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Molecular Biology Basics

DNA

- double strand

- nucleotides paired: A–T, C–G

- inside nucleus (eucaryotes)

RNA

- single strand

- transported outside nucleus

- translated into actual

proteins

- Thymine (T) → Uracil (U)
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Molecular Biology Basics

Transcription & Translation

DNA → RNA & RNA → protein

Polymerase

single strand → double strand
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Molecular Biology Basics

Introns & Exons

parts of DNA cut out when forming

mRNA (“splicing”)

- removed  “intron”

- not removed  “exon”

Gene

Gene = START. . . STOP

(including introns)

(103-105bp)
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Molecular Biology Basics

Chromosomes

- haploid = 1 set of chromosomes

- diploid = 2 sets of chromosomes

(usually one from each parent)

- . . . (“polyploid”)

- procaryotes  one (circular) chromosome, haploid

- eucaryotes  set of (linear) chromosomes,

polyploid

44 90 16 46 46
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Mutation

Single-Nucleotide Polymorphism

- DNA damage

- caused by radioactivity, UV light, . . .

- insertion, deletion, substitution

Replication Error

- DNA rearrangement

- caused by errors in Meiosis/Mitosis

- duplication,

deletion (loss), translocation,

inversion, crossover
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Mutation

..AATCGCTAA..
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Sanger Sequencing [Sanger et al ’77]

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGACCTGCCCAGTCTGTACTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA

GGA*
GGACCTGCCCA*
GGACCTGCCCAGTCTGTA*

Sanger Sequencing

1. make thousands of copies of target (“amplified genome”)

2. split their helix

3. add polymerase & floating bases: A C G T
4. add a special base: A* (polymerase cannot extend)

5. stir & let polymerase act

6. measure the length of each fragment

 each length is the position of a T in the template

Problems

- frequency of longer reads decreases drastically

- length-estimate unreliable after a couple hundred bp

 chop DNA into pieces and read those

- repeated bases unreliable
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Next Generation Sequencing ( )

ACCA

AGTCTGGAGAGTC

TGAGTACCA

ACTCA......ACCTCTGGTACTCA......ACCTCTCAG
TGGTACTCA......ACCTCTCAGACCTCTCAG

ACTCATGGT
CTGAGAGGT......TGAGTACCA

TGGTACTCA......ACCTCTCAG

Preparation

1. chop DNA into smaller pieces (approximate size known)

2. add anchors (and IDs) to each end of each piece

3. “flow cell” containing anchor places

Amplification

1. strand anchors its two ends to two anchor places

2. polymerase completes the strand into double-strand

3. double strand is cut into single strands

4. rinse, repeat (last 3 steps) until flow chip is “full”

Sequencing

1. add special (fluorescent, non-extendable) bases + polymerase

2. polymerase attaches one base

3. camera takes picture of the flow cell

4. rinse, repeat (last 3 steps) until no more bases were added

“Paired-End

reads”

distance be-
tween reads
=

“insert size”
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Third-Gen Sequencing: SMRT

[Rhoads et al, 2015]

Single Molecule Real Time Sequencing

1. fix a polymerase enzyme under a microscope

2. attach fluorescent molecule to each nucleotide

3. polymerase clips off fluorescent molecule when attaching a base

4. observe change in fluorescence  identify base
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Third-Gen Sequencing: PacBio

Nanopores

1. “pore” of diameter 1-20nm

2. only single-strand may pass

3. base at “bottleneck” hinders

current

4.  “characteristic profile”

determines base
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Conclusion: Sequencing

method r
e
a
d

le
n
g
t
h

%
e
r
r
o
r
s

r
e
a
d
s
/
s

$
/
M

b
a
s
e

Sanger 600-1000 0.001 0.03 500
Illumina HiSeq 2× 250 0.1 4000 0.04

SMRT (PacBio) 104 13 3.4 0.50
NanoPore (minION) 5 · 103 38 0.3 11

[Rhoads et al, 2015]
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Sequence Assembly: Overview

TTTGCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTAC

TTTGCCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGACA

TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGACACTCCTTGGGTTTTTAC

TTTGCCCCTGAACTTCGC CGACACTCCTTGGGTTTT GGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTAC
TTTGCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTAC

Goal: reconstruct sequence

Problem 1: only have (small) reads

Idea: overlap reads to form complete sequence
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Goal: reconstruct sequence

Problem 1: only have (small) reads

Idea: overlap reads to form complete sequence

Problem 3: Shortest Common Superstring is NP-hard

 Heuristic Assembly:

- Overlap-Layout-Consensus
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Overlap-Layout-Consensus Assembly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

3. for each position, compute consensus base

Problems

- overlap step too slow in practice:

108 reads  1016 read-pairs

 heuristics exclude most of the read-pairs before overlap

- fragmented genome due to repeats

14 /29
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1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

Suffix Trees

annotate branches with strings such that:
1. each root→leaf path is a suffix (leaf labeled with start index)

2. no two siblings have a common prefix

exercise: joined suffix tree for AGGAGTC� and GAGTCCA.

Exercise

Time
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Algo:
Lv := “suffix-nodes” for read i⇔ has edge labeled �,.,...DFS with #reads stacks:discover v
 add v to stacks of Lv

backtrack from v remove v from stacks
discover full-read leaf output tops of stacks

 O(#reads · read-length + #reads2) [Gusfield et al.’92]
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3. for each position, compute consensus base
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1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

Overlap Graph

reads = vertices

directed edges = overlaps

GCTAGTGGCTAG

TGGCTAGGGTC

CTAGGGTCCGGA

AGGGTCCGGAATTA

ACTAGTAGTAGCCT

ACTAG

AGTAG

TAGTAG

TAGCCT

 overlap graph non-linear due to repeats

 only return non-branching parts (“contigs”): ACTAGTAG & TAGCCT
3. for each position, compute consensus base

Problems
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- fragmented genome due to repeats

14 /29



Overlap-Layout-Consensus Assembly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

Overlap Graph

reads = vertices

directed edges = overlaps

GCTAGTGGCTAG

TGGCTAGGGTC

CTAGGGTCCGGA

AGGGTCCGGAATTA

ACTAGTAGTAGCCT

ACTAG

AGTAG

TAGTAG

TAGCCT

 transitive reduction

 overlap graph non-linear due to repeats

 only return non-branching parts (“contigs”): ACTAGTAG & TAGCCT
3. for each position, compute consensus base

Problems

- overlap step too slow in practice:

108 reads  1016 read-pairs

 heuristics exclude most of the read-pairs before overlap

- fragmented genome due to repeats

14 /29



Overlap-Layout-Consensus Assembly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

Overlap Graph

reads = vertices

directed edges = overlaps

GCTAGTGGCTAG

TGGCTAGGGTC

CTAGGGTCCGGA

AGGGTCCGGAATTA

ACTAGTAGTAGCCT

ACTAG

AGTAG

TAGTAG

TAGCCT

 transitive reduction

 overlap graph non-linear due to repeats

 only return non-branching parts (“contigs”): ACTAGTAG & TAGCCT
3. for each position, compute consensus base

Problems

- overlap step too slow in practice:

108 reads  1016 read-pairs

 heuristics exclude most of the read-pairs before overlap

- fragmented genome due to repeats

14 /29



Overlap-Layout-Consensus Assembly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

Overlap Graph

reads = vertices

directed edges = overlaps

GCTAGTGGCTAG

TGGCTAGGGTC

CTAGGGTCCGGA

AGGGTCCGGAATTA

ACTAGTAGTAGCCT

ACTAG

AGTAG

TAGTAG

TAGCCT

 overlap graph non-linear due to repeats

 only return non-branching parts (“contigs”): ACTAGTAG & TAGCCT
3. for each position, compute consensus base

Problems

- overlap step too slow in practice:

108 reads  1016 read-pairs

 heuristics exclude most of the read-pairs before overlap

- fragmented genome due to repeats

14 /29



Overlap-Layout-Consensus Assembly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

Overlap Graph

reads = vertices

directed edges = overlaps

GCTAGTGGCTAG

TGGCTAGGGTC

CTAGGGTCCGGA

AGGGTCCGGAATTA

ACTAGTAGTAGCCT

ACTAG

AGTAG

TAGTAG

TAGCCT

 overlap graph non-linear due to repeats

 only return non-branching parts (“contigs”): ACTAGTAG & TAGCCT
3. for each position, compute consensus base

Problems

- overlap step too slow in practice:

108 reads  1016 read-pairs

 heuristics exclude most of the read-pairs before overlap

- fragmented genome due to repeats

14 /29



Overlap-Layout-Consensus Assembly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

Overlap Graph

reads = vertices

directed edges = overlaps

GCTAGTGGCTAG

TGGCTAGGGTC

CTAGGGTCCGGA

AGGGTCCGGAATTA

ACTAGTAGTAGCCT

ACTAG

AGTAG

TAGTAG

TAGCCT

 overlap graph non-linear due to repeats

 only return non-branching parts (“contigs”): ACTAGTAG & TAGCCT

3. for each position, compute consensus base

Problems

- overlap step too slow in practice:

108 reads  1016 read-pairs

 heuristics exclude most of the read-pairs before overlap

- fragmented genome due to repeats

14 /29



Overlap-Layout-Consensus Assembly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

3. for each position, compute consensus base

Problems

- overlap step too slow in practice:

108 reads  1016 read-pairs

 heuristics exclude most of the read-pairs before overlap

- fragmented genome due to repeats

14 /29



Overlap-Layout-Consensus Assembly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)

2. layout the reads according to the overlaps

3. for each position, compute consensus base
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TTTGCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGACACTCCTTGGGTTTTTAC
Problems
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DeBruijn-Graph-Based Assembly

1. chop all reads into “k-mers”

real genomes: k = 30-50

2. build “DeBruijn graph”:

for each k-mer add arc from

left to right k-1 mer

3. find path using all overlaps

linear time with greedy

k=5

GAAC

AACT

ACTT
CTTC

TTCG

TCGC

CGCTCCTT

CTTG

TTGG
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DeBruijn-Graph-Based Assembly

1. chop all reads into “k-mers”

real genomes: k = 30-50

2. build “DeBruijn graph”:

for each k-mer add arc from

left to right k-1 mer

3. find Eulerian walk

linear time with greedy

k=5

GAAC

AACT

ACTT
CTTC

TTCG

TCGC

CGCTCCTT

CTTG

TTGG

Running Time

#k-mers = O(#reads · read-length)

1. O(1) per k-mer

2. O(1) per k-mer

3. O(size of graph) = O(#k-mers)

Note: edges can be weighted by #occurances
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DeBruijn-Graph-Based Assembly

1. chop all reads into “k-mers”

real genomes: k = 30-50

2. build “DeBruijn graph”:

for each k-mer add arc from

left to right k-1 mer

3. find Eulerian walk

linear time with greedy

k=5

GAAC

AACT

ACTT
CTTC

TTCG

TCGC

CGCTCCTT

CTTG

TTGG

Problems

- choose k well

I k too small  small repeats become problems
I k too big  miss smaller overlaps

- Eulerian walk not neccessarily unique

- some paths in DeBruijn graph inconsistent with reads

- read-errors problematic

 error-correction step before assembling

- same problem with repeats as OLC
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Correcting Read Errors in Suffix Trees

Example

CAACTTAC
CAACT
CAAC
AACTT
ACCTA
CTTAC

9

A

9

C

6

T

3

A

5

C

2

A

1

C

4

T

1

T

1

A

2

A

4

T

2

A

2

T

3

C

2

T

1

T

1

C

2

T

1

T

1

A

2

T

1

T

2

A

2

C

1

T

1

A

2

T

2

T

2

T

1

A

1

C

1

C
1

A

1

C

1

1

1

Idea: low freq. node with high freq. parent  ignore branch
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Correcting Read Errors in DBG

Idea

“faulty” k-mers occur less often

than correct ones

 build k-mer count histogram

De Bruijn

have to treat errors before

building the graph

k=30 & 1% error  1/4 faulty
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Correcting k-mer Errors

Example

suppose: avg. k-mer count = 10  each k-mer occurs about 10x

GCGTATTACGCGTCTGGCCT
CGTATT 8x

GTATTA 9x

TATTAC 7x

ATTACG 12x

TTACGC 9x

TACGCG 9x

ACGCGT 10x

CGCGTC 11x

GCGTCT 10x

CGTCTG 9x

GTCTGG 10x

TCTGGC 10x

CTGGCC 11x

TGGCCT 9x

GCGTATTACTCGTCTGGCCT
CGTATT 8x

GTATTA 9x

TATTAC 7x

ATTACT 1x

TTACTC 2x

TACTCG 2x

ACTCGT 1x

CTCGTC 1x

TCGTCT 1x

CGTCTG 9x

GTCTGG 10x

TCTGGC 10x

CTGGCC 11x

TGGCCT 9x
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Correcting k-mer Errors
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Correcting k-mer Errors

Problem

now we have an idea where an error is, but how to fix it?

Idea

errors turn frequent k-mers into infrequent ones

 correction should turn infrequent k-mers into frequent ones

 replace infrequent k-mer by “frequent neighbor”
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Intro: Genome Scaffolding

Recall: repeats (common in DNA) make assembly ambiguous

 end product is a set of “contiguous regions”

Problem: “contig soup” not very useful

But: with NGS, we have paired-end information!

 Scaffolding + Filling

Scaffolding

Goal: order & orient contigs

Idea: use pairing information on reads to “link” contigs together
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Hardness Warm up: Hamiltonian Path

Recall: Scaffolding
Input: Graph G , perfect matching M, weights ω, k, σp, σc ∈ N

Question: Can M be covered by ≤ σp alternating paths &

≤ σc alternating cycles of total weight ≥ k?

Construction

Given a directed graph D
1. make a copy of D

2. duplicate all vertices  M
3. “slide” down all arrow tips & ignore directions
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Question: Can M be covered by ≤ σp alternating paths &

≤ σc alternating cycles of total weight ≥ k?

Theorem

Scaffolding is NP-hard, even restricted to

• bipartite graphs

• (σp, σc) ∈ {(0, 1), (1, 0)} and

• ω : E → {0}

Corollary

Scaffolding with 2 weights is NP-hard in any

sufficiently dense graph class.
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Hardness Warm up: Hamiltonian Path

Recall: Scaffolding
Input: Graph G , perfect matching M, weights ω, k, σp, σc ∈ N

Question: Can M be covered by ≤ σp alternating paths &

≤ σc alternating cycles of total weight ≥ k?

Theorem

Exact Scaffolding is NP-hard, even restricted to

• supergraphs of bipartite graphs

• (σp, σc) ∈ {(0, 1), (1, 0)} and

• ω : E → {0, 1}

Corollary

Exact Scaffolding with 2 weights is NP-hard in any

sufficiently dense graph class.
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3-Approximation in Dense Graphs

σp = 1, σc = 1?

Approximate Scaffolding

1. sort all edges by weight

2. repeatedly take heaviest poss. edge
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Approximate Scaffolding
1. sort all edges by weight

2. repeatedly take heaviest poss. edge

Proof

Result S∗ is a valid solution X

Note: taking an edge forbids ≤ 3 OPT edges

 mark the ≤ 3 OPT-edges when taking an edge e
 e is heaviest among them

 3ω(S∗) ≥ OPT
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3-Approximation in Dense Graphs

σp = 1, σc = 1?

Approximate Scaffolding
1. sort all edges by weight

2. repeatedly take heaviest poss. edge

Theorem

Scaffolding in complete graphs can be

3-approximated in O(|V |2 log |V |) time.

Remark

For Exact Scaffolding, we have to keep an eye on the number of

components too.
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2-Approximation in Dense Graphs

σp = 1, σc = 1?

Approximate Scaffolding

1. compute max.-weight perfect

matching S
 S ∪M is collection of cycles

2. “fix” all but lightest edge per cycle

3. repeatedly flip any lightest non-fix

4-cycle intersecting 2 cycles

until at most σc + σp cycles remain

4. repeatedly remove lightest non-fix

cycle-edge

until at most σc cycles remain
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Result S∗ is a valid solution X

ω(S∗) ≥ ω(fix) ≥ ω(S)/2 ≥ OPT/2
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until at most σc cycles remain
Proof

Result S∗ is a valid solution X
ω(S∗) ≥ ω(fix) ≥ ω(S)/2 ≥ OPT/2
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3. repeatedly flip any lightest non-fix

4-cycle intersecting 2 cycles

until at most σc + σp cycles remain

4. repeatedly remove lightest non-fix

cycle-edge

until at most σc cycles remain
Theorem

Scaffolding in complete (bipartite) graphs can be

2-approximated in O(|V |2.5) time.
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Scaffolding with Multiplicities

Recall: most eucaryotes are diploid!

GGTGCGAGAGAGGTCATGGATTGCAACGA

GGTGCGAGAGGCCACTCCAATTGCAACGA

×2

×1

×1

×2
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Scaffolding with Multiplicities
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Linearization of Solutions

Problem

no unique chromosome-configuration explaining solution

uniquely linearizable = scaffold graph decomposes uniquely into

alternating paths using each edge “the correct” number of times

Proof
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Linearization of Solutions
Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof
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(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

3 2 2 1 3 3 5 5 7
1
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Linearization of Solutions
Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)

Proof

“⇐”: let (G ,M,m) be free of ambigous paths

Reduction (does not decrease number of linearizations):

5

2

2
2

 result is collection of alternating paths & cycles
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Linearization of Solutions
Theorem

(G ,M,m) uniquely linearizable ⇔ no “ambigous paths”

(=alt. path of uniform multiplicity µ & each end incident to non-contig < µ)
 must destroy ambiguous paths

Idea: remove non-matching edges at their endpoints; strategy?

Proposals

1. decide arbitrarily

 missassembly

2. isolate each ambiguous path

 information loss

3. cut as few ends as possible

 as hard as Vertex Cover

4. cut as few multiplicities as possible

 as hard as Trans. Del. (∆-free)
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