Real-Time Scheduling – TD 2 IMC4-1RT

25 novembre 2011

Notations

 $\Psi = \{\tau_1, ..., \tau_n\}$ is a set of *n* real-time periodic tasks each one characterized by $\tau_i = (C_i, D_i, T_i)$ where C_i is its worst case execution time (WCET), D_i its relative deadline and T_i its period.

 $\Phi = \{J_1, ..., J_m\}$ is a set of m aperiodic tasks, each task J_i characterized by (r_i, C_i) which are respectively its release date and its worst case execution time.

1 Synchronisation Protocols

Let us consider the system described in table 1, schedule with a preemptive fixed priority scheduler.

	Task	release	wcet	deadline	period	Priority
	$ au_1$	4	1 + 2(Blue) + 5(Yellow) + 1	20	20	16
	$ au_2$	2	1 + 2(Blue) + 1	20	20	14
ĺ	$ au_3$	0	1 + 5 (Yellow) + 1	20	20	12

Table 1 – system $S4_{\tau}$

- 1. draw and explain execution with PIP
- 2. draw and explain execution with PCE
- 3. draw and explain execution with PCP

2 Aperiodic Tasks

Let us consider $\Psi = \{(1, 5, 5), (2, 8, 8)\}$:

1. is Ψ schedulable with RM?

We now want to add a Polling Server in the system :

- 2. Give the maximal load for the server U_s to keep the system verifying the sufficient load condition with RM. Deduce three values for C_s respectively when $T_s=4$, $T_s=7$ and $T_s=10$.
- 3. For the case T=7, draw the schedule obtained on interval [0,20] for aperiodic tasks: $\{J_1=(2,3),J_2=(7,2),J_3=(9,1)\}.$
- 4. (bonus) same for $T_s = 4$ and $T_s = 10$.

Instead of the Polling Server, we want to use now a Deferrable Server :

5. Compute the maximal utilization load Us=Cs/Ps we can use for the server.

- 6. Deduce its minimal period (an integer) to obtain a capacity of 2 time units.
- 7. draw the schedule obtained on interval [0, 25] with the same tasks as question 3.
- 8. (bonus) same with a capacity of 1.
- 9. Are response times better for aperiodic? Comment.
- 10. Draw on interval [0, 25] the schedule we obtain with a slack stealer.
- 11. Are response times better for aperiodic? Comment.

3 Precedence Constraints

1. draw the DAG of precedences corresponding to : $J_1 \rightarrow J_3$, $J_2 \rightarrow J_3$, $J_2 \rightarrow J_4$, $J_3 \rightarrow J_5$, $J_3 \rightarrow J_6$, $J_4 \rightarrow J_6$, $J_4 \rightarrow J_7$. The following tabular give us the parameters of the tasks. Compute the new wake up values and deadline in order to schedule the system with EDF

	J_1	J_2	J_3	J_4	J_5	J_6	J_7
C_i	2	3	3	5	1	2	5
d_i	13	15	25	9	20	17	22
r_i	0	1	12	0	10	0	0

2. (bonus) Draw the obtain schedule. Are the constraints satisfied?