let $xy \in \mathcal{M}$. Then, $[\{xy\}, 0, 0, x, y] := 0$ and

$$[S, p, c, u, y] := \max_{\substack{w \in G[S-xy] \\ u \neq w}} [S-xy, p, c, u, w] + \omega(wx)$$

Semantics

[S,p,c,u,v]= max weight collectible in G[S] by p alt. paths, c alt. cycles and an alt. path starting at $u \neq e$ nding at v

Computation

Let
$$xy \in \mathcal{M}$$
. Then, $[\{xy\}, 0, 0, x, y] := 0$ and

$$[S, p, c, u, y] := \max_{\substack{w \in G[S-xy] \\ u \neq w}} [S-xy, p, c, u, w] + \omega(wx)$$

$$[S, p, c, x, y] := \max_{u, w \in G[S-xy]} \left\{ [S-xy, p-1, c, u, w] \right\}$$

Semantics

[S,p,c,u,v]= max weight collectible in G[S] by p alt. paths, c alt. cycles and an alt. path starting at $u \neq e$ nding at v

Computation

Let
$$xy \in \mathcal{M}$$
. Then, $[\{xy\}, 0, 0, x, y] := 0$ and

$$[S, p, c, u, y] := \max_{\substack{w \in G[S-xy]\\ u \neq w}} [S-xy, p, c, u, w] + \omega(wx)$$

$$[S,p,c,x,y] := \max_{u,w \in G[S-xy]} \begin{cases} [S-xy,p-1,c,u,w] \\ [S-xy,p,c-1,u,w] + \omega(wu) & \text{if } wu \in E(G) \setminus \mathcal{M} \end{cases}$$

Exact Algorithms II: Dynamic Programming

Semantics

[S,p,c,u,v]= max weight collectible in G[S] by p alt. paths, c alt. cycles and an alt. path starting at $u \neq e$ nding at v

Theorem

Scaffolding can be solved in $O(\sqrt{2}^n n^3 \sigma_p \sigma_c)$ time.

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest $\Leftrightarrow G - M$ is forest

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest \Leftrightarrow $G-\mathcal{M}$ is forest

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest \Leftrightarrow G - M is forest

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

G is Quasi-forest \Leftrightarrow G - M is forest

Observation

Each leaf v of G - M has degree 2 in $G \rightarrow G$ if unweighted, can we take Both?

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest \Leftrightarrow G - M is forest

Observation

Each leaf v of G - M has degree 2 in $G \rightarrow G$ if unweighted, can we take Both?

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

G is Quasi-forest $\Leftrightarrow G - M$ is forest

Observation

Each leaf v of G - M has degree 2 in $G \rightarrow G$ if unweighted, can we take Both?

Observation

- v in path ≠ u in cycle ~> 1 path ✓
- v in path $\neq u$ in path $\rightsquigarrow 2$ paths \checkmark

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

G is Quasi-forest $\Leftrightarrow G - \mathcal{M}$ is forest

Observation

Each leaf v of G - M has degree 2 in $G \rightarrow \mathbb{R}$ if unweighted, can we take Both?

Observation

- v in path \(\ \ \ u \) in cycle \(\rightarrow \) | path \(\sqrt{} \)
- v in path $\neq u$ in path $\rightsquigarrow 2$ paths \checkmark unless it's the same path!

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

G is Quasi-forest $\Leftrightarrow G - M$ is forest

Observation

Each leaf v of G - M has degree 2 in $G \rightarrow \mathbb{R}$ if unweighted, can we take Both? \mathbb{R}

Observation

- v in path ≠ u in cycle ~> 1 path ✓
- v in path $\neq u$ in path $\rightsquigarrow 2$ paths \checkmark

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest \Leftrightarrow G - M is forest

Observation

Each leaf v of G-M has degree 2 in $G \leftrightarrow if \sigma_p = 0$, we have to take both!

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

A Shot at Sparsity

G is Quasi-forest \Leftrightarrow G - M is forest

Observation

Each leaf v of G-M has degree 2 in G

 \rightsquigarrow if $\sigma_p = 0$, we have to take both!

 \rightarrow remove all non-matching edges from parent u, except uv

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

G is Quasi-forest \Leftrightarrow G - M is forest

Observation

Each leaf v of G - M has degree 2 in G

 \rightsquigarrow if $\sigma_p = 0$, we have to take both!

ightarrow remove all non-matching edges from parent u, except uv

Corollary

Scaffolding can be solved in O(n) on quasi-forests if $\sigma_p=0$.

Recall

- Scaffolding is hard in any sufficiently dense graph class
- Scaffolding is easy in trees

G is Quasi-forest \Leftrightarrow G - M is forest

Observation

Each leaf v of G - M has degree 2 in G

 \rightsquigarrow if $\sigma_p = 0$, we have to take Both!

~ remove all non-matching edges from parent u, except uv

Corollary

Scaffolding can be solved in O(n) on quasi-forests if $\sigma_p=0$. Scaffolding can be solved in $O(n^{2\sigma_p+1})$ in quasi-forests.

Recall

- Scaffolding is hard in any sufficiently dense graph class
- · Scaffolding is easy in trees

G is Quasi-forest \Leftrightarrow G - M is forest

Observation

Each leaf v of G - M has degree 2 in G

 \rightsquigarrow if $\sigma_p = 0$, we have to take Both!

→ remove all non-matching edges from parent u, except uv

Corollary

Scaffolding can be solved in O(n) on quasi-forests if $\sigma_p=0$. Scaffolding can be solved in $O(n^{2\sigma_p+1})$ in quasi-forests.

But is it even NP-hard?

Weighted 2-SAT Input: φ on X in 2-CNF, weights $\omega: X \times \{0,1\} \to \mathbb{N}, k \in \mathbb{N}$ Question: is there a satisfying assignment for φ of weight $\leq k$?

Weighted 2-SAT Input: φ on X in 2-CNF, weights $\omega: X \times \{0,1\} \to \mathbb{N}, k \in \mathbb{N}$ Question: is there a satisfying assignment for φ of weight $\leq k$?

Remark

Independent Set is special case of Weighted 2-SAT

Observation

 \exists weight-k satisfying assignment

 \Leftrightarrow

 \exists weight-k cover with $\leq n$ alternating paths

Observation

 \exists weight-k satisfying assignment

 \Leftrightarrow

 \exists weight-k cover with $\leq n$ alternating paths

Theorem

Scaffolding is NP-hard even if $G-\mathcal{M}$ is a collection of paths with weights O/I

Observation

 \exists weight-k satisfying assignment

 \Leftrightarrow

 \exists weight-k cover with $\leq n$ alternating paths

Theorem

Scaffolding is NP-hard even if G-M is a collection of paths with weights O/I

Corollary

no $2^{o(n+m)}$ —time algorithm (ETH) no $n^{o(k)}$ —time algorithm (FPT \neq W[t])

Other Forms of Tree-Likeness

Tree Decompositions

tree T, each vertex i associated to some $X_i \subseteq V(G)$ s.t. l. $\forall e \in E(G)$, there is some $i \in V(T)$ with $e \in X_i$ 2. $\forall v \in V(G)$, bags containing v induce a connected subtree treewidth tw = size of largest bag - I

Other Forms of Tree-Likeness

Tree Decompositions

tree T, each vertex i associated to some $X_i \subseteq V(G)$ s.t. I. $\forall e \in E(G)$, there is some $i \in V(T)$ with $e \in X_i$ 2. $\forall v \in V(G)$, bags containing v induce a connected subtree treewidth tw = size of largest bag - I

Hope

Practical instances of Scaffolding have low treewidth (they originate from linear structure)

Other Forms of Tree-Likeness

Tree Decompositions

```
tree T, each vertex i associated to some X_i \subseteq V(G) s.t.

I. \forall e \in E(G), there is some i \in V(T) with e \in X_i

2. \forall v \in V(G), Bags containing v induce a connected subtree treewidth tw = size of largest Bag - I
```

Hope

Practical instances of Scaffolding have low treewidth (they originate from linear structure)

Nice Decompositions

```
Leaf: X=\varnothing Introduce v: i has single child j and X_i \setminus X_j = \{v\} Forget v: i has single child j and X_j \setminus X_i = \{v\} Introduce uv: i has single child j and uv \subseteq X_i = X_j (each edge introduced exactly once) Join: i has 2 children j and \ell and X_i = X_j = X_\ell
```

How do Solutions Interact with Bags?

How do Solutions Interact with Bags?

How do Solutions Interact with Bags?

Ingredients

- degree-function $d: X \to \{0, 1, 2\}$
- "pairing" $\subseteq \binom{X}{2} \cup X$
- #paths and #cycles completed "below the Bag"

Ingredients

- degree-function $d: X \rightarrow \{0,1,2\}$
- ullet "pairing" $\subseteq {X \choose 2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Ingredients

- degree-function $d: X \rightarrow \{0, 1, 2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "Below the Bag"

Semantics

 $[d,P,p,c]_i=$ max weight of any S with $\mathcal{M}\cap E(G_i)\subseteq S\subseteq E(G_i)$ and I each vertex $v\in X_i$ has degree d(v) in $G_i[S]$,

- 2. for each $uv \in P$, $G_i[S]$ contains an alternating path... u = v:....from u avoiding $d^{-1}(1)$ $u \neq v$:....from u to v
- 3. $G_i[S]$ contains p alt. paths $\neq c$ alt. cycles avoiding $d^{-1}(1)$

Ingredients

- degree-function $d: X \rightarrow \{0,1,2\}$
- "pairing" $\subseteq \binom{X}{2} \cup X \rightsquigarrow \#$ matchings possibilities $\rightsquigarrow O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Leaf Bag

$$[\varnothing,\varnothing,0,0]_i=0$$

Ingredients

- degree-function $d: X \rightarrow \{0,1,2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Introduce v (single child j)

$$[d, P, p, c]_i = [d|_{v \to \perp}, P, p, c]_j$$

Ingredients

- degree-function $d: X \rightarrow \{0, 1, 2\}$
- ullet "pairing" $\subseteq {X \choose 2} \cup X \leadsto \#$ matchings possibilities $\leadsto \mathcal{O}(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Introduce uv (single child j)

Case I:
$$d(u) = d(v) = 2$$

Ingredients

- degree-function $d: X \rightarrow \{0,1,2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Introduce uv (single child i)

Case 1:
$$d(u) = d(v) = 2$$

$$[d, P, p, c]_i = [d|_{u \to 1, v \to 1}, P + uv, p, c - 1]_j$$

Ingredients

- degree-function $d: X \rightarrow \{0, 1, 2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \rightsquigarrow \#$ matchings possibilities $\rightsquigarrow O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Introduce uv (single child i)

Case 1:
$$d(u) = d(v) = 2$$

Ingredients

- degree-function $d: X \rightarrow \{0, 1, 2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \rightsquigarrow \#$ matchings possibilities $\rightsquigarrow O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

$$[d,P,p,c]_i=\maxiggl\{$$

Ingredients

- degree-function $d: X \rightarrow \{0, 1, 2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \rightsquigarrow \#$ matchings possibilities $\rightsquigarrow O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

$$[d,P,p,c]_i = \max \left\{ egin{aligned} [d|_{v
ightarrow 1},P+vv,p-1,c]_j \end{aligned}
ight.$$

Ingredients

- degree-function $d: X \rightarrow \{0,1,2\}$
- "pairing" $\subseteq \binom{X}{2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

$$[d,P,p,c]_i = \max \left\{ egin{aligned} [d|_{v
ightarrow 1},P+vv,p-1,c]_j \ \max_{uu\in P}[d|_{v
ightarrow 1},(P-uu)+uv,p,c]_j \end{aligned}
ight.$$

Ingredients

- degree-function $d: X \rightarrow \{0, 1, 2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

$$[d, P, p, c]_i = \max \begin{cases} [d|_{v \to 1}, P + vv, p - 1, c]_j \\ \max_{uu \in P} [d|_{v \to 1}, (P - uu) + uv, p, c]_j \\ \max_{x \in \{0,2\}} [d|_{v \to x}, P, p, c]_j \end{cases}$$

Ingredients

- degree-function $d: X \rightarrow \{0,1,2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Join Bag (children $j \notin \ell$)

$$[d, P, p, c]_i = \max_{d_j, P_j, p_j, c_j} \max_{\substack{P_\ell \ P_j \sqcup P_\ell = P}} [d_j, P_j, p_j, c_j]_j + [d - d_j, P_\ell, p - p_j, c - c_j]_\ell$$

Ingredients

- degree-function $d: X \rightarrow \{0, 1, 2\}$
- "pairing" $\subseteq {X \choose 2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Join Bag (children $j \notin \ell$)

$$[d, P, p, c]_i = \max_{d_j, P_j, p_j, c_j} \max_{\substack{P_\ell \ P_j \ \sqcup \ P_\ell = P}} [d_j, P_j, p_j, c_j]_j + [d - d_j, P_\ell, p - p_j, c - c_j]_\ell$$

 $\rightsquigarrow O(3^{\text{tw}} \cdot \text{tw}^{\text{tw}/2} \cdot \sigma_p \cdot \sigma_c)$ table entries

Ingredients

- degree-function $d: X \rightarrow \{0, 1, 2\}$
- "pairing" $\subseteq \binom{X}{2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "Below the Bag"

Join Bag (children $j \notin \ell$)

$$[d, P, p, c]_i = \max_{d_j, P_j, p_j, c_j} \max_{\substack{P_\ell \ P_j \ \sqcup \ P_\ell = P}} [d_j, P_j, p_j, c_j]_j + [d - d_j, P_\ell, p - p_j, c - c_j]_\ell$$

 $\rightarrow O(2^{\text{tw}} \cdot \text{tw}^{\text{tw}/2} \cdot \sigma_p \cdot \sigma_c)$ table entries

Ingredients

- degree-function $d: X \rightarrow \{0,1,2\}$
- "pairing" $\subseteq \binom{X}{2} \cup X \leadsto \#$ matchings possibilities $\leadsto O(|X|^{|X|/2})$
- #paths and #cycles completed "below the Bag"

Join Bag (children $j \notin \ell$)

$$[d, P, p, c]_i = \max_{\substack{d_j, P_j, \rho_j, c_j \\ P_j \ \sqcup \ P_\ell = \ P}} \max_{\substack{P_\ell \\ P_j \ \sqcup \ P_\ell = \ P}} [d_j, P_j, p_j, c_j]_j + [d - d_j, P_\ell, p - p_j, c - c_j]_\ell$$

 $ightarrow O(2^{\mathsf{tw}}\cdot\mathsf{tw}^{\mathsf{tw}/2}\cdot\sigma_{p}\cdot\sigma_{c})$ table entries and $O((\mathsf{tw}+2)^{\mathsf{tw}}\cdot\sigma_{p}\cdot\sigma_{c}\cdot n)$ time

- chromosomes = disjoint s-t-paths

- chromosomes = disjoint s-t-paths
- віп. variaвles

 $y_{uv} = 1 \Leftrightarrow u \to v \text{ used}$ $x_{\{u,v\}} = y_{uv} + y_{vu}$

- force contigs:
- path preservation:
- path Bounds:

 $\forall_{u\neq s,t} \sum_{v} y_{vu} = \sum_{v} y_{uv} = \sum_{v} y_{uv}$ $\sum_{v,v} y_{vt} \leq \sigma$

- chromosomes = disjoint s-t-paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s,t} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path Bounds:
- forbid cycles (row generation via callback):

 \forall cycle C: $\sum_{uv \in C} y_{uv} < |C|$

- chromosomes = disjoint s-t-paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s,t} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path Bounds:
- forbid cycles (row generation via callback):

$$\forall$$
 cycle C :
$$\sum_{uv \in C} y_{uv} < |C|$$

- Objective: $\max \sum_{v \in \mathcal{V}} x_{\{u,v\}} \cdot \omega(e)$

- chromosomes = disjoint s-t-paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s,t} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path Bounds:
- forbid cycles (row generation via callback):

$$\forall$$
 cycle C :
$$\sum_{uv \in C} y_{uv} < |C|$$

- Objective: $\max \sum_{\alpha \in F} x_{\{u,v\}} \cdot \omega(\epsilon)$

- chromosomes = disjoint s-{ t_p , t_c }-paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path \neq cycle Bounds: $\sum_{v} y_{vt_{\{p,c\}}} \leq \sigma_{\{p,c\}}$
- forbid cycles (row generation via callback):

$$\forall$$
 cycle C :
$$\sum_{uv \in C} (y_{uv} - y_{ut_c}) < |C|$$

- objective:
- cycle consistence

$$\max \sum_{e \in E} x_{\{u,v\}} \cdot \omega(e)$$
$$\forall_{u} y_{ut_{e}} \leq y_{su}$$

- chromosomes = disjoint s- $\{t_p, t_c\}$ -paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path \neq cycle Bounds: $\sum_{v} y_{vt_{\{p,e\}}} \leq \sigma_{\{p\}}$
 - forbid cycles (row generation via callback): \forall cycle C: $\sum (v_{yy} v_{yz}) < |C|$

eycle
$$C$$
:
$$\sum_{uv \in C} (y_{uv} - y_{ut_c}) < |C|$$

- objective:
- cycle consistency:

$$\max \sum_{e \in E} x_{\{u,v\}} \cdot \omega(e)$$

$$\forall u, v, v \leq v_{c}$$

$$\forall_u y_{ut_{\boldsymbol{c}}} \leq y_{su}$$

- chromosomes = disjoint s- $\{t_p, t_c\}$ -paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path \neq cycle Bounds: $\sum_{v} y_{vt_{\{p,c\}}} \leq \sigma_{\{p\}}$
 - forbid cycles (row generation via callback): \forall cycle C: $\sum (v_{,,,,,-},v_{,,+}) < |C|$

cycle
$$C$$
:
$$\sum_{uv \in C} (y_{uv} - y_{ut_c}) < |C|$$

- objective:
- cycle consistency:

$$\max \sum_{e \in E} x_{\{u,v\}} \cdot \omega(e)$$
$$\forall_u y_{ut_e} \leq y_{su}$$

- chromosomes = disjoint s- $\{t_p, t_c\}$ -paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path \neq cycle Bounds: $\sum_{v} y_{vt_{\{p,c\}}} \leq \sigma_{\{p\}}$
 - forbid cycles (row generation via callback): \forall cycle C: $\sum (v_{vv} v_{vv}) < |C|$

cycle
$$C$$
:
$$\sum_{uv \in C} (y_{uv} - y_{ut_c}) < |C|$$

- objective:
- cycle consistency:

$$\max \sum_{e \in E} x_{\{u,v\}} \cdot \omega(e)$$
$$\forall_u y_{ut_e} \leq y_{su}$$

- chromosomes = disjoint s- $\{t_p, t_c\}$ -paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path \neq cycle Bounds: $\sum_{v} y_{vt_{\{p,c\}}} \leq \sigma_{\{p\}}$
 - forbid cycles (row generation via callback):

$$\forall$$
 cycle C :

$$\sum_{uv \in C} (y_{uv} - y_{ut_c}) < |C|$$

- Objective:

$$\max \sum_{e \in E} x_{\{u,v\}} \cdot \omega(e)$$

$$\forall_u y_{ut_{\boldsymbol{c}}} \leq y_{su}$$

- chromosomes = disjoint s- $\{t_p, t_c\}$ -paths
- Bin variables $y_{uv} = 1 \Leftrightarrow u o v$ used $x_{\{u,v\}} = y_{uv} + y_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path \neq cycle Bounds: $\sum_{v} y_{vt_{\{p,c\}}} \leq \sigma_{\{p\}}$
 - forbid cycles (row generation via callback):

$$\forall$$
 cycle C :
$$\sum_{uv \in C} (y_{uv} - y_{ut_c}) < |C|$$

- objective:
- cycle consistency:

$$\max \sum_{e \in E} x_{\{u,v\}} \cdot \omega(e)$$

$$\forall_u y_{ut_{\boldsymbol{c}}} \leq y_{su}$$

- chromosomes = disjoint $s-\{t_p, t_c\}$ -paths
- Bin. variables $v_{uv}=1\Leftrightarrow u\to v$ used
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path & cycle Bounds:
- forbid cycles (row generation via callback):

 \forall cycle C:

- objective:

- cycle consistency:

Jump Mechanics

for each non-contig uv. I. introduce a variable zw

2. construct "jump network" between u and v that fits in the Gap 3. add z_{uv} to $x_{\{u,v\}}$

extra: preprocess instance to finish incomplete jumps

Jump Mechanics

for each non-contig uv. I. introduce a variable zw

2. construct "jump network" between u and v that fits in the Gap

3. add z_{uv} to $x_{\{u,v\}}$ extra: preprocess instance to finish incomplete jumps

- chromosomes = disjoint $s-\{t_p, t_c\}$ -paths
- Bin. variables
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path & cycle Bounds:
- forbid cycles (row generation via callback):

 \forall cycle C:

- objective:
- cycle consistency:

Extension: Contig Jumps

Extension: Contig Jumps

Extension: Contig Jumps

ILP Extension: Multiplicities

GGTGCGAGAGAGGTCATGGATTGCAACGA

GGTGCGAGAGGCCACTCCAATTGCAACGA

ILP Extension: Multiplicities

ILP Extension: Multiplicities

Integer Linear Program Formulation

- chromosomes = disjoint s-{ t_p , t_c }-paths
- Bin. variables $y_{uv}=1\Leftrightarrow u o v$ used $x_{\{u,v\}}=y_{uv}+y_{vu}+z_{uv}+z_{vu}$
- force contigs:
- path preservation: $\forall_{u \neq s, t_p, t_c} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path \neq cycle Bounds: $\sum_{v} y_{vt_{\{p,c\}}} \leq \sigma_{\{p,c\}}$
- forbid cycles (row generation via callback):

 \(\forall \text{cycle C:} \quad \text{V} \quad \text{V} = \forall \quad \text{C} \)

$$\sum_{uv \in C} (y_{uv} - y_{ut_c}) < |C|$$

- objective:
- cycle consistenc
 - iump mechanics

$\max \sum_{oldsymbol{e} \in oldsymbol{\mathcal{E}}} x_{\{oldsymbol{u},oldsymbol{v}\}} \cdot \omega(oldsymbol{e}) \ orall_{oldsymbol{u}} y_{oldsymbol{u} oldsymbol{t}_{oldsymbol{e}}} \leq y_{oldsymbol{su}}$

Multiplicities

I make y_{uv} , $x_{\{u,v\}}$ integers in domain $[0, m(\{u,v\})]$

2 change callback

Integer Linear Program Formulation

- chromosomes = disjoint s- $\{t_p, t_c\}$ -paths
- int. variables $y_{uv} = \ell \Leftrightarrow u \to v \text{ used } \ell \text{ times}$ $x_{\{u,v\}} = y_{uv} + y_{vu} + z_{uv} + z_{vu}$
- force contigs: $\forall_{uv \in M} X_u$
- path preservation: $\forall_{u
 eq s, t_{p}, t_{c}} \sum_{v} y_{vu} = \sum_{v} y_{uv}$
- path \neq cycle Bounds: $\sum_{v} y_{vt_{\{p,c\}}} \leq \sigma_{\{p,c\}}$
- forbid cycles (row generation via callback):

$$orall$$
 cycle C :
$$\sum_{uv \in C} y_{uv} \leq |C| \cdot m_{\max} \cdot \sum_{u \in C, v \notin C} y_{uv}$$

- objective:
- cycle consistency:
- jump mechanics !!!

$\max \sum_{e \in E} x_{\{u,v\}} \cdot \omega(e) \ orall_{u} y_{ut_e} \leq y_{su}$

Multiplicities

- I make y_{uv} , $x_{\{u,v\}}$ integers in domain $[0, m(\{u,v\})]$
- 2. change callback

Problem

no unique chromosome-configuration explaining solution

Problem

no unique chromosome-configuration explaining solution

Problem

no unique chromosome-configuration explaining solution

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \not\in$ each end incident to non-contig $<\mu$)

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \notin$ each end incident to non-contig $<\mu$)

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq \text{each}$ end incident to non-contig $<\mu$)

" \Rightarrow ": contraposition; let p = ambigous path

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq \text{each}$ end incident to non-contig $<\mu$) Proof

" \Rightarrow ": contraposition; let p = ambigous path

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq$ each end incident to non-contig $<\mu$) Proof

" \Rightarrow ": contraposition; let p = ambigous path

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \in \text{each}$ end incident to non-contiq $<\mu$) Proof

" \Rightarrow ": contraposition; let p = ambigous path

 \rightsquigarrow (G, \mathcal{M}, m) not uniquely linearizable

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq$ each end incident to non-contig $<\mu$) Proof

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \not\in$ each end incident to non-contig $<\mu$)

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \not\in$ each end incident to non-contig $<\mu$)

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq$ each end incident to non-contig $<\mu$) Proof

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity μ \Leftrightarrow each end incident to non-contig $<\mu$)

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \not =$ each end incident to non-contiq $<\mu$)

" \Leftarrow ": let (G, \mathcal{M}, m) be free of ambigous paths Reduction (does not decrease number of linearizations):

~ result is collection of alternating paths ≠ cycles

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq$ each end incident to non-contig $<\mu$) Proposals

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq \text{each}$ end incident to non-contig $<\mu$) Proposals

I. decide arbitrarily

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq \text{each}$ end incident to non-contig $<\mu$) Proposals

I. decide arbitrarily wissassembly

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq \text{each}$ end incident to non-contig $<\mu$) Proposals

I. decide arbitrarily wissassembly

2. isolate each ambiguity

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq \text{each}$ end incident to non-contig $<\mu$) Proposals

I. decide arbitrarily ~> missassembly

2. isolate each ambiguity winformation loss

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq \text{each}$ end incident to non-contig $<\mu$) Proposals

- I. decide arbitrarily whissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \neq \text{each}$ end incident to non-contig $<\mu$) Proposals

- I. decide arbitrarily whissassembly
- 2. isolate each ambiguity -- information loss
- 3. cut as few ends as possible \leadsto computationally hard

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \in \text{each}$ end incident to non-contiq $<\mu$) Proposals

- I decide arbitrarily wissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible we computationally hard
- 4. cut as few multiplicities as possible

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \not \in$ each end incident to non-contiq $<\mu$) Proposals

- I decide arbitrarily wissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible --- computationally hard

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \not \in$ each end incident to non-contiq $<\mu$) Proposals

- I. decide arbitrarily wissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible --- computationally hard

Multiplicities

one =

#non-matching adj. to contig

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \in \text{each}$ end incident to non-contiq $<\mu$) Proposals

- I decide arbitrarily was missassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible -- computationally hard

Multiplicities

one =

#non-matching adj. to contig

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \in \text{each}$ end incident to non-contiq $<\mu$) Proposals

- I. decide arbitrarily wissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible --- computationally hard

Multiplicities

one =

#non-matching adj. to contig

Theorem

 (G,\mathcal{M},m) uniquely linearizable \Leftrightarrow no "ambigous paths" (=alt. path of uniform multiplicity $\mu \in \text{each}$ end incident to non-contiq $<\mu$) Proposals

- I decide arbitrarily wissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible --- computationally hard

Multiplicities

one =

#non-matching adj. to contig

Theorem

- I decide arbitrarily wissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible --- computationally hard

Theorem

- I decide arbitrarily wissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible --> computationally hard

Theorem

- I decide arbitrarily ~ missassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible --> computationally hard

Theorem

- I decide arbitrarily ~ missassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible -- computationally hard
- 4. cut as few multiplicities as possible --> computationally hard

Theorem

- I decide arbitrarily wissassembly
- 2. isolate each ambiguity winformation loss
- 3. cut as few ends as possible --> computationally hard
- 4. cut as few multiplicities as possible --> computationally hard

- 3-step sequencing technique:
 - 1. produce paired-end reads
 - 2. assemble reads to contigs
 - 3. scaffold contigs to chromosomes using read-pairings

- 3-step sequencing technique:
 - 1. produce paired-end reads
 - 2. assemble reads to contigs
- 3. scaffold contigs to chromosomes using read-pairings
- computationally hard problem for dense graphs with weights O/l
- no constant-factor approx or subexponential-time algorithm for linear quasi trees with weights O/l

- 3-step sequencing technique:
 - 1. produce paired-end reads
 - 2. assemble reads to contigs
- 3. scaffold contigs to chromosomes using read-pairings
- computationally hard problem for dense graphs with weights O/l
- no constant-factor approx or subexponential-time algorithm for linear quasi trees with weights O/l
- $O(n^2)$ time on unweighted cliques/co-bipartite/split

- 3-step sequencing technique:
 - 1. produce paired-end reads
 - 2. assemble reads to contigs
- 3. scaffold contigs to chromosomes using read-pairings
- computationally hard problem for dense graphs with weights O/l
- no constant-factor approx or subexponential-time algorithm for linear quasi trees with weights O/l
- $O(n^2)$ time on unweighted cliques/co-bipartite/split
- $O(n \cdot \sigma_p \cdot \sigma_c)$ time for constant treewidth

- 3-step sequencing technique:
 - I produce paired-end reads
 - 2. assemble reads to contigs
- 3. scaffold contigs to chromosomes using read-pairings
- computationally hard problem for dense graphs with weights O/l
- no constant-factor approx or subexponential-time algorithm for linear quasi trees with weights O/l
- $O(n^2)$ time on unweighted cliques/co-Bipartite/split
- $O(n \cdot \sigma_p \cdot \sigma_c)$ time for constant treewidth
- 2-approximable in cliques/complete bipartite in $O(n^3)$ time

- 3-step sequencing technique:
 - 1. produce paired-end reads
 - 2. assemble reads to contigs
- 3. scaffold contigs to chromosomes using read-pairings
- computationally hard problem for dense graphs with weights O/l
- no constant-factor approx or subexponential-time algorithm for linear quasi trees with weights O/l
- $O(n^2)$ time on unweighted cliques/co-Bipartite/split
- $O(n \cdot \sigma_p \cdot \sigma_c)$ time for constant treewidth
- 2-approximable in cliques/complete bipartite in $O(n^3)$ time
- $O(\sqrt{2}^n \operatorname{poly}(n))$ time exact algorithm

- 3-step sequencing technique:
 - 1. produce paired-end reads
 - 2. assemble reads to contigs
 - 3. scaffold contigs to chromosomes using read-pairings
- computationally hard problem for dense graphs with weights O/l
- no constant-factor approx or subexponential-time algorithm for linear quasi trees with weights O/l
- $O(n^2)$ time on unweighted cliques/co-Bipartite/split
- $O(n \cdot \sigma_p \cdot \sigma_c)$ time for constant treewidth
- 2-approximable in cliques/complete bipartite in $O(n^3)$ time
- $O(\sqrt{2}^n \operatorname{poly}(n))$ time exact algorithm
- ILP formulation with contig jumps & multiplicities

- 3-step sequencing technique:
 - 1. produce paired-end reads
 - 2. assemble reads to contigs
- 3. scaffold contigs to chromosomes using read-pairings
- computationally hard problem for dense graphs with weights O/l
- no constant-factor approx or subexponential-time algorithm for linear quasi trees with weights O/l
- $O(n^2)$ time on unweighted cliques/co-Bipartite/split
- $O(n \cdot \sigma_p \cdot \sigma_c)$ time for constant treewidth
- 2-approximable in cliques/complete bipartite in $O(n^3)$ time
- $O(\sqrt{2}^n \operatorname{poly}(n))$ time exact algorithm
- ILP formulation with contig jumps & multiplicities
- Linearization problem raised by multiplicities in solution

Outlook

 3rd Generation sequencing: PacBio, Oxford Nanopore produces long reads (IO-15kBp), but error-prone
 correction using small reads?

- 3rd generation sequencing: PacBio, Oxford Nanopore produces long reads (10-15kBp), but error-prone

 → correction using small reads?
- generally: multi-library scaffolding

- 3rd Generation sequencing: PacBio, Oxford Nanopore produces long reads (IO-15kBp), but error-prone

 → correction using small reads?
- generally: multi-library scaffolding
- other sources for contig-connections (phylogenetic information?)

- 3rd Generation sequencing: PacBio, Oxford Nanopore produces long reads (IO-I5kBP), but error-prone

 → correction using small reads?
- generally: multi-library scaffolding
- other sources for contig-connections (phylogenetic information?)
- Better parameters for Scaffolding and Scaffold Linearization
 Analyze practical instances

- 3rd Generation sequencing: PacBio, Oxford Nanopore produces long reads (IO-15kBp), but error-prone
 correction using small reads?
- generally: multi-library scaffolding
- other sources for contig-connections (phylogenetic information?)
- Better parameters for Scaffolding and Scaffold Linearization
 analyze practical instances
- approximation/heuristics for Scaffold Linearization

