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> Molecular Bioloay Basics

DNA

base pair
/ - dougle strand

- nucleotides paired: A—T, C—G&G
- inside nucleus (eucaryotes)

hydrogen bonds

Adenine (A)
Thymine (T)
Cytosine (C)

Guanine (G)
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Molecular Bioloay Basics

DNA

- dourle strand
- nucleotides paired: A—T, C—G&G
- inside nucleus (eucaryotes)

RNA

- sinGle strand
- transported outside Nnucleus

- translated into actual
pProteins

- Thymine (T — Uracil (LD
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Molecular Bioloay Basics

Transeription = Translation
DNA — RNA = RNA — protein

Nucleus 5 ‘Growing amina

. q DNA " acid chain
L

tRNA

leaving Amino Acid
Transcription . £
- @, Transport to I )
= 7 N oopiasm ~ . tRNA
P e PP o
RNA & ~ RNA

docking
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Transeription = Translation
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Nucleus 5 ‘Growing amina

. q DNA " acid chain
L

tRNA

leaving Amino Acid
Transcription . £
- @, Transport to I )
= 7 N oopiasm ~ . tRNA
P e PP o
RNA & ~ RNA

docking

Polyverase
1 Polymerase
sinale strand — dourle strand domain
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Molecular Bioloay Basics

DNA
Introns = Exons

parts of DNA cut out when forming
MRNA (“splicinag™

- removed ~ "intron”

- NnoOt removed ~ "exon” mRNA
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Molecular Bioloay Basics
DNA
Introns < Exons

parts of DNA cut out when formina .
MRNA (“splicina™
- removed ~ ‘intron”
- NoOt removed ~ "exon" mRNA

Gene

Gene = START... STOP
(induding introns)
(I03-10°ep)
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Molecular Bioloay Basics

Chromosomes

- haplold = | set of chromosomes

- diploid = 2 sets of chromosomes
(usually one £rom each parent)

- ... ("polyploid™

- procaryotes ~» one (circular) chromosome, haploid

- eucaryotes ~» set of (linear) chromosomes,
polyploid

= Y 76@; N
S ) }‘f? ’%
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Mutation

Sinale-Nucleotide Polymorphism

- DNA damace
- caused By radioactivity, LV light, ...
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Mutation

Single-Nucleotide Polymorphism

. .AATCGCTAA..  _
. .AATCCTAA. . DNA damace

- caused By radiocactivity, UV liaht, ...
- insertion,
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Mutation

Single-Nucleotide Polymorphism

. .AATCCTAA. . _
. .AATCCCTAA. . DNA damace

- caused By radiocactivity, UV liaht, ...
- insertion, deletion,
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Mutation

Single-Nucleotide Polymorphism

. .AATCCCTAA..  _
. .AATCACTAA. . DNA demace

- caused By radiocactivity, UV liaht, ...
- Insertion, deletion, sugstitution
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Mutation

Single-Nucleotide Polymorphism

- DNA damace
- caused By radioactivity, LV light, ...
- Insertion, deletion, sugstitution

R_eplication Exror

- DNA rearranaement
- caused By errors in Meiosis/Mitosis
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Mutation

Single-Nucleotide Polymorphism

- DNA damace
- caused By radioactivity, LV light, ...
- Insertion, deletion, sugstitution

Ty
e

R_eplication Exror

- DNA rearranaement
- caused By errors in Meiosis/Mitosis
- duplication,

Ty 5 5 i
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Mutation

Single-Nucleotide Polymorphism
- DNA damace
- caused By radioactivity, LV light, ...

f’ . g - insertion, deletion, sustitution
:
s : R eplication Error
! J i
| ¥ - DNA rearranaement
i3 o : Sl il
{ o | - caused By errors in Meiosis/Mitosis
3 F - duplication, deletion (I0ss),
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Mutation

Single-Nucleotide Polymorphism

- DNA damace

- caused By radioactivity, LV light, ...
£ - insertion, deletion, sugstitution
[
E ; A
. R_eplication Error
g - DNA rearranaement
£

_' : - caused By errors in Meiosis/Mitosis
Ef - duplication, deletion (loss), translocation,
§
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Mutation

Single-Nucleotide Polymorphism

- DNA damace
- caused By radioactivity, LV light, ...
- Insertion, deletion, sugstitution

-7

R_eplication Exror

- DNA rearranaement
- caused By errors in Meiosis/Mitosis

- duplication, deletion (loss), translocation,
£ o inversion,

.FW-.F\._
SRS

»
SR
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Mutation

o

o

-.-rrmw—_ _.F_wf‘?a
e .

Single-Nucleotide Polymorphism
- DNA damace

- caused By radiocactivity, UV liaht, ...
- Insertion, deletion, sugstitution

R_eplication Exror

- DNA rearranaement
- caused By errors in Meiosis/Mitosis

- duplication, deletion (loss), translocation,
inversion, crossover
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Sanaer Sequencina (Sanaer et al 171

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGACCTGCCCAGTCTGTACTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA

Sanger Sequencing
1. make thousands of copies of taraet (“amplified cenome™
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Sanaer Sequencina (Sanaer et al 171

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGACCTGCCCAGTCTGTACTGTCACCGGGGTTCTAAGTGTTCTAGCATAGAGTTATGTCATTTGCTCGTTA

Sanger Sequencing

1. make thousands of copies of taraet (“amplified cenome™
2. split their helix
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Sanger Sequencina (Sancer et al 171
CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

Sanaer Sequencing

1. make thousands of copies of taraet (“amplified cenome™
2. split their helix
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Sanger Sequencina (Sancer et al 171
CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

Sanger Sequencing

1. make thousands of copies of taraet ("amplified cenome™
2. split their helix

3. add polyvmerase = floating rases: ACG T

4. add a special rase: A* (polywmerase cannot extend)
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Sanger Sequencina (Sancer et al 171
CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT

Sanger Sequencing

make thousands of copies of taraet (“amplified cenome™
split their helix

add polywverase < floating Bases: AC G T

add a special rase: A* (polywmerase cannot extend)

stir < let polywerase act

1l g> ©9 D =

&/29



Sanaer Sequencina (Sanaer et al 171

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

Sanger Sequencing

make thousands of copies of taraet (“amplified cenome™
split their helix

add polywverase < floating Bases: AC G T

add a special rase: A* (polywmerase cannot extend)

stir < let polywerase act

1l g> ©9 D =
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Sanaer Sequencina (Sanaer et al 171

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

GGACCTGCCCA*

Sanger Sequencing

make thousands of copies of taraet (“amplified cenome™
split their helix

add polywverase < floating Bases: AC G T

add a special rase: A* (polywmerase cannot extend)

stir < let polywerase act

1l g> ©9 D =
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Sanaer Sequencina (Sanaer et al 171

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

GGACCTGCCCA*

GGACCTGCCCAGTCTGTA*

Sanger Sequencing

make thousands of copies of taraet (“amplified cenome™
split their helix

add polywverase < floating Bases: AC G T

add a special rase: A* (polywmerase cannot extend)

stir < let polywerase act
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Sanaer Sequencina (Sanaer et al 171

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

GGACCTGCCCA*

GGACCTGCCCAGTCTGTA*

Sanger Sequencing

. Mmake thousands of copies of taraet ("amplified cenome™
. split their helix
. add polywverase < floatinag Bases: A C G T
. add a special rase: A* (polywmerase cannot extend)
. stir < let polywerase act
. Measure the lenath of each fraament
~ each length is the position of a T in the template

SO W=
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Sanaer Sequencina (Sanaer et al 171

CCTGGACGGGTCAGACATGACAGTGGCCCCAAGATTCACAAGATCGTATCTCAATACAGTAAACGAGCAAT
GGAx*

GGACCTGCCCA*

GGACCTGCCCAGTCTGTA*

Sanger Sequencing

make thousands of copies of taraet (“amplified cenome™
split their helix

add polywverase < floating Bases: AC G T

add a special rase: A* (polywmerase cannot extend)

stir < let polywerase act

measure the length of each fracment

~ each length is the position of a T in the template

o G o> @9 ) =

Prorlems

- frequency of longer reads decreases drastically

- lenath-estimate unreliagle after a couple hundred gp
~ chop DNA into pieces and read those

- repeated Bases unreliagle
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Next Generation Sequencing (i D
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Next Generation Sequencing (i )

ACTCA...... ACCTC

Preparation
1. chop DNA into smaller pieces (approximate size known)
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Next Generation Sequencing (i D

ACTCA...... ACCTC

Preparation

1. chop DNA into smaller pieces (approximate size known)
2. add anchors (and IDs) to each end of each piece

3. "flow cell" containing anchor places

Amplification

1. strand anchors its two ends to two anchor places
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Next Generation Sequencing (i D

...Acctc

Preparation e sTOA

1. chop DNA into smaller pieces (approximate size known)
2. add anchors (and IDs) to each end of each piece

3. "flow cell" containing anchor places

Amplification

1. strand anchors its two ends to two anchor places
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Next Generation Sequencing (i D

... TGGAG
~ . ACCTC

", . TGAGT
Preparation e sTOA
1. chop DNA into smaller pieces (approximate size known)
2. add anchors (and IDs) to each end of each piece

3. "flow cell" containing anchor places

Amplification

1. strand anchors its two ends to two anchor places

2. polymerase completes the strand into dourle-strand
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Next Generation Sequencing (i )

ACTCA...... ACCTC

CAGGTRRRR TGAGT

Preparation
1. chop DNA into smaller pieces (approximate size known)
2. add anchors (and IDs) to each end of each piece

3. "flow cell" containing anchor places

Amplification

1. strand anchors its two ends to two anchor places

2. polymerase completes the strand into dourle-strand

3. dourle strand is cut into single strands
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Next Generation Sequencing (i )

ACTCA...... ACCTC

CAGGTRRRR TGAGT

Preparation
1. chop DNA into smwaller pieces (approximate size known)
2. add anchors (and IDs) to each end of each piece

3. "flow cell" containing anchor places

Amplification

1. strand anchors its two ends to two anchor places

2. polymerase completes the strand into dourle-strand

3. dourle strand is cut into single strands

4. rinse, repeat (last 3 steps) until £low chip is "full”
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Next Generation Sequencing (i )

ACTCA...... ACCTC
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Next Generation Sequencing (i )

ACTCA...... ACCTC

CAGGTRRRR TGAGT

Preparation
1. chop DNA into smwaller pieces (approximate size known)
2. add anchors (and IDs) to each end of each piece
3. "flow cell" containing anchor places
Amplification
1. strand anchors its two ends to two anchor places
2. polymerase completes the strand into dourle-strand
3. dourle strand is cut into single strands
4. rinse, repeat (last 3 steps) until £low chip is "full”
Sequencing
1. add special (fluocrescent, non-extendaele) rases + polywerase
polyverase attaches one Base
camera takes picture of the flow cell
rinse, repeat (last 3 steps) until N0 more rases were added
9/29
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Next Generation Sequencing (i D

ACTCA...... ACCTC

"Paired-End

GAGGT...... TGAGT reads”
Preparation

1. chop DNA into smaller pieces (approximate size
2. add anchors (and IDs) to each end of each piece
3. "flow cell" containing anchor places
Amplification

1. strand anchors its two ends to two anchor places
2. polymerase completes the strand into dourle-strand
3. dourle strand is cut into single strands

4. rinse, repeat (last 3 steps) until £low chip is "full”
Sequencing
1. add special (fluorescent, non-extendarle) rases -iff
polywerase attaches one Base
camera takes picture of the flow cell
rinse, repeat (last 3 steps) until N0 Mmore BRases were addea

5= (D
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Third-Gen Sequencing: SMRT

[R hoads et al, 20I5]

Sinale Molecule R.eal Time Sequencing

1. fix a8 polywverase enzywe under a microscope

attach fluorescent molecule to each nuclectide

polywerase clips Off flucrescent molecule when attaching a Base
oBserve chanae in fluorescence ~ identify rase

S RCERN
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Third-Gen Sequencing: Packio

—— Voltage source

Unwinding enzyme

lonic current

Nanopores

1. "pore" of diameter -20nm

2. only single-strand may pass

3. Base at "Bottleneck” hinders
current

4. ~ “characteristic profile”
determines rase

I/ 29



Condalusion: Sequencing

v
o ae
e o
i T SR
method | & @ & o N
Sancer | 600-1000 0.001 0.03 500
llumina HiSea 2 x 250 0.1 4000 0.04
SMRT (Packio) 104 13 34 0.50
NanoPore (minlOND 5.103 38 0.3 11

[Rhoads et al, 20IS]
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Conclusion: Sequencing

%)
& w
< TN S
g o § 3
method | & @ & o N
Sanaer | 600-1000 0.001 0.03 500

llumina HiSea 2 x 250 0.1 4000 0.04
SMR.T (PacRio) 104 13 34 050
NanoPore (minlOND 5.103 38 0.3 11

[R.hoads et al, 2015]
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Seaquence Assemgly: Overview

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct sequence
Proelem |- only have (small) reads
|dea: overlap reads to form complete sequence
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Seaquence Assemgly: Overview

GCCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGAC
GCCCCTGAACTTCGC CGACACTCCTTGGGTTTT GGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct seqQuence
Proelem |- only have (small) reads
|dea: overlap reads to form complete sequence
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Seaquence Assemgly: Overview

CTAGGCCATTGATTGCGGGTC

GCCCCTGAACTT CGACACTCCTTGGGTTTT
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGAC
GCCCCTGAACTTCGC CGACACTCCTTGGGTTTT GGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct seqQuence
Proelem |- only have (small) reads
|dea: overlap reads to form complete sequence

Proelen 2: parts of the seqQuence micght NoOt Re covered Ry reads
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Seaquence Assemgly: Overview

CTAGGCCATTGATTGCGGGTC

GCCCCTGAACTT CGACACTCCTTGGGTTTT
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGAC
TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGAC

Goal: reconstruct sequence
Proelem |- only have (small) reads
|dea: overlap reads to form complete sequence

Proelen 2: parts of the seqQuence micght NoOt Re covered Ry reads
~ sequence with "high coverace"
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Seaquence Assemgly: Overview

GCCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGAC
TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGAC
GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct seqQuence
Proelem |- only have (small) reads
|dea: overlap reads to form complete sequence

Proelen 2: parts of the seqQuence micght NoOt Re covered Ry reads
~ seuence with "high coverace”
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Seauence Assemgily: Overview

GCCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGAC
TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGAC

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Goal: reconstruct seqQuence
Proelem |- only have (small) reads
|dea: overlap reads to form complete sequence

Proelem 3: Shortest Common Superstring is NP-hard
~ Heuristic Assemply:
- Overlap-Layout-Consensus

- DeBruijn-Graph
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

/29



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Naive Overlap

AGGAGTC
GAGTCCA—
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)
Naive Overlap
AGGAGTC
GAGTCCA
~ Ol4kreads? read-lenath) time worst-case
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)
Suftix Trees

annotate Branches with strinas such that:
1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix
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1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Suftix Trees

annotate Branches with strinas such that:
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

example: BANANAS -~

BANANAO
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

example: BANANAS

ANAKIAS

BANANAO

/29



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

example: BANANAS

/29



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

example: BANANAS

/29



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

example: BANANAS

/29



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

example: BANANAS
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Over‘lap Layout-Consensus Assemsly
. Produce pairwise overlaps (All-Pairs Sulfix-Prelfix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

example: BANANAS

AQ
yé? BANANAG

1] [O]

~ Olread-lenath?) time < space
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Over‘lap Layout-Consensus Assemsly
. Produce pairwise overlaps (All-Pairs Sulfix-Prelfix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

example: BANANAS

BANANAC
1] [O]

~ Olread-lenath) time < space
can Be improved to linear time < space
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Over‘lap Layout-Consensus Assemsly
. Produce pairwise overlaps (All-Pairs Sulfix-Prelfix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

exercise: joined suffix tree for AGGAGTCO and GAGTCCAD

Exercise
Tiwve
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Over‘lap Layout-Consensus Assemsly
. Produce pairwise overlaps (All-Pairs Sulfix-Prelfix)

Suftix Trees

annotate Branches with strinas such that:

1. each root—leaf path is a subfix (leat lareled with start index)
2. NO two siBlinGgs have a common prefix

exercise: joined suffix tree for AGGAGTCO and >

Alao:
Ly =rsup

-Ph(—r\od
= has edee lagel -20 fedyd
DES Wi & oo

ith
d|500Ve '—H=r‘eads stacks:

dd
Bae‘ﬂfr‘aek p

dlseover 'Pu”‘r‘ead f .pM stacks .
~
Output tops of Stacks

~ O(4kreads - read-lenath + dkreads?) [Gustield et al'92]
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

AGGAGTC
GGTCTCA—
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1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

AGGAGTC
GGTCTCA
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

AGGAGTC
GAGTCTCA
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Subfix-Prefix)
Fuzzy Overlap — Edit Distance

AGGAGTC

g GAGTCTCA ] -
edit distance = 4k of insertions, deletions, and suestitutions
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

dynamic proaramming where
Liy] = edit distance of X; = Y .

= nnir\{+ 1L[=]+ 1,+ idx;. v, }

A G G A G T C

= Q3
O—PWEFONT 2

- - - VR
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

dynamic proaramming where
Liy] = edit distance of X; = Y .

= nnir\{+ 1L[=]+ 1,+ idx;. v, }

A G G A G T

== Q30
O—PWEFONT 2
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

dynamic proaramming where
Liy] = edit distance of X; = Y .

= nnir\{+ 1L[=]+ 1,+ idx;. v, }

A G G A G T

> QA Q@@
———PWEOTa

O—-MTPWEFNT 2

BN
L)
0+
Fw
w w
RS

/29



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

dynamic proaramming where
Liy] = edit distance of X; = Y .

= nnir\{+ 1L[=]+ 1,+ idx;. v, }

QA Q- Q@
BER DR R VR O B S
TOODDDFWae
NFEFFFFwEa
FWFOWWE F=
WWWPRPWWEa
PP —PWE G-
———PWEOTa

O—PWEFONT 2

/29



Overlap-Layout-Consensus Asse/|Zuais
1. produce pairwise overlaps (All-Pairs Sustix-- RINAE

Fuzzy Overlap — Edit Distance

dynamic proaramming where
Lij] = edit distance of X = Y.

= mir\{+ 1L[=]+ 1,+ idx;. v, }

A G G A G T

QA 0+A Q@
00000000

1T 6 S 4+ 3 2 |
modification: any suffix of GGTCTCA for free
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

dynamic proaramming where
Liy] = edit distance of X; = Y .

= nnir\{+ 1L[=]+ 1,+ idx;. v, }

A G G A G T C
¢ I O
¢ I O
T I O
C O O
T I O
¢ O O
A b S 4+ 3 3 2 | O

1T 6 S 4+ 3 2 | O

modification: any suffix of GGTCTCA for free
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

dynamic proaramming where
Liy] = edit distance of X; = Y .

= nnir\{+ 1L[=]+ 1,+ idx;. v, }

¢
|
|
|
O
|
O
|
|

PaHaHdoao
AT TANNNF W=
NFFLVLWWPN —a@
FLWUWPPD——=
WWNe ———-—0—a
NS =0 =0 ==
Q0000000

G
2
2
o
o
e
S
S
b
o

modification: any suffix of GGTCTCA for free
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix—Prefix)

Fuzzy Overlap — Edit Distance

dynamic proaramming where
Liy] = edit distance of X; = Y .

= nnir\{+ 1L[=]+ 1,+ idx;. v, }

¢
|
|
|
O
|
@
|
|

O N e N RPN >!
AT T OO0 F W
TONEEFWPG
NFFLUWWP —a
FWWPPP——
WWR———0—a
PP —0—0—N~
00000000

modification: any subfix of GGTCTCA for free
~ Best overlaps with k errors in O(dkreads? - read-lenath:)
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Subfix-Prefix)
2. layout the reads according to the overlaps
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
2. layout the reads according to the overlaps
Overlap Graph

reads = vertices
directed edaes = overlaps

GCTAGTGGCTAG
TGGCTAGGGTC
CTAGGGTCCGGA
AGGGTCCGGAATTA

4729



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
2. layout the reads according to the overlaps
Overlap Graph

reads = vertices
directed edaes = overlaps

GCTAGTGGCTAG
TGGCTAGGGTC
CTAGGGTCCGGA
AGGGTCCGGAATTA

~ transitive reduction
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
2. layout the reads according to the overlaps
Overlap Graph

reads = vertices
directed edaes = overlaps

GCTAGTGGCTAG
TGGCTAGGGTC
CTAGGGTCCGGA
AGGGTCCGGAATTA

~ transitive reduction

/29



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
2. layout the reads according to the overlaps
Overlap Graph

reads = vertices
directed edaes = overlaps

ACTAGTAGTAGCCT
ACTAG

(fiéAG
TAGTAG

TAGCCT

4729



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
2. layout the reads according to the overlaps
Overlap Graph

reads = vertices
directed edaes = overlaps

ACTAGTAGTAGCCT
ACTAG

AGTAG
K—TAGTAG
TAGCCT
~ overlap araph non-linear due to repeats

4729



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Suffix-Prefix)
2. layout the reads according to the overlaps
Overlap Graph

reads = vertices
directed edaes = overlaps

ACTAGTAGTAGCCT
ACTAG

AGTAG
K—TAGTAG
TAGCCT
~ overlap araph non-linear due to repeats

~ only return non-eranching parts (‘contias™: ACTAGTAG < TAGCCT

4729



Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Subfix-Prefix)
2. layout the reads according to the overlaps
3. for each position, compute consensus Rase
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Subfix-Prefix)
2. layout the reads according to the overlaps
3. for each position, compute consensus rase

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

GCCCCTGAACTC CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGAC
TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGAC
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Subfix-Prefix)
2. layout the reads according to the overlaps
3. for each position, compute consensus rase

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGTTCTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

GCCCCTGAACTC CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGTC
ACTTCGC GGTTCTCT GGTCCAGGTGCTGTCAACGAC
TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG CGAC

GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC
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Overlap-Layout-Consensus Assemgly
1. produce pairwise overlaps (All-Pairs Subfix-Prefix)
2. layout the reads according to the overlaps
3. for each position, compute consensus Rase

Prorlems

- overlap step too slow In practice:
IO8 reads ~ IO¥ read-pairs
~ heuristics exclude most of the read-pairs refore overlap

- fraamented cenome due to repeats
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DeBruijn-Graph-Based Assemrly

1. chop all reads into "k-mers"
real cenomes: k = 30-50
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DebBruijn-Graph-Based Assemmmys

Tive k=5

1. chop all reads into "k-mers"
real cenomes: k = 30-50

2. guild "DePruijn araph™
for each k-mer add are from
left to right k-l mer

. .GAACTTCGCT. . . .CCTTGG. .
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DeBruijn-Graph-Based Assemrly
>

1. chop all reads into "k-mers"
real cenomes: k = 30-50

2. Build "DePruijn araph":
for each k-mer add are £rom
left to right k-| mer

bl B
. .GAACTTCGCT. . . .CCTTGG. .
.GAAC .CCTT
GAACT CCTTG
AACTT TTGG.
ACTTC
CTTCG
TTCGC
TCGCT

15/29



DeBruijn-Graph-Based Assemrly

k=5
1. chop all reads into "k-mers"
real cenomes: k = 30-50
2. guild "DePruijn araph™
for each k-mer add are from
left to right k-l mer \
AT A S SS
. .GAACTTCGCT. . CCTRICE. .
.GAAC .CCTT
GAACT CCTTG
AACTT TTGG.
ACTTC
CTTCG
TTCGC
TCGCT

15/29



DeBruijn-Graph-Based Assemrly

1. chop all reads into "k-mers"
real cenomes: k = 30-50

2. guild "DePruijn araph™
for each k-mer add are from
left to right k-| mer

7
. .GAACTTCGCT. . . .CCTTGG. .
.GAAC .CCTT
GAACT CCTTG
AACTT TTGG.
ACTTC
CTTCG . .CCTTC. .
TTCGC o o G
TCGCT

15/29



DeBruijn-Graph-Based Assemrly

1. chop all reads into "k-mers"
real cenomes: k = 30-50

2. Build "DePruijn araph":
for each k-mer add are $rom
left to right k-l mer

3. £ind path using all overlaps

15/29



DeBruijn-Graph-Based Assemrly

1. chop all reads into "k-mers"
real cenomes: k = 30-50

2. guild "DePruijn araph™
for each k-mer add are from
left to right k-l mer

3. find Eulerian walk

linear time with areedy
A

SN AN
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DeBruijn-Graph-Based Assemrly

k=5
1. chop all reads into "k-mers"
real cenomes: k = 30-50
2. guild "DePruijn araph™
for each k-mer add are from
left to right k-l mer \
3. find Eulerian walk
linear time with areedy
AT A S SS

R.unnina Time

dkk-mers = O(dEreads - read-lenath)

1. O per k—mer

2. OO per k-mer

3. O(size of araph) = O(dk-mers)

Note: edaes can Be weichted By #Eoccurances

15/29



DeBruijn-Graph-Based Assemrly

1. chop all reads into "k-mers"
real cenomes: k = 30-50

2. guild "DePruijn araph™
for each k-mer add are $rom
left to right k-l mer

3. find Eulerian walk
linear time with areedy

Prorlems

choose k well
> k to0o small ~ swall repeats Become prorlems
> k tOO0 Big ~~ Mmiss smaller overlaps

- Eulerian walk not neccessarily uniQue
- some paths in DeBruijn araph inconsistent with reads

- read-errors proglematic
~ error-correction step refore assemgling

- same proelem with repeats as OLC

15/29



Correcting R.ead Errors in Suffix Trees

Example

CAACTTAC
CAACT
CAAC
AACTT
ACCTA
CTTAC
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Correcting R.ead Errors in Suffix Trees

Example

CAACTTAC
CAACT
CAAC
AACTT
ACCTA
CTTAC

|[dea: low $frea@ node with high frea parent ~~ ianore Branch
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Correcting R.ead Errors in Suffix Trees

Example

CAACTTAC
CAACT
CAAC
AACTT
ACCTA
CTTAC

l[dea: low fre@ node with hicgh frea parent ~~ ianore Branch
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Correcting Read Errors in DBG&G

ldea De Bruijn
"faulty’ k-mers ocour less often have to treat errors gefore
than correct ones _uUilding the araph
~ BUild k-mer count histoaram k=30 = I% error ~ I/4 faulty
44.5 — I
E
o 1.5 |
@
E
ul
5 9 f
=
£ I
E 5
Z i i
o o Jn|-:-|]|D|I]|[|ﬂ|['[|]|hﬂl TUR LA ol i ol el dal ol bl .}.J.”J.[.].I..n.n..;.
T I T T T ]
0 10 20 30 40 50

31-mer coverage
[1/29



Correcting k-mer Errors

Example

Suppose: ava. k-mer count = IO ~~ each k-mer occurs arout (Ox

GCGTATTACGCGTCTGGCCT
CGTATT &x
GTATTA 9x
TATTAC Tx
ATTACG [2x
TTACGC 9%
TACGCG 9%
ACGCGT |IOx
CGCGTC IIx
GCGTCT IOx
CGTCTG 9x
GTCTGG IOx
TCTGGC [Ox
CTGGCC IIx
TGGCCT 9x

GCGTATTACTCGTCTGGCCT
CGTATT &x
GTATTA Sx
TATTAC Ix
ATTACT
TTACTC
TACTCG
ACTCGT
CTCGTC
TCGTCT
CGTCTG 9x
GTCTGG [Ox
TCTGGC [Ox
CTGGCC IIx
TGGCCT 9x

18/29



Correcting k-mer Errors

count

2 4 6 8 10

These probably
overlap an error

o}

& =0

| | |
8 10 12

o —P

k-mer position
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Correcting k-mer Errors

Proglem
Now we have an idea where an error is, But how to fix it?

l[dea

errors turn frequent k-mers INto infrequent ones
~s correction should turn infrequent k-mers iINto frequent ones
~ replace infrequent k-mer By "frequent neicheor”

20/29



Intro: Genome Scaffolding

R ecall: repeats (common in DNA) make assemply ampiauous
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Proelem: "contia soup” Nnot very useful

But: with NGS, we have paired-end information!

~ Scaftoldina + Fillina
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Intro: Genome Scaffolding

R ecall: repeats (common in DNA) make assemply ampiauous
~» end product is a set of "contiquous reaions”

Proelem: "contia soup” Nnot very useful

But: with NGS, we have paired-end information!

~ Scaftoldina + Fillina

Scatfolding

Goal: order + orient contias
|[dea: use pairing information on reads to "link" contias toaether

21/29



Graph—-Pased Scaffolding

GTTAAT
GT
CCGAGCATXAAACTCTG
GTTGGC

GTACTGAACTTGGGTTCCATAGGACCCAGA

G
7z
e
e
07004 AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
rp

22./29



Graph—-Pased Scaffolding

oG GTTpy
G@Q,C TGTCCGAGC AT,
i 4444cTerg,
,Vgc,\‘z“" TTge
cC
pCH
GhO
¢ o, GTACTGAACTTGGGTTCCATAGGACCCAGA
6
e
.
G
770000
07004 AGAGCTTGACAGTAACACATTTAGGAGCACGCG
66y,
Gey,

Strateay
1. map reads into contias

22./29



Graph—-Pased Scaffolding

C
3¢ GT:
Esﬂcgme TAATcchcAccA TAap,
T ACTC!
‘xGGG“‘ 66166
C
QGBC“C‘C ACTTGGG
o, GTACTGAACTTGGGTTCCATAGGACCCAGA
6
e
.

G
7z
e
e
GQQQ AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
(5}

Strateay
1. map reads into contias
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Graph—-Pased Scaffolding

e
G G
oot s T4 T6TCCqy 6,
g b VY AcTer,
2O 66TTgge
B alaiaey
e o ACTTGGG
o GTACTGAACTTGGGTTCCATAGGACCCAGA
ey, CTACTGA
4
7
7'}6,000
2e, AGAGCTTGACAGTAACACATTTAGGAGCACGCG
S,
7’@07

Strateay
1. map reads into contias
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Graph—-Pased Scaffolding

GG GTT44
RCES TeTCegyq,
pC ATAdAscrer,
GG6TTge

GTACTGAACTTGGGTTCCATAGGACCCAGA

2,

40000

0y,

42,
7
GCG‘(:@
e, AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
rp
@

Strateay

1. map reads into contias
2. pair contias according to read-pairing (weichted)
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Graph—-Pased Scaffolding

GG GTT44
RCES TeTCegyq,
pC ATAdAscrer,
GG6TTge

GTACTGAACTTGGGTTCCATAGGACCCAGA

2,

40000

0y,

42,
7
GCG‘(:@
e, AGAGCTTGACAGTAACACATTTAGGAGCACGCG
%,
76,
rp
@

Strateay

1. map reads into contias
2. pair contias according to read-pairing (weichted)
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Graph—-Pased Scaffolding

1o OTTA 4
reed T6Teegyq,
nC ATAy
ACTCTggy
e

i\
Owd‘ Q. (OGTACTGAACTTGGGTTCCATAGGACCCAGAQ)

2
4
o,
47,
G4z,
Cegg,
0?004 (OFAGCTTGACAGTAACACATTTAGGAGCACGQD)
e%o
S

Strateay

1. map reads into contias
2. pair contias according to read-pairing (weichted)
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Graph—-Pased Scaffolding

OTTA ATGT
0 ey
““Ccﬁc CCeaGcy TAAy AcTerg
Rl T
3¢
ACP
Owd’ Oo, (OGTACTGAACTTGGGTTCCATAGGACCCAGAQ)
46
00047
7t
(I
2
CGC’
0?004 (OFAGCTTGACAGTAACACATTTAGGAGCACGQD)
66y,
oorco

1. map reads Into contias

2. pair contias according to read-pairing (weighted)

3. cover "scaffold araph’ with (heavy) alternating paths
each path corresponds to a chromosome
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Graph—-Pased Scaffolding

OTTA ATGT
0 ey
““Ccﬁc CCeaGcy TAAy AcTerg
Rl T
3¢
ACP
Owd’ Oo, (OGTACTGAACTTGGGTTCCATAGGACCCAGAQ)
46
00047
7t
(I
2
CGC’
0?004 (OFAGCTTGACAGTAACACATTTAGGAGCACG(D)
66y,
oorco

1. map reads Into contias

2. pair contias according to read-pairing (weighted)

3. cover "scaffold araph’ with (heavy) alternating paths
each path corresponds to a chromosome

22./29



Graph—-Pased Scaffolding

o, OTTAA TG
ﬁﬂ\oﬂm CCGAGCA TAAAACT(;T
G
C'VKGGC‘“ TToeq®
o3¢
O
Owd‘ Q. (OGTACTGAACTTGGGTTCCATAGGACCCAGAD)

2
4
o,
47,
G4z,
Cegg,
6’7004 (OFAGCTTGACAGTAACACATTTAGGAGCACG(D)
CC’%
%0

Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0, € N

Question: Can M ee covered Ry
- <o, paths

of total weight > k7
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Graph—-Pased Scaffolding

o, OTTAA TG
“QIACCSCG CCGAGCA TAAAACT(;T
G
C'VKGGC‘“ TToeq®
o3¢
O
Owd‘ Q. (OGTACTGAACTTGGGTTCCATAGGACCCAGAD)

2
4
o,
47,
G4z,
Cegg,
0?004 (OFAGCTTGACAGTAACACATTTAGGAGCACG(D)
e%o
%0

Scatfolding
Input: Graph G, perfect matchina M, weights w, k,0,,0. € N
Question: Can M ee covered Ry
- <o, paths <
- <o aycles
of total weight > k?
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Graph—-Pased Scaffolding

- Otrapg,
(3¢6” 6TCCeagey
i
[\© Adq
3T ACTCTgq
TTecggy

(OGTACTGAACTTGGGTTCCATAGGACCCAGAQ)

2
4
o,
47,
G4z,
Cegg,
6’7004 (OFAGCTTGACAGTAACACATTTAGGAGCACG(D)
CC’%
%0

Exact Scaffolding
Input: Graph G, perfect matchina M, weights w, k,0,,0. € N

Question: Can M ee covered Ry
o paths
= @ aycles

of total weight > k?
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23/29



7L

ES

23/29






Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N
Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7

Construction

Given a directed araph D
1. make a copy of D

24/29
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R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N
Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7

Construction

Given a directed araph D
1. make a copy of D
2. duplicate all vertices ~~ M
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Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7
Construction i

Given a directed araph D

1. make a copy of D

2. duplicate all vertices ~~ M

3. "slide" down all arrow +tips < ianore directions

24/29



Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N
Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7

. Tiii

D admits a directed Hamiltonian path < M can Be covered with a
single aHternating path in G
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Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N
Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7

. Tiii

D admits a directed -Hamiltonian path < M can re covered with a
single aHternating path in G

"=" replace each v in the Hamirtonian path BY vicw — Wiah
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Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N
Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7

. Tiii

D admits a directed -Hamiltonian path < M can re covered with a
single aHternating path in G

"=" replace each v in the Hamirtonian path BY vicw — Wiah
alternating covers M

24/29



Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N
Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7

. Tiii

D admits a directed -Hamiltonian path < M can re covered with a
single aHternating path in G

"<" contract each matchina edae in the covering alternating path

24/29



Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N
Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7

. Tiii

D admits a directed -Hamiltonian path < M can re covered with a
single aHternating path in G

"<" contract each matchina edae in the covering alternating path
hits all vertices exactly once is valid directed path

24/29



Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7
Theorem i i
Scaftoldinag is NP-hard, even restricted to

o Bipartite araphs
o (0p,0c) €{(0,1),(1,0)} and
e w: E— {0}
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Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can M Be covered By < g, paths =
<o, cydles of total weight > k7
Theorem i i
Scaftoldinag is NP-hard, even restricted to

e superaraphs Of Bipartite araphs
o (0p,0c) €{(0,1),(1,0)} and
e w:E— {01}
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Hardness \Warm up: Hamirtonian Path

R ecall: Scatfolding
Input: Graph G, perfect matchina M, weiahts w, k,0,,0. € N

Question: Can M Be covered By < g, paths =
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Exact Scaffolding is NP-hard, even restricted to
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C/) O\O Approximate Scaflolding

1. sort all edges By weight
X 2. repeatedly take heaviest pOss. edae

4

P — I
Proo#
Result S* is a valid solution
Note: taking an edae foreids < 3 OPT edaes
~ mark the < 3 OPT-edaes when taking an edce e

~ e Is heaviest among them
~ 3w(S*) > OPT
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3-Approximation in Dense Graphs

C/) O\O Approximate Scallfolding

1. sort all edaes By weiaht
X 2. repeatedly take heaviest pOss. edae

C/D

P — I
Theorem
Scaffolding in complete (Bipartite) araphs can re
3-approximated in O(|V|%log |V]) time.
R.emark

For Exact Scaffolding, we have to keep an eye on the numeer of
components too.
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Proo#
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3. repeatedly flip any lichtest non-
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f until at most o + g, cydles remain
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Scaffolding with Mukiplicities

R ecall: most eucaryotes are diploid!
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GGTGCGAGAGGCCACTCCAATTGCAACGA
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Scaffolding with Mukiplicities

R ecall: most eucaryotes are diploid!

<l
O—O
X2 2
H H
x1
O—O
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Proeglem
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uniQuely linearizagle = scaffold araph decomposes uniQuely into
arternatina paths using each edae “the correct” numeer of times

29/29



Linearization of Solutions

Proeglem
NO uniQue chromosome-configuration explaining solution

uniQuely linearizagle = scaffold araph decomposes uniQuely into
arternatina paths using each edae “the correct” numeer of times

29/29



Linearization of Solutions

Proeglem
NO uniQue chromosome-configuration explaining solution

uniQuely linearizagle = scaffold araph decomposes uniQuely into
arternatina paths using each edae “the correct” numeer of times

29/29



Linearization of Solutions
Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u < each end incident to non-contia < w)

29/29



Linearization of Solutions
Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u < each end incident to Nnon-contia < i)

29/29



Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u < each end incident to non-contia < w)
Proo#f

"=" contraposition; let p = amriaous path

29/29



Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u < each end incident to non-contia < w)
Proo#f

"=" contraposition; let p = amriaous path

29/29



Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u < each end incident to non-contia < w)
Proo#f

"=" contraposition; let p = amriaous path

29/29



Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u < each end incident to non-contia < w)
Proo#f

"=" contraposition; let p = amriaous path

~ (G, M, m) not uniquely linearizarle

29/29



Linearization of Solutions
Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u < each end incident to non-contia < w)

Proos

"<"let (G, M, m) Be free Of ampiaous paths
R eduction (does Nnot decrease Nnumper of linearizations):

29/29



Linearization of Solutions
Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"
=alt. path of uniform multiplicity u < each end incident to non-contia < w)

Proos

"<"let (G, M, m) Be free Of ampiaous paths
R eduction (does Nnot decrease Nnumper of linearizations):

29/29



Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u < each end incident to non-contia < w)
Proo#f

"<"let (G, M, m) Be free Of ampiaous paths
R eduction (does Nnot decrease Nnumper of linearizations):

29/29



Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u < each end incident to Nnon-contia < i)
Proo#f

"<"let (G, M, m) Be free Of ampiaous paths
Reduction (does Not decrease numeer of linearizations):

29/29



Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u < each end incident to Nnon-contia < i)
Proo#f

"<"let (G, M, m) Be free Of ampiaous paths
Reduction (does Not decrease numeer of linearizations):

ISP -
e E! o=
2 So
) .

29/29



Linearization of Solutions

Theorem

(G, M, m) uniQuely linearizarle < NO "amBicous paths"

=alt. path of uniform multiplicity u < each end incident to Nnon-contia < i)
Proo#f

"<"let (G, M, m) Be free Of ampiaous paths
Reduction (does Not decrease numeer of linearizations):

E

IEe E! o’
2 So
3 .

~ result is collection of artternating paths < cyales
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