# Lecture: Algorithmic Bioinformatics

Doctoral School, Université Dauphine, 2022







Université
Gustave Eiffel

### Lecture Overview

Mathias Weller mathias.weller@u-pem.fr



- Introduction
  - Molecular Biology
  - ► Sequencing
  - Assembly
  - ► Scaffolding
- Phylogenetics

. . .

Laurent Bulteau laurent.bulteau@u-pem.fr



- Genome Rearrangements
  - . . .
- Scaffold Filling



#### DNA

- double strand
- nucleotides paired: A-T, C-G
- inside nucleus (eucaryotes)



#### DNA

- double strand
- nucleotides paired: A-T, C-G
- inside nucleus (eucaryotes)

#### RNA

- single strand
- transported outside nucleus
- translated into actual proteins
- Thymine (T) → Uracil (U)

#### Transcription & Translation



#### Transcription = Translation

 $DNA \rightarrow RNA \neq RNA \rightarrow protein$ 



#### Polymerase

single strand  $\rightarrow$  double strand



#### Introns & Exons

parts of DNA cut out when forming mRNA ("splicing")

- removed ~> "intron"
- not removed ~> "exon"



#### Introns & Exons

parts of DNA cut out when forming mRNA ("splicing")

- removed ~> "intron"
- not removed ~> "exon"

#### Gene

Gene = START...STOP (including introns) (10<sup>3</sup>-10<sup>5</sup>Bp)





#### Chromosomes

- haploid = I set of chromosomes
- diploid = 2 sets of chromosomes (usually one from each parent)
- ... ("polyploid")
- procaryotes  $\leadsto$  one (circular) chromosome, haploid
- eucaryotes 
   set of (linear) chromosomes, polyploid



- DNA damage
- caused by radioactivity, UV light, ...

..AATCGCTAA..

- DNA damage
- caused by radioactivity, UV light, ...
- insertion,

..AATCCTAA.. ..AATCGCTAA..

- DNA damage
- caused ву radioactivity, UV light, ...
- insertion, deletion,

..AATCGCTAA..

- DNA damage
- caused by radioactivity, UV light, ...
- insertion, deletion, substitution

### Single-Nucleotide Polymorphism

- DNA damage
- caused by radioactivity, UV light, ...
- insertion, deletion, substitution

- DNA rearrangement
- caused by errors in Meiosis/Mitosis



#### Single-Nucleotide Polymorphism

- DNA damage
- caused by radioactivity, UV light, ...
- insertion, deletion, substitution

- DNA rearrangement
- caused by errors in Meiosis/Mitosis
- duplication,



#### Single-Nucleotide Polymorphism

- DNA damage
- caused by radioactivity, UV light, ...
- insertion, deletion, substitution

- DNA rearrangement
- caused by errors in Meiosis/Mitosis
- duplication, deletion (loss),



#### Single-Nucleotide Polymorphism

- DNA damage
- caused by radioactivity, UV light, ...
- insertion, deletion, substitution

- DNA rearrangement
- caused by errors in Meiosis/Mitosis
- duplication, deletion (loss), translocation,



#### Single-Nucleotide Polymorphism

- DNA damage
- caused by radioactivity, UV light, ...
- insertion, deletion, substitution

- DNA rearrangement
- caused by errors in Meiosis/Mitosis
- duplication, deletion (loss), translocation, inversion,



#### Single-Nucleotide Polymorphism

- DNA damage
- caused by radioactivity, UV light, ...
- insertion, deletion, substitution

- DNA rearrangement
- caused by errors in Meiosis/Mitosis
- duplication, deletion (loss), translocation, inversion, crossover

 ${\tt CCTGGACGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAATGGACCTGCCCAGTCTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA}$ 

#### Sanger Sequencing

1. make thousands of copies of target ("amplified genome")

 ${\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAATGGACCTGCCCAGTCTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA$ 

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix

CCTGGACGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix

CCTGGACGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix
- 3. add polymerase ≠ floating Bases: A C G T
- 4. add a special Base: A\* (polymerase cannot extend)

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix
- 3. add polymerase 🕈 floating Bases: A C G T
- 4. add a special Base: A\* (polymerase cannot extend)
- 5. stir ∮ let polymerase act

 $\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAATGGA*$ 

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix
- 3. add polymerase ≠ floating Bases: A C G T
- 4. add a special Base: A\* (polymerase cannot extend)
- 5. stir ∮ let polymerase act

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT GGA\* GGACCTGCCCA\*

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix
- 3. add polymerase & floating Bases: A C G T
- 4. add a special Base: A\* (polymerase cannot extend)
- 5. stir ∮ let polymerase act

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT GGA\* GGACCTGCCCA\* GGACCTGCCCAGTCTGTA\*

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix
- 3. add polymerase ≠ floating Bases: A C G T
- 4. add a special Base: A\* (polymerase cannot extend)
- 5. stir ∮ let polymerase act

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT GGA\* GGACCTGCCCA\* GGACCTGCCCAGTCTGTA\*

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix
- 3. add polymerase & floating Bases: A C G T
- 4. add a special Base: A\* (polymerase cannot extend)
- 5. stir ∮ let polymerase act
- 6. measure the length of each fragment
  - ightarrow each length is the position of a T in the template

 $\label{local} {\tt CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAATGGA*\\ {\tt GGACCTGCCCA*}$ 

#### Sanger Sequencing

- 1. make thousands of copies of target ("amplified genome")
- 2. split their helix

GGACCTGCCCAGTCTGTA\*

- 3. add polymerase & floating Bases: A C G T
- 4. add a special Base: A\* (polymerase cannot extend)
- 5. stir ∮ let polymerase act
- 6. Measure the length of each fragment

  → each length is the position of a I in the template

#### Problems

- frequency of longer reads decreases drastically
- length-estimate unreliable after a couple hundred bp

   ⇔ chop DNA into pieces and read those
- repeated bases unreliable



ACTCA....ACCTC

#### Preparation

1. chop DNA into smaller pieces (approximate size known)

TGGTACTCA.....ACCTCTCAG

#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece



TGGTACTCA.....ACCTCTCAG

#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places



#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

#### Amplification

1. strand anchors its two ends to two anchor places



#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

#### Amplification

1. strand anchors its two ends to two anchor places



#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

#### Amplification

- 1. strand anchors its two ends to two anchor places
- 2. polymerase completes the strand into double-strand



#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

- 1. strand anchors its two ends to two anchor places
- 2. polymerase completes the strand into double-strand
- 3. double strand is cut into single strands

```
TGGTACTCA.....ACCTCTCAG

CTGAGAGGGT.....TGAGTACCA
```

#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

- 1. strand anchors its two ends to two anchor places
- 2. polymerase completes the strand into double-strand
- 3. double strand is cut into single strands
- 4. rinse, repeat (last 3 steps) until flow chip is "full"



#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

- 1. strand anchors its two ends to two anchor places
- 2. polymerase completes the strand into double-strand
- 3. double strand is cut into single strands
- 4. rinse, repeat (last 3 steps) until flow chip is "full" Sequencing
- 1. add special (fluorescent, non-extendable) bases + polymerase



#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

- 1. strand anchors its two ends to two anchor places
- 2. polymerase completes the strand into double-strand
- 3. double strand is cut into single strands
- 4. rinse, repeat (last 3 steps) until flow chip is "full" Sequencing
- 1. add special (fluorescent, non-extendable) bases + polymerase
- 2. polymerase attaches one Base



#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

- 1. strand anchors its two ends to two anchor places
- 2. polymerase completes the strand into double-strand
- 3. double strand is cut into single strands
- 4. rinse, repeat (last 3 steps) until flow chip is "full" Sequencing
- 1. add special (fluorescent, non-extendable) bases + polymerase
- 2. polymerase attaches one Base
- 3. camera takes picture of the flow cell



#### Preparation

- 1. chop DNA into smaller pieces (approximate size known)
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

- 1. strand anchors its two ends to two anchor places
- 2. polymerase completes the strand into double-strand
- 3. double strand is cut into single strands
- 4. rinse, repeat (last 3 steps) until flow chip is "full" Sequencing
- 1. add special (fluorescent, non-extendable) bases + polymerase
- 2. polymerase attaches one Base
- 3. camera takes picture of the flow cell
- 4. rinse, repeat (last 3 steps) until no more bases were added

CTGAGAGGT....TGAGT

"Paired-End reads'

#### Preparation

- 1. chop DNA into smaller pieces (approximate size
- 2. add anchors (and IDs) to each end of each piece
- 3. "flow cell" containing anchor places

#### Amplification

- 1. strand anchors its two ends to two anchor places
- 2. polymerase completes the strand into double-strand
- 3. double strand is cut into single strands
- 4. rinse, repeat (last 3 steps) until flow chip is "full" Sequencing
- 1. add special (fluorescent, non-extendable) bases "insert size"
- 2. polymerase attaches one Base
- 3. camera takes picture of the flow cell
- 4. rinse, repeat (last 3 steps) until no more bases were added

distance Between reads

### Third-Gen Sequencing: SMRT



[Rhoads et al, 2015]

### Single Molecule Real Time Sequencing

- 1. fix a polymerase enzyme under a microscope
- 2. attach fluorescent molecule to each nucleotide
- 3. polymerase clips off fluorescent molecule when attacking a Base
- 4. Observe change in fluorescence → identify base

### Third-Gen Sequencing: PacBio



### Nanopores

- 1. "pore" of diameter 1-20nm
- 2. only single-strand may pass
- 3. Base at "Bottleneck" hinders current
- 4. → "characteristic profile" determines Base

## Conclusion: Sequencing

| method            | read<br>length   | % erors | reads/s | #/M <sub>Base</sub> |
|-------------------|------------------|---------|---------|---------------------|
| Sanger            | 600-1000         | 0.001   | 0.03    | 500                 |
| lllumina HiSeq    | $2 \times 250$   | 0.1     | 4000    | 0.04                |
| SMRT (PacBio)     | 10 <sup>4</sup>  | 13      | 3.4     | 0.50                |
| NanoPore (minION) | $5 \cdot 10^{3}$ | 38      | 0.3     | 11                  |

[Rhoads et al, 2015]

## Conclusion: Sequencing

| method            | read<br>length   | % erors | reads/s | #/M <sub>Base</sub> |
|-------------------|------------------|---------|---------|---------------------|
| Sanger            | 600-1000         | 0.001   | 0.03    | 500                 |
| lllumina HiSeq    | $2 \times 250$   | 0.1     | 4000    | 0.04                |
| SMRT(PacBio)      | 10 <sup>4</sup>  | 13      | 3.4     | 0.50                |
| NanoPore (minION) | $5 \cdot 10^{3}$ | 38      | 0.3     | 11                  |
|                   |                  |         |         |                     |

Rhoads et al, 2015



Goal: reconstruct sequence

Problem !: only have (small) reads

Idea: overlap reads to form complete sequence

Goal: reconstruct sequence

Problem I: only have (small) reads

Idea: overlap reads to form complete sequence

CCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC

ACTTCGC GGTCCAGGTGCTCAACG
CCCTGAACTTCTCT GGTCCAGGTGCTCAACG
CCCTGAACTTCGC CGACACTCCTTGGGTTTT GGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGCAACG

Goal: reconstruct sequence

Problem I: only have (small) reads

Idea: overlap reads to form complete sequence

CCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATGCGGGTC

ACTTCGC GGTCCTCAGGCCATTGATGCGGGTC

GGTCCAGGCCATTGATGCGGGTC

GGTCCAGGTCTCT

GGTCCAGGTGCTCAACGA

Goal: reconstruct sequence

Problem I: only have (small) reads

Idea: overlap reads to form complete sequence

Problem 2: parts of the sequence might not be covered by reads

GCCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC

ACTTCGC
TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG

CGACTCTCT CGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGACTGCTGCTGCAACGA

TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGACTGCTGCTGCAACGA

Goal: reconstruct sequence

Problem I: only have (small) reads

Idea: overlap reads to form complete sequence

Problem 2: parts of the sequence might not be covered by reads sequence with "high coverage"

| GCCCCTGAACTT           |                               | CTAGGCCAT          | TGATTGCGGGTC                  |
|------------------------|-------------------------------|--------------------|-------------------------------|
| ACTTCGC                |                               |                    | GGTCCAGGTGCTGTCAACGAC         |
| TCGCTAGGGTT            |                               |                    | CGAC                          |
| GCCCCTGAACTTCGCTAGGGTT | CTCTAACGACACTCCTTGGGTTTTTACGT | CGCGGTTCTCTAGGCCAT | TGATTGCGGGTCCAGGTGCTGTCAACGAC |

Goal: reconstruct sequence

Problem I: only have (small) reads

Idea: overlap reads to form complete sequence

Problem 2: parts of the sequence might not be covered by reads

>>>> sequence with "high coverage"

CCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC
ACTTCGC GGTCCTAGGGTGCTGTCAACGA
TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGA

Goal: reconstruct sequence

Problem I: only have (small) reads

Idea: overlap reads to form complete sequence

Problem 3: Shortest Common Superstring is NP-hard

- → Heuristic Assembly:
  - Overlap-Layout-Consensus
  - DeBruijn-Graph

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Naive Overlap

 $GAGTCCA \rightarrow$ 

AGGAGTC

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Naive Overlap

AGGAGTC GAGTCCA

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Naive Overlap

AGGAGTC GAGTCCA

 $\sim$  O(#reads<sup>2</sup>·read-length) time worst-case

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

example: BANANA



 $\rightarrow$  O(read-length<sup>2</sup>) time \( \frac{1}{2} \) space

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

example: BANANA



 $\sim$  O(read-length<sup>2</sup>) time  $\neq$  space can be improved to linear time  $\neq$  space

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

exercise: joined suffix tree for AGGAGTCO and GAGTCCAD



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix exercise: joined suffix tree for AGGAGTCO and GAGTCCAD



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

exercise: joined suffix tree for AGGAGTCO and GAGTCCAD



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

#### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

exercise: joined suffix tree for AGGAGTCO and GAGTCCAD



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix exercise: joined suffix tree for AGGAGTCO and GAGTCCAD

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

exercise: joined suffix tree for AGGAGTCO and GAGTCOAD



1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Suffix Trees

annotate Branches with strings such that:

- 1. each root→leaf path is a suffix (leaf labeled with start index)
- 2. no two siblings have a common prefix

exercise: joined suffix tree for AGGAGTC and GAGTCCAD



 $\rightsquigarrow$  O(#reads · read-length + #reads<sup>2</sup>)

[Gusfield et al.'92]

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

Fuzzy Overlap – Edit Distance

AGGAGTC

 ${\tt GGTCTCA}{\rightarrow}$ 

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

# Fuzzy Overlap - Edit Distance

AGGAGTC GGTCTCA

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

# Fuzzy Overlap - Edit Distance

AGGAGTC GAGTCTCA

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

Fuzzy Overlap – Edit Distance

AGGAGTC

GAGTCTCA

edit distance = # of insertions, deletions, and substitutions

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Fuzzy Overlap - Edit Distance

dynamic programming where  $[i,j] = \text{edit distance of } X_{i...} \notin Y_{j...}$   $= \min\{ \downarrow +1, \longrightarrow +1, \searrow + id_{X_i,Y_j} \}$ 

|   | A | G | G | A | G | T | С |     |
|---|---|---|---|---|---|---|---|-----|
| G |   |   |   |   |   |   |   | 7   |
| G |   |   |   |   |   |   |   | 6   |
| T |   |   |   |   |   |   |   | 5   |
| С |   |   |   |   |   |   |   | 4   |
| T |   |   |   |   |   |   |   | 3   |
| С |   |   |   |   |   |   |   | 2   |
| Α |   |   |   |   |   |   |   | - 1 |
|   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

# Fuzzy Overlap - Edit Distance

dynamic programming where  $[i,j] = \text{edit distance of } X_{i...} \notin Y_{j...}$   $= \min\{ \downarrow +1, \longrightarrow +1, \searrow + id_{X_i,Y_j} \}$ 

|   | Α | G | G | Α | G | T | С   |     |
|---|---|---|---|---|---|---|-----|-----|
| G |   |   |   |   |   |   | 6   | 7   |
| G |   |   |   |   |   |   | 5   | 6   |
| T |   |   |   |   |   |   | 4   | 5   |
| С |   |   |   |   |   |   | 3   | 4   |
| T |   |   |   |   |   |   | 2   | 3   |
| С |   |   |   |   |   |   | - 1 | 2   |
| Α |   |   |   |   |   |   | -1  | - 1 |
|   | 7 | 6 | 5 | 4 | 3 | 2 | - 1 | 0   |

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Fuzzy Overlap - Edit Distance

dynamic programming where  $[i,j] = \text{edit distance of } X_{i...} \notin Y_{j...}$   $= \min\{ \downarrow +1, \longrightarrow +1, \searrow + id_{X_i,Y_j} \}$ 

|   | A | G | G | Α | G | T | С   |     |
|---|---|---|---|---|---|---|-----|-----|
| G |   |   |   |   |   |   | 6   | 7   |
| G |   |   |   |   |   |   | 5   | 6   |
| T |   |   |   |   |   |   | 4   | 5   |
| С |   |   |   |   |   |   | 3   | 4   |
| T |   |   |   |   |   |   | 2   | 3   |
| С |   |   |   |   |   |   | - 1 | 2   |
| Α | 6 | 5 | 4 | 3 | 3 | 2 | -1  | - 1 |
|   | 7 | 6 | 5 | 4 | 3 | 2 | - 1 | 0   |

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

### Fuzzy Overlap – Edit Distance

dynamic programming where  $[i,j] = \text{edit distance of } X_{i...} \neq Y_{j...} = \min\{ \downarrow +1, \rightarrow +1, \searrow + id_{X_i,Y_j} \}$ 

# Overlap-Layout-Consensus Asser Exercise

1. produce pairwise overlaps (All-Pairs Suffix-PiTime

# Fuzzy Overlap – Edit Distance

dynamic programming where

$$[ij] = \text{edit distance of } X_{i...} \neq Y_{j...}$$
  
=  $\min\{ \downarrow \downarrow + 1, \longrightarrow + 1, \searrow \mid + id_{X_i,Y_j} \}$ 

0

00

modification: any suffix of GGTCTCA for free

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

# Fuzzy Overlap – Edit Distance

dynamic programming where  $[i,j] = \text{edit distance of } X_{i...} \notin Y_{j...}$   $= \min\{ \downarrow +1, \longrightarrow +1, \searrow + id_{X_i,Y_j} \}$ 

modification: any suffix of GGTCTCA for free

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

# Fuzzy Overlap – Edit Distance

dynamic programming where  $[i,j] = \text{edit distance of } X_{i...} \neq Y_{j...} = \min\{ \downarrow +1, \longrightarrow +1, \searrow + id_{X_i,Y_j} \}$ 

modification: any suffix of GGTCTCA for free

1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

# Fuzzy Overlap – Edit Distance

dynamic programming where  $[i,j] = \text{edit distance of } X_{i...} \notin Y_{j...}$   $= \min\{ \downarrow \downarrow +1, \longrightarrow +1, \searrow + id_{X_i,Y_j} \}$ 

modification: any suffix of GGTCTCA for free >>> Best Overlaps with k errors in O(#reads<sup>2</sup> · read-length<sup>2</sup>)

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps

### Overlap Graph

reads = vertices directed edges = overlaps

TGGCTAGGGTC

CTAGGGTCCGGA

AGGGTCCGGAATTA

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps

### Overlap Graph

reads = vertices directed edges = overlaps

TGGCTAGGGTC
CTAGGGTCCGGA
AGGGTCCGGAATTA

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps

### Overlap Graph

reads = vertices directed edges = overlaps

TGGCTAGGGTC

CTAGGGTCCGGA

AGGGTCCGGAATTA

→ transitive reduction

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps

### Overlap Graph

reads = vertices directed edges = overlaps

ACTAGTAGTAGCCT



- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps

### Overlap Graph

reads = vertices directed edges = overlaps

### ACTAGTAGTAGCCT



→ overlap graph non-linear due to repeats

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps

### Overlap Graph

reads = vertices directed edges = overlaps

### ACTAGTAGTAGCCT



- → overlap graph non-linear due to repeats
- ~> Only return non-Branching parts ("contigs"): ACTAGTAG € TAGCCT

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps
- 3. for each position, compute consensus Base

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps
- 3. for each position, compute consensus Base

ACTTCGC GGTTCTCT

TTACGTCGCG

CGA CAGGIGCIGICAACGA

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps
- 3. for each position, compute consensus Base

- 1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
- 2. layout the reads according to the overlaps
- 3. for each position, compute consensus Base

### Problems

- overlap step too slow in practice:
   lO<sup>8</sup> reads → lO<sup>6</sup> read-pairs
   → heuristics exclude most of the read-pairs before overlap
- fragmented genome due to repeats

1. chop all reads into "k-mers" real genomes: k = 30-50

# DeBruijn-Graph-Based Assexercise

- 1. chop all reads into "k-mers" real genomes: k = 30-50
- 2. Build "DeBruijn Graph": for each k-mer add are from left to right k-1 mer

Time

k=5

- 1. chop all reads into "k-mers" real genomes: k = 30-50
- Build "DeBruijn graph":
   for each k-mer add arc from
   left to right k-l mer



### CAACTTCCCT

GAAC
GAACT
AACTT
ACTTC
CTTCG
TTCGC

**TCGCT** 

### ..CCTTGG.

.CCTT CCTTG TTGG.

- 1. chop all reads into "k-mers" real genomes: k = 30-50
- Build "DeBruijn graph":
   for each k-mer add arc from
   left to right k-l mer



### GAACTTCGCT

GAAC
GAACT
AACTT
ACTTC
CTTCG
TTCGC

**TCGCT** 

### ..CCTTGG.

.CCTT CCTTG TTGG.

- 1. chop all reads into "k-mers" real genomes: k = 30-50
- Build "DeBruijn graph":
   for each k-mer add arc from
   left to right k-l mer



### ..GAACTTCGCT...

GAAC
GAACT
AACTT
ACTTC
CTTCG
TTCGC
TCGCT

### ..CCTTGG.

.CCTT CCTTG TTGG.

..CCTTC..

..ACTTG..

- 1. chop all reads into "k-mers" real genomes: k = 30-50
- 2. Build "DeBruijn graph":

  for each k-mer add arc from
  left to right k-l mer
- 3. find path using all overlaps



- 1. chop all reads into "k-mers" real genomes: k = 30-50
- Build "DeBruijn graph":
   for each k-mer add arc from
   left to right k-l mer
- 3. find Eulerian walk linear time with greedy



- 1. chop all reads into "k-mers" real genomes: k = 30-50
- Build "DeBruijn graph": for each k-mer add arc from left to right k-l mer
- 3. find Eulerian walk linear time with greedy

# ACTT CTTC TCGC AACT CTTG CGCT GAAC CCTT TTGG CGCT

### Running Time

#k-mers = O(#reads · read-length)

- 1. O(1) per k-mer
- 2. O(1) per k-mer
- 3. O(size of graph) = O(#k-mers)

Note: edges can be weighted by #occurances

- 1. chop all reads into "k-mers" real genomes: k = 30-50
- Build "DeBruijn graph":
   for each k-mer add arc from
   left to right k-l mer
- find Eulerian walk linear time with greedy



### Problems

- choose k well
  - ▶ k too small ~ small repeats become problems
  - ► k too Big ~ miss smaller overlaps
- Eulerian walk not neccessarily unique
- some paths in DeBruijn graph inconsistent with reads
- read-errors problematic
   → error-correction step before assembling
- same problem with repeats as OLC

# Correcting Read Errors in Suffix Trees

Example
CAACTTAC
CAACT
CAAC
AACTT
ACCTA
CTTAC



# Correcting Read Errors in Suffix Trees

CAACTTAC
CAACT
CAAC
AACTT
ACCTA
CTTAC



## Correcting Read Errors in Suffix Trees

Example
CAACTTAC
CAACT
CAAC
AACTT
ACCTA
CTTAC



Idea: low freq node with high freq parent wignore Branch

## Correcting Read Errors in Suffix Trees

Example
CAACTTAC
CAACT
CAAC
AACTT
ACCTA
CTTAC



Idea: low freq. node with high freq. parent wignore Branch

#### Correcting Read Errors in DBG

#### Idea

#### De Bruijn

have to treat errors before Building the graph  $k=30 \neq 1\%$  error  $\rightsquigarrow 1/4$  faulty



### Correcting k-mer Errors

#### Example

```
suppose: avg. k-mer count = 10 \infty each k-mer occurs about 10x
  GCGTATTACGCGTCTGGCCT
                                 GCGTATTACTCGTCTGGCCT
   CGTATT 8x
                                  CGTATT 8×
    GTATTA 9×
                                   GTATTA 9×
     TATTAC 🔭
                                   TATTAC 🕆
      ATTACG |2×
                                    ATTACT 🔀
       TTACGC 9x
                                     TTACTC 2x
       TACGCG 9x
                                      TACTCG 2x
        ACGCGT Ox
                                       ACTCGT 🔽
         CGCGTC 🗽
                                        CTCGTC 🔽
          GCGTCT Ox
                                         TCGTCT 🔽
           CGTCTG 9x
                                          CGTCTG 9×
            GTCTGG I○×
                                           TCTGGC Ox
                                            TCTGGC Ox
              TGGCCT 9x
                                              TGGCCT 9x
```

# Correcting k-mer Errors



### Correcting k-mer Errors

#### Problem

now we have an idea where an error is, But how to fix it?

#### Idea

errors turn frequent k-mers into infrequent ones

~ correction should turn infrequent k-mers into frequent ones

~ replace infrequent k-mer by "frequent neighbor"

Recall: repeats (common in DNA) make assembly ambiguous

Recall: repeats (common in DNA) make assembly ambiguous  $\rightarrow$  end product is a set of "contiguous regions"

Recall: repeats (common in DNA) make assembly ambiguous one product is a set of "contiguous regions"

Problem: "contig soup" not very useful

Recall: repeats (common in DNA) make assembly ambiguous on end product is a set of "contiguous regions"

Problem: "contig soup" not very useful

But: with NGS, we have paired-end information!

Scaffolding + Filling

Recall: repeats (common in DNA) make assembly ambiguous

~ end product is a set of "contiguous regions"

Problem: "contig soup" not very useful

But: with NGS, we have paired-end information!

Scaffolding + Filling

#### Scaffolding

Goal: order & orient contigs

Idea: use pairing information on reads to "link" contigs together





## Strategy

1. Map reads into contigs



## Strategy

1. Map reads into contigs



## Strategy

1. Map reads into contigs



- 1. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)



- 1. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)



- 1. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)



- 1. map reads into contigs
- 2. pair contigs according to read-pairing (weighted)
- cover "scaffold graph" with (heavy) alternating paths each path corresponds to a chromosome



- 1. Map reads into contigs
- 2. pair contigs according to read-pairing (weighted)
- 3. cover "scaffold graph" with (heavy) alternating paths each path corresponds to a chromosome



Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ ,  $k,\sigma_p\in\mathbb{N}$ 

Question: Can  $\overline{\mathcal{M}}$  be covered by

 $- \leq \sigma_p$  alternating paths

of total weight  $\geq k$ ?



Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega, k, \sigma_p, \sigma_c \in \mathbb{N}$ 

Question: Can M be covered by

-  $\leq \sigma_p$  alternating paths  $\neq$ 

-  $\leq \sigma_c$  alternating cycles

of total weight  $\geq k$ ?



Exact Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega, k, \sigma_p, \sigma_c \in \mathbb{N}$ 

Question: Can M be covered by

-  $\sigma_p$  alternating paths  $\neq$ 

-  $\sigma_c$  alternating cycles

of total weight  $\geq k$ ?







#### Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$ 

Question: Can  $\mathcal M$  be covered by  $\leq \sigma_p$  alternating paths  $\neq$   $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Construction

Given a directed graph D

1. Make a copy of D

#### Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$ Question: Can  $\mathcal{M}$  be covered by  $\leq \sigma_p$  attermating paths  $\neq$ 

 $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Construction

Given a directed graph D

- 1. Make a copy of D
- 2. duplicate all vertices  $\rightsquigarrow \mathcal{M}$

#### Recall: Scaffolding

Input: Graph G, perfect matching M, weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$ Question: Can M be covered by  $\leq \sigma_p$  attermating paths  $\neq$ 

Can M be covered by  $\leq \sigma_p$  afternating paths  $\leq \sigma_c$  afternating cycles of total weight  $\geq k$ ?





#### Construction

Given a directed graph D

- 1. Make a copy of D
- 2. duplicate all vertices  $\rightsquigarrow \mathcal{M}$
- 3. "slide" down all arrow tips & ignore directions

Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$ Question: Can  $\mathcal{M}$  be covered by  $\leq \sigma_p$  attermating paths  $\neq$ 

 $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Lemma

D admits a directed Hamiltonian path  $\Leftrightarrow \mathcal{M}$  can be covered with a single alternating path in G

Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$  Question: Can  $\mathcal{M}$  be covered by  $\leq \sigma_p$  attermating paths  $\Leftrightarrow$   $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Lemma

D admits a directed Hamiltonian path  $\Leftrightarrow \mathcal{M}$  can be covered with a single alternating path in G

" $\Rightarrow$ ": replace each v in the Hamiltonian path By  $v_{\mathsf{low}} o v_{\mathsf{high}}$ 

#### Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$  Question: Can  $\mathcal{M}$  be covered by  $\leq \sigma_p$  atternating paths  $\Leftrightarrow$   $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Lemma

D admits a directed Hamiltonian path  $\Leftrightarrow \mathcal{M}$  can be covered with a single alternating path in G

" $\Rightarrow$ ": replace each v in the Hamiltonian path by  $v_{\text{low}} o v_{\text{high}}$  alternating  $\checkmark$  covers  $\mathcal{M}$   $\checkmark$ 

#### Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$  Question: Can  $\mathcal{M}$  be covered by  $\leq \sigma_p$  atternating paths  $\Leftrightarrow$   $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Lemma

D admits a directed Hamiltonian path  $\Leftrightarrow \mathcal{M}$  can be covered with a single alternating path in G

" $\Leftarrow$ ": contract each matching edge in the covering alternating path

Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ ,  $k, \sigma_p, \sigma_c \in \mathbb{N}$  Question: Can  $\mathcal{M}$  be covered by  $\leq \sigma_p$  atternating paths  $\stackrel{\Leftarrow}{\leq} \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Lemma

 $\overline{D}$  admits a directed Hamiltonian path  $\Leftrightarrow \mathcal{M}$  can be covered with a single alternating path in G

" $\Leftarrow$ ": contract each matching edge in the covering alternating path hits all vertices exactly once  $\checkmark$  is valid directed path  $\checkmark$ 

#### Recall: Scaffolding

Input: Graph G, perfect matching M, weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$  Question: Can M be covered by  $\leq \sigma_p$  atternating paths  $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Theorem

Scaffolding is NP-hard, even restricted to

- Bipartite Graphs
- $(\sigma_p, \sigma_c) \in \{(0,1), (1,0)\}$  and
- $\omega : E \rightarrow \{0\}$

### Hardness Warm up: Hamiltonian Path

Recall: Scaffolding

Input: Graph G, perfect matching M, weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$  Question: Can M be covered by  $\leq \sigma_p$  atternating paths  $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Theorem

Scaffolding is NP-hard, even restricted to

- supergraphs of Bipartite Graphs
- $(\sigma_p, \sigma_c) \in \{(0,1), (1,0)\}$  and
- $\omega: E \rightarrow \{0,1\}$

### Hardness Warm up: Hamiltonian Path

#### Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega$ , k,  $\sigma_p$ ,  $\sigma_c \in \mathbb{N}$ Question: Can  $\mathcal{M}$  be covered by  $\leq \sigma_p$  attermating paths  $\neq$ 

 $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?



#### Theorem

Scaffolding is NP-hard, even restricted to

- supergraphs of Bipartite Graphs
- $(\sigma_p, \sigma_c) \in \{(0,1), (1,0)\}$  and
- $\omega: E \rightarrow \{0, 1\}$

#### Corollary

Scaffolding with 2 weights is NP-hard in any sufficiently dense graph class.

### Hardness Warm up: Hamiltonian Path

#### Recall: Scaffolding

Input: Graph G, perfect matching  $\mathcal{M}$ , weights  $\omega, k, \sigma_p, \sigma_c \in \mathbb{N}$ 

Question: Can  $\mathcal{M}$  be covered by  $\leq \sigma_p$  alternating paths  $\neq$   $\leq \sigma_c$  alternating cycles of total weight  $\geq k$ ?





#### Theorem

Exact Scaffolding is NP-hard, even restricted to

- supergraphs of Bipartite Graphs
- ullet  $(\sigma_p,\sigma_c)\in\{(0,1),(1,0)\}$  and
- $\omega: E \rightarrow \{0, 1\}$

#### Corollary

Exact Scaffolding with 2 weights is NP-hard in any sufficiently dense graph class.





# Approximate Scaffolding 1. sort all edges by weight



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge



#### Approximate Scaffolding

- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge

#### Proof

Result  $\overline{S^*}$  is a valid solution  $\sqrt{}$ 



### Approximate Scaffolding

- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge

#### Proof

Result  $S^*$  is a valid solution Note: taking an edge forbids  $\leq 3$  OPT edges





### Approximate Scaffolding

- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge

#### Proof

Result  $S^*$  is a valid solution Note: taking an edge forbids  $\leq 3$  OPT edges





#### Approximate Scaffolding

- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge

#### Proof

Result  $S^*$  is a valid solution Note: taking an edge for Bids  $\leq 3$  OPT edges





### Approximate Scaffolding

- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge

#### Proof

Result  $S^*$  is a valid solution Note: taking an edge forbids  $\leq$  3 OPT edges  $\leadsto$  mark the  $\leq$  3 OPT-edges when taking an edge e  $\leadsto$  e is heaviest among them

 $\rightsquigarrow 3\omega(S^*) \ge OPT$ 



#### Approximate Scaffolding

- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge

### Theorem

Scaffolding in complete graphs can be 3-approximated in  $O(|V|^2 \log |V|)$  time.



#### Approximate Scaffolding

- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge

#### Theorem

Scaffolding in complete (Bipartite) graphs can be 3-approximated in  $O(|V|^2 \log |V|)$  time.



#### Approximate Scaffolding

- 1. sort all edges by weight
- 2. repeatedly take heaviest poss. edge

### Theorem

Scaffolding in complete (Bipartite) graphs can be 3-approximated in  $O(|V|^2 \log |V|)$  time.

#### Remark

For Exact Scaffolding, we have to keep an eye on the number of components too.





Approximate Scaffolding

 compute max-weight perfect matching 5
 ⇒ 5 ∪ M is collection of cycles



 $\sigma_p = 1$ ,  $\sigma_c = 1$ ?

- 1. compute max-weight perfect matching 5
- $\leadsto 5 \cup \mathcal{M}$  is collection of cycles
- 2. " all But lightest edge per cycle



- 1. compute max-weight perfect matching 5
- $\leadsto \mathsf{S} \cup \mathcal{M}$  is collection of cycles
- 2. "in" all But lightest edge per cycle3. repeatedly flip any lightest non-like
- 3. repeatedly flip any lightest non-fix 4-cycle intersecting 2 cycles until at most  $\sigma_c + \sigma_p$  cycles remain



 $\sigma_p = 1$ ,  $\sigma_c = 1$ ?

- 1. compute max-weight perfect matching S
- $ightsquigarrow \mathcal{S} \cup \mathcal{M}$  is collection of cycles
- 2. "Inx" all But lightest edge per cycle
- 3. repeatedly flip any lightest non- $\theta$  +-cycle intersecting 2 cycles until at most  $\sigma_c + \sigma_p$  cycles remain



- 1. compute max-weight perfect matching S
- $ightsquigarrow 5 \cup \mathcal{M}$  is collection of cycles
- 2. "\*\* all But lightest edge per cycle
- 3. repeatedly flip any lightest non-\$\* +-cycle intersecting 2 cycles until at most  $\sigma_c + \sigma_p$  cycles remain



- 1. compute max-weight perfect
- wo  $S \cup \mathcal{M}$  is collection of cycles
- 2. "Inx" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-# +-cycle intersecting 2 cycles until at most  $\sigma_c + \sigma_p$  cycles remain
- 4. repeatedly remove lightest non- $\Re \kappa$  cycle-edge until at most  $\sigma_c$  cycles remain



- 1. compute max-weight perfect matching S
- wo  ${\color{red} S} \cup {\color{blue} \mathcal{M}}$  is collection of cycles
- 2. "Inx" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-# +-cycle intersecting 2 cycles until at most  $\sigma_c + \sigma_p$  cycles remain
- 4. repeatedly remove lightest non- $\frac{1}{2}$  cycle-edge until at most  $\sigma_c$  cycles remain



#### Approximate Scaffolding

- 1. compute max-weight perfect matching 5
- $ightsquigarrow 5 \cup \mathcal{M}$  is collection of cycles
- "in" all But lightest edge per cycle
   repeatedly flip any lightest non-like
   +-cycle intersecting 2 cycles
- until at most  $\sigma_c + \sigma_p$  cycles remain 4. repeatedly remove lightest non-BK
- 4. repeatedly remove lightest non-100 cycle-edge until at most  $\sigma_c$  cycles remain

#### Proof

Result  $S^*$  is a valid solution  $\checkmark$ 



 $\sigma_p = 1$ ,  $\sigma_c = 1$ ?

#### Approximate Scaffolding

- 1. compute max-weight perfect matching S
- $ightsquigarrow 5 \cup \mathcal{M}$  is collection of cycles
- 2. "hx" all But lightest edge per cycle
  3. repeatedly flip any lightest non-like
- 5. repeatedly filly any lightest non-which +-cycle intersecting 2 cycles until at most  $\sigma_c+\sigma_p$  cycles remain
- 4. repeatedly remove lightest non-# cycle-edge until at most  $\sigma_c$  cycles remain

#### Proof

Result  $S^*$  is a valid solution  $\omega(S^*) \geq \omega(S^*) \geq \omega(S^*) \geq \omega(S^*)/2 \geq OPT/2$ 



#### Approximate Scaffolding

- 1. compute max-weight perfect matching 5
- $ightsquigarrow 5 \cup \mathcal{M}$  is collection of cycles
- 2. "Inx" all But lightest edge per cycle
- 3. repeatedly flip any lightest non-# +-cycle intersecting 2 cycles until at most  $\sigma_c + \sigma_p$  cycles remain
- 4. repeatedly remove lightest non- $\frac{1}{2}$ x cycle-edge until at most  $\sigma_c$  cycles remain

#### Theorem

Scaffolding in complete graphs can be 2-approximated in  $O(|V|^{2.5})$  time.



#### Approximate Scaffolding

- 1. compute max-weight perfect matching 5
- $\rightsquigarrow 5 \cup M$  is collection of cycles 2. "\*\*\* all But lightest edge per cycle
- 3. repeatedly flip any lightest non-like H-cycle intersecting 2 cycles until at most  $\sigma_c + \sigma_p$  cycles remain
- 4. repeatedly remove lightest non- $\frac{1}{2}$ x cycle-edge until at most  $\sigma_c$  cycles remain

#### Theorem

Scaffolding in complete (Bipartite) graphs can be 2-approximated in  $O(|V|^{2.5})$  time.

### Scaffolding with Multiplicities

Recall: most eucaryotes are diploid!



GGTGCGAGAGAGGTCATGGATTGCAACGA

GGTGCGAGAGGCCACTCCAATTGCAACGA

### Scaffolding with Multiplicities

Recall: most eucaryotes are diploid!



### Scaffolding with Multiplicities

Recall: most eucaryotes are diploid!







#### Problem

no unique chromosome-configuration explaining solution



uniquely linearizable = scaffold Graph decomposes uniquely into alternating paths using each edge "the correct" number of times

#### Problem

no unique chromosome-configuration explaining solution



uniquely linearizable = scaffold Graph decomposes uniquely into alternating paths using each edge "the correct" number of times

#### Problem

no unique chromosome-configuration explaining solution



uniquely linearizable = scaffold Graph decomposes uniquely into alternating paths using each edge "the correct" number of times

### Linearization of Solutions Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu \notin$  each end incident to non-contig  $<\mu$ )

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu \not\in$  each end incident to non-contig  $<\mu$ )



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\Leftrightarrow$  each end incident to non-contig  $<\mu$ ) Proof

" $\Rightarrow$ ": contraposition; let p =ambigous path



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\neq$  each end incident to non-contig  $<\mu$ ) Proof

" $\Rightarrow$ ": contraposition; let p =ambigous path



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\Leftrightarrow$  each end incident to non-contig  $<\mu$ ) Proof

" $\Rightarrow$ ": contraposition; let p =ambigous path



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\rightleftharpoons$  each end incident to non-contig  $<\mu$ ) Proof

" $\Rightarrow$ ": contraposition; let p =ambigous path



 $ightarrow (G, \mathcal{M}, m)$  not uniquely linearizable

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\Leftrightarrow$  each end incident to non-contig  $<\mu$ ) Proof

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\Leftrightarrow$  each end incident to non-contig  $<\mu$ ) Proof



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\rightleftharpoons$  each end incident to non-contig  $<\mu$ ) Proof



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\Leftrightarrow$  each end incident to non-contig  $<\mu$ ) Proof





#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu \not\in$  each end incident to non-contig  $<\mu$ )





#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths" (=alt. path of uniform multiplicity  $\mu$   $\neq$  each end incident to non-contig  $<\mu$ ) Proof

" $\Leftarrow$ ": let  $(G, \mathcal{M}, m)$  be free of ambigous paths Reduction (does not decrease number of linearizations):





ightharpoonup result is collection of alternating paths  $\neq$  cycles

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu$   $\rightleftharpoons$  each end incident to non-contig  $<\mu$ )  $\leadsto$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

### Linearization of Solutions Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \neq \text{each}$  end incident to non-contiq  $<\mu$ )  $\sim$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

#### Proposals

1. decide arbitrarily

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt path of uniform multiplicity  $u \notin each end incident to non-continuous paths.$ 

(=alt. path of uniform multiplicity  $\mu$  = each end incident to non-contiq  $<\mu$ )  $\sim$  must destroy ambiguous paths

dea: remove non-matching edges at their endpoints; strategy?

#### Proposals

1. decide arbitrarily ~ missassembly

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt path of uniform multiplicity  $y \notin each end incident to non-continuous paths.$ 

(=alt. path of uniform multiplicity  $\mu$  \( \frac{1}{2} \) each end incident to non-contiq  $<\mu$ )  $\rightarrow$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \neq \text{each}$  end incident to non-contiq  $<\mu$ )  $\sim$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path winformation loss

#### Theorem

 $(G,\mathcal{M},\mathit{m})$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \not =$  each end incident to non-contig  $<\mu$  )  $\leadsto$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\rightsquigarrow$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \neq \text{each}$  end incident to non-contiq  $<\mu$ )  $\sim$  must destroy ambiguous paths

dea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\rightsquigarrow$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover

#### Theorem

 $\overline{(G,\mathcal{M},m)}$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \neq \text{each}$  end incident to non-contiq  $<\mu$ )  $\leadsto$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

#### Proposals

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover



#### Multiplicities

one =

#### Theorem

 $\overline{(G,\mathcal{M},m)}$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \neq$  each end incident to non-contiq  $<\mu$ )  $\leadsto$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

#### Proposals

- 1. decide arbitrarily  $\rightsquigarrow$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover



### Multiplicities

one =

#### Theorem

 $\overline{(G,\mathcal{M},m)}$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \neq$  each end incident to non-contiq  $<\mu$ )  $\leadsto$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

#### Proposals

- 1. decide arbitrarily  $\rightsquigarrow$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover



### Multiplicities

one =

#### Theorem

 $\overline{(G,\mathcal{M},m)}$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu$  \( \frac{1}{2} \) each end incident to non-contiq  $<\mu$ )  $\rightarrow$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

#### Proposals

- 1. decide arbitrarily ~ missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover



### Multiplicities

one =

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \neq \text{each}$  end incident to non-contiq  $<\mu$ )  $\sim$  must destroy ambiguous paths

dea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover
- 4. cut as few multiplicities as possible

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu$   $\mbox{\it f}$  each end incident to non-contig  $<\mu$  )  $\leadsto$  must destroy ambiguous paths

dea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover
- 4. cut as few multiplicities as possible  $\rightsquigarrow$  as hard as Trans. Del. ( $\triangle$ -free)

#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \neq$  each end incident to non-contiq  $<\mu$ )  $\leadsto$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\rightsquigarrow$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover
- 4. cut as few multiplicities as possible  $\rightsquigarrow$  as hard as Trans. Del. ( $\triangle$ -free)



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu \not =$  each end incident to non-contiq  $<\mu$  )  $\leadsto$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover
- 4. cut as few multiplicities as possible  $\rightsquigarrow$  as hard as Trans. Del. ( $\triangle$ -free)



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu$   $\rightleftharpoons$  each end incident to non-contig  $<\mu$ )  $\leadsto$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover
- 4. cut as few multiplicities as possible  $\rightsquigarrow$  as hard as Trans. Del. ( $\triangle$ -free)



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu$  \( \frac{1}{2} \) each end incident to non-contiq  $<\mu$ )  $\leftrightarrow$  must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover
- 4. cut as few multiplicities as possible  $\rightsquigarrow$  as hard as Trans. Del. ( $\triangle$ -free)



#### Theorem

 $(G,\mathcal{M},m)$  uniquely linearizable  $\Leftrightarrow$  no "ambigous paths"

(=alt. path of uniform multiplicity  $\mu$  = each end incident to non-contiq  $<\mu$ )  $\sim$  must destroy ambiguous paths

ldea: remove non-matching edges at their endpoints; strategy?

- 1. decide arbitrarily  $\sim$  missassembly
- 2. isolate each ambiguous path winformation loss
- 3. cut as few ends as possible was hard as Vertex Cover
- 4. cut as few multiplicities as possible  $\rightsquigarrow$  as hard as Trans. Del. ( $\triangle$ -free)

