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1. Introduction

1.1. Texts and their processing

One of the simplest and natural types of information representation is by means of

written texts. Data to be processed often does not decompose into independent records. This

type of data is characterized by the fact that it can be written down as a long sequence of

characters. Such linear sequence is called a text. The texts are central in "word processing"

systems, which provide facilities for the manipulation of texts. Such systems usually process

objects which are quite large. For example, this book contains probably more than a million

characters. Text algorithms occur in many areas of science and information processing. Many

text editors and programming languages have facilities for processing texts. In biology, text

algorithms arise in the study of molecular sequences. The complexity of text algorithms is also

one of the central and most studied problems in theoretical computer science. It could be said

that it is the domain where the practice and theory are very close together.

The basic textual problem is the problem called pattern matching. It is used to access

information and probably many computers are solving in this moment this problem as a

frequently used operation in some application system. Pattern-matching is comparable in this

sense to sorting, or to basic arithmetic operations.

Consider the problem of a reader of the French dictionary "Grand Larousse", who wants

all entries related to the word "Marie-Curie-Sklodowska". This is an example of a pattern

matching problem, or string-matching. In this case, the word "Marie-Curie-Sklodowska" is the

pattern. Generally we may want to find a string called a pattern of length m inside a text of

length n where n is greater than m. The pattern can be described in a more complex way to

denote a set of strings and not only a single word. In many cases m is very large. In genetics

the pattern can correspond to a genome that can be very long, in image processing the digitized

images sent serially take millions of characters each. The string-matching problem is the basic

question considered in the book, together with its variations. String-matching is also the basic

subproblem in very other algorithmic problems on texts. Below there is a (not exclusive) list of

basic groups of problems discussed in the book :

variations on the string-matching problem,  problems related to the structure of the

segments of a text, data compression, approximation problems, finding regularities, extensions

to two-dimensional images, extensions to trees, optimal time-space implementations, optimal

parallel implementations.

The formal definition of the string-matching and many other problems is given in the

next chapter. We introduce now some of them informally in the context of applications.



1.2 Text file facilities

The Unix system uses as a main feature text files for exchanging information. The user

can get information from the files and transform them through different existing commands.

The tools often behave as filters that read their input once and produce the output

simultaneously. These tools can be easily connected with each others, and especially through

the pipelining facility. This often reduces the creation of new commands to few lines of already

existing commands.

One of these useful commands is grep, acronym of "general regular expression print".

An example of the format of grep is

grep  Marie-Curie-Sklodowska  Grand-Larousse

provided "Grand-Larousse" is a file on your computer. The output of this command is the list

of lines from the file which contain an occurrence of the word "Marie-Curie-Sklodowska".

This is an  instance of the string-matching problem. Another example with a more

complex pattern can be

grep  '^Chapter [0-9]'  Book

to list the titles of a book assuming titles begin with “Chapter” followed by a number. In this

case the pattern denotes a set of strings (even potentially infinite), and not only one string. The

notation to specify patterns is known as regular expressions. This is an  instance of the

regular-expression-matching problem.

The indispensable complement of grep is sed (stream editor). It is designed to transform

its input. It can replace patterns of the input by specific strings. Regular expressions are also

available with sed. But the editor contains an even more powerful notation. This allows, for

instance, the action on a line of the input text containing twice same word. It can be applied to

delete two consecutive occurrences of a same word in a text. This is both an  instance of the

repetition-finding  problem, pattern-matching problem and, more generally, the problem of

finding regularities in strings.

The very helpful matching device based on regular expressions is omnipresent in the

Unix system. It can be used inside text editors such as ed and vi, and generally in almost all

Unix commands. The above tools, grep and sed, are based on this mechanism. There is even a

programming language based on pattern matching actions. It is the awk language, where the

name awk comes from the initials of the authors, Aho, Weinberger and Kernighan. A simple

awk program is a sequence of pattern-action statements :

pattern1 { action1 }

pattern2 { action2 }

pattern3 { action3 }
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The basic components of this program are pattern to be find inside the lines of the current file.

When a pattern is found, the corresponding action is applied to the line. So, several actions may

be applied sequentially to a same line. This is an  instance of the multi-pattern matching

problem. The language awk is meant for converting data from one form to another form,

counting things, adding up numbers and extracting information for reports. It contains an

implicit input loop, and the pattern-action paradigm often eliminate control flow. This also

frequently reduces the size of a program to few statements.

For instance, the following awk program prints the number of lines of the input that

contain the word "abracadabra" :

abracadabra { count++ }

END { print count }

The pattern "END" matches the end of input file, so that the result is printed after the input has

been entirely processed. The language contains nice features that strengthen the simplicity of the

pattern matching mechanism, such as default initialization for variables, implicit declarations,

and associative arrays providing arbitrary kinds of subscripts. All this makes awk a convenient

tool for rapid prototyping.

The language awk can be considered as a generalization of another Unix tool, lex, aimed

at producing lexical analyzers. The input of a lex program is the specification of a lexical

analyzer by means of regular expressions (and few other possibilities). The output is the source

in the C programming language of the specified lexical analyzer. A specification in lex is

mainly a sequence of pattern-action statements as in awk. Actions are pieces of C code to be

inserted in the lexical analyzer. At run time, these pieces of code execute the action

corresponding to the associated pattern, when found.

The following line is a typical statement of a lex program :

[A-Za-z]+([A-Za-z0-9])* { yylval = Install(); return(ID); }

The pattern specifies identifiers, that is, strings of characters starting with one letter and

containing only letters and digits. The action leads the generated lexical analyzer to store the

identifier and to return the string type "ID" to the calling parser.

It is another instance of the regular expression matching problem. The question of

constructing pattern-matching automata is an important component having practical

application in  the  lex software.

Lex is often combined with yacc and twig for the development of parsers, translators,

compilers, or simply prototypes of these. Yacc allows the specification of a parser by grammar

rules. It produces the source of the specified parser in C language. Twig is a tree-manipulation

language that helps to design efficient code generators. It transforms a tree-translation scheme

into a code generator based on a fast top-down tree-pattern matching algorithm. The output

generator also uses dynamic programming techniques for optimization purposes but the



essential feature is the tree-pattern matching action for tree rewriting. It has been shown, by

experimental results on few significant applications, that twig-generated code generators are

often faster than hand-generated compilers even when the latter incorporate some tricky

optimizations.  One of the basic problems considered for the design of such a tool is the tree

pattern-matching problem.

Texts such as books or programs are likely to be changed during elaboration. Even after

their achievement they often support periodic upgrades. These questions are related to text

comparisons. Sometimes also we wish to find a string, and we do not completely remember

it. The search has to be performed with a non entirely specified pattern. This is an instance of

the approximate pattern matching.

Keeping track of all consecutive versions of a text sometimes does not help because the

text can be very long and changes may be hard to find. The reasonable way to control the

process is to have an easy access to differences between the various versions. There is no

universal notion on what are the differences, nor conversely what are the similarities between

two texts. However, it can be agreed that the intersection of two texts is a longest common

subtext of both. This is called in our book the longest common factor problem. So that the

differences between two texts are the respective complements of the common part. The Unix

command diff builds on this notion.

Consider the texts A and B as follows (Molière's joke, 1670)

Text A : Belle Marquise,

vos beaux yeux

me font mourir d'amour

Text B : D'amour mourir me font,

Belle Marquise,

vos beaux yeux

The command "diff A B" produces

0a1

> D'amour mourir me font,

3d3

< me font mourir d'amour

An option of the command diff produces a sequence of ed instructions to transform one

text into the other text. The similarity of  texts can be measured as a minimal number of edit

operations to transform one text into the other. The computation of such a measure is an

instance of the edit distance problem.  

1.3 Dictionaries
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The search for words or patterns in static texts is a quite different question than the

previous pattern matching mechanism. Usual dictionaries, for instance, are organized in order

to speed up the access to entries. Another example of the same question is given by indexes.

Technical books often contain an index of chosen terms that gives pointers to parts of text

related to words in index. The algorithms involved in the creation of an index form a specific

group.

The use of dictionaries or lexicons is often related to natural language processing.

Lexicons of programming languages are small, and their representation is not a hard problem

during the development of a compiler. A contrario, English contains approximatively 100,000

words, and even twice more if inflected forms are considered. In French inflected forms

produce more than 500,000 words. The representation of lexicons of this size makes the

problem a bit harder.

A simple use of dictionaries is made by spelling checkers. The Unix command spell

reports the words of its input that are not stored in the lexicon. This rough approach does not

yield a pertinent checker, but it practically helps to find typing errors. The lexicon used by spell

contains around 70,000 entries stored within less than 60 kilobytes of random-access memory.

Quick access to lexicons is a necessary condition to produce good parsers. The data

structure useful for such accesses is called an index. In our book indexes correspond to data

structures representing all factors of a given (presumably long) text. We consider problems of

the construction  such structures : suffix trees, directed acyclic word graphs, factor

automata, suffix arrays. The tool PAT developed at the NOED Center (Waterloo, Canada) is

an implementation of one of these structures tailored to work on large texts. There are several

applications that effectively require some understanding of phrases in natural languages, such

as data retrieval systems, interactive softwares and character recognition.

An image scanner is a kind of photocopier. It is used to give a digitalised version of an

image. When the image is the page of text, the natural output of the scanner must be a digital

form available by a text editor. The transformation of a digitalised image of a text into a usual

computer representation of the text is realized by an Optical Character Reader (OCR). Scanning

a text with an OCR can be 50 times faster than retyping the text on a keyboard. OCR softwares

are thus likely to become more common. But they still suffer from a high degree of

imprecision. The average rate of errors in the recognition of characters is around one percent.

Even if this may happen as rather small, this means that scanning a book produces around one

error per line. This is to be compared with the usual very high quality of texts checked by

specialized persons. Technical improvements on the hardware can help to eliminate certain

kinds of errors occurring on scanned texts in printed forms. But this cannot avoid the problem

of recognizing texts written by hand. In this case, isolation of characters is much harder, and

ambiguous forms can be encountered at recognition stage. Reduction on the number of errors

can thus only be achieved by considering the context of characters, which assumes some



understanding of the text. Image processing is related to the problem of two-dimensional

pattern matching. Another related problem is the data structure for all subimages, this is

discussed in the book in the context of the dictionary of basic factors (subimages).

No system is presently able to parse natural languages. Indeed, it is questionable whether

such an effective system can exist. Words are certainly units of syntax in languages, but they

are not units of meaning. This is both because words can have several meanings, and because

they can be parts of compound phrases that carry a meaning only as a whole. It appears that the

proportion in the lexicon (of French and several other European languages) of idiomatic

sentences, of metaphoric and technical sentences whose meaning cannot be inferred from their

elements, is very high. The natural consequence is that compound expressions and the so-called

frozen phrases must be included in computerized dictionaries. The data base must also

incorporate at least the syntactic properties of the elements. At present, no complete dictionary

established according to these principles exists. This certainly represent of huge amount of data

to be collected but this seems an indispensable work. Data bases for the European languages,

French, English, Italian, and Spanish are presently being built. And studies on Arabic, Chinese,

German, Korean and Madagascan have been performed. These question are studied, for

instance, at LADL (Paris), and the reader can refer to [Gr 91] for more information on specific

aspects of computational linguistics.

The theoretical approach to the representation of lexicons is by means of trees or finite

state automata. It appears that both approaches are equally efficient. This shows the practical

importance of the automata theoretic approach to text problems. We have shown at LITP

(Paris) that the use of automata to represent lexicons is particularly efficient. Experiments have

been done on a 500,000 word lexicon of LADL (Paris). The representation supports direct

access to any word of the lexicon and takes only 300 kbytes of random-access memory.  
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1.4 Data compression

One of the basic problems in keeping a large amount of textual information is the text

compression problem. Text compression means reducing the representation of a text. It is

assumed that the original text can be recovered from its compressed form. No loss of

information is allowed. Text compression is related to Huffman coding problem and the

factorization problem. This kind of compression contrasts with other kind of compression

technics applied to sounds or images, where approximation is acceptable. Availability of large

mass storage does not decrease the interest for compressing data. Indeed, users always use

extra available space to store more data or new kind of data. Moreover the question remains

important for storing data on secondary storage devices.

Examples of implementations of dictionaries reported above show that data

compression is important in several domains related to natural language analysis.

Text compression is also useful for telecommunications. It actually reduces the time to

transmit documents via telephone networks, for instance. The success of Fax is perhaps to be

credited to compression technics.

General compression methods often adapts themselves to the data. This phenomenon is

central in getting high compression ratios. But, it appears in practice that methods tailored for

specific data lead to the best results. We have experimented this fact on data sent by

“géostationnaires” satellites. The data have been compressed to 7% without any loss of

information. The compression is very successful if there are redundancies and regularities in

the information message. The analysis of  data is  related to the problem of detecting

regularities in texts. Efficient algorithms are particularly useful  to expertize the data.

1.5 Applications of text algorithms in genetics

Molecules of nucleic acids carry a large part of information about the fundamental

determinants of life, and in particular about the reproduction of cells. There are two types of

nucleic acids known as desoxyrybonucleic acid (DNA) and ribonucleic acid (RNA). DNA is

usually found as double-stranded molecules. In vivo, the molecule is folded up like a ball of

string. The skeleton of a DNA is a sequence on the four-letter alphabet of nucleotides : adenine

(A), guanine (G), cytosine (C), and thymine (T). RNA molecules is usually single-stranded

composed of ribonucleotides : A, G, C, and uracil (U). Processes of “transcription” and

“translation” lead to the production of proteins, which have also a primary structure as a string



composed of 20 amino acids. In a first approach all these molecules can be viewed as texts.

The discovery of powerful sequencing techniques fifteen years ago has led to a rapid

accumulation of sequence data (more than 10 million nucleotides of sequences). From the

collect of sequences up to their analysis a lot of algorithms on texts are implied. Moreover, only

fast algorithms are often feasible because of the huge amount of data.

Collecting sequences is made through gel audioradiographs. The automatic transcription

of these gels into sequences is a typical two-dimensional pattern matching problem in two

dimensions. The reconstruction of a whole sequence from small segments is another example

of problem that occurs during this step. This problem is called the shortest common

superstring problem : construction of the shortest text containing several given smaller texts.

Once a new sequence is obtained, the first important question on it is whether it

resembles to any other sequence already stored in databanks. Before adding a new molecular

sequence into an existing database one needs to know whether the sequence is already present

or not. The comparison of several sequences is usually realized by writing one over another.

The result is known as an alignment of the set of sequences. This is a common display in

molecular biology that can gives an idea on the evolution of the sequences though the

mutations, insertions and deletions of nucleotides. Alignment of two sequences is the edit

distance problem : compute the minimal number of edit operations to transform one string

into another. It is realized by algorithms based on dynamic programming techniques similar to

the one used by the Unix command diff. A tool, called agrep, developed at the University of

Arizona is devoted to these questions, related to approximate string-matching.

Further questions on sequences are related to their analysis. The aim is to discover the

functions of all parts of the sequence. For instance, DNA sequences contain important regions

(coding sequences) for the production of proteins. But, no good answer is presently known to

find all coding sequences of a DNA sequence. Another question on sequences is the

reconstruction of their three-dimensional structure. It seems that a part of the information

resides in the sequence itself. This is because during the folding process of DNA, for instance,

nucleotides match pairwise (A with T, and C with G). This produces approximate palindromic

symmetries (as TTAGCGGCTAA). Involved in all these questions are approximate searches

for specific patterns, for repetitions, for palindromes or any other regularities. The problem

of the longest common subsequence  is a variation of the alignment of sequences.
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1.6 Structure of the book

The structure of our book reflects both the relationships between applications of text

algorithmic techniques and the classification of algorithms according to the measures of

complexity considered. The book can be viewed as a "parade" of algorithms in which our main

aim is to discuss the foundations of these algorithms and their interconnections.

The book begins with the algorithmic and theoretical foundations: machine models,

discussion on algorithmic efficiency, review of basic problems and their interaction, and some

combinatorics on words. It is chapter 2.

The topic of Chapters 3 and 4 is STRING-MATCHING. The chapters deal with two

famous algorithms, Knuth-Morris-Pratt and Boyer-Moore algorithms respectively. The

upmost improvements and results on these algorithms are incorporated. We discuss here those

string-matching algorithms which are efficient with respect to only one measure of complexity

— sequential time. Hence, the chapter can be treated as a "warm-up" for other chapters devoted

to the same topic. We later discuss in Chapter 13 more difficult algorithms — TIME-SPACE

OPTIMAL STRING-MATCHING algorithms that work in linear time and simultaneously use

only a very small additional memory. The consideration of two complexity measures together

usually leads to most complicated algorithms. Chapters 3 and 4 can also be treated as a

preparation to Chapters 9 and 14 where are presented advanced PARALLEL STRING-

MATCHING algorithms, and to Chapter 12 that deals with two-dimensional pattern matching.

Chapters 5 and 6 are basic chapters of the book. They cover data structures representing

succinctly all subwords of a text, namely, SUFFIX TREES and SUBWORD GRAPHS. The

considerations are typical from the point of view of data structures manipulations : trees, links,

vectors, lists, etc. The prepared data structures are used later in the discussion on other

problems; especially in the computation of the longest common factor of texts, factorization

problems and finding squares in words. Also it is used to construct in Chapter 7 certain kind of

automata related to string-matching.

Chapter 7 gives an automata theoretical approach to string-matching that leads to a natural

solution of the MULTI-PATTERN MATCHING problem. It covers Aho-Corasick automata

for multi-pattern matching, automata for the set of factors and suffixes of a given text, and

application of them.

Chapter 8 considers REGULARITIES IN TEXTS: SYMMETRIES AND

REPETITIONS. It covers problems related to symmetries of words as well as problems



related to repetitions. Surprisingly it turns out that finding a palindrome in a word in linear time

is much easier than finding a square. Generally, problems related to symmetries are easier than

that related to repetitions.  The basic component of the chapter is a new data structure, called the

dictionary of basic factors, that is introduced as a basic technique for the development of

efficient, but not necessarily optimal, algorithms.

Chapter 9 deals with PARALLEL ALGORITHMS ON TEXTS. Only one, very general

model of parallel computations is considered. The parallel implementation and applications of

the dictionary of basic factors, suffix trees and subword graphs are presented. We discuss

parallel version of the Karp-Miller-Rosenberg algorithm (Chapter 8) and some computations

related to trees.

Chapter 10 is about data compression. It discusses only some of the COMPRESSION

TECHNIQUES FOR TEXTS. This area is exceptionally broad as compression of data is the

vital part of many real world systems. We focus on few important algorithms. Two of the

subjects here are the Ziv-Lempel algorithm, and applications of data structures from Chapters 5

and 6 to the text factorization.

Questions related to algorithms involving the notion of APPROXIMATE PATTERNS

are presented in Chapter 11. It starts with algorithms to compute edit distance of sequences

(alignment of sequences). Two specific classical notions on approximate patterns are then

considered, the first for string-matching with errors, and the second for patterns with “don’t

care” symbols.

TWO-DIMENSIONAL PATTERN MATCHING, in Chapter 12, is the problem of

identifying a subimage inside a larger one. The notion naturally extends that of pattern matching

in texts. Basic techniques on the subject show the importance of algorithms presented in

Chapter 7.

Chapter 13 presents three different TIME-SPACE OPTIMAL STRING-MATCHING

algorithms. None of them have never appeared in a textbook nor even in a journal, and the third

one is presented in a completely new version. This is an advanced material since the algorithms

rely heavily on the combinatorics of words, mostly related to periodicities.

The discussion on OPTIMAL PARALLEL ALGORITHM ON TEXTS is the subject of

Chapter 14. It includes more technical considerations than Chapter 9. Are presented there the

well-known Vishkin's algorithm and a recent optimal parallel algorithm for string-matching,

based on suffix versus prefix computations, designed by Kedem, Landau and Palem.
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The last chapter considers several miscellaneous problems like tree-pattern matching

problem, or the computation shortest common superstrings, maximal suffixes, Lyndon

factorizations

One can partition algorithmic problems discussed in this book into practical and

theoretical problems. Certainly the string-matching and data compression are in the first class,

while most problems related to symmetries and repetitions are in the second. However we

believe that all the problems are interesting from an algorithmic point of view and enable the

reader to appreciate the importance of combinatorics on words. In most textbooks on

algorithms and data structures the presentation of efficient algorithms on words is quite short as

compared to issues in graph theory, sorting, searching and some other areas. At the same time,

there are many presentations of interesting algorithms on words accessible only in journals and

in the form directed mainly to specialists. We hope that this book will cover a gap on

algorithms on words in the book literature, and bring together many results presently dispersed

in the masses of journal articles.
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2. Foundations

The chapter gives algorithmic and theoretical foundations required in further parts of the

book. The models of computations are discussed, and basic problems on texts are exposed in a

precise way. The chapter ends with combinatorial properties of texts.

2.1. Machine models and presentation of algorithms

The model of sequential computations is a Random Access Machine (RAM). Evaluation

of the time complexity of algorithms is done according to the uniform cost criterion, i.e. one

time unit per basic operation. However, to avoid "abuses" of the model, the sizes of all integers

occurring in algorithms will be "reasonable". The integers will be within a polynomial range of

input size and can be represented by a logarithmic numbers of bits. We refer the reader to The

design and analysis of computer algorithms by A.V. Aho J.E. Hopcroft and J.D. Ullman for

more details on the RAM model.

The sequential algorithms of this book are mainly presented in Pascal programming

language. Few more complex algorithms are written in an informal language, in a style and a

semantic similar to that of Pascal. Sometimes, the initial algorithm for a given problem is

usually more understandable using a kind of a pseudo-language. In this language we can use a

terminology appropriate to the natural model for the problem. The flow-of-control constructs

can be the same as in Pascal, but with the advantage of having informal names for objects. For

example, in algorithms on trees we can use notions such as "next son", or "father of the father",

etc. In this situation, an informal algorithm is given to catch the main ideas of the construction.

We generally attempt to convert such an informal algorithm into a Pascal program.

a t e x t a s a n a r r a y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2.1. Array representation of a text.

We consider texts as arrays of characters. We stick to the convention that indices of

characters of a text run from 1 to the length of the text. The symbols of a text text of length n

are stored in text[1], text[2], …, text[n]. We may assume that location text[n+1] contains a

special character.

Throughout the book, we consider two global variables pat and text that are declared by

var text : text_type; pat : pattern_type;

The types can be themselves defined by



type text_type = array[1..n] of char ;

pattern_type = array[1..m] of char,

assuming that n and m are Pascal integer constants declared in a proper way.

We assume a lazy evaluation of boolean expressions. For instance, the expression

(i>0) and (t[i]=c)

is false when i=0, even if t[0] does not exists. And the expression

(i=0) or (t[i]=c)

is true under the same conditions. Replacing all boolean expression to avoid the convention is a

straightforward exercise. Doing it in the presentation of algorithms would transform them into

an unreadable form.

Pascal functions are presented in the book with the nonstandard (but common) "return"

statement. Such instruction exists in almost all modern languages and helps writing more

structured programs. The meaning of the statement  "return(expression)" is that the function

returns the value of the expression to the calling procedure, and then stops. The following

function shows an application of the return statement.

function text_inequality(text1, text2: text_type): boolean;

begin

{ left-to-right scan of text1  and text2 }

m := length(text1); n := length(text2);

j := 0;

while j <= min(m, n) do

{ the prefixes of size j are the same }

if text1[j+1]=text2[j+1] then j := j+1

else return(true);

return(false);

end;

The "return" statement is very useful to shorten the presentation of algorithms. It is also easy

to implement. It can be replaced by

text_inequality := expression; goto L

where L is the label of the last end of the function.

The following description of the function text_inequality is equivalent to the above text.
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function text_inequality(text1, text2: text_type): boolean;

label 1992;

begin

{ left-to-right scan of text1  and text2 }

m := length(text1); n := length(text2);

j := 0;

while j <= min(m, n) do

{ the prefixes of size j are the same }

if text1[j+1]=text2[j+1] then j := j+1

else begin text_inequality:=true; goto 1992 end;

text_inequality:= false;

1992: end;

Several models of sequential computations more theoretical than the RAM are relevant to

text processing : Turing machines, multihead finite automata etc. For example, it is known that

string-matching can be done in real time on a Turing machine or even on a multihead finite

automaton (without any memory but with constant number of heads). Generally, we do not

discuss algorithms on such highly theoretical models; in a few cases we only give some brief

remarks related to the computations on these models.

Concerning parallel computations, a very general model is assumed, since we are mainly

interested in exposing the parallel nature of some problems without going into the details of the

parallel hardware. The parallel random access machine (PRAM), a parallel version of the

random accessed machine is used as a standard model for presentation of parallel algorithms.

Processors

Common Randon Access Memory
1 20 . . .

1 2 3 4 5 6 7

Figure 2.2. PRAM machine.

The PRAM consists of a number of processors working synchronously and

communicating through a common random access memory. Each processor is a random

access machine with the usual operations. The processors are indexed by the consecutive



natural numbers, and they synchronously execute the same central program; however, the

action of a given processor depends also on its number (known to the processor). In one step, a

processor can access one memory location. The models differ with respect to simultaneous

access of the same memory location by more than one processor. For the CREW (concurrent

read, exclusive write) variety of PRAM machine any number of processors can read from the

same memory location simultaneously, but write conflicts are not allowed : no two processors

can attempt to write simultaneously into the same location.

Processors

Common Randon Access Memory
1 20 . . .

1 2 3 4 5 6 7

Figure 2.3. A Concurrent Read.

We denote by CRCW (concurrent read, concurrent write) the PRAM model in which, in

addition to concurrent read, write conflicts are allowed : many processors can attempt to write

into the same location simultaneously but only if they all attempt to write the same value.

Processors

Common Randon Access Memory
1 20 . . .

1 2 3 4 5 6 7

Figure 2.4. A Concurrent Write.

Parallel algorithms are presented in a similar way as in Efficient parallel algorithms by

A. Gibbons and W. Rytter. There is no generally accepted universal language for the

presentation of parallel algorithms. The PRAM is a rather idealized model. We have chosen

this model as a best suitable for the presentation of algorithms and especially for the

presentation of the inherent parallelism of some problems. This would be difficult to nicely

present these algorithms with languages oriented towards concrete existing hardware of parallel
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computer. Moreover, the PRAM model is widely accepted in the literature on parallel

computation on texts.

Parallelism will be expressed by the following type of parallel statement :

for all i in X in parallel do action(i).

Execution of this statement consists of :

— assigning a processor to each element of X;

— executing in parallel by assigned processors the operations specified by action(i).

Usually the part "i in X" looks like "1≤i≤n" if X is an interval of integers. We discuss this more

deeply in Chapter 7.

2.2. Efficiency of algorithms

Efficient algorithms can be classified according to what we mean by efficiency. There are

different notions of efficiency depending on the complexity measure involved. Several such

measures are discussed in this book : sequential time, memory space, parallel time and number

of processors. Our book deals with "feasible" problems. We can define them as problems

having efficient algorithms, or as solvable in time bounded by a small-degree polynomial. In

the case of sequential computations we are interested to lower down the degree of the

polynomial corresponding to time complexity. The most efficient algorithms usually solve a

problem in linear time complexity. We are also interested in space complexity. Optimal space

complexity often means constant number of (small integer) registers in addition to input data.

So, we say that an algorithm is time-space optimal iff it works simultaneously in linear time

and constant extra space. These are the most advanced sequential algorithms, and the most

interesting also both from practical and theoretical point of view.

In the case of parallel computations we are generally interested in the parallel time T(n) as

well as in the number of processors P(n) required for the execution of the parallel algorithm.

The total number of elementary operations performed by the parallel algorithm is not greater

than the product T(n)P(n). Efficient parallel algorithms are those that operate in no more than

polylogarithmic (a polynomial of log’s of input size) time with a polynomial number of

processors. The class of problems solvable by such algorithms is denoted by NC and we call

the related algorithms NC-algorithms. A NC-algorithm is optimal iff the total number of

operations T(n)P(n) is linear. Another possible definition is that this number is essentially the

same as the time complexity of the best known sequential algorithm solving the given problem.

However we adopt here the first option because algorithms on strings usually have a time

complexity at least linear.

Evaluating precisely the complexity of an algorithm according to some measure is often

difficult, and moreover it is unlikely to be of some use. The “big O” notation makes clear what



are the important terms of a complexity expression. It estimates the asymptotic order of the

complexity of an algorithm and helps to compare algorithms between each other. Recall that if f

and g are two function from and to integers, then we say that f = O(g) if f(n)≤C.g(n) when

n>N, for some constants C and N.

We write f = Θ(g) when the functions f and g are of the same order, which means that

both equalities f = O(g) and g = O(f) hold.

Comparing functions through their asymptotic orders leads to these kind of inequalities :

O(n0.7) < O(n) < O(n.log(n)), or O(nlog(n)) < O(log(n)n) < O(n!).

Within sequential models of machine one can distinguish further types of computations :

off-line, on-line and real-time. These types are related also to efficiency. It is understood that

real-time computations are more efficient than general on-line, and that on-line computations

are more efficient than off-line. Each algorithm is an off-line algorithm : "off-line" conceptually

means that the whole input data can be put into the memory before the actual computation

starts. We are not interested then in the intermediate results computed by the algorithm, but

only the final result is sought (though this final result can be a sequence or a vector). The time

complexity is measured by the total time from the moment the computation starts (with all

input data previously memorized) up to the final termination. In contrast, an on-line algorithm

is like a sequential transducer. The portions of the input data are "swallowed" by the algorithm

step after step, and after each step an intermediate result is expected (related to the input data

read so far). It then reads the next portion of the input, and so on. In on-line algorithms the

input can be treated as an infinite stream of data, and so we are not mainly interested in the

termination of the algorithm for all such data. The main interest for us is the total time T(n) for

which we have to wait to get the n-th first outputs. The time T(n) is measured starting at the

beginning of the whole computation (activation of the transducer). Suppose that the input data

is a sequence and that after reading the n-th symbol we want to print "1" if the text read to this

moment contains a given pattern as a suffix, otherwise we print "0". Hence we have two

streams of data : the stream of input symbols and an output stream of answers "1" or "0". The

main feature of the on-line algorithm is that we have to give an output value before reading the

next input symbol.

The real time computations are these on-line algorithms which are in a certain sense optimal;

the elapsing time between reading two consecutive input symbols (the time spent for

computing only the last output value) should be bounded by a constant. Most linear on-line

algorithms are in fact real-time.

We are mostly interested in off-line computations whose worst case time is linear,

however also on-line and real-time computations as well as average complexities will be

sometimes shortly discussed in the book.
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2.3. Notation and formal definitions of basic problems on texts

Let A be an input alphabet — a finite set of symbols. Elements of A are called the letters,

the characters, or the symbols. Typical examples of alphabets are : the set of all ordinary letters,

or the set of binary digits. The texts (also called words or strings) over A are sequences of

elements of A. The length (size) of a text is the number of its elements (with repetitions). So,

the length of aba is 3. The length of a word x is denoted by |x|. The input data for our problems

will be words and the size n of the input problem will be usually the length of the input word.

In some situations, n will denote the maximum length or the total length of several words if the

input of the problem consists of several words.

The i-th element of the word x is denoted by x[i] and i is its position in x. We denote by x[i…j]

the subword x[i]x[i+1]…x[j] of x. If i>j, by convention, the word x[i…j] is the empty word (the

sequence of length zero).

We say that the word x of length n is a factor (also called a subword) of the word y if

x=y[i+1…i+n] for some integer i. We also say that x occurs in y at position i or that the

position i is a match for x in y.

We define also the notion of a subsequence (sometimes called a subword). The word x is

a subsequence of y if x can be obtained from y by removing zero or more (non necessarily
adjacent) letters from it. Equivalently x is a subsequence of y if x=y[i1]y[i2]…y[im], where i1,

i2, …, im is an increasing sequence of indices in y.

Below we define basic problems and groups of problems covered in the book. We often

consider two texts pat (the pattern) and text of respective lengths m and n.

1. String-matching (the basic problem)

Given texts pat and text, verify if pat occurs in text. Hence it is a decision problem : the

output is a boolean value. It is usually assumed that m≤n. So, the size of the problem is n.

A slightly advanced version is to search for all occurrences of pat in text, that is, to compute the

set of positions of pat in text.. Denote by MATCH(pat, text) this set. In most cases an algorithm

computing MATCH(pat, text) is a trivial modification of the decision algorithm, hence we

sometimes present only the decision algorithm for string-matching.

Instead of one pattern one can consider a finite set of patterns and ask if a given text text

contains a pattern from this set. The size of the problem is now the total length of all patterns

plus the length of text.

2. Construction of string-matching automata

For a given pattern pat, construct the minimal deterministic finite automaton accepting all

words containing pat as a suffix. Denote such an automaton by SMA(pat). A more general



problem is to construct a similar automaton SMA(∏) accepting the set of all words containing
as a suffix one of the patterns from the set ∏={pat1, …, patk }.

3. Approximate string-matching

We are given again a pattern pat and a text text. The problem consists in finding an

approximate occurrence of pat in text, that is, a position i such that dist(pat, text[i+1…i+m]) is

minimal. Another instance of the problem is to find all positions i such that dist(pat,

text[i+1…i+m]) is less than a given constant. Here, dist is a function defining a distance

between two words. There are two standard distances : the Hamming distance (number of

positions at which two strings differ) and the edit distance (see Problem 7 below).

4. String-matching with don't care symbols
We are given a special universal symbol ø that matches any other symbol (including

itself). It is called the “don't care symbol”. In fact, ø can be a common name for several

unimportant symbols of the alphabet. For two symbols a and b, we write a≈b iff they are equal

or at least one of them is a don't care symbol. For two words of the same length we write x≈y

if, for each i, x[i]≈y[i].

The problem consists in verifying whether pat≈text[i+1…i+m] for some i, or more

generally, to compute the set of all such positions i.

5. Two-dimensional pattern matching

For this problem, the pattern pat and the text text are two-dimensional arrays (or

matrices) whose elements are symbols. We are to answer whether pat occurs in text as a

subarray, or to find all positions of pat in text . The approximate and don't care versions of the

problem can be defined similarly as for the (one-dimensional) string-matching problem.

Instead of arrays one can also consider some other "shapes", e.g. trees.

6. Longest common factor

Compute the maximal length of longest common factors of two words x, y (denoted by

LCF(x, y)). One can consider also longest common factors for more than two words.

7. Edit distance

Compute the edit distance, EDIT(x, y), between two words. It is the minimal number of

edit operations needed to transform one string into the other. Edit operations are : insertion of

one character, deletion of one character, and change of one character.

The problem is closely related to the approximate string-matching and to the problem defined

below. It is similar to the notion of alignment of DNA sequences in Molecular Biology.

8. Longest common subsequence
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Compute the maximal length of common subsequences of two words x, y. The length is

denoted by LCS(x, y). Note that several subsequences may have this length and that we may

also want to compute one or all this words.

This problem is related to the edit distance problem as follows :

if l=LCS(x, y), then one can transform x to y by first deleting m-l symbols of x (all but those of

a longest common subsequence) and then inserting n-l symbols to get y. So, the computation

of LCS’s is a particular case of the computation of edit distances.

9. Longest repeated factor

We are to compute a longest factor x of the text text that occurs at least twice in text. Its

length is denoted by LRF(text). Similarly we can consider a longest factor that occurs at least k
times in text. Its length is LRFk(text).

10. Finding squares and powers

A much harder problem is that of computing the consecutive repetitions of a same factor.

A square word (or simply a square) is a nonempty word of the form xx. Let us define the

predicate Square-free(text) whose value is 'true' iff text does not contain any square word factor.

Similarly one can define cubes and the predicate Cube-free(text). Generally one can define the

predicate Power-freek(text) whose value is 'true' iff text does not contain any factor of the form

xk (with x non-empty).

These problems have seemingly no practical application. However, they are related to the

most classical mathematical problems on words (whose investigation started at the beginning

of this century).

11. Computing symmetries in texts

The word x is symmetrical if x is equal to its reversed xR. A palindrome is any

symmetrical word containing at least two letters (a one-letter word has an uninteresting obvious

symmetry!). Even palindromes are palindromes of an even length.

Denote by Pal and P the set of all palindromes and the set of even length palindromes,

respectively.

There are several interesting problems related to symmetries. Compute PREFPAL(text),

the length of the shortest prefix of text that is a palindrome. Another interesting problem is to

find all factors of the text that are palindromes. Or, compute MAXPAL(text), the length of a

longest symmetrical factor of text. .

Another question is to count the number of all palindromes which are factors of text. A

word is called a palstar if it is a composition of palindromes (it is contained in the language

Pal*); it is an even palstar if it is a composition of even palindromes. Two algorithmic

problems related to palstars are : verify if a word is a palstar, or an even palstar.



Instead of asking about the composition of some number of palindromes we can be
interested in compositions of a fixed number k of palindromes. Let Pk(text) be the predicate

whose value is true if text is a composition of k even palindromes; analogously we can define
Palk(text) as a predicate related to compositions of any k palindromes (odd or even)

12. Number of all distinct factors

The problem is to compute the number of all distinct factors of text. Observe that there is

a quadratic number of factors, while linear time algorithm is possible. Such a linear time

counting of a quadratic number of objects is possible due to succinct (linear-sized)

representations of the set of all factors of a given text.

13. Maximal suffix

Compute the lexicographically maximal suffix of the word text (it is denoted by

maxsuf(text) ). Observe that the lexicographically maximal suffix of a text is the same as its

lexicographically maximal factor. The lexicographic order is the same order as used, for

example, commonly in encyclopaedias or dictionaries (if we omit the question of accents,

uppercase letters, hyphens, …).

14. Cyclic equivalence of words

Check whether two words x and y are cyclically equivalent, that is to say, whether x=uv,

y=vu for some words u, v. A straightforward linear time algorithm for this problem can be

constructed by applying a string-matching procedure to the pattern pat=x and the text text=yy.

However it is possible to design a much simpler efficient algorithm.

15. Lyndon factorization

Compute the decomposition of the text into a non-increasing sequence of Lyndon words

Lyndon words are lexicographically (strictly) minimal within the set of all their cyclic shifts. It

is known that any word can be uniquely factorized into a sequence of Lyndon words

16. Compression of texts

For a given word text we would like to have a most succinct representation of text. The

solution depends on what we mean by a representation. If by representation we mean an

encoding of single symbols by binary strings, then, we have the problem of the efficient

construction of Huffman codes and Huffman trees. Much more complicated problems arise if

some parts of the text text are encoded using other parts of the text. This leads to some

factorization and textual substitution problems. We spend a whole chapter on this subject.

17. Unique decipherability problem
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We have a code which is a function h assigning to each symbol a of the alphabet K a

word over an alphabet A. The function can be in a natural way extended to all words over the

alphabet K using the equality h(xy)=h(x)h(y). We ask whether the so-extended function is one-

to-one (denote by UD(h) the corresponding predicate). The size n of the problem is the total

length of all codewords h(a) over all symbols a in K.

The next three problems are related to the construction of a succinct (but useful)

representation of sets of all factors or all suffixes of a given word text. Denote by Fac(text),

Suf(text) the set of all respectively factors, suffixes of text. There can be a quadratic number of

elements to be represented but the size of the representation is required to be linear. Moreover,

we also require that the construction time is linear in time.

18. Suffix trees

The set Fac(text) is prefix closed. This means that prefixes of words in Fac(text) are also

elements of the set. The natural representation for each prefix closed set F of words is a tree T1

whose edges are labelled with symbols of the alphabet. The set F equals the set of labels of all

paths from the root down to nodes of the tree. However, such a tree T1 corresponding to

Fac(text) can be too large. It can have a quadratic number of internal nodes. Fortunately, the

number of leaves is always linear and hence the number of internal nodes having at least two

sons (out-degree bigger than one) is also linear. Hence, we can construct a tree T whose nodes

are all "essential" internal nodes and leaves of T1. The edges of T correspond to maximal paths

(chains) in T1 consisting only of nodes of out-degree one; the label of each such edge is the

composite label of all edges of the corresponding chain. Denote the constructed tree T by

ST(text). It is called the suffix (or the factor) tree of text. The size of the suffix tree is linear and

we present also a linear time algorithm to construct it.

The suffix tree is a very useful representation of all factors; the range of applications is

essentially the same as of two other data structures considered below : suffix and factor

automata.

19. Smallest suffix automata and directed acyclic word graphs

Compute the smallest deterministic finite automaton SA(text) accepting the set Suf(text) of

all suffixes of text. The size of the automaton turns out to be linear and we even prove later that

its size does not depend on the size of the alphabet (if transitions to dead state are not counted).

The automaton SA(text) is essentially the same data structure as the so-called directed acyclic

word graph (dawg, for short). Dawg’s are directed graphs whose edges are labelled by

symbols, and such a graph represents the set of all words "spelled" by its paths from the root to

the sink.



Dawg's are (in a certain sense) more convenient than suffix trees because each edge of the

dawg is labelled by a single symbol, while edges of factor trees are labelled by words of

varying lengths. It is possible to consider compacted versions of dagw’s though.

20. Smallest factor automata

Construct the smallest deterministic automaton FA(text) accepting the set Fac(text) of all

factors of text. This is almost the same problem as the previous one. It will be shown that the

size of FA(text) does not exceed the size of SA(text). In fact the suffix automaton also accepts

(after a minor modification) the set Fac(text) of all factors. In most applications SA(text) can be

used instead of FA(text) and the order of magnitude of the complexity does not change very

much. However, the factor automaton is the most optimal representation of the set of all

subwords.

21. Equivalence of two words over a partially commutative alphabet

Let C be a binary relation on the alphabet. This relation represents the commutativity

between pair of symbols. The only necessary property of this relation is that it should be

symmetric. Two words are equivalent according to C (x≈y) iff one of them can be obtained

from the other by commuting certain symbols in the word several times. Formally, ubav≈uabv

if (a, b) ∈C (symbols a, b commute). The relation ≈ is transitive because we can apply

operations of commuting two symbols many times. One can reformulate many of the

problems defined before in the framework of partially commutative alphabets. Instead of one

word, one can also consider the whole equivalence class containing this word (called a trace).

We can ask if such an equivalence class for a given word contains a square or a palindrome or

a given factor (the latter is the string-matching problem for partially commutative alphabets).

However, we consider only the complexity of one basic problem : checking equivalence

of two strings. It is one of the simplest problems in this area containing a lot of sophisticated

questions.

22. Two-dpda's

The acronym “2dpda” is an abbreviation for 'two-way deterministic pushdown

automaton'. This is essentially the same device as a pushdown automaton described in many

standard textbooks on automata and formal languages; the only difference is its ability to move

input heads in two directions. We demonstrate shortly that any language accepted by such an

abstract machine has a linear time recognition procedure on a random access machines, which

is of algorithmic interest. The notion of 2dpda's is historically interesting. Indeed, one of the

first approaches to obtain a linear time algorithm for string-matching used 2dpda's.

The table below shows some relations between chapters and problems. The first

introductory chapters are naturally related to all problems.
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Chapter 3. Basic string-matching algorithms — 1, 2, 5, 10, 11, 13

Chapter 4. The Boyer-Moore algorithm and its variations — 1, 5

Chapter 5. Suffix trees — 1, 2, 6, 9, 10, 12, 13, 17, 18

Chapter 6. Subword graphs — 1, 2, 6, 9, 10, 12, 13, 17, 19, 20

Chapter 7. Automata-theoretic approach — 1, 2, 3, 5, 6, 9, 10, 12, 13, 19, 20, 22

Chapter 8. Regularities in words : symmetries and repetitions — 9, 10, 11

Chapter 9. Almost optimal parallel algorithms — 1, 2, 9, 10, 11, 15, 18, 19, 20

Chapter 10. Text compression techniques — 10, 16, 19

Chapter 11. Approximate pattern matching — 3, 4, 7, 8, 17

Chapter 12. Two-dimensional pattern matching — 5

Chapter 13. Time-space optimal string-matching — 1, 10, 13

Chapter 14. Time-processor optimal string-matching — 1

Chapter 15. Miscellanies — 1, 5, 13, 14, 15, 17, 19, 21

This book is about efficient algorithms for textual problems. By efficient, we mean

algorithms working in polynomial sequential time (usually linear time or n.log(n) time) or in

polylogarithmic parallel time with a polynomial number of processors (usually linear).

However, we have to warn the reader that plenty of textual problems have no efficient

algorithms (unless one the main question in complexity theory “is P=NP?” holds true, which

seems unlikely). We refer the reader to [GJ 79] for the a definition and discussion on NP-

completeness. Roughly speaking, an NP-complete problem is a problem that has (with high

probability) no efficient exact algorithm.

Below are some examples of NP-complete problems on texts. Usually, NP-complete

problems are stated as decision problems, but we present some problems in their more natural

version when outputs are not necessarily boolean. Essentially, this does not affect the hardness

of the problem.

Shortest common superstring

The general problem is to reconstruct a text from a set of its factors. There is of course no

unique solution, so the problem is usually constrained to a minimal length condition. Given a

finite set S of words, find a shortest word x that contains all words of S as factors, i.e. such that

S is included in Fac(text). The length of text is denoted SCS(∏).

(see [MS 77]). The size of the problem is the total length of all words in S.

Shortest common supersequence

Given a finite set S of words, find a shortest word x such that every word in S is a

subsequence of x (see [Ma 78]). The word x is called a supersequence of S.



Longest common subsequence

Given a finite set S of words, find a longest word x that is a subsequence of every word

in S (see [Ma 78]). It is worth observing that the problem is solvable in polynomial time if |S| is

a constant. The seemingly similar problem of computing the longest common factor of words

of S is also trivially solvable in polynomial time (number of distinct factors in quadratic, as

opposed to the exponential number of distinct subsequences).

String-to-string correction

Given words x and y, and an integer k, is it possible to transform x into y by a sequence of

at most k operations of single symbol deletion or adjacent-symbol interchange ? (See [Wa 75]).

The problem becomes polynomial-time solvable if we allow also operations of changing a

single symbol and inserting a symbol (see [WF 74]).

The rank of a finite set of words

Given a finite set X of words and an integer k, does there exists a set Y of at most k words

such that each word in X is a composition of words in Y, see [Ne 88]. The smallest k for which

Y exists is called the rank of X.

There are several other NP-complete textual problems : hitting string [Fa 74], grouping

by swapping [Ho 77], and problems concerning data compression [St 77], [SS 78]. We refer

the reader to Computers and Intractability : A Guide to the Theory of NP-Completeness by

M.R. Garey and D.S. Johnson.

2.4. Combinatorics of texts

As already seen in the previous section, a text x is simply a sequence of letters. The first

natural operation on sequences is concatenation. The concatenation of x and y, also called their

product, is denoted by a mere juxtaposition : xy, or sometimes with an extra dot, x.y, to make

apparent the decomposition of the resulting word. This is coherent with the notation of

sequences as juxtaposition of their elements. The concatenation of k copies of the same word x

is denoted by xk.

There is no need to bracket a sequence representing a text because concatenation is

associative : (xy)z = x(yz). The empty sequence (of zero length) is denoted by ε. The set of all

sequences on the alphabet A is denoted by A*, and the set of non-empty words is denoted by

A+. In the algebraic terminology, sequences are called words, and concatenation provides to A*

a structure of monoid (associativity and ε). Moreover this monoid is free, which essentially

means that two words are equal iff their letters at same positions coincide.
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Consider a word x which decomposes into uvw (for three words u, v and w). The words

u, v and w are called factors of x. Moreover u is called a prefix of x, and w a suffix of x. The

occurrence of factor v in x can be formally considered as the triplet (u, v, w). The position of

this occurrence is the length of u denoted by |u|. This notion is intrinsic; it does not depend on

the representation of the word x. However it coincides with our convention of representing texts

by arrays, and with the definition of positions already given in the previous section.

We define the notion of a period of a word, which is central in almost all string-matching

algorithms. A period of a word x is an integer p, 0<p≤|x|, such that

∀i ∈ {1, …, |x|-p} x[i] = x[i+p].

This is the usual definition of a period for a function defined on integers, as x can be viewed.

Note that the length of a word is always a period of it, so that any word has at least one period.

We denote by period(x) the smallest period of x.

Example

The periods of aabaaabaa (of length 9) are 4, 7, 8 and 9. ♦

Proposition 2.1

Let x be a nonempty word and p be an integer such that 0<p≤|x|. Then each following

condition equivalently defines p as a period of x :

(1) x is a factor of some yk with |y| = p and k>0,

(2) x may be written (uv)ku with |uv| = p, v nonempty and k>0,

(3) for some words y, z and w, x = yw = wz and |y| = |z| = p.

Proof

Condition 1 is equivalent to say that p is a period of x if one considers y = x[1…p].

1 implies 2 : if x is a factor of yk it can be written ryis with r a suffix of y and s a prefix of y. Let

t be such that y = tr. Then x = r(tr)is = (rt)irs. Since t and s are both prefixes of y, one of them

is a prefix of the other. If s is a proper prefix of t, then t = sv for some nonempty word v and,

setting u = rs, x = (rsv)irs = (uv)iu. Furthermore |uv| = |rsv| = |rt| = |tr| = |y| = p. Also note that

i>0 because |rs|<|y|=p≤|x|. In the other situation, t is a prefix of s and the word u such that s = tu

is also a prefix of r. Then, for some word w, r = uw and x = (uwt)i+1u or x = (uv)i+1u, if we set

v = wt. Moreover, |uv| = |uwt| = |rt| = |tr| = |y| = p and i+1>0.

2 implies 3 : if x = (uv)ku with |uv| = p, let y, z and w be defined by

y = uv, z = vu, w = (uv)k-1u.

The definition of w is valid because k>0. The conclusion follows : x = yw = wz.

3 implies 1 : first note that, if yw = wz, we also have yiw = wzi for any integer i. Since y is

nonempty (|y| = p and p>0), we can choose an integer k such that |yk|>|x|. The equality ykw =

wzk shows that x (=wz) is a factor and even a prefix of yk with |y| = p.

The proof is complete. ♦
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Figure 2.5. Duality between periods and borders of texts.

A border of a word x is any shorter word that is both a prefix and a suffix of x. Borders and

periods are dual notions, as shown by condition 3 of the previous proposition. We can state it

more precisely, defining Border(x) as the longest proper border of a nonempty word x. The

border of a word x is the longest (non-trivial) overlap when we try to match x with itself. Since

Border(x) is (strictly) shorter than x, iterating the function from any non-empty word leads

eventually to the empty word. We also say that x is border-free if Border(x) is the empty word.

Example

The borders of aabaaabaa are aabaa, aa, a and ε. ♦

Proposition 2.2

Let x be a word and let k (≥0) be the smallest integer such that Borderk(x) is empty. Then

(x, Border(x), Border2(x), …, Borderk(x))

is the sequence of all borders of x in order of decreasing length. Moreover

(|x|-|Border(x)|, |x|-|Border2(x)|, …, |x|-|Borderk(x)|)

is the sequence of all periods of x in increasing order.

Proof

Both properties hold if x is empty. In this case, the sequence of borders reduces to (x) and the

sequence of periods is empty since k = 0.

Consider a nonempty word x and let u = Border(x). Let w be a border of x. Then it is either

Border(x) itself or a border of Border(x). By induction it belongs to the sequence

(Border(x), Border2(x), …, Borderk(x))

and this proves the first point.

If p is a period of the nonempty word x, by condition 3 of Proposition 2.1 we have x = yw = wz

with |y|=p. Then w is a proper border of x and p = |x|-|w|. The conclusion follows from the fact

that (Border(x), Border2(x), …, Borderk(x)) is the sequence of proper borders of x. ♦

Note that the period period(x) (the smallest period of x) corresponds to the longest proper

border of x and is precisely |x|-|Border(x)|.
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The next theorem provides an important property on periods of a word. It is often use in

combinatorial proofs on words. We first give a weak version of the theorem often sufficient in

applications.

Lemma 2.3 (Weak Periodicity Lemma)

Let p and q be two periods of a word x.

If p+q ≤ |x|, then gcd(p, q) is also a period of x.

Proof

The conclusion trivially holds if p =q. Assume now that p > q. We first show that the condition

p+q ≤ |x| implies that p-q is a period of x. Let x = x[1]x[2]…x[n] (x[i]'s are letters). Given x[i]

the i-th letter of x, the condition implies that either i-q≥1 or i+p≤n. In the first case, q and p

being periods of x, x[i] = x[i-q] = x[i-q+p]. In the second case, for the same reason, x[i] =

x[i+p] = x[i+p-q]. Thus p-q is a period of x. This situation is shown in the Figure 2.6.

The rest of the proof, left to the reader, is by induction on the integer max(p, q), after noting that

gcd(p, q) equals gcd(p-q, q). ♦

x

p 

q 

a b c 

p-q  

i +(p-q ) i +p i 

Figure 2.6. p-q is also a period : letters a and b are both equal to letter c.

Lemma 2.4 (Periodicity Lemma)

Let p and q be two periods of a word x.

If p+q-gcd(p, q) ≤ |x|, then gcd(p, q) is also a period of x.

Proof

As for the weak periodicity lemma we prove the conclusion by induction on max(p, q). The

conclusion trivially holds if p =q, so, we assume now that p > q and let d = gcd(p, q). The

word x can be written yv with |y| = p and v a border of x. It can also be written zw with |z| = q

and w a border of x.

We first show that p-q is a period of w. Since p > q, z is a prefix of y. Let z' be such that y = zz'.

From x = zw = yv, we get w = z'v. But, since v is a border of x shorter than the border w, it is

also a border of w. This proves that p-q = |z'| is a period of w, and thus w is a power of z'.

To prove that q is a period of w, we have only to show that q ≤ |w|. Indeed, since d ≤ p-q

(because p > q), we have q ≤ p-d = p+q-d-q ≤ |x|-q = |w|.

This also show that (p-q)+q-gcd((p-q), q) (which is p-d) ≤ |w|. By induction hypothesis, we

deduce that d is a period of w. Thus z and z', whose lengths are multiple of d, are powers of a



same word u of length d. It is also the case for w (that is a power of z'), and then for x. Thus,

the word x has period gcd(p, q) as expected. ♦

Fibonacci words

In some sense, the inequality that appears in the statement of the periodicity lemma is

optimal. The aim of the following example is to exhibit a word x having two periods p and q

satisfying p+q-gcd(p, q) = |x|+1 and that does not satisfy the conclusion of the lemma.

Fibonacci words are defined on the alphabet A = {a, b}. Let Fibn be the n-th Fibonacci word

(n≥0). It is defined by

Fib0 = ε, Fib1 = b, Fib2 = a, and Fibn = Fibn-1Fibn-2 for n>2.

The lengths of Fibonacci words are the well known Fibonacci numbers, f0 = 0, f1 = 1, f2 = 1,

… The first Fibonacci words of (Fibn, n>2) are

Fib3 = ab, |Fib3| = 2,

Fib4 = aba, |Fib4| = 3,

Fib5 = abaab, |Fib5| = 5,

Fib6 = abaababa, |Fib6| = 8,

Fib7 = abaababaabaab, |Fib7| = 13,

Fib8 = abaababaabaababaababa, |Fib8| = 21,

Fib9 = abaababaabaababaababaabaababaabaab, |Fib9| = 34.

Fibonacci words satisfy a large number of interesting properties related to periods and

repetitions. One can note that Fibonacci words (except the two first words of the sequence) are

prefixes of their successors. Indeed, there is an even stronger property : the square of any

Fibonacci word is a prefix of its succeeding Fibonacci words of high enough rank.

To prove the extreme property of Fibonacci words related to the Periodicity Lemma, we

consider, for n>2, the prefix of Fibn of length |Fibn|-2, denoted gn. It can be shown that, for

n>5, gn is a prefix of both Fibn-12 and Fibn-23. Then |Fibn-1| and |Fibn-2| are periods of gn. It

can also be shown that gcd(|Fibn-1|, |Fibn-2|) = 1, a basic property of Fibonacci numbers. Thus,

we get |Fibn-1|+|Fibn-2|-gcd(|Fibn-1|, |Fibn-2|) = |Fibn-1|+|Fibn-2|-1 = |Fibn|-1 = |gn|+1.

Moreover, the conclusion of the periodicity theorem does not hold on gn because this would

imply that gn were a power of a single letter which is obviously false.

Among other properties of Fibonacci words, it must be noted that they have no factor of

the form u4 (u not empty). So, Fibonacci words contain a large number of periodicities, but

none with exponent higher than 3.
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Fibonacci words come up in the analysis of some algorithms. A common expression of

their length is used there : |Fibn| is Φn/√5 rounded to the nearest integer. It happens then that

log's are based Φ, the golden ratio (=(1+√5)/2).
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3. Basic string-matching algorithms

The string-matching problem is the most studied problem in algorithmics on words, and

there are many algorithms for solving this problem efficiently. Recall that we assumed that the

pattern pat is of length m, and that the text text has length n. If the only access to text text and

pattern pat is by comparisons of symbols, then the lower bound on the maximum number of

comparisons required by a string-matching algorithm is n-m . The best algorithms presented in

the book will make no more than 2.n-m comparisons in the worst case. Recently, the lower

bound has been improved, to around 4/3.n on a two letter alphabet. However, algorithms

become quite sophisticated and are beyond the scope of this book.

We start with a brute-force algorithm that uses quadratic time. Such a naive algorithm is

in fact an origin of a series of more and more complicated and more efficient algorithms. The

informal scheme of such a naive algorithm is :

for i := 0 to n-m do check if pat=text[i+1…i+m].

The actual implementation differs with respect to how we implement the checking operation :

scanning the pattern from the left or scanning the pattern from the right. So we get two brute-

force algorithms. Both algorithms have quadratic worst-case complexity. We discuss in this

chapter the first of them (left-to-right scanning of the pattern).

To shorten the presentation of some algorithms we assume that pat and text together with

their respective lengths, m and n, are global variables.

function brute_force1: boolean;

var i, j : integer;

begin

i := 0;

while i≤n-m do begin

{ left-to-right scan of pat }

j := 0;

while j<m and pat[j+1]=text[i+j+1] do j := j+1;

if j=m then return(true);

{ inv1(i, j) }

i := i+1; { length of shift = 1 }

end;

return(false);

end;



If pat=an/2b and text=an-1b then a quadratic number of symbol comparisons takes place.

However, the average complexity is not so bad. Assume that the alphabet has two symbols and

that each symbol appears with the same probability. Then the probability that the test

"pat[j+1]==text[i+j+1]" is successful is at most 1/2. It is now quite easy to calculate

that the average number of such successful tests for a fixed i does not exceed 1. The number of

unsuccessful tests does not exceed n. Hence, we have the following :

Fact

Assume |A|=2. The expected number of all symbol comparisons done by algorithm

brute_force1 does not exceed 2.n.

In the following, we are interested mostly in worst-case time complexity, and especially

in linear-time algorithms.

3.1. The Knuth-Morris-Pratt algorithm

Our first linear-time algorithm is a natural improved version of the naive algorithm

discussed above. We present a constructive proof of the following.

Theorem 3.1

The string-matching problem can be solved in O(|text|+|pat|) time using O(|pat|) space.

The constants involved in 'O' notation are independent of the size of the alphabet.

Remark

On one point we are disappointed with this theorem. The size of additional memory is rather

large though linear in the size of the pattern. In Chapter 13, we show that a constant number of

registers suffices to achieve linear time complexity (again the size of the alphabet does not

intervene).

Let us look closer at the algorithm brute_force1 and at its main invariant inv1(i, j) :

pat[1…j]=text[i+1…i+j] and pat[j+1]≠text[i+j+1].In fact, we first use the slightly weaker

invariant

inv1'(i, j) : pat[1…j]=text[i+1…i+j].

The invariant essentially says that the value of j gives a lot of information about the last part of

the text scanned so far.

Using the invariant inv1'(i, j), we are able to make longer shifts of the pattern. Present

shifts in algorithm brute_force1 have always length 1. Let s denote (the length of) a "safe"
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shift, where "safe shift s" means that on the basis of the invariant we know that there is no

occurrence of the pattern at positions between i and i+s, but possibly at position i+s.

text 

pat 

pat 

i 

k 

i+j 

j 

1

1

1

Figure 3.1. Shifting the pattern to the next safe position.

Assume j>0, let k=j-s, and suppose an occurrence of the pattern starts at position i+s.

Then, pat[1…k] and pat[1…j] are suffixes of the same text text[1…i+j] (see Figure 3.1).

Hence, the following condition is implied by inv1' :

cond(j, k) : pat[1…k] is a proper suffix of pat[1…j].

Therefore the shift is safe iff k is the smallest number satisfying cond(j, k). Denote this number

by Bord[j]. The function Bord is called a failure function, because it helps us in the moment of

a failure (mismatch). It is the crucial function. It is stored in a table with the same name. The

failure function allows to compute the length of the smallest safe shift, s=j-Bord[j]. Note that

Bord[j] is precisely the length of the border of pat[1…j], and that the length of the smallest safe

shift is the smallest period of pat[1…j] (see Section 2.4). In the case j=0, that is, when

pat[1…j].is the empty word, we have a special situation. Since, in this situation, the length of

the shift must be 1, we then define Bord[0]=-1. Now we have an improved version of

algorithm brute_force1.

function MP : boolean; { algorithm of Morris and Pratt }

var i, j : integer;

begin

i := 0; j := 0;

while i≤n-m do begin

while j<m and pat[j+1]=text[i+j+1] do j := j+1;

if j=m then return(true);

i := i+j-Bord[j]; j := max(0, Bord[j]);

end;

return(false);

end;



Lemma 3.2

The time complexity of the algorithm MP is linear in the length of the text. The maximal

number of character comparisons executed is 2.n-m.

Proof

Let T(n) be the maximal number of symbol comparisons "pat[j+1]=text[i+j+1] ?" done by the

algorithm MP. There are at most n-m+1 unsuccessful comparisons (at most one for a given i).

Consider the sum i+j. Its maximal value is n and minimal 0. Each time a successful

comparison is made the value of i+j increases by one unit. This value observed in the moment

of comparing symbols never decreases. Hence, there are at most n successful comparisons.

Also observe that if the first comparison is successful than we have no unsuccessful

comparison for position i=0. Finally, we get :

T(n)≤n+n-m=2.n-m.

For pat=ab and text=aaaa…a we have T(n)=2.n-m (in this case m=2). ♦

procedure compute_borders_1;

{ compute the failure table Bord for pattern pat }

{ a version of algorithm MP with text=pat }

var i, j : integer;

begin

i := 1; j := 0;

while i≤m-1 do begin

while i+j<m and pat[j+1]=text[i+j+1] do begin

j := j+1; if Bord[i+j]=-1 then Bord[i+j] := j;

end;

i := i+j-Bord[j]; j := max(0, Bord[j]);

end;

end;

There remains the problem of computing the table Bord, and the aim is to derive a linear-

time algorithm. We present two solutions. The first one is to use algorithm MP itself to

compute Bord. This, at first glance, can seem contradictory because Bord is needed inside the

algorithm. However, we compute Bord in parts; whenever a value Bord[j] is needed in the

computation of Bord[i] for i>j then Bord[j] is already computed. This is a kind of dynamic

programming.

Suppose that text =pat. We apply algorithm MP starting with i=1 (for i=0 nothing

interesting happens) and continue with i=2, 3, …., m-1. Then Bord[r]=j>0 whenever i+j=r in a

successful comparison for the first time. If Bord[r]>0 then such a comparison will take place.
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Assume that initially Bord[j]=-1 for all j≥0.

Of course, we can delete the statement "if j=m then return(true);" because

we are not solving now the string-matching problem. In fact, our interest here is only a side

effect of the algorithm MP.

The complexity of algorithm compute_borders_1 is linear. The argument is the same as

for algorithm MP. Next, we present another linear-time algorithm computing table Bord.

procedure compute_borders;

{ compute the failure table Bord for pat, second version }

var t, j : integer;

begin

Bord[0] := -1; t := -1;

for j := 1 to m do begin

while t≥0 and pat[t+1]≠pat[j] do t := Bord[t];

t := t+1; Bord[j] := t;

end;

end;

The correctness of the algorithm compute_borders essentially follows from Proposition

2.2, or from the fact that if Bord[j]>0 then Bord[j]=t+1, where t=Bordk[j] and k is the smallest

positive integer such that pat[Bordk[j]+1]=pat[j].

Lemma 3.3

The maximum number of character comparisons executed by algorithm

compute_borders is 2.m-3.

Proof

The complexity can be analyzed using a so-called 'store principle'. Interpret t as the number of

items in a store. Note that when t<0, no comparison is done, and t becomes null. So we can

consider that initially the store is empty. For each j running from 2 to m, we add at most one

item (at statement t := t+1). However, whenever we execute the statement "t := Bord[t]"

the value of t strictly decreases, which can be interpreted as deleting a nonzero number of items

from the store. The total number of items inserted does not exceed m-2. Hence the total number

of deletions and executions of statement "t := Bord[t]" for unsuccessful comparisons

"pat[t+1]≠pat[j]" does not exceed m-2.

For each j running from 2 to m, there is at most one successful comparison. The total number

of successful comparisons then does not exceed m-1.

Hence, the total number of comparisons does not exceed 2.m-3. ♦



The notion of failure function can be applied in a different way to the string-matching

problem, as follows. Let w = pat&text, where & is a special new symbol. Compute the table

Bord for this string. Then the pattern pat ends in text at all positions j with Bord[j]=m, where m

is the size of pat. Such an abstract algorithm was given in [FP 74].

We show another application of the failure function computation through algorithm

compute_borders, the computation of Maxsuf(pat), lexicographically maximal suffix of pat.

When computing the value of Bord[j] we examine consecutive values of the integer variable t.

These values correspond to all consecutive proper suffixes pat[1…t] of the word pat[1…j-1],

which are also prefixes of this word. Such examination could be useful in the computation of

maximal suffixes because of the following fact :

if pat[q+1…j-1] is the maximal suffix of pat[1…j-1] and pat[t+1…j] is the maximal

suffix of pat[1…j] then pat[t+1…j-1] is a prefix and suffix of pat[q+1…j-1]. Hence, to find

the next maximum suffix it is enough to examine extensions of suffixes of the last maximal

suffix (such suffixes can be given using failure table Bord). However, the following

unexpected feature of such an approach is that we have to compute borders of pat[q+1…j-1],

the current maximal suffix, and simultaneously its failure function. So, we have to compute the

table Bord for the dynamically changing pattern pat[q+1…j-1]. The trick is that the failure table

we need is essentially a prefix of the previous one.

function Maxsuf : integer;

{ computes Maxsuf(pat) }

{ application of failure function computation }

var ms, j, t : integer;

begin

ms := 0; Bord[0] := -1;

for j := 1 to m do begin

t := Bord[j-1];

while t≥0 and pat[ms+t+1]>pat[j] do begin

ms = j-1-t; t = Bord[t];

end;

while t≥0 and pat[ms+t+1]≠pat[j] do t = Bord[t];

Bord[j-sm] = t+1;

end;

return(ms); { Maxsuf(pat) is pat[ms+1…m] }

end;

}
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Denote x(j)=Maxsuf(pat[1…j]). If we have computed table Bord for x(j-1) then

x(j)=x'pat[j], where x' is a prefix of x(j-1). Hence, Bord is already computed for all positions

corresponding to symbols of x'; only one entry of Bord should be updated (for the last

position). We modify the algorithm for the failure function maintaining the following invariant

:

pat[ms+1…j]=Maxsuf(pat[1…j]),

and the values of table Bord are correct values of the failure function for the word

pat[ms+1…j].

In algorithm Maxsuf, parameter t runs through lengths of suffixes of pat[ms+1…j]. The

algorithm above computes Maxsuf(pat), as well as the failure function for it, in linear time.

Computation also require linear extra space for the table Bord. We give in Chapter 11 a linear-

time constant-space algorithm for the computation of maximal suffixes. It will be also seen

there why maximal suffixes are so interesting.

We have not so far taken into account the full invariant inv1 of algorithm brute_force1,

but only its weak version inv1'. We have left apart the mismatch property. We develop now a

new version of algorithm MP that incorporates the mismatch property. The result algorithm,

called KMP, improves on the number of comparisons performed on a given letter of the text.

The clue for improvement is the following : assume that a mismatch in algorithm MP

occurs on the letter pat[j+1] of the pattern. The next comparison is between the same letter of

the text and pat[k+1] if k=Bord[j]. But if pat[k+1]=pat[j+1] the same mismatch recurs. So, we

must avoid considering the border of pat[1…j] of length k.

For m>j≥0 we consider a condition stronger than cond(j, k) by a "one-comparison"

information :

s_cond(j, k) : (pat[1…k] is a proper suffix of pat[1…j] and pat[k+1]≠pat[j+1] )

We then define s_Bord[j] as k, when k is the smallest integer satisfying s_cond(j, k), and as -1

otherwise. Moreover we define s_Bord[m] as Bord[m]. We say that s_Bord[j] is the length of

the longest strict border of pat[1…j]. This notion of strict-borderness is not intrinsic, but is

only defined for prefixes of the pattern.
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Figure 3.2. Functions Bord and s_Bord for pattern abaab.

The algorithm KMP is the algorithm MP in which table Bord is replaced by table s_Bord.

function KMP: boolean; { algorithm of Knuth, Morris, and Pratt }

{ version of MP with table Bord replaced by s_Bord }

var i, j : integer;

begin

i := 0; j := 0;

while i≤n-m do begin

while j<m and pat[j+1]=text[i] do j := j+1;

if j=m then return(true);

i := i+j-s_Bord[j]; j := max(0, s_Bord[j]);

end;

return(false);

end;

The table s_Bord is more effective in the following on-line version of algorithm KMP.

Assume that the text ends with the special end-marker $. At each moment after having

processed the current input symbol, we output 1 if the part of the text read up so far ends with

the pattern pat, and we output 0, otherwise.
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Algorithm KMP;

{ on-line linear version of KMP search }

var j : integer; symbol : char;

begin

read(symbol); j := 0;

while symbol ≠ end of text do begin

while j<m and pat[j+1]=symbol do begin

j := j+1; if j=m then write(1) else write(0);

read(symbol);

end;

if s_Bord[j]=-1 then begin

write(0); read(symbol); j := 0;

end else

j := s_Bord[j];

end;

end;

Computation of strict borders of prefixes of the pattern pat relies on the following

observation. Let t=Bord[j]. Then, s_Bord[j]=t if pat[t+1]≠pat[j+1]. Otherwise, the value of

s_Bord[j] is the same as the value of s_Bord[t] because pat[t+1]=pat[j+1]. The next algorithm

applies this fact and is built on algorithm compute_borders. Its output is the global table

s_Bord. Also note that the strict border of pat itself is its border, as if pat were followed by a

marker.



procedure compute_s_borders;

{ compute table s_Bord for pattern pat }

var t, j : integer;

begin

s_Bord[0] = -1; t = -1;

for j := 1 to m-1 do begin

{ t equals Bord[j-1] }

while t≥0 and pat[t+1]≠pat[j] do t = s_Bord[t];

t := t+1;

if pat[t+1]≠pat[j+1] then s_Bord[j] = t

else s_Bord[j] = s_Bord[t];

end;

s_Bord[m] = t;

end;

Denote by delay(m) the maximal time (measured as the number of statements "j

=s_Bord[j]") done between two consecutive reads, for patterns of length m. By

delay_Bord(m) we denote the corresponding time in the situation when Bord is used instead of

s_Bord.

The large gap between delay(m) and delay_Bord(m) can be seen on the following

example : pat=aaaa…a and text=am-1ba. In this case delay(m)=1 while delay_Bord(m) is

linear in the length of pat. The value of delay(m) is generally small.

Lemma 3.4

The time delay(m) is O(log m), and the bound is tight.

The proof of Lemma 3.4 is a consequence of the Periodicity Lemma of Section 2.4. The

pattern gk defined in Section 2.4 as a prefix of the k-th Fibonacci word (for k≥3) yields a

sequence of exactly k-3 strict borders. The delay is then k-3, which is exactly of order log(m), if

m=length(gk).

Observe that for texts on binary alphabets delay(m)≤1. Which means that, in this case,

the algorithm is real-time. However, if the patterns are over the alphabet {a, b} and texts over

{a, b, c} then the delays can be logarithmic, as shown by the above example.

It is an interesting exercise in program transformations to modify algorithm KMP to

achieve a real-time computation independently of the size of the alphabet. This means that the

time between two consecutive reads must be bounded by a constant. The crucial observation is

that if we execute "j =s_Bord[j]" then we know that for the next j-s_Bord[j] input symbols the
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output value will be 0 ("no match"). This allows to disperse output actions between input

actions (reading symbol) in such a way that the time between consecutive writes-reads is

bounded by a constant. To do so, we can maintain in a table up to m last symbols of the text

text. We leave details to the reader. It is interesting to observe that real-time condition can be

achieved by using any of the tables Bord, s_Bord.

In this way, we sketched the proof of the following result (which becomes much harder

if the model of the computation is a Turing machine).

Theorem 3.5

There is a real-time algorithm for string-matching on a random access machine. The

algorithm is a version of the KMP algorithm and uses O(m) space. Complexities do not

depend on the size of the alphabet.

3.2 The Simon algorithm

Algorithm of Simon is a further improvement on algorithm brute_force1. The difference

with the previous algorithms relies on the way shifts are done. Recall that the main invariant of

brute_force1 is

inv1(i, j) : pat[1…j]=text[i+1…i+j] and pat[j+1]≠text[i+j+1],

occurring when a shift is to be done. In MP algorithm, the length of the shift is the period of

pat[1…j] corresponding to the border of this word. In KMP algorithm, a different notion of

period is considered that may be considered as not incompatible with the letter text[i+j+1] that

yields the mismatch. This corresponds to the notion of strict borders.

According to the information gathered so far on the text, the best length of the shift would

be the period of pat[1…j]text[i+j+1]. Pre-computing all periods of ua (u prefix of pat, a

possible letter of the text) takes time and space O(|A|.|pat|), which depends on the size of the

alphabet. This kind of solution is not desirable, especially for short patterns.

This solution amounts to consider the minimal deterministic automaton recognizing the

language A*x. Indeed, algorithms MP and KMP implicitly use a representation of this

automaton. We, implicitly also, consider here another implementation that leads to a faster

algorithm. Relation of all these algorithms to automata is given in Chapter 5.

The idea exploited in Simon algorithm is that we can record only non trivial periods of

words pat[1…j]text[i+j+1], namely, those that are less j+1. This leads to consider what we call

tagged borders of prefixes of the pattern pat. For each letter a of the alphabet A, distinct from

letter pat[j+1] if j<m, the border of pat[1…j] tagged by a is its largest border pat[1…k] such

that pat[k+1]=a.



Implementation of Simon algorithm requires lists of tagged borders. They are organized

as follows. A table First of size m gives pointers to another table, t_Bord of size 2.m, that

contains the lengths of tagged borders. Lists of tagged borders end with -1, and are in order of

decreasing lengths.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-1 0 -1 -1 1 0 -1 -1 0 -1 -1 3 1 0 -1

0 1 2 3 4 5 6 7
0 1 3 4 7 8 10 11First  

t_Bord  

a b a c a b a 

-1 0
-1

-1 1
0
-1

-1 0
-1

-1 3
1
0
-1

Figure 3.3. Lists of tagged borders for pat=abacaba,

and their implementation.

Algorithm MPS below assumes that the lists associated to all prefixes of the pattern have

been pre-computed. Figure 3.4 illustrates the difference between the three algorithms MP,

KMP, and MPS.
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function MPS: boolean;

{ algorithm of Simon, improvement on KMP }

var i, j, p, k : integer;

begin

i := 0; j := 0;

while i≤n-m do begin

while j<m and pat[j+1]=text[i+j+1] do j := j+1;

if j=m return(true);

p := First[j]; k := t_Bord[p];

while k>-1 and pat[k+1]≠text[i+j+1] do begin

p := p+1; k := t_Bord[p];

end;

i := i+j-k; j := k+1;

end;

return(false);

end;

text .......abaabac..............

 abaabaa
abaabaa
abaabaa
 abaabaa
abaabaa

(i) MP. 4 comparisons on letter c.

text .......abaabac..............

 abaabaa
abaabaa
 abaabaa
abaabaa

(ii) KMP. 3 comparisons on letter c.

text .......abaabac..............

 abaabaa
abaabaa
abaabaa

(iii) MPS. 2 comparisons on letter c.

Figure 3.4. Behavior of MP, KMP, and MPS.



Theorem 3.6

Algorithm MPS works in O(n) time for a text of length n. The maximum number of

character comparisons it executes is less than 2.n. The delay between two inspections of a

character of the text is O(|A|), where A is the alphabet of the pattern.

Proof

It is quite obvious that all comparisons done by algorithm MPS are also done during a run of

algorithms KMP or MP. This gives less than 2.n comparisons. All extra operations, including

the work on lists of tagged borders is proportional to this number. Hence, we get O(n) time.

Since the number of tagged borders of a given prefix of pat is at most |A|, no more than |A|

letter comparisons are done on a given symbol of the text. This gives the delay O(|A|). ♦

On a fixed alphabet (of patterns), algorithm MPS runs in real-time. If the alphabet is

potentially infinite, the algorithm can be transformed into a real-time algorithm using similar

method as for algorithms MP and KMP (see Section 3.1).

Preprocessing the lists of tagged borders can be done with a modified version of

algorithm MPS itself. Computation is done in (almost) on-line fashion : tagged borders related

to a prefix u of pat are computed just after all tagged borders of its prefixes have been

computed. We roughly describe how to computed tagged borders for u. Assume that

u=pat[1…j] and that Border(u)=pat[1…k] (MPS is used to find it). If j<m and

pat[j+1]≠pat[k+1], pat[1…k] is the longest border tagged by pat[k+1]. Otherwise, pat[1…k] is

not a tagged border. All other tagged borders are those of pat[1…k] which are not tagged by

pat[j+1]. Thus, their computation almost comes down to a copy of list. The details are left to

the reader.

The fact that preprocessing of lists can be realized in linear time and space relies on the

following property of tagged borders.

Proposition 3.7

For a pattern of length m, the number of tagged borders of its prefixes is at most m. The

bound is tight on infinite alphabets.

Proof

Let pat[1…k] be a border of pat[1…j] tagged by a. Associate to it the length (shift) j-k. Then,

no other tagged border can be associated to the same value. So, since 0<j-k≤m, the number of

tagged borders is at most m.

Let A be the infinite alphabet {a1, a2, …}. Consider the sequence of words defined by w1=a1

and wi=wi-1aiwi-1, for i>0. Then, it is easy to see that wi has length 2i-1, and the same number

of tagged borders for all its prefixes. ♦
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3.3 String-matching by duels

In this section we present a nonclassical string-matching algorithm whose preprocessing

phase is closely related to borders, and to KMP algorithm. We also introduce an interesting

new operation called the duel. A more essential use of this operation will be seen in the chapter

on optimal parallel string-matching and two-dimensional pattern matching. Hence, this section

can be treated as a preparation for more advanced algorithms presented later.

We assume in this section that the pattern is non-periodic, which means that the smallest

period of the pattern pat is larger than |pat|/2. This assumption implies that two consecutive

occurrences of the pattern in the text (if any) are at distance greater than |pat|/2. However, it is

not clear how to use this property for searching the pattern. We process as follows : after a

suitable preprocessing phase, given two close positions in the text, we eliminate one of them as

a candidate for a match. This leads to the idea of a duel.

The basic table which enables to search the pattern by a duel-based algorithm can be

computed either as a side effect of the Knuth-Morris-Pratt algorithm, or by a use of the table

Bord. Duels are performed at search phase. We define the following witness table WIT: for

0<i<|m|,

WIT[i] = any k such that pat[i+k] ≠ pat[k],

WIT[i] = 0, if there is no such k.

This definition is illustrated in Figure 3.5.

1

1
pat 

pat 

a 

b 

k 

i+k 

Fig 3.5. Witness of mismatch (a ≠ b), k = WIT[i].

A position i1 is said to be in the range of a position i2 iff |i1-i2|<m. We say that two

positions i1<i2 in the text are consistent iff i2 is not in the range of i1, or if WIT[i2-i1]=0. If the

positions are not consistent, then, we can remove one of them as a candidate for the starting

position of the pattern by just considering position i2+WIT[i2-i1] in the text. This is the

operation called a duel (see Figure 3.6). Let i = i2-i1, and k=WIT[i]. Assume that we have k>0,

that is, positions i1, i2 are not consistent. Let a=pat[k] and b=pat[i+k], then a≠b. Let c be the

symbol in the text at position i2+k, which is indicated by ‘?’ in Figure 3.6. We can eliminate at

least one of positions i1, i2 as a candidate for a match by comparing c with a and b. In some

situations, even both positions could be eliminated. But, for simplicity, the algorithm below

always removes exactly one position. Let us define (recall that a=pat[WIT[i2-i1]]):

duel(i1, i2) = (if a=c then i2 else i1).

The position that "survives" is the value of duel, the other position is eliminated.



pat 

pat 

a 

b 

k 

text 

i1 i2 
? 

Fig 3.6. Duel between two inconsistent positions i1 and i2.

One of them is eliminated by comparing symbol "?" in the text with a and b.

Assume the witness table is computed. Then, it is possible to reduce the search for pat in

text to the search for pattern 11...111 (repetition of m 1’s) in a text of 0's and 1's. This last

problem is obviously simpler than the general string-matching problem, and can be solved in

linear time (with essentially one counter).

The following property of consistent positions (transitivity) is crucial for the correctness

of the algorithm. It is called the consistency property : let i1 < i2 < i3,

if i1, i2 are consistent and i2,i3 are consistent then also i1,i3 are consistent.

Using this property we are able to eliminate from the text a set of candidate positions in such a

way that all remaining positions are pairwise consistent. This can be done using the mechanism

of stack (pushdown-store). Assume we have a stack of positions satisfying the property :

positions are pairwise consistent, and in increasing order (from the top of the stack). Then if we

push on the stack a position both smaller than the top position and consistent with it, then, the

stack retains the property.

A set of consistent positions is complete if an occurrence of the pattern cannot start at any

other position (position not in this set). We say that a position x in the text agrees with a

candidate position y, iff the symbol at position x agrees with the corresponding symbol of the

pattern when it is placed at position y (that is, text[x]=pat[x-y]). Assume that S is a complete set

of consistent positions, x is any position in the text, and y is any candidate position in S such

that x is in the range of y with x>y. Then, as a consequence of the consistency property, we have

the following :

x agrees with y iff x agrees with all positions in S.

Hence, it is enough to check the agreement of each position with any position from a set of

consistent positions. In this checking, we flag x with the value 0 or 1 depending on the

agreement. Using this feature, the string-matching reduces easily to the matching of unary

patterns (patterns consisting entirely of ones).

The duel-based algorithm uses an additional zero-one vector, called text1. The value of the

vector text1 computed by the algorithm satisfies :

pattern 1m occurs at position i in text1 iff the original pattern occurs at i in the text.
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function String_searching_by_duels : boolean;

{ Let S be a stack of positions }

begin

S := empty stack;

for i := n downto 1 do begin

push i on the stack S;

while |S|≥2 and

the two top elements i1, i2 of S are inconsistent do

replace them in S by the single element duel(i1, i2);

end;

mark in the text all position that are in S;

{ all marked positions are pairwise consistent }

for i := 1 to n do begin

k := first marked position to the left of i, including i;

if k undefined or pat[i-k+1]≠text[i] then text1[i]:=0

else text1[i]:=1;

end;

if text1 contains the pattern 1m return(true)

else return(false);

end;

The algorithm has obviously the linear time complexity. Moreover, this complexity does

not depend on the size of the alphabet. The basic part that remains to be shown is the

computation of the witness table WIT on the pattern.

We shall see later in the case of parallel computations that the fact that any position k for a

witness is possible has a great importance. It is sufficient, and makes it easier to compute in

parallel. However, in the case of sequential computations we can take the smallest such position

as a witness. This remains to define WIT[i]:=PREF[i], for each position i. Section 4.6 contains

both the definition of PREF, and a linear time algorithm to compute it. The complexity of this

latter algorithm is independent of the size of the alphabet.

Theorem 3.8

String-matching by duels takes linear time (search phase and preprocessing phase).

We believe that matching by duels is one of the basic algorithms, since the idea of duels

is the key to the optimal parallel string-matching of Vishkin presented later in Chapter 14.



However, historically the first optimal (for fixed alphabets) parallel string-matching algorithm

uses the idea of a sieve. This algorithm uses implicitly another type of duels which we call

expensive duels. Its advantage is that no additional table, like the one of witnesses, is needed. Its

drawback is that the resulting algorithm is not optimal. We show only the use of expensive

duels for a special type of patterns. Assume that the size of the pattern is a power of two.

Assume also that pat[1..2k] is non-periodic, for each k≥1. Such patterns are called here special.

patterns. An example of a special pattern is "wojtekrytter".

function expensive_duel(i, j): integer;

begin

k := log2(j-i)+1;

if text[i..i+2k]=pat[1..2k] then kill j else kill i;

return the survival;

end;

The defined function expensive_duel is similar to the duel function, however its

computation is much more expensive. This is the reason for the name "expensive duel". In the

algorithm, we partition the text into disjoint blocks of size 2k, we call them k-blocks.

algorithm String_searching_by_expensive_duels;

{ assume n-m+1 and m are powers of two }

{ assume that the pattern is special }

begin

initially all positions in [1..n-m] are survivals;

for k := 1 to logn do begin

let i and j be the only survivals in the k-blocks;

make expensive_duel(i, j) a survival;

end;

{ there are O(n/m) survivals }

for each survival position i do

check occurrence of pat at position i naively;

end;

Let us observe the very parallel nature of this algorithm: at a given stage k, the actions on

all k-blocks can be performed simultaneously.

Theorem 3.9
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Assume that all prefixes pat[1..2k] are non-periodic. Then the algorithm

String_searching_by_expensive_duels takes O(n log m) time.

Proof

At stage k we consider only O(n/2k) survivals. Each expensive duel at this stage takes O(2k)

time. There are m/2 stages. This gives together O(n log m) time. This completes the proof. ♦

The expensive duels are of restricted use. However, historically they appeared before the

concept of the duel has appeared. This is the only reason why it is reported here.

3.4 String-matching by sampling

Both Knuth-Morris-Pratt algorithm and Boyer-Moore algorithm (in the next chapter)

scan symbols at consecutive positions on the pattern. The first one scans a prefix of the pattern,

and the second one scans a suffix of the pattern. In this section, we show an algorithm that first

scans a sequence of not necessarily consecutive positions on the pattern, and then, in case of

success, completes the scan of the pattern. The first scanning sequence is called a sample.

A sample S for the pattern pat is a set of positions on pat. A sample S occurs at position i

in the text iff pat[j]=text[i+j] for each j in S (see Figure 3.7).

position i match at selected positions

the sample S

Figure 3.7. An occurrence of the sample S in the text.

A sample S is called a good sample iff it satisfies the two conditions (see Figure 3.8):

(1) S is small : |S| = O(log m);

(2) there is an integer k such that if S occurs at position i in the text then no occurrence of the

pattern starts in the segment [i-k..i+m/2-k] (this segment is called the desert.), except maybe at

i.



occurrence of the sample
at position i

the only candidate for the 
pattern occurrence in this area

k m/2-k

the desert

Figure 3.8. An occurrence of the sample, and the desert area.

If the pattern has period p, then pat[1..k] is called the non-periodic part of the pattern, where

k=min(m, 2.p-1).

Theorem 3.10

Assume we are given the period of the pattern pat, and a good sample of its non-periodic

part, then, the search for pat can be done in O(n log n) time with only O(log n) additional

memory space.

Proof

Assume for a moment that the pattern itself is non-periodic. Let us partition the input text into

windows of size m/2. We consider each window separately, and find the first and the last

occurrences of the sample in the window (if there are at least two occurrences). Only these

occurrences are possible candidates for an occurrence of the pattern. Each of these occurrences

is checked in a naive way (constant size additional memory is enough for that). This proves that

non-periodic part of the pattern can be found in the text with the required complexity. The

general case of periodic patterns is left as an exercise. One has to find sufficiently many

consecutive occurrences of the non-periodic part of the pattern. An additional counter is needed

to remember the number of consecutive occurrences. This completes the proof. ♦

Theorem 3.11

If the pattern is non-periodic then it has a good sample S. The sample can be constructed

in linear time.
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Proof

Assume we have computed the witness table WIT (see Section 3.3). Let us consider supposed

occurrences of the pattern at positions 1, 2, ..., m/2 of some imaginary text. Let us identify these

pattern occurrences with numbers 1, 2, ..., m/2. The occurrence corresponding to the i-th

position is called the i-th row. If we draw a vertical line at a position j then it can intersect a

given i-th row or not. If it intersects, then there is a symbol at the point of intersection (see the

Figure 3.9). Let us denote this symbol by symbol(i, j).

CLAIM 1

Let i1, i2 be two different elements of [1..m/2]. Then, there is an integer j such that the j-

th column intersects both rows i1 and i2; moreover, symbol(i1, j) ≠ symbol(i2, j). The

integer j can be found in constant time if the witness table of the pattern is precomputed.

The claim is a reformulation of the property of non-periodicity. Due to non-periodicity, for

occurrences of pattern placed at positions i1, i2 there is a mismatch position j given by the

j = i2+WIT[i2-i1]. This means that if we look at the vertical column placed at position j then

this column intersects occurrences of pattern with different symbols.

CLAIM 2

Let J be any set of rows. If a vertical column intersects the first and the last row of J, then

it intersects all the rows of J.

b
b
b
a
b
a
a
b
b
a
b
a

selected rows
set A

column jt+1
t+1

Fig 3.9. The set At+1 ={ i ∈ At : symbol(i, jt+1)=a} is the smaller one.

.

We now prove an equivalent geometrical formulation of the thesis of the theorem.

CLAIM 3

There is a row i and a set J of O(log m) vertical columns placed at positions j1, j2, ..., jk

such that:

(a) all columns in J intersect the row i;

(b) if r ≠ i (r in [1..m/2]), then there is a column j in J intersecting rows i and r and such

that symbol(i, j) ≠ symbol(r, j).

PROOF (of the claim)



We construct the set J and the row i by the algorithm below, which ends the proof of the

theorem. ♦

Algorithm Find_good_sample;

begin

J := empty set; A0 := [1..m/2]; t := 0;

while |At| > 1 do begin

find any column jt+1 which intersects all rows of At

with two different symbols at intersection points;

{ use CLAIM 1 and CLAIM 2 }

Let a, b be the two different symbols at intersections;

At+1 := smaller of the two sets {i ∈ At / symbol(i,jt+1)=a}

 and {i ∈ At / symbol(i,jt+1)=b};

add jt+1 to J; t := t+1;

end;

let i be the unique element of At;

return(J, i);

end;
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4. The Boyer-Moore algorithm and its variations

We describe in this chapter another basic approach to string-matching. It is introduced as

an improvement on a second version of the naive algorithm of Chapter 3. We can get another

naive string-matching algorithm, similar to brute_force1 of the previous chapter, if the scan of

the pattern is done from the right to left. This algorithm has quadratic worst-case behavior, but

(similarly to algorithm brute_force1) its average time complexity is linear.

In this section we discuss a derivative of this algorithm — the Boyer-Moore string-

matching algorithm. The main feature of this algorithm is that it is efficient in the sense of

worst-case (for most variants) as well as average-case complexity. For most texts and patterns

the algorithm scans only a small part of the text because it performs "jumps" on the text. The

algorithm applies to texts and patterns that reside in main memory.

function brute_force2 : boolean;

var i, j : integer;

begin

i := 0;

while i≤n-m do begin

{ right-to-left scan of pat }

j := m;

while j>0 and pat[j]=text[i+j] do j := j-1;

if j=0 then return(true);

{ inv2(i, j) }

i := i+1; { length of shift = 1 }

end;

return(false);

end;

4.1 The Boyer-Moore algorithm

The algorithm BM can be viewed as an improvement on the initial naive algorithm

brute_force2. We try again, as done in the previous chapter for algorithm brute_force1, to

analyze this algorithm and look carefully at information the algorithm wastes. This information

is related to the invariant in the algorithm brute_force2

inv2 : pat[j+1…m]=text[i+j+1…i+m] and pat[j]≠text[i+j].

Denote by inv2' the weaker invariant : pat[j+1…m]=text[i+j+1…i+m].



The information gathered by the algorithm is "stored" in the value of j. However, at the next

iteration, this information is erased as j is set to a fixed value. Suppose that we want to make

bigger shifts using the invariant.

text 

pat 

pat 

i 

k 

i+j 

j 

1

1

1
shift s 

k-sj-s
*

*

Figure 4.1. The case s<j.

The shift s is said to be safe iff we are certain that between i and i+s there is no starting

position for the pattern in the text. Suppose that the pattern appears at position i+s (see Figure

4.1, where the case s<j' is presented). Then, the following conditions hold :

cond1(j, s) : for each k s.t. j<k≤m, s≥k or pat[k-s]=pat[k],

cond2(j, s) : if s<j then pat[j-s]≠pat[j].

We define two kinds of shifts, each associated with a suffix of the pattern represented by

position j (<m), and defined by its length :

D1[j] = min {s>0 : cond1(j, s) holds},

D[j] = min {s>0 : cond1(j, s) and cond2(j, s) hold}.

We also define D1[m]=D[m]=m-Bord[m]. The Boyer-Moore algorithm is a version of

brute_force2 in which, in a mismatch situation, is executed a shift of length D[j] instead of one

position shift.
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function BM : boolean;

{ improved version of brute_force2 }

begin

i := 0;

while i≤n-m do begin

j := m;

while j>0 and pat[j]=text[i+j] do j := j-1;

if j=0 then return(true);

{ inv2(i, j) }

i := i+D[j];

end;

return(false);

end;

Let us compare a run of this algorithm with a run of the similar algorithm which uses D1

instead of D. The history of the computations for pat=cababababa and

text=aaaaaaaaaababababa is presented in Figure 4.2.

                        c a b a b a b a b a
                        c a b a b a b a b a

                        c a b a b a b a b a

                        c a b a b a b a b a

                        c a b a b a b a b a

text  =  ............a  a a a a a a a b a b a b a b a ...... .a  a a a a a a a b a b a b a b a ...

                        c a b a b a b a

                        c a b a b a b a

Figure 4.2. BM with D1-shifts makes 30 comparisons (left)

BM with D-shifts makes only 12 comparisons (right).

We show that time complexity of preprocessing the pattern (compute table D) is linear.

We use a close correspondence between situations in relation with the definition of function D;

and configurations appearing in the algorithm that computes failure functions, see Figure 4.1

and Figure 4.3.

Let x1 be the reverse of pat. In the algorithm below, we update values of certain entries of

table D according to what is shown in Figure 4.3. This figure is related only to the case

D[j1]<j1, which is considered during the first stage of the algorithm. We treat separately other

entries of the table D in the second stage, see Figure 4.4



procedure compute_D;

begin

{ m is the maximal possible length of shifts }

for j1 := 1 to m do D[j1] := m;

{ first stage is a partial computation of table D; }

{ correct values are computed for D[j1]<j1; }

{ we compute table Bord for the reverse of pat; }

{ D is computed as a side-effect }

Bord[0] := 0; Bord[1] := 0; t := 0;

for j := 2 to m do begin

while x1[j]<>x1[t+1] and t>0 do begin { see Figure 4.3 }

s:=j-t-1; j1:=m-t; D[j1]:=min(D[j1], s ); t:=Bord[t];

end;

if x1[t+1]=x[j] then t := t+1

else { see Figure 4.3 with t=0 } D[m] := min(D[m], j-1);

Bord[j] := t;

end;

{ second stage: correct values for D[j1]≥j1, see Figure 4.4 }

{ consider the failure function Bord for the pattern pat }

{ not for the reverse of pat, as before }

t := Bord[m]; q := 0;

while t>0 do begin

s := m-t;

for j := q to s do D[j] := min(D[j], s);

q := s+1; t := Bord[t];

end;

end;
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match mismatch

*

pattern

pattern

shift

j1

computation of Bord table for x
R

computation of table D for x

j

match mismatch

* reversed pattern

reversed pattern

shift

t

Figure 4.3. Situation just before executing t = Bord[t] in the

computation of failure function Bord for the reverse of pattern.

We know that D[j1]≥s, where s=j-t-1 and j1=m-t.

pattern

pattern
shift

match
j

Figure 4.4. Case D[j]≥j; D[j]=s=m-t, where t=Bordk[m] for some k>0.

Boyer and Moore introduced also another "heuristic" useful in increasing lengths of

shifts. Suppose that we have a situation, where symb=text[i+j] (for j>0), and symb does not

occur at all in the pattern. Then, in the mismatch situation, we can make a shift of length s=j.

For example if pat=a100 and t=(a99b)10 then we can always shift of 100 positions, and

eventually make only 10 symbol comparisons. For the same input words, algorithm BM

makes 901 comparisons. But, if we take pat=bam-1 and text=a2.m-1, the heuristic used alone

(without using table D) leads to a quadratic time complexity. Let last(symb) be the last position

of an occurrence of symbol symb in pat. If there is no occurrence, last(symb) is set to zero.

Then, we can define a new shift, replacing instruction "i := i+D[j]" of BM algorithm by



"i := i+max(D[j], j-last(text[i+j])".

Shift of length j-last(text[i+j]) is called an occurrence shift. In practice, it may improve the time

of the search for some inputs, though theoretically it is not entirely analyzed. If the alphabet is

binary, and more generally for small alphabets, the occurrence heuristics have little effect, so, it

is almost useless.

4.2.* Analysis of Boyer-Moore algorithm

The tight upper bound for the number of comparisons done by BM algorithm is

approximately 3.n. The proof of it is rather difficult but yields a fairly simple proof of a 4.n

bound. The fact that the bound is linear is completely nontrivial, and even surprising in view of

the quadratic behavior of BM algorithm when modified to search for all occurrences of the

pattern. The algorithm uses variable j to enlarge shifts, but afterwards "forgets" about the

checked portion of the text. In fact, the same symbol in text can be checked a logarithmic

number of times. If we replace D by D1 then the time complexity becomes quadratic

(counterexample is given by text and patterns with the same structure as in the Figure 4.2 :

pat=ca(ba)k and text=a2.k+2(ba)k ). Hence, one small piece of information (the "one bit"

difference between invariants inv2, inv2') considerably reduces the time complexity in the worst

case. This contrasts with improved versions of algorithm brute_force1, where inv1 and inv1'

gave similar complexities (see Chapter 3). The difference between the usefulness of

information about one mismatched symbol is an evidence of the big importance of a

(seemingly) technical difference in scanning the pattern left-to-right versus right-to-left.

Assume that, in a given non-terminating iteration, BM algorithm scans the part text[i+j-

1…i+m] of the text and then makes the shift of length s=D[j], where j>0 and s>(m-j)/3. By

current match we mean the scanned part of text without the mismatch letter (see Figure 4.5).
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Fig 4.5. The part text[i+j-1…i+m] of the text is the current match; v denotes the shortest full

period of the suffix of the pattern, v is a period of the current match.



Lemma 4.1

Let s be the value of the shift made in a given non-terminating iteration of BM algorithm.

Then at most 3.s positions of the text scanned at this iteration, have been scanned in

previous iterations.

Proof

It is easier to prove a stronger claim:

/*/ positions in the segment text[i+j+k…i+m-2.k] are scanned in this iteration for the first 

time, where k is the size of the shortest full period v of pat[m-s…m].

In other words:

only the first k and the last 2.k positions of the current match could have been read before.

Denote by v the shortest full period v of pat[m-s+1…m]. The following property of the current

match follows directly from the definition of the shift:

(Basic property) v is a period of the current match, and v is a suffix of the pattern.

We introduce the notion of critical position in the current match. These are internal

positions in this match whose distance from the right end of the match is a nonzero multiple of

k, (see Figure 4.5) and distance from the left is at least k. We say that a previous match ends at

a position q in the text, if, in some previous iteration, the end of the pattern was positioned at q.

Claim 1:

No previous match ends at a critical position of the current match.

Proof (of the claim)

The position i+m is the end position of the current match. It is easy to see that, if a critical point

of the current match is the end of the match in a previous iteration i, then in the iteration

immediate after i the end of the pattern is at position i+m+shift. Hence the current match under

consideration would not exist, a contradiction. This proves the claim. ‡

Claim 2

The length of the overlap of the current match and the previous match is smaller than k.

Proof (of the claim)

Recall that by a match we mean a scanned part of the text without the mismatch position. The

period v is a suffix of the pattern. We already know, from Claim 1, that the end of the previous

match cannot end at a critical position. Hence if the overlap is at least k long, then v occurs

inside the current match with the end-position not placed at a critical position. Then, the

primitive word v properly overlaps itself in a text whose periodicity is v. But, this is impossible

for primitive words (due to periodicity lemma). This proves the claim. ‡

Claim 3

Assume that a previous match ends at position q inside a forbidden one, and is completely

contained in the current match. Then there is no critical point (in the current match) to the right

of q.

Proof (of the claim)
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Suppose there is a critical position r to the right of q. Then it is easy to see that r-q is a good

candidate for the shift in the BM algorithm. The algorithm takes as an actual shift the smallest

such candidate. If the shift is smaller than r-q, we have a new position q1<r. Then, we will

have a sequence of previous matches with end-positions q1, q2, q3,… . This sequence

terminates in r, otherwise we would have an infinite increasing sequence of natural numbers

smaller than r, which is impossible. This contradicts Claim 1, since we have a previous match

ending at a critical position in the current match. This completes the proof of the claim. ‡

Proof of lemma

Now, we are ready to show that /*/ holds. The proof is by contradiction. Assume that in some

earlier iteration we scan the “forbidden” part of the text (shadowed in Figure 4.5. Let q be the

end-position of the match in this iteration. Then, q is not a critical position and this match is

contained completely in the current match (its overlap with the current match is shorter than k

and q lies too far from the beginning of the current match). By the same argument the

rightmost critical position in the current match is to the right of q. Hence, we have found a

previous match which is completely contained in the current match and whose end-position lies

to the left of some critical position. however this is impossible, due to Claim 3. This completes

the proof of the lemma. ‡

Theorem 4.2

The Boyer-Moore algorithm makes at most 4n symbol comparisons to find the first

occurrence of the pattern (or to report no matches). The linear time complexity of the

algorithm does not depend on the size of the alphabet.

Proof

The cost of each non-terminating iteration can be split into two parts:

(1) the cost of scanning some positions of the text for the first time,

(2) three times the length of the shift.

The total cost of all non-terminating iterations can be estimated by summing separately all costs

of type (1), this gives at most n, and all costs of type (2), which gives at most 3.(n-m).

The cost of a terminating iteration is at most m. Hence, the total cost of all iterations is upper

bounded by:

n + 3(n-m) + m ≤ 4.n.

This completes the proof. ‡

4.3 Galil's improvement

If we want to find all occurrences of pat in text with a modified BM algorithm, then, the

complexity can become quadratic. The simplest counterexample is given by a text and a pattern

over a one-letter alphabet. Observe a characteristic feature of this counterexample : high



periodicity of the pattern. Let p be the period of the pattern. If we discover an occurrence of pat

at some position in text, then the next shift must naturally be equal to p. Afterwards, we have

only to check the last p symbols of pat. If they match with the text, then, we can report a

complete match without inspecting all other m-p symbols of pat. This simple idea is embodied

in the algorithm below. The variable named memory "remembers" the number of symbols

which we have not to be inspected (memory=0 or memory=m-p). It remembers in fact the

prefix of the pattern that matches the text at the current position. This technique is called prefix

memorization. The correctness of the following algorithm is straightforward. The period of pat

can be pre-computed from algorithms of Chapter 3 (see MP algorithm).

procedure BMG;

{ BM algorithm with prefix memorization; p = period(pat) }

begin

i := 0; memory := 0;

while i≤n-m do begin

j := m;

while j>memory and pat[j]=text[i+j] do j := j-1;

if j=memory then begin

write(i); memory := m-p;

end else memory := 0;

{ inv2(i, j) }

i := i+D[j];

end;

end;

Theorem 4.3

Algorithm BMG makes O(n) comparisons.

Proof

It is an easy consequence of the previous theorem that the complexity is O(n+r.m), where r is

the number of occurrences of pat in text. This is because between any two consecutive

occurrences of pat in text, BMG does not make more comparisons than the original BM

algorithm. Hence, if p≥m/2, since r≤n/p, n+r.m is O(n).

It remains to consider the case p<m/2. In this case, we can group occurrences of the pattern into

chains of positions differing only by p (for two consecutive positions in a group) (see Figure

4.6).
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___________

___________          ___________

___________      ___________

___________     ___________

____.................______________..................____

 chain  gap  chain

Figure 4.6. The text is partitioned into chains of

consecutive occurrences of pattern, and gaps between them.

Within each such chain each text symbol is inspected at most once. The gaps between chains

are larger than m/2, and, inside each such gap, BMG works is not slower than BM algorithm.

Now an argument similar to that used in the case of large periods can be applied. This

completes the proof. ‡

4.4 The Turbo_BM algorithm

We present in this section another efficient version of the Boyer-Moore algorithm. The

modification looks superficial, but it actually improves the worst case complexity. The number

of letter comparisons done during the search becomes less than 2.n. The BMG algorithm of

Section 4.3, implements a prefix memorization after the discovery of an occurrence of the

pattern. In the present version, we implement a factor memorization. This occurs not only after

occurrences of the pattern.

In the new approach no extra preprocessing is needed. The only table to keep from BM

algorithm is the original table of shifts, D. All extra memory is of a constant size (two

integers). The resulting algorithm Turbo_BM forgets all its history except the most recent one

and its behavior has again a “mysterious” character. Despite that, the complexity is improved

and the analysis is simple.

The main feature of Turbo_BM algorithm is that during the search of the pattern, one

factor of the pattern that matches the text at the current position is memorized (this factor can be

empty). This has two advantages :

— it can lead to a jump over the memorized factor during the scanning phase,

— it allows to perform what we call a Turbo-shift.
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Figure 4.7. Turbo-shift equals memory-match.

Distinct letters a and b in text are at distance h, and h is a period of the right part of pattern.

In Turbo_BM algorithm, two kinds of shifts are considered : ordinary shifts of BM

algorithm (called a D-shift), and Turbo_shifts. We now explain what is a Turbo_shift. Let x

(match) be the longest suffix of pat that matches the text at a given position. Let also y

(memory) be the memorized factor that matches the text at the same position. We assume that

x and y do not overlap (i.e., for some non-empty word z, yzx is a suffix of pat). For different

letters a and b, ax is a suffix of pat aligned with bx in the text (see Figure 4.7). The only

interesting situation is when y is non empty, which occurs only immediately after a D-shift. Let

shift its length. A Turbo_shift can occur when x is shorter than y. In this situation, ax is a suffix

of y. Thus letters a and b occur at distance shift in the text. But, suffix yzx of pat has period shift

(by definition of the D-shift), and thus, this word cannot overlap both occurrences of letters a

and b in the text. As a consequence, the smallest safe shift of the pattern is |y|-|x|, which we call

the Turbo_shift.

In a first approximation, the length of the current shift in Turbo_BM algorithm is

max(D[j], Turbo_shift). In fact, in case a D-shift does not apply (D[j] is smaller than

Turbo_shift), the length of the actual shift is made greater than the length of the matched suffix

of pat. The proof of correctness of this second feature is similar to the above argument. It is

explained in Figure 4.8.

From the above discussion, and the analysis of BM algorithm itself, it is straightforward

to derive a correctness proof of Turbo_BM algorithm. The algorithm, given below, finds all

occurrences of the pattern, not only the first one, as BM algorithm does.
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procedure Turbo_BM;  { BM algorithm with factor memorization }

begin

i:=0; memory:=0;

while i ≤ n-m do begin

j := m;

while j > 0 and  pat[j] = text[i+j] do

if memory ≠ 0 and j = m-shift then j := j-memory { jump } 

else j := j-1;

if j = 0 then report match at position i;

match := m-j; Turbo_shift := memory-match;

shift := max(D[j], Turbo_shift);

if shift > D[j] then begin

i := i+max(shift, match+1); memory := 0;

end else begin

i := i+shift; memory := min(m-shift, match);

end;

end;

end;

In the above Turbo_BM algorithm, we deal only with ordinary shifts of BM algorithm.

We have discussed, at the end of Section 4.1, how to incorporate into BM algorithm occurrence

shifts. The version of Turbo_BM including occurrence shifts is obtained by a simple

modification of the instruction computing variable shift. It becomes

shift:= max(D[j], j-last(t[i+j]), Turbo_shift).

In case an occurrence shift is possible, the length of the shift is made greater than match. This is

similar to the case where a turbo-shift applies. The proof of correctness is also similar, and

explained by Figure 4.8. The length of the D-shift of BM algorithm is a period of the segment

match of the text (Figure 4.8). At the same time, we have two distinct symbols a,b whose

distance is the period of the segment. Hence, the shift has length at least match+1. This shows

the correctness of Turbo_BM algorithm with occurrence shifts.
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Figure 4.8. The occurrence-shift or Turbo-shift are greater than D-shift,

which is a period of match. Letters a and b ( a≠b) cannot both overlap match.

Then the global shift must be greater than match.

4.5.* Analysis of Turbo_BM algorithm

The analysis of the time complexity of Turbo-BM is far more simpler than that of BM

algorithm. Moreover, the maximum number of letter comparisons done during the search (of

all occurrences of the pattern) is less the "canonical" 2.n. Recall that it is approximatively 3.n

for BM algorithm (to find the first occurrence of the pattern). So, Turbo_BM algorithm is

superior to BM algorithm in two aspects:

— the time complexity is improved,

— the analysis is simpler.

Theorem 4.4

The Turbo_BM algorithm (with or without the occurrence heuristics) is linear. It makes

less than 2.n comparisons.

Proof

We decompose the search into stages. Each stage is itself divided into the two operations : scan

and shift. At stage k we call Sufk the suffix of the pattern that matches the text and sufk its

length. It is preceded by a letter that does not match the aligned letter in the text (in the case Sufk
is not the p itself). We also call shiftk the length of the shift done at stage k.

Consider 3 types of stages according to the nature of the scan, and of the shift:

(i) stage followed by a stage with jump,

(ii) no type (i) stage with long shift.

(iii) no type (i) stage with short shift,

We say that the shift at stage k is short if 2.shiftk < sufk+1. The idea of the proof is to amortize

comparisons with shifts. We define costk as follows :

— if stage k is of type (i), costk = 1;
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— if stage k is of type (ii) or (iii), costk = sufk+1.

In the case of type (i) stage, the cost corresponds to the mismatch comparison. Other

comparisons done during the same stage are reported to the cost of next stage. So, the total

number of comparisons executed by the algorithm is the sum of costs. We want to prove

Σcosts < 2.Σshifts. In the second Σ, the length of the last shift is replaced by m. Even with this

assumption, we have Σshifts ≤ |t|, and if the above inequality holds, so is the result Σcosts <

2.|t|.

For stage k of type (i), costk (=1) is trivially less than 2.shiftk, because shiftk > 0. For

stage k of type (ii), costk = sufk+1 ≤ 2.shiftk, by definition of long shifts.

It remains to consider stages of type (iii). Since in this situation, we have shiftk<sufk,, the

only possibility is that a D-shift is applied at stage k. Then memory is set up. At next stage k+1,

the memory is not empty, which leads to a potential turbo-shift. The situation at stage k+1 is

the general situation when a turbo-shift is possible (see Figure 4.9). Before continuing the

proof, we first consider two cases and establish inequalities (on the cost of stage k) that are

used later.

CASE (a) : sufk+shiftk ≤ |p|

By definition of the turbo-shift, we have sufk - sufk+1 ≤ shiftk+1. Thus,

costk = sufk+1 ≤ sufk+1+shiftk+1+1 ≤ shiftk+shiftk+1.

CASE (b) : sufk+shiftk > |p|

By definition of the turbo-shift, we have sufk+1+shiftk+shiftk+1 ≥ m. Then

costk ≤ m ≤ 2.shiftk-1+shiftk+1.

We can consider that at stage k+1 case (b) occurs, because this gives the higher bound on

costk (this is true if shiftk≥2; the case shiftk=1 can be treated directly).

If stage k+1 is of type (i), then costk+1 = 1, and then costk+costk+1 ≤ 2.shiftk+shiftk+1, an

even better bound than expected.

If stage k+1 is of type (ii), or even if sufk+1 ≤ shiftk+1, we get what expected,

costk+costk+1 ≤ 2.shiftk+2.shiftk+1.

The last situation to consider is when stage k+1 is of type (iii) with sufk+1 > shiftk+1. This

means, as previously mentioned, that a D-shift is applied at stage k+1. Thus, the above analysis

also applies at stage k+1, and, since only case (a) can occur then, we get costk+1 ≤

shiftk+1+shiftk+2. We finally get costk+costk+1 ≤ 2.shiftk+2.shiftk+1+shiftk+2.

The last argument proves the first step of an induction : if all stages k to k+j are of type

(iii) with sufk > shiftk, …., sufk+j > shiftk+j, then

costk+….+costk+j ≤ 2.shiftk+….+2.shiftk+j+shiftk+j+1.

Let k' be the first stage after stage k such that sufk' ≤ shiftk'. Integer k' exists because the contrary

would produce an infinite sequence of shifts with decreasing lengths. We then get

costk+….+costk' ≤ 2.shiftk+….+2.shiftk'.

Which shows that Σcostk ≤ 2.Σshiftk, as expected. ‡
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Figure 4.9. Costs of stages k and k+1 correspond to shadowed areas plus mismatches.

If shiftk is small, then shiftk+shiftk+1 is big enough to partially amortize the costs.

4.6 Other variations of Boyer-Moore algorithm

We describe in this section several possible improvements on BM algorithm. The first

one is called AG algorithm. Its basic idea is to avoid checking the segments of the text which

have already been examined. These segments have a very simple structure. They are all

suffixes of pattern pat. Call these segments partial matches. Their length is the number of

symbols which matched in one stage of BM algorithm.

It is convenient to introduce a table S[j], analogue to Bord[i] in the sense that Bord is

defined in terms of prefixes, while S is defined in terms of suffixes. Value S[j] is the length of

the longest suffix of pat[1…j] which is also a suffix of pat[1…n].

Suppose that we scan text text right-to-left and compare it with pattern pat as in BM

algorithm. Let us consider the situation when segment pat[j+1…n] of pat has just been

scanned. At this moment, the algorithm attempts to compare the j-th symbol of pat with the

(i+j)-th of text. We further assume that, is attached to the current position of the text the fact that

a partial match of length k has previously ended here. Hence, we know that the next k positions

to the left in the text give a suffix of the pattern. If k≤S[j], then we know that we can skip these
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k symbols (because they match), and continue comparing pat with text further to left.

Otherwise, we know that our actual match is a failure because no suffix of length k ends at the

current position of the pattern (except when S[j]=j). In AG algorithm, a variable skip

remembers how many symbols can be skipped. More precisely, the condition which enables

us to make a skip is:

cond(k, j) : k≤S[j] or (S[j]=j and j≤k].

pat 
text 

pat 

skip

partial match

pat 
text 

pat 

skip

partial match

Figure 4.10. Two possible situations allowing a skip. A skip of length k saves

k symbol comparisons. The skipped part is always a suffix of the pattern.



function AG : boolean;

{ another improved version of brute_force2 }

begin

i := 0; { PM is the table of partial matches,

all its entries are initially set to zero }

while i≤n-m do begin

j := m;

while j>0 and ((PM[i+j]≠0 and cond(PM[i+j]) or

 (PM[i+j]=0 and pat[j]=text[i+j])) do

j := j-max(1, PM[i+j]);

if j=0 then return(true);

PM[i+m] := m-j;

{ inv2(i, j) }

i := i+D[j];

end;

return(false);

end;

Recall that we assume a lazy evaluation from left to right of boolean expression in

algorithms. Then it is easily seen that each symbol of the text is examined at most twice during

a run of AG algorithm. We get a bound 2.n on the number of all symbol comparisons. Also,

the number of times table PM is accessed is easily seen to be linear. Hence, AG algorithm has

time complexity generally much better than that of BM algorithm. Moreover, the number of

symbol comparisons made by AG algorithm never exceeds the number of comparisons made

by BM algorithm. The main advantage of the latter algorithm is that it is extremely fast for

many inputs (reading only small parts of text). This advantage is preserved by the AG

algorithm. Note that AG algorithm requires O(m) extra space due to table PM.

We go to the computation of table S used in AG algorithm. Table S can be computed in

linear time, in a similar manner as table Bord; one possibility is to compute it as a by-product

of MP algorithm (when text=pattern). Indeed, instead of computing S, one can compute a more

convenient table PREF. It is defined by

PREF[i]=max{ j : pat[i…i+j-1] is a prefix of pat}.

The computation of table S is directly reducible to the computation of PREF for the reversed

pattern. One of many alternative algorithms is based on the following observation :

if Bord[i]=j then pat[i-j+1…i] is a prefix of pat.

This leads to the following algorithm.
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procedure compute_PREF;

begin

for i := 1 to n do PREF[i] :=0;

for i := 1 to n do begin

j := Bord[i]; PREF[i-j+1] := max(PREF[i-j+1], j);

end;

end;

Though useful, this algorithm is not entirely correct. In the case of one letter alphabet only

one entry of table PREF will be properly computed. But its incorrectness is quite "weak". If

PREF[k]>0 after the execution of the algorithm then it is properly computed. Moreover,

PREF is computed for "essential" entries. The entry i is essential iff PREF[i]>0 after applying

this algorithm. These entries partition interval [1…m] into subintervals for which the further

computation is easy.

The computation of the table for nonessential entries is done as follows: traverse the

whole interval left-to-right and update PREF[i] for each entry i. . Take the first (to the left of i,

including i) essential entry k with PREF[k]≥i-k+1 then we execute PREF[i]=min(PREF[i-

k+1], PREF[k]-(i-k)). If there is no such essential entry then PREF[i]=0.  Apply this for an

example pattern over one-letter alphabet to look how it works.

BM algorithm is especially fast for large alphabets, because then, shifts are likely to be

long. For small alphabets, the average number of symbol comparisons is linear. We now

design an algorithm making O(n log(m)/m) comparisons on the average. Hence, if m is of the

same order as n, the algorithm makes only O(log n) comparisons. It is essentially based on the

same strategy as in BM algorithm, and can be treated as another variation of it. We assume, for

simplicity, that the alphabet has only two elements, and that each symbol of the text is chosen

independently with the same probability. Let r=2.logm.



Algorithm fast_on_average;

begin

i = m;

while i≤n do begin

if text[i-r…i] is a factor of pat then

compute occurrences of pat starting in [i-m…i-r]

applying KMP algorithm

else /* pattern does not start in [i-m…i-r] */

i = i+m-r;

end;

end;

Theorem 4.5

The fast_on_average algorithm above works in O(n logm/m) expected time and

(simultaneously) O(n) worst-case time if the pattern is preprocessed. The preprocessing

of the pattern takes O(m) time.

Proof

A preprocessing phase is needed to efficiently check if text[i-r…i] is a factor of pat in O(r)

time. Any of the data structures developed in chapters 5 and 6 (a suffix tree or a dawg) can be

used. Assume that text text is a random string. There are 2r ≥ m 2 possible suffixes of text, and

less than m factors of pat of length r. Hence, the probability that the suffix of length r of text is

a factor of pat is not greater than 1/m. The expected time spent in each of the subintervals

[1…m], [m-r…2.m-r], … is O(m.1/m+r). There are O(n/m) such intervals. Thus, the total

expected time of the algorithm is of order (1+r)n/m = n(log(m)+1)/m. This completes the

proof. ‡

Bibliographic notes

The tight upper bound of approximately 3.n for the number of comparisons in BM

algorithm has been recently discovered by Cole [Co 90]. The proof of the 4.n bound reported in

Section 4.2 is from the same paper. A previous proof of the 4.n bound was given before in by

Guibas and Odlyzko [GO 80], but with more complicated arguments. These authors also

conjectured a 2.n bound which turns out to be false. Another combinatorial estimation of the

upper bound on the number of comparisons needed by Boyer-Moore algorithm may be found

in [KMP 77]. We recommend to read these proofs for readers interested in combinatorics on

words.
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The computation of the table of shifts, D, in the Boyer-Moore algorithm is from [Ry 80].

The algorithm presented in [KMP 77] contains a small flaw. The improved versions of the

algorithm BM, BMG and AG algorithms, are from Galil [Ga 79], and Apostolico and

Giancarlo [AG 86] respectively. The Boyer-Moore algorithm is still a theoretically fascinating

algorithm: an open problem related to the algorithm asks about the number of states of a finite-

automaton version of the strategy "Boyer-Moore". It is not known whether this number is

exponential or not. The problem appears in [KMP 77]. Baeza-Yates, Choffrut and Gonnet

discuss the question in [BCG 93] (see also [Ch 90]), and they design an optimal algorithm to

build the automaton.

The Turbo_BM algorithm has been discovered recently when working on another

algorithm based on automata that is presented in Chapter 6. It is from Crochemore et alii [C-R

92].
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5. Suffix trees

The basic data structures in the book are data structures representing all factors of a given

word. Their importance follows from a multitude of applications. We shall see some of these

applications at the end of the present chapter, and in the next one.

This chapter is mainly devoted to the first of such basic data structures - the suffix tree. A

related concept of subword graphs is also introduced in this chapter, but its full treatment is

postponed until the next chapter.

The basic object which is to be represented is the set Fac(text) of all factors of the text text

of length n. It should be represented efficiently : this means that basic operations related to the

set Fac(text) should be performed fast. In this chapter, we examine closely the structure of the

set Fac(text). Its size is usually quadratic, but it has succinct representations that are only of

linear size. We introduce three such representations in this chapter, namely, suffix trees,

subword graphs and suffix arrays. We shall see that the subword graph of a text has the same

origin as its suffix tree: uncompressed trie of suffixes of the text. This is the reason why we

introduce them together with suffix trees.

We need a representation useful to answer efficiently to a class of problems. Since

Fact(text) is a set, the most typical problem is the membership problem : check if a given word

x is in Fac(text). Denote the corresponding predicate by FACTORIN(x, text). The usefulness of

the data structure for this problem means that FACTORIN(x, text) can be computed in time

O(|x|), even if x is much shorter than text. The complexity here is computed according to the

basic operation of the data structure, branching, that takes a unit of time. Under the comparison

model, branching can be implemented in order to take O(log|A|) time (A is the alphabet). Since

it is common in practice to work on a fixed alphabet, such as the ASCII alphabet, we can also

consider that log|A| is a constant.

Note that most algorithms of chapters 3 and 4 compute the value of FACTORIN(x, text)

in time O(|text|) once the word x has been preprocessed. The present data structure is thus well

suited when the text is fixed. Such a data structure is also needed for example in chapter 4 (see,

Section 4.6). We want that the preprocessing time, used to build the representation of the text,

is realized in linear time with respect to the size of the text. Let us call representations satisfying

these requirements "good" representations of Fac(text). We can summarize it in the following

definition. The data structure D representing the set Fac(text) is good iff :

(1) D has linear size;

(2) D can be constructed in linear time;

(3) D allows to compute FACTORIN(x, text) in O(|x|) time.

The main goal of this chapter is to show that suffix trees are good data structures. We

also introduce in this chapter a third data structure, suffix array, which is "almost" good, but

simpler. The "goodness" of subword graphs is the subject of the next chapter. The important



algorithm of the section is McCreight's algorithm (Section 5.3). It processes the text from left

to right, while the equivalent Weiner's algorithm traverses the text in the opposite direction.

5.1. Prelude to McCreight and Weiner algorithms

In this section we deal only with simple data structure for Fac(text), namely trees called

tries. Algorithms presented here are intermediate steps in the understanding and design of

McCreight and Weiner suffix tree construction (Sections 5.2 and 5.3, respectively). The goal is

to construct such trees in time proportional to their size.
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Figure 5.1. Trie of factors of aabbabbc.

It has eight leaves corresponding to the eight non-empty suffixes.

Figure 5.1 shows the trie associated to text aabbabbc. In these trees, the links from a

node to its sons are labelled by letters. In the tree associated to text, a path down the tree spells a

factor of text. All paths from the root to leaves spell suffixes of text. And all suffixes of text are

labels of paths from the root. In general, these paths not necessarily end in a leaf. But for the

ease of the description, we assume that the last letter of text occurs only once and serves as a

marker. With this assumption, no suffix of text is a proper prefix of another suffix, and all

suffixes of text label paths from the root of the trie to its leaves.

Both Weiner and McCreight algorithms are incremental algorithms. They compute the

tree considering suffixes of the text in a certain order. The tree is computed for a subset of the

suffixes. Then, a new suffix is inserted into the tree. This continues until all suffixes are

included in the tree. Let p be the next suffix to be inserted in the current tree T. We define the

head of p, head(p, T), as the longest prefix of p occurring in T (as the label of a path from the

rrot). We identify head(p, T) with its corresponding node in the tree. Having this node, only the

remaining part of p needs to be grafted on the tree. After adding the path, below the head to a
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new leaf, the tree contains a new branch label by p, and this produces the next tree of the

construction. Below is the general scheme of both McCreight's and Weiner's algorithm. Then,

are explained the method used to find the next head, and the grafting operation.

root

head

new leaf

find the head

graft the new path

Figure 5.2. Insertion of the next suffix.

Algorithm general-scheme;

begin

compute initial tree T for the first suffix;

leaf:= leaf of T;

for i := 2 to n do begin

{ insert next suffix }

localize next head as head(current suffix, T);

let π be the string corresponding to path from head to leaf;

create new path starting at head corresponding to π;

leaf:= lastly created leaf;

end;

end.

The main technique used by subsequent algorithms is called UP-LINK-DOWN. It is the

key to an improvement on a straightforward construction. It is used to find, from the lastly

created leaf of the tree, the node (the head) where a new path must be grafted. The data structure

incorporates links that provide shortcuts in order to fasten the search for heads. The strategy

Up_link_down works as follows : it goes up the tree from the last leaf until a shortcut through



an existing link is possible; it then go through the link and starts going down the tree to find the

new head (see Figure 5.3). This is done by the procedure Up_Link_Down that works on the

current tree and modifies it. This is somehow an abstract procedure, which admits two

instances. The link mentioned in the procedure should be understood as conceptual. The actual

links used afterwards depends on which algorithm is used to build the suffix tree.

DOWNUP

leaf

head

v w 
LINK

leaf

head

v w 

new

links

link 

Before After 

Figure 5.3. Strategy for finding the next head.

function Up_Link_Down(link, q) : node;

{ finds new head, from leaf q }

begin

{ UP, going up from leaf q }

v := first node v on path from q to root s.t. link[v]≠nil;

if no such node then return nil;

let π=ajaj+1...an be the string, label of path from v to q;

{ LINK, going through suffix link }

head := link[v];

{ DOWN, going down to new head, making new links }

while son(head, aj) exists do begin

v := son(v,aj); head := son(head,aj);

link[v] := head; j := j+1;

end;

return (v, head);

end
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We also define the procedure Graft. Its aim is to construct a path of new nodes from the

current head to a new created leaf. It also updates links from the branch containing the previous

leaf, for nodes which should point to newly created nodes.

procedure Graft(link, v, head, ajaj+1...an);

begin w := head;

for k := j to n do begin

v := son(v,ak); w := createson(w,ak); link[v] := w;

end;

{ w is the last leaf }

end

Function Up_Link_Down (or a variant in case of compressed representation of tree) is

the basic tool used by algorithms that build suffix trees, and even also DAWG's. The time of a

single call to Up_Link_Down can be proportional to the length of the whole pattern. But the

sum of all costs is indeed linear. When used to create a compressed suffix tree, a careful

implementation of the function yields also an overall linear time complexity.

For the pattern text = a1a2…an, we define pi as the suffix aiai+1…an. Trie(p1, p2 ..., pi) is

the tree whose branches are labelled with suffixes p1, p2 ..., pi. In this tree, leafi is the leaf

corresponding to suffix pi. And headi is the first (bottom-up) ancestor of leafi having at least

two sons; it is the root if there is no such node.

For a node corresponding to a non-empty factor aw, we define the suffix link from aw to

w, by suf[aw] = w (see Figure 5.7). Table suf will serve to make shortcuts during the

construction of Trie(p1, p2 ..., pn). It is the link mentioned in the procedure Up_Link_Down. In

Trie(p1, p2 ..., pi) it can happen that suf[v] is undefined, for some node v. This situation does

not happen for (compressed) suffix trees. Below is the algorithm Left_to_Right that builds the

suffix tree of text. It processes suffixes from p1 to pn.

Basic property of Trie(p1, p2 ..., pi):

let v be the first node on the path from leafi-1 to root such that suf[v]≠nil in Trie(p1, p2 ...,

pi-1). Then headi (in Trie(p1, p2 ..., pi)) is a descendant of suf[v].



Algorithm Left_to_Right(a1a2...an, n>0);

begin

T := Trie(p1) with suffix link (from son of root to root);

for i:=2 to n do begin

{ insert next suffix pi = aiai+1...an into T }

{ FIND new head }

(v, head) := Up_Link_Down(suf, leafi-1); { head = headi }

if head = nil then begin

{ root situation }

let v be the son of root on the branch to leafi-1;

suf[v] := root; head := root;

end;

{ going down from headi to leafi creating a new path }

let aj...an be the label of the path from v to leafi-1;

Graft(suf, v, head, ajaj+1...an);

end;

end.

Theorem 5.1

The algorithm Left_to_Right constructs the T=Trie(text) in time O(|T|).

Proof

The time is proportional to the number of created links (suf) which is obviously proportional to

the number of internal nodes, and then to the total size of the tree. ‡

The next algorithm, Right_to_Left, builds the suffix tree of text, as does the algorithm

Left_to_Right, but processes the suffixes in reverse order, from pn to p1. The notion of link is

modified. The node corresponding to a (non-empty) factor aw (a a letter) is linked to w. The

link is called a a-link, and we note linka[w] = aw (see Figure 5.10). These links have the same

purpose as the suffix link of the previous algorithm. The procedure Up_Link_Down will now

use the a-links.
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Algorithm Right_to_Left;
T := Trie(pn) with linkan from root to its son;

for i := n-1 downto 1 do begin

{ insert next suffix pi = aiai+1...an into T }

{ FIND new head }
head := Up_Link_Down(linkai, leafi+1); { head = headi }

if head = nil then begin

{ root situation }
v := root; head := createson(v,ai); linkai[v] := head;

end;

{ GRAFT, going down from headi to leafi creating a new path }

let ajaj+1...an be the label of the path from v to leafi-1;

Graft(linkai, v, head, ajaj+1...an);

end;

end.

Basic property of Trie(pi, pi+1 ..., pn):
let v be the first node on the path from leafi+1 with linkai[v]≠nil in Trie(pi+1, pi+2 ..., pn).

Then headi (in Trie(pi, pi+1 ..., pn)) is a descendant of linkai[v].

Theorem 5.2
The algorithm Right_to_Left constructs the trie Trie(p1, p2 ..., pn) in time O(|T|).

Proof
The time is proportional to the number of links in the tree Trie(p1, p2 ..., pn). Note that reversed

links are exactly the suffix links (considered in McCreight algorithm). Since there is one link

out to each internal node, we get the result. ‡

The next two sections present versions of algorithms Left_to_Right and Right_to_Left

respectively, adapted to the construction of suffix trees, that is, compacted tries

5.2. Two compressed versions of the naive representation

Our approach to compact representations of the set of factors of a text is graph-

theoretical. Let G be an acyclic rooted directed graph whose edges are labelled with symbols or

with words: label(e) denotes the label of edge e. The label of a path π (denoted by label(π)) is

the composition of labels of its consecutive edges. The edge-labelled graph G represents the set:

words(G) = { label(π) : π is a directed path in G starting at the root }.



And we say that the labelled graph G represents the set of factors of text iff

words(G)=Fac(text).

The first approach to representing Fac(text) in a compact way, is to consider graphs

which are trees. The simplest type of labelled graphs G are trees in which edges are labelled by

single symbols. These trees are the subword tries considered in the previous section. Two

examples of tries are shown in Figures 5.1 and 5.4. However, tries are not "good"

representation of Fac(text), because they can be too large. If text=anbnanbnd, for instance, then

Trie(text) has a quadratic number of nodes.

We consider two kinds of succinct representations of the set Fac(text). They both result

by compressing the tree Trie(text). Two types of the compression can be applied, separately or

simultaneously:

(1) compressing chains (paths consisting of nodes of out-degree one), which produces

the suffix tree of the text,

(2) merging isomorphic subtrees (e.g. all leaves are to be identified), which leads to the

directed acyclic word graph (dawg) of the text.

Each of these methods has its advantages and disadvantages. The first one produces a

tree, and this is an advantage because in many cases it is easier to deal with trees than with other

types of graphs (especially in parallel computations). Moreover, in the tree structure leaves can

be assigned particular values. The disadvantage of the method is the varying length of the labels

of edges. An advantage of the second method (use of dawg's) is that each edge is labelled by a

single symbol. This allows us to attach information to symbols on edges. And the main

disadvantage of dawg's is that they not trees !

The linear size of suffix trees is a trivial fact, but the linear size of dawg's is much less

trivial. It is probably one of the most surprising fact related to representations of Fac(text).
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Figure 5.4. The tree Trie(text) and its compacted version, the suffix tree T(text),

for text = aabbabd. Trie(text) has 24 nodes, T(text) has only 11 nodes.
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Since we assume that no suffix of text is a proper prefix of another suffix (because of the

right end marker), leaves of Trie(text) are in one-to-one correspondence with (non-empty)

suffixes of text. Let T(text) be the compacted version of Trie(text) (see Figure 5.4). Each chain

π (path consisting of nodes of out-degree one) is compressed into a single edge e with

label(e)=[i, j], where text[i…j]=label(π) (observe that a compact representation of labels is also

used). Note that there is a certain nondeterminism here, because there can be several

possibilities to choose i and j representing the same factor text[i…j] of text. We accept any such

choice. In this context we identify the label [i, j] with the word text[i…j]. The tree T(text) is

called the suffix tree of the word text. The Figure 5.4 presents the suffix tree T(text) for

text=aabbabd.

For a node v of T(text), let val(v) be label(π), where π is the path from root to v.

Whenever it is unambiguous we identify nodes with their values, and paths with their labels. In

this sense, the set of leaves of suffix tree is the set of suffixes of text (since no suffix is a prefix

of another suffix). This motivates the name: suffix tree. Such trees are also called subword

(factor) trees.

Note that the suffix tree obtained by compressing chains has the following property : the

labels of edges starting at a given node are words having different first letters. So, the branching

operation performed to visit the tree reduces to comparisons on the first letters of the labels of

outgoing edges.

In the following we consider the notion of implicit nodes that is defined now. The aim is

to restore the nodes of Trie(text) inside the suffix tree T(text). We say that a pair (w, α) is an

implicit node in T iff w is a node of T and α is a proper prefix of the label of an edge from w to

a son of w. If val(w) = x, then val((w, α)) = xα. For example, in Figure 5.6, (w, ab) is an

implicit node. It corresponds to a place where later a real node is created. The implicit node (w,

α) is said a "real" node if α is the empty word. In this case (w, ε) is identified with the node w

itself.

Lemma 5.3

The size of the suffix tree T(text) is linear (O(|text|)).

Proof

Let n=|text|. The tree Trie(text) has at most n leaves, hence T(text) also has at most n leaves.

Thus, T(text) has at most n-1 internal nodes because each internal node has at least two sons.

Hence |T(text)| ≤ 2n-1. This completes the proof. ‡

There is a result similar to Lemma 5.3 on the size of dawg's. The question is the subject

of Section 6.1.

5.3. McCreight's algorithm



A straightforward approach to the construction of T(text) could be : first build Trie(text),

next compress all its chains. The main drawback of this scheme is that the size of Trie(text) can

be quadratic, resulting in a quadratic time and space algorithm. Two other approaches are given

in the present section (McCreight's algorithm) and the next one (Weiner's algorithm).

Both Weiner's algorithm and McCreight's algorithm are incremental algorithms. The tree

is computed for a subset of consecutive suffixes. Then, the next suffix is inserted into the tree,

and this continues until all (non-empty) suffixes are included in the tree.

root

head

new leaf

inserted suffix

new edge labelled
by an interval

Figure 5.5. Insertion of a suffix in the tree.

Consider the structure of the path corresponding to a new suffix p inserted into the tree T.

Such a path is indicated in Figure 5.5 by the bold line. Denote by insert(p, T) the tree obtained

from T after insertion of the string p. The path corresponding to p in insert(p, T) ends in the last

created leaf of the tree. Denote by head the father of this leaf. It may happen that the node head

does not already exist in the initial tree T (it is only an implicit node at that moment of the

construction), and has to be created during the insert operation. For example, this happens if we

try to insert the path p = abcdeababba starting at v in Figure 5.6. In this case, one edge of T

(labelled by abadc) has to be split. This is why we consider the operation break defined below.

The notion of implicit nodes introduced in Section 5.2 is conceptually considered in the

construction. Let (w, α) be an implicit node of the tree T (w is a node of T, α is a word). The

operation break(w, α) on the tree T is defined only if there is an edge outgoing the node w

whose label δ has α as a prefix. Let β such that δ = αβ. The (side) effect of the operation

break(w, α) is to break the corresponding edge: a new node is inserted at the breaking point,



Chapter 5 89 21/7/97

Efficient Algorithms on Texts 89 M. Crochemore & W. Rytter

and the edge is split into two edges of respective labels α and β. The value of break(w, α) is the

node created at the break point.

Let v be a node of the tree T, and let p be a subword of the input word text represented by

a pair of integers l, r, where p = text[l…r]. The basic function used in the suffix tree

construction is the function find. The value find(v, p) is the last implicit node along the path

starting in v and labelled by p. If this implicit node is not real, it is (w, α) for some nonempty

α, and the function find  converts it into the "real" node break(w, α) (see Figure 5.6).
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Figure 5.6. We attempt to insert the string p = abcdeababba,

the result of fastfind and slowfind is the newly created node find(v, p),

fastfind makes only 5 steps, while slowfind would make O(|p|) steps.

 

The important point in the algorithm is the use of two different implementations of the

function find. The first one, called fastfind, deals with the situation when we know in advance

that the searching path labelled by p is fully contained in some path starting at v. This

knowledge allows us to find the searched node much faster using the compressed edges of the

tree as shortcuts. If we are at a given node u, and if the next letter of the path is a, then we look

for the edge outgoing from u whose label starts with a. Only one such edge exists by definition

of suffix trees. This edge leads to another node u'. We jump in our searching path at a distance

equal to the length of the label of edge (u, u'). The second implementation of find is the function

slowfind that follows its path letter by letter. The application of fastfind is a main feature of

McCreight's algorithm, and plays a central part in its performance (toghether with links).



function fastfind(v : node; p string) : node;

{ p is fully contained in some path starting at v }

begin

from node v, follow path labelled by p in the tree using

labels of edges as shortcuts; only first symbols on each

edge are checked;

let (w, α) be the last implicit node;

if α is empty then return w

else return break(w, α);

end

function slowfind(v : node; p : string) : node;

begin

from node v, follow the path labelled by the longest possible

prefix of p, letter by letter;

let (w, α) be the last implicit node;

if α is empty then return w

else return break(w, α);

end

McCreight's algorithm builds a sequence of compacted trees Ti in the order i=1, 2 …, n.

The tree Ti contains the i-th longest suffixes of text. Note that Tn is the suffix tree T(text), but

that intermediate trees are not strictly suffix trees. An on-line construction is presented in

Section 5.5. At a given stage of McCreight's algorithm, we have T = Tk-1, and we attempt to

build Tk. The table of suffix links, called suf, plays a crucial role in the reduction of the

complexity. In some sense, it is similar to the role of failure functions used in Chapter 3. If the

path from the root to the node v is spelled by aπ then suf[v] is defined as the node

corresponding to the path π (see Figure 5.7). In the algorithm, the table suf is computed at a

given stage for all nodes, except for leaves and except maybe for the present head.

McCreight's algorithm is a rather straightforward transformation of the algorithm

Left_to_Right of Section 5.2. Here most of the nodes become implicit nodes. But the algorithm

works similarly. The main difference appears inside the procedure Up_Link_Down where

fastfind is used whenever it is possible.
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Figure 5.7. A suffix link suf.

Algorithm scheme of McCreight's algorithm;

{ left-to-right suffix tree construction }

begin

compute the two-node tree T with one edge labelled p1=text;

for i:=2 to n do begin

{ insert next suffix pi = text[i..n] }

localize headi as head(pi, T),

starting the search from suf[father(headi-1)],

using fastfind whenever possible;

T := insert(pi, T);

end

end.

The algorithm is based on the following two obvious properties:

(1) headi is a descendant of the node suf[headi-1],

(2) suf[v] is a descendant of suf[father(v)] for any v.

The basic work done by McCreight's algorithm is spent in localizing heads. If it is done

in a rough way (top-down search from the root) then the time is quadratic. The key to the

improvement is the relation between headi and headi-1 (Property 1). Hence, the search for the

next head can start from some node deeply in the tree, instead of from the root. This saves

some work and the amortized complexity is linear.
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Algorithm McCreight;

begin

T := two-node tree with one edge labelled by p1=text;

for i:=2 to n do begin

{ insert next suffix pi = text[i..n] }

let β be the label of the edge (father[headi-1], headi-1);

let γ be the label of the edge (headi-1, leafi-1);

u := suf[father[headi-1]];

v := fastfind(u, β);

if v has only one son then

{ v is a newly inserted node } headi := v

else headi := slowfind(v, γ);

suf[headi-1] := v;

create a new leaf leafi; make leafi a son of headi;

label the edge (headi, leafi) accordingly;

end

end.

Theorem 5.4

McCreight's algorithm has O(n log|Σ|) time complexity, where Σ is the underlying

alphabet of the text of length n.

Proof

Assume for a moment that the alphabet is of a constant size. The total complexity of all

executions of fastfind and slowfind is estimated separately. Let fatheri = father(headi). The

complexity of one run of slowfind at stage i is proportional to the difference |fatheri| - |fatheri-1|,

plus some constant. Therefore, the total time complexity of all runs of slowfind is bounded by

Σ(|fatheri| - |fatheri-1| ) + O(n). This is obviously linear.

Similarly, the time complexity of one call to fastfind at stage i is proportional to the difference

|headi| - |headi-1|, plus some constant. Therefore, the total complexity of all runs of fastfind is

also linear.

If the alphabet is not fixed, then we can look for the edge starting with a given single symbol

via binary search in O(log|Σ|) time. This is to be added as a coefficient and gives the total time

complexity O(n log|Σ|). This completes the proof. ‡

Remarks

There is a subtle point in the algorithm : the worst case complexity is not linear if the function

slowfind is used in the place of fastfind. The text text = an is a counterexample to linear time. In

fact, we could perform slowfind in all situations except in the following : when we are at the



father of headi and we have to go down by one edge. At this moment, the work on this edges

is not charged to the difference |fatheri| - |fatheri-1| and it should be constant on this single edge.

We can call it a crucial edge. The function fastfind guarantees that traversing the single edge

takes constant time (only the first symbol on the edge is inspected, and a length computed),

while the function slowfind traverses the label of the single edge letter by letter, possibly

spending a linear time on just one edge. However, the strategy (use always slowfind except for

crucial edges) cannot be used because we do not in advance whether an edge is crucial or not.

Another remark concerns a certain redundancy of the algorithm. In the case when

suf[headi-1] already exists, we could go directly to suf[headi-1] without making a "up-link-

down" tour. Such situation can happen frequently in practice. Despite this redundancy the

algorithm is linear time. We suggest the reader to improve the algorithm by inserting a

statement omitting the redundant computations. For clarity, this practical improvement is not

implemented in the above version.

5.4. Weiner's algorithm

Weiner's algorithm builds the sequence of suffix trees Ti = T(pi) in the order i=n, n-1, ...,

1 (recall that pi = text[i…n]). At a given stage we have T = Tk+1, and we attempt to construct

Tk. T is the suffix tree of the current suffix of the text. If the current suffix is denoted by p, the

current value of T is the suffix tree T(p).

Weiner's algorithm is a rather straightforward transformation of the algorithm

Right_to_Left of Section 5.2. Here again (as for McCreight's algorithm) most of the nodes

become implicit nodes, but the algorithm works similarly. The notion of a-link (see Figure

5.10) is intensively used to localize heads (see Section 5.2). Recall that headi is the node in Ti

which is the father of the leaf corresponding to the last inserted suffix.

Algorithm scheme of Weiner's algorithm;

{ right-to-left suffix tree construction }

begin

compute the suffix tree T with tables test and link for

the one-letter word text[n];    { O(1) cost }

for i := n-1 downto 1 do begin

localize head as head(pi, T); { denote it by headi }

compute T = next(T, pi);

end

end.
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The basic work in the above algorithm is spent in localizing heads. If it is done in a rough

way (top-down search from the root) then the total time is quadratic. The key to the

improvement is the relation between headi and headi+1. If we append the symbol a = text[i] to

val(headi+1) then we obtain a prefix of val(headi) (recall that for a node v of the tree val(v) is

the word, label of the path from the root to v). Hence, in the search we can start from the node

corresponding to this prefix, instead of from the root. This saves some work, and the amortized

complexity becomes linear. However, the algorithm also becomes more complicated, as we

need extra data structures for links.

a-link 

link[a, v]

root

path  π 

path  π 

edge

a 

v 

Figure 5.10. An a-link (linka).

To implement this idea described above, we maintain two additional tables link and test

related to internal nodes of the current tree T. They satisfy invariants (p current suffix):

(1) test[a, v] = true iff ax ∈ Fac(p), where x = val(v);

(2) link[a, v] = w if val(w) = ax for some node w of T,

 link[a, v] = nil if there is no such node.

These tables inform us about possible left extensions of a given factor (label of node v).

Let us define the function breaknode(w1, w2, v1, v2). This function is only defined for

nodes w1 ≠ w2 such that the label x of the path from v1 to v2 is a proper prefix of the label y of

the edge (w1, w2). The value of breaknode(w1, w2, v1, v2) is a (newly created) node w. As a

side-effect of the function, there are two created edges (w1, w) and (w, w2) with respective

labels x and x' (x' is such that y = xx'). Moreover, test[s, w] is set to test[s, w2] for each symbol

s and link[s, w] is set to nil. Hence, the edge (w1, w2) with label y is decomposed into two



edges with labels x and x' such that y=xx'. In the example of Figures 5.11 and 5.12,

x=text[6…7], x'=text[8…14] and y=text[6…14]. It is clear that the cost to compute

breaknode(w1, w2, v1, v2) is proportional to the length of the path from v1 to v2.

Figure 5.11. The suffix tree T2=T(text[2…n]) for text=abaabaaaabbabd. The working path

starts in leaf 2 and goes up to the first node v such that link[a, v]≠nil, here, v = v3.

Let firsttest be the first node v' on this path with test[a, v']=true; w1=link[a, v]=v6,

depth(w1) ≤ depth(v)+1. The cost of one stage can be charged to the

difference between depths of leaves i+1 and i.
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Figure 5.12.The suffix tree T1 for text=abaabaaaabbabd.. The edge (v6, 4) of T2

has been split into two edges. Generally, the tree Ti is a modification of tree Ti+1

(in the example i=1). The edge (w1, w2) is splits into (w1, w) and (w, w2).

Here, we have w=breaknode(v6, 4, v3, v1). The leaf 1 becomes the new active leaf.

We describe separately the simpler case of transforming Ti+1 into Ti when a=text[i] does

not occurs in text[i+1…n]: a is a symbol not previously scanned. Define the procedure

newsymbol(a). This function is defined only for the case described above. Let active_leaf be the

lastly created leaf of Ti+1. The working path consists of all nodes on the path from active_leaf

to root.

procedure newsymbol(a);

begin

A new leaf i is created and connected directly to root;

for all nodes v on the working path do test[a, v]:=true; 

link[a, active_leaf]:=i; active_leaf:=i;

end



Algorithm Weiner;

{ right-to-left suffix tree construction }

begin

compute the suffix tree T with tables test and link for

the one-letter word text[n]; { O(1) cost }

active_leaf := the only leaf of T;

for i := n-1 downto 1 do begin

{ T = T(pi+1), active_leaf = i+1, construct T(pi) }

a := text[i];

if a does not occur in pi+1 then newsymbol(a) else begin

firsttest := the first node v on the path up from

 active_leaf such that test[a, v]=true;

firstlink := the first node v on the path up from

active_leaf such that link[a, v]≠nil;

w1 := link[a, firstlink];

if firstlink = firsttest then

{ no edge is to be decomposed } head := w1

else begin

w2 := son of w1 such that the label of path from

 firstlink to firsttest starts with

the same symbol as the label of edge (w1, w2);

head := breaknode(w1, w2, firstlink, firsttest);

end;

link[a, firsttest] := head; create new leaf with number i;

link[a, active_leaf] := i;

for each node v on the working path do test[a, v]:=true;

active_leaf := i;

end;

end;

end.

The whole algorithm above is a version of Weiner's algorithm. One stage of the

algorithm consists essentially of traversing a working path: from active_leaf to the first node

(firstlink) such that link[a, v]≠nil. On this way, the node firsttest is found. The tree is modified

locally using the information about nodes firstlink, firsttest and w=link[a, firstlink]. One edge is

added and (sometimes) one edge is split into two edges. The tables link and test are updated for

nodes on the working path. The newly created leaf becomes the next active leaf (active_leaf).
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Theorem 5.5

Weiner algorithm builds the suffix tree of a text in linear time (on fixed alphabet).

Proof

One iteration (one stage) of the algorithm has a cost proportional to the length L of the working

path (number of nodes on this path). However, it can be easily proved that

depth(link[a, firstlink]) ≤ depth(firstlink)+1.

The cost of one stage can thus be charged to the difference between depths of leaves i+1 and i

(plus a constant c). The sum of all these differences (depth(i)-depth(i+1)+c) is obviously

proportional to n. This completes the proof. ‡

The main inconvenience of Weiner's algorithm is that it requires tables indexed

simultaneously by nodes of the tree and letters. From this point of view, McCreight's algorithm

is lighter because it requires only one additional link independent of the alphabet.

5.5. Ukkonen's algorithm

In this section we give a sketch of an on-line construction of suffix trees. We drop the

assumption that a suffix of the text cannot be a proper prefix of another suffix. So, no marker at

the end of the text is assumed. We denote by pi the prefix of length i of the text. We add a

constraint on the suffix-tree construction : not only we want to build T(text), but we also want

to build intermediate suffix trees T(p1), T(p2), ... T(pn-1). However, we do not keep in memory

all these suffix trees, because the overall would take a quadratic time. We rather transform the

current tree, and its successive values are exactly T(p1), T(p2), ... T(pn). Doing so, we also

require that the construction takes linear time (on fixed alphabet).

Goal1 (on-line suffix-tree construction):

compute the sequence of suffix trees T(p1), T(p2), ... T(pn) in linear time.

We shall first consider the uncompressed tree of suffixes of text, Trie(text). For

simplicity, we assume that the alphabet is fixed. Our first goal is an easier problem, an on-line

construction of Trie(text) in reasonable time, i.e. proportional to the size of the output tree.

Goal2 (on-line uncompressed suffix-tree construction):

compute the sequence of suffix trees Trie(p1), Trie(p2), ... Trie(pn) in O(Trie(pn)) time.
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Figure 5.13. The sequence of uncompressed suffix trees for prefixes of text mamma.

The (compressed) suffix trees result by deleting nodes of out-degree one

and composing the labels. Accepting nodes are painted.

Let us closely examine how the sequence of uncompressed trees is constructed in Figure

5.13. The nodes corresponding to suffixes of the current text pi are painted. Let vk be the suffix

of length k of the current prefix pi of the text. Identify vk with its corresponding node in the tree.

The nodes vk are called essential nodes. In fact, additions in the tree, to make it grow up, are

"essentially" done at such essential nodes. Consider the sequence vi, vi-1, ..., vo of suffixes in

decreasing order of their length. Compare such sequences in trees for p3=mam, and for

p4=mamm respectively (Figure 5.13). The basic property of the sequence of trees Trie(pi) is

related to the way they grow. It is easily described with the sequence of essential nodes.

Basic growing property:
(*) Let vj be the first node in the sequence vi-1, vi-2, ..., vo of essential nodes, such that

son(vj, ai) exists. Then, the tree Trie(pi) results from Trie(pi-1) by adding a new outgoing

edge labelled ai, simultaneously creating a new son, to each of the nodes vi-1, vi-2, ..., vj-1.

If there is no such node vj then a new outgoing edge labelled ai is added to each of the

nodes vi-1, vi-2, ..., v0.
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Let suf be the same suffix link table as in Section 5.3. Recall that, if the node v

corresponds to a factor ax (for a letter a), suf[v] is the node associated to x. We also assume that

suf[root]=root. The sequence of essential nodes can be generated by taking iteratively suffix

links from its first element, the leaf whose value is the whole prefix read so far.

Basic property of the sequence of essential nodes:
(**) (vi, vi-1, ..., v0) = (vi, suf[vi], suf2[vi], ..., sufi[vi]).

existing nodes
and suffix links

created nodes
created links

a 
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a 
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a 
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i leaf 

leaf 
i-1

last  v 

last  q

Figure 5.14. One iteration in the construction of Trie(text).

Bold arrows are created at this step.

In order to describe easily the on-line construction of Trie(text), we introduce the

procedure createson. Let v be a node of the tree, and let a be a letter. Then, createson(v, a)

connects a new son of the node v with an edge labelled by letter a. The procedure returns the

created son of v. Using properties (*) and (**), one iteration of the algorithm looks as

suggested in Figure 5.14. An informal construction is given below. A more concrete

description of the on-line algorithm is given thereafter.



algorithm on_line_trie; { informal version }

begin

create the two-node tree Trie(a1) with suffix links;

for i := 2 to m do begin

vi-1 := deepest leaf of Trie(pi-1);

k := smallest integer such that son(sufk[vi-1],ai) exists;

create ai-sons for vi-1, suf[vi-1], ..., sufk-1[vi-1],

creating suffix links (see Figure 5.14);

end;

end

algorithm on_line_trie;

begin

create the two-node tree T = Trie(p1) with suffix links;

for i := 2 to m do begin

v := deepest leaf of T;

q := createson(v, ai); v := suf[v];

while son(v,ai) undefined do begin

 suf[q] := createson(v, a);

q := suf[q]; v := suf[v];

end;

if q = son(v,ai) then { v = root } suf[q] := root

else suf[q] := son(v,ai);

end

end

Theorem 5.6

The algorithm on-line-trie builds the tree Trie(text) of suffixes of text in an on-line

manner. Its works in time proportional to the size of Trie(text).

Proof

The correctness follows directly from properties (*) and (**). The complexity follows from the

fact that the work done in one iteration is proportional to the number of created edges (calls to

createson). This completes the proof. ‡
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Figure 5.15. The sequence of (compressed) suffix trees

(with implicit nodes marked as ).

The i-th iteration done in the previous algorithm can be adapted to work on the

compressed suffix tree T(pi-1). Each node of Trie(pi-1) is treated as an implicit node. Hence,

the new algorithm simulates the version on_line_trie. Here again the notion of implicit nodes

from Section 5.2 is useful. Recall that a pair (v, α) is an implicit node in T iff v is a node of T

and α is a prefix of the label of an edge from v to a son of it. The implicit node (v, α) is said a

"real" node iff α is the empty word.

Let v be a node of the tree T, and let p be a subword of the input word text (represented by

a pair of integers l, r, where p = text[l…r]). The basic function used in McCreight's algorithm is

the function find(v, p). This function follows a path labelled by p from node v, possibly creating

a new node. In the present algorithm we use a similar strategy, except that the creation of a

possible node is postponed. The corresponding function is called normalize and applies to a

pair (v, p). The value of normalize(v, p) is the last implicit node (v, α) on the path spelled by p

from v. Whenever this function is applied, the word p is fully contained in the followed path,

hence, the fastfind implementation of Section 5.3 can be adapted to the work.

We have to interpret the suffix links and sons (by single letters) of implicit nodes in the

compressed tree. In the algorithm we use the notation son' and createson'. They are interpreted

as follows (a is a letter, and (v, α) is an implicit node, identified to v if α is empty):



(1) son'((v, α), a) exists iff the path α originated at node v can be extended by the letter a;

in this case son'((v, α), a) = (v, αa), which can be a real node.

(2) The procedure createson'((v, α), a) first checks if α is nonempty. If so, the procedure

first makes (v, α) a real node (applying break(v, α) of Section 5.3, for instance). Then, the

procedure creates an a-son of the node.

There is still one important implementation detail. If the node v is a leaf then there is no

need to extend the edge coming from its father by a single symbol. If the label of the edge is a

pair of positions (l, r) then, after updating it, it should be (l, r+1). We can omit such updatings

by setting r to infinity for all leaves. This infinity is automatically understood as the last

scanned position i of the pattern. Doing so cuts the amount of work during one iteration of the

algorithm. If vi, vi-1, ..., v0 is the sequence of essential nodes, and if we know that vi, vi-1, ...,

vk are leaves, then we can skip processing them because this is done automatically by the trick

with infinity. We thus start processing essential nodes from vk-1. In the algorithm we call v the

current node that run through essential nodes. Since there is no sense to deal with the situation

when v is a leaf, at a given iteration, the first value of v is the ai-son of the last value of v (from

the preceding iteration), instead of starting from the deepest leaf as in the on-line construction of

Trie(text). All that gives the on-line suffix tree construction below.

algorithm of Ukkonen;

begin

create the two-node tree T(a1) with suffix links;

(v, α) := (root of the tree, ε);
for i = 2 to m do begin

if son'((v,α),ai) undefined then createson'((v,α),ai);

repeat

(q, β) := son'((v, α), ai);

(v, α) := normalize(suf[v], α);

if son'((v,α),ai) undefined then createson'((v,α),ai);

if β is empty then suf[q] := son'((v,α),ai);

(v,α) := son'((v,α),ai);

{ here, the length of α can only be increased by one }

until no edge created or v = root;

if v = root then suf[son'(v,ai)] := root;

end

end

Theorem 5.7
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Ukkonen algorithm builds the compressed tree T(text) in an on-line manner. It works in

linear time (on fixed alphabet).

Proof

The correctness follows from the correctness of the version working on uncompressed tree.

The new algorithm is just a simulation of it.

To prove the O(|text|) time bound it is sufficient to prove that the total work is proportional to

the size of T(text), which is linear. The work is proportional to the work done by all normalize

operations. The cost of one normalize operation is proportional to the decrease of the length of

α. On the other hand, the length of α is increased by at most one per iteration. Hence, the total

number of reduction in length of α's is linear. This completes the proof. ‡

5.6. Suffix arrays: an alternative data structure

There is a clever and rather simple way to deal with all suffixes of a text : to have their list

in increasing lexicographic order in order to perform binary searches on them. The

implementation of this idea leads to a data structure called suffix array. It is not exactly a "good

representation" in the sense defined at the beginning of the chapter. But it is "almost good".

This means that it satisfies the following conditions:

(1) it has O(n) size,

(2') it can be constructed in O(n.logn) time,

(3') it allows to compute FACTORIN(x, text) in O(|x| + logn) time.

So the time to construct and use the structure is slightly larger than that to compute the

suffix tree (it is O(n.log|A|) for the latter). But suffix arrays have two advantages:

— their construction is rather simple; it is even commonly admitted that, in practice, it

behaves better than the construction of suffix trees;

— it consists of two linear size arrays which, in practice again, take little memory space

(typically four times less space than suffix trees).

Let text = a1a2…an, and let pi = aiai+1…an be the i-th suffix of the text. Let Pos[k] be the

position i where starts the k-th smallest suffix of text (according to the lexicographic order of

the suffixes). In other terms, the k-th smallest suffix of text is pPos[k]. Denote by LCPREF[i, j]

the length of the longest common prefix of suffixes pi and pj. We assume, for simplicity, that

the size of the pattern is a power of two. If not, we can add a suitable number of endmarkers at

the end of text to meet the condition. Let us call the whole interval [1…n] regular, and define

regular subintervals by the rule : if an interval is regular, then its halves are also regular. We say

that an interval [i…j] is regular iff it can be obtained in this way from the whole interval.

Finally, observe that there are exactly 2n-1 regular intervals.



The suffix array of text is the data structure consisting of both the array Pos, and the

values LCPREF[i, j] for each regular interval [i…j]. Hence, the whole data structure has O(n)

size, and satisfies condition (1). To show that the condition (2') is satisfied we can apply results

of Chapter 9, related to another data structure called the dictionary of basic factors. Its definition

is postponed to this chapter. In fact, this dictionary is an alternative "almost good"

representation of the set of factors. Note that condition (2') is rather intuitive because it concerns

sorting n words having strong mutual dependencies. But, in our point of view, the most

interesting property of suffix arrays is that they satisfy condition (3').

Theorem 5.8

Assume the suffix array of text is computed (are computed the table Pos and the table

LCPREF for regular intervals). Then, for any word x, we can compute FACTORIN(x,

text) in O(|x| + log|text|) time.

Proof
Let minx = min{k / x ≤ pPos[k]} and maxx = max{k / x ≥ pPos[k]}, where ≤ and ≥ denote

inequalities in the sense of the lexicographic ordering. Then, all occurrences of the subword x in

text are at positions given in the table Pos between indices minx and maxx. There is at least one

occurrence of x inside text iff minx ≤ maxx.

We show how to compute minx. The computation of maxx is symmetrical. We start with an

extremely simple algorithm having O(x.logn) running time. It is a binary search for x inside the

sorted sequence of suffixes. Let suf(k) = pPos[k]. Hence suf(k) is the k-th suffix in the

lexicographic numbering. We describe the computation of minx recursively. The value of minx

is assumed to be found inside the interval [Left…Right].

function find(Left, Right);

begin

if Left = Right then return Left;

Middle := right position of the left half of [Left..Right];

if x ≤ suf(Middle) then return find(Left, Middle)

else return find(Middle+1, Right)

end

Let l = LCPREF(suf(Left), x), and r = LCPREF(suf(Right), x). The basic property of the

function find is the following fact.

Basic property:

Let l, r be the respective values of Left and Right at a given call of the function find. And

let l', r' be the values of Left and Right at the next call of find. Then, max(l, r) ≤ max(l',
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r'). If we know the values of l, r, then we can check the inequality x ≤ suf(Middle), and

compute l', r' in time O(Δ), where Δ = max(l', r') - max(l, r).

The proof is left to the reader. Several cases are to be considered, depending on the relations

between numbers l, r, LCPREF(Left, Middle) and LCPREF(Middle+1, Right). The sum of all

Δ's is O(|x|), since l, r ≤ |x|. Hence, the total complexity is O(|x| + logn) because the function

find makes logn recursive calls. ‡

The computation of LCPREF is discussed at the end of the next section.

5.7. Applications

There is a data structure slightly different from the suffix tree, known as the position tree.

It is the tree of position identifiers. The identifier of position i on the text is the shortest prefix of

text[i…n] which does not occur elsewhere in text. Identifiers are well defined when the last

letter of text is a marker. Once we have the suffix tree of text, computing its position tree is

fairly obvious, see Figure 5.16. Moreover, this shows that the construction works in linear

time.

Theorem 5.9

The position tree of a given text can be computed in linear time (on a fixed alphabet).
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Figure 5.16. The position tree of text = aabbabbc.

Compare with its suffix tree in Figure 5.1.



One of the main application of suffix trees is for the situation when the text text is like a

dictionary. In this situation, the suffix tree or the position tree act as an index on the text. The

index virtually contains all the factors of the text. With the data structure, the problem of

locating a word w in the dictionary can be solved efficiently. But we can also perform rapidly

other operations, such as computing the number of occurrences of w in text.

Theorem 5.10

The suffix tree of text can be preprocessed in linear time so that, for a given word w, the

following queries can be done on-line in O(|w|) time:

— find the first occurrence of w in text;

— find the last occurrence of w in text;

— compute the number of occurrences of w in text.

We can list all occurrences of w in text can be listed in time O(|w|+k), where k is the

number of occurrences.

Proof

We can preprocess the tree, computing bottom-up, for each node, values first, last and number

corresponding to respectively the first position in the subtree, the last position in the subtree,

and the number of positions in the subtree. Then, for a given word w, we can (top-down)

retrieve  these informations in O(|w|) time (see Figure 5.17). They give the answer to the first

three queries of the statement.

To list all occurrences, we first access the node corresponding to the word w in O(|w|) time.

Then, we traverse all leaves of the subtree to collect the list of positions of w in text. Let k be the

number of leaves of the subtree. Since all internal nodes of the subtree have at least two sons,

the total size of the subtree is less than 2.k, and the traversal takes O(k) time. This completes the

proof. ‡
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first(v) = first occurrence of w 
last(v) = last occurrence of w 
number(v) = number of occurrences of w 

v 

path of w 

Bottom-up pre-computation
of first, last, number 

Top-down retrieval 

subtree rooted at v 

Figure 5.17. We can preprocess the tree to compute (bottom-up), for each node,

its corresponding values min, max and size. Then, for a given word w,

we can retrieve these informations in O(|w|) time.

The longest common factor problem is a natural example of a problem easily solvable in

linear time using suffix trees, and very hard to solve efficiently without any essential use of

"good" representation of the set of factors. In fact, it has been believed for a long time that no

linear time solution to the problem is possible, even if the alphabet is fixed.

longest path extensible
into x and y 

longest common
factor of x and y 

y x # 

special symbol

Figure 5.18. Finding longest common factors with suffix trees.

Theorem 5.11



The longest common factor of k words can be found in time linear in the size of the

problem, i.e. the total length of words (k is a constant, alphabet is fixed).

Proof

The proof for case k=2 is illustrated by Figure 5.18. The general case, with k fixed, is solved

similarly. We compute the suffix tree of the text consisting of the given words separated by

distinct markers. Then, for each node, exploring the tree bottom-up, is computed a vector

informing, for each 1≤i≤k, whether a leaf corresponding to a position inside the i-th subword is

in the subtree of this node. The deepest node with positive information of this type for each i

(1≤i≤k) corresponds to the longest common factor. The total time is linear. This completes the

proof. ‡

Another solution to the problem of the longest common factor of two words is given is

Chapter 6. It uses the suffix dawg of only one pattern, and processes the other word in on-line

manner.

The next figure shows an application of suffix tree to the problem of finding the longest

repeated factor inside a given text. The solution is analogue to the solution of the longest

common factor problem, considering that k=1. Problems of this type (related to regularities in

strings) will be treated in more details in chapter 8, where we give also an almost linear time

algorithm (O(n log n)). This latter algorithm is simpler and does not use suffix trees or

equivalent data structure. This algorithm will cover also the two-dimensional case, where our

"good" representations (considered in the present chapter) are not well suited.

longest repeated factor 

deepest internal node

leaves 

edges

Figure 5.19. Computation of the longest repeated factor.

Let LCPREF(i, j) denote, as in Section 5.6, the length of the longest common prefix

starting at positions i and j in a given text of size n. In the chapter on two-dimensional matching

we use frequently the following fact.
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Theorem 5.12

It is possible to preprocess a given text in linear time so that each query LCPREF(i, j)

can be answered in constant time, for any positions i, j. A parallel preprocessing in

O(logn) time with O(n/logn) processors of an EREW PRAM is also possible (on a fixed

alphabet).

Let LCA(u, v) denote the lowest common ancestor of nodes u, v in a given tree T. The

proof of Theorem 5.12 easily reduces to a preprocessing of the suffix tree which enables LCA

queries in constant time. The value LCPREF(i, j) can be computed as the size of the string

corresponding to the node LCA(vi, vj), where vi, vj are leaves of the suffix tree corresponding to

suffixes starting at positions i and j.

Theorem 5.13

It is possible to preprocess a given tree T in linear time in such a way that each query

LCA(u, v) can be answered in constant time. A parallel preprocessing in O(logn) time

with O(n/logn) processors of an EREW PRAM is also possible  (on a fixed alphabet).

The beautiful proof of Theorem 5.13 is beyond the scope of this book. It is based on a

preprocessing corresponding to the two following simple subcases:

— T is single path; then LCA(u, v) is the node (u or v) closer to the root; it is enough to

associate to each node its distance to the root, to efficiently answer further queries;

— T is the complete binary tree with 2k-1 nodes; identify nodes u, v with their numbers in

the inorder numbering of the tree; then, the number of LCA(u, v) is given by a simple

arithmetic formula of constant size; in this case, the preprocessing consists in computing the

inorder number of the nodes of the tree.

In the general case, the proof is based on a transformation F of the tree T into a complete

binary tree F(T). The transformation is such that F-1(q) is a path in T, for any node q in F(T).

All applications discussed so far show the power of suffix trees. However, the data

structure of the next chapter, dawg, can be applied as well (except maybe for the computation

of LCPREF). Dawg's are structurally equivalent to suffix trees. We present now explicitly how

to use alternatively suffix trees or dawg's on the next problem: compute the number of distinct

factors of text (cardinality of the set Fac(text)). This problem also falls into the category of

problems for which efficient algorithms without essential use of any of "good" data structures

is hardly imaginable.

Lemma 5.14



We can compute the number of factors of a text (cardinality of the set Fac(text)) in linear

time.

Proof 1 — suffix tree application

Let T be the suffix tree of the text. The weight of an edge in T is defined as the length of its

label. Then, the required number is the sum of weights of all labels. ‡

Proof 2 — dawg application

Let D be the suffix dawg of the text. Compute the number M of all paths in D starting from the

root (not necessarily ending at the sink). Then, M=|Fac(text)|. The number M is computed

bottom-up in linear time. ‡

Illustrated by Lemma 5.14, we conclude the chapter with the following general

"metatheorem": suffix trees and dawg's are "good" representations for the set of factors of a

text.
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6. Subword graphs

The directed acyclic word graph (dawg) is a good data structure representing the set

Fac(text) of all factors of the word text of length n. It is an alternative to suffix trees of

Chapter 5.  The graph DAWG(text), called the suffix dawg of text, is obtained by identifying

isomorphic subtrees of the uncompacted tree Trie(text) representing Fac(text) (see Figure 6.1).

An advantage of dawg's is that each edge is labelled by a single symbol. It is somehow more

convenient to use it when information is to be associated to edges rather than to nodes. We

consider only dawg's representing the set Fac(text), but it is clear that the approach also applies

to other set of words, such as the set of subsequences of a string.

The linear size of suffix trees is a trivial fact (Chapter 5), but the linear size of suffix

dawg's is much less trivial, and probably it is the most surprising fact related to representations

of Fac(text).

Applications of suffix dawg's are essentially the same as applications of suffix trees, such

as those presented in Section 5.7. Indexing is the main purpose of these data structure.

Theorem 5.11 can also be proved with dawg's. But we present in the present chapter two quite

surprising uses of dawg's in Section 6.5. There, the suffix dawg of the pattern serves to search

it inside a text. The second method turns out to lead to one of the most efficient algorithm to

search a text.

6.1. Size of suffix DAWG's

A node in the graph DAWG(text) naturally corresponds to a set of factors of the text:

factors having the same right context. It is not hard to be convinced that all these factors have

the following property : their first occurrences end at the same position in text. The converse is

not necessarily true, but the remark gives the intuition of the next definition.

Let x be a factor of text. We denote by end-pos(x) (ending positions) the set of all

positions in text at which ends an occurrence of x. Let y be another factor of text. Then, the

subtrees of Trie(text) rooted at x and y (recall that we identify the nodes of Trie(text) with their

labels) are isomorphic iff end-pos(x) = end-pos(y) (when the text ends with a special

endmarker). In the graph DAWG(text) paths x having the same set end-pos(x) lead to the same

node. Hence, the nodes of G correspond to nonempty sets of the form end-pos(x). The root of

the dawg corresponds to the whole set of positions {0, 1, 2, …, n} on the text. From a

theoretical point of view, nodes of G can be identified with such sets (especially when

analyzing the construction algorithm). But, from the practical point of view, the sets are never

maintained explicitly. The end-pos sets, usually large, cannot directly name nodes of G,

because the sum of sizes of all such sets can happen to be nonlinear. An explicit representation

of each end-pos sets by a list of its elements is too large. Figure 6.1 presents both the trie of the



text aabbabd, and DAWG(text) for the same word. The graph has 10 nodes and 15 arcs. If we

allow labels of edges to have varying length then its size can be further reduced to 7 nodes and

12 arcs (by compressing chains).
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Figure 6.1. The uncompacted suffix tree Trie(aabbabd), and

the direct acyclic word graph DAWG(text).

The small size of dawg's is due to the special structure of the family Φ of sets end-pos.

We associate to each node v of the dawg its value val(v) equal to the longest word leading to it

from the root. The nodes of the dawg are, in fact, equivalence classes of nodes of the

uncompacted tree Trie(text), where the equivalence is meant as subtree isomorphism. In this

sense, val(v) is the longest representative of its equivalence class. It can also be considered that

nodes of the dawg are equivalence classes of factors of the text because nodes in Trie(text) are

in one-to-one correspondence with factors of text.

The notion of failure function, intensively used in Chapter 3, has an exact counterpart in

dawg's. Let v be a node of DAWG(text) distinct from the root. We define suf[v] as the node w

such that val(w) is the longest suffix of val(v) non equivalent to it. In other terms, val(w) is the

longest suffix of val(v) corresponding to a node different from v. Note that the definition

implies that val(w) is a proper suffix of val(v). By convention, we define suf[root] as root. In

the implementation it is meant that suf is represented as a table. The table suf is analogue to the

table Bord defined in Chapter 3. We also call the table suf the table of suffix links (edges (v,

suf[v]) are "suffix links").

The suffix links in DAWG(dababd) are presented in Figure 6.2. Since the value of suf[v]

is a word strictly shorter than val(v), suf induces a tree structure on the set of nodes. The node

suf[v] is interpreted as the father of v in the tree. It happens that the tree of suffix links is the

same as the tree structure of sets in Φ induced by the inclusion relation.
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Figure 6.2. DAWG(dababd) (left) and its suffix links (right).

This shows the structure of the family Φ of end-pos sets.

Theorem 6.1

The size of DAWG(text) is linear. More precisely, if N is the number of nodes of

DAWG(text) and n=|text|>0, then N < 2n. Moreover, DAWG(text) has less than N+n-1

edges. This is independent of the size of the alphabet.

Proof

The main property used here directly comes from the definition of end-pos sets : any two

subsets of Φ are either disjoint or one is contained in the other. The family Φ thus have a tree

structure (see Figure 6.2). All leaves are pairwise disjoint subsets of {1, 2, …, n} (we do not

count position 0 that is associated to the root, because it is not contained in any other end-pos

set). Hence, there is at most n leaves. This does not directly imply the thesis because it can

happen that some internal nodes have only one son (as in the example of Figure 6.2).

We partition nodes into two (disjoint) subsets according the fact that val(v) is a prefix of text or

not. The number of nodes in the first subset is exactly n+1 (number of prefixes of text). We

now count the number of nodes in the other subset of the partition.

Let v be a node such that val(v) is not a prefix of text. Then val(v) is a non-empty word that

occurs in at least two different right contexts in text. But then, we can deduce that at least two

different nodes p and q (corresponding to two different factors of text) are such that suf[p] =

suf[q] = v. This show that nodes like v have at least two sons in the tree inferred by suf. Since

the tree has at most n leaves (corresponding to non-empty prefixes), the number of such nodes

is less than n. Additionally note that if text contains two different letters the root has at least two

sons but cannot be counted in the second subset because val(root)=ε is prefix of text. If text is



of the form an, the second subset is empty. Therefore, the cardinality of the class is indeed less

than n-1. This finally shows that there is less than (n+1)+(n-1) = 2n nodes.

To prove the bound on the number of edges, we consider a spanning tree T over DAWG(text),

and count separately the edges belonging to the tree and the edges outside the tree. The tree T is

chosen to contain the branch labelled by the whole text. Since there are N nodes in the tree, there

are N-1 edges in the tree. Let us count the other edges of DAWG(text). Let (v, w) be such an

edge. We associate to it the suffix xay of text defined by : x is the label of the path in T going

from the root to v, and a is the label of the edge (v, w), y is any factor of text extending xa into a

suffix of text (x, y ∈ A*, a ∈ A). It is clear that the correspondence is one-to-one. Moreover, the

empty suffix is not consider, nor text itself because it is in the tree. It remains n-1 suffixes,

which is the maximum number of edges outside T.

Finally, the number of edges in DAWG(text) is less than N+n -1. ‡

Although the size of DAWG(text) is linear, it is not always strictly minimal. If minimality

is understood in terms of finite automata (number of nodes, for short), then DAWG(text) is the

minimal automaton for the set of suffixes of text. The minimal automaton for Fac(text) can

indeed be slightly smaller.

6.2. A simple off-line construction

Our first construction of dawg's consists essentially in a transformation of suffix trees.

The basic procedure is the computation of equivalent classes of subtrees. It is based on a

classical algorithm concerning tree isomorphism (see [AHU 74] for instance). We just recall

the result without proof.

Lemma 6.2  ([AHU 74])

Let T be a rooted ordered tree whose edges are labelled by letters (assumed to be of

constant size). Then, isomorphic classes of all subtrees of T can be computed in linear

time.

We call compacted dawg, the dawg in which edges are labelled by words, and no node

has only one outgoing edge (chains of nodes are compacted). A simple application of Lemma

6.2 provides a construction of compacted dawg's, that leads to the construction of dawg's.

Theorem 6.3

DAWG(text) and its compacted version can be built in linear time (on fixed alphabet).

Proof
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We illustrate the algorithm on the example text string w=baaabbabb. The suffix tree of w# is

constructed by any method of Chapter 5. For technical reasons, inherent to the definition of

suffix trees, the endmarker # is added to the word w. But this endmarker is later ignored in the

constructed dawg (it is only needed at this stage).

Then, by the algorithm of the preceding lemma the equivalence classes of isomorphic subtrees

are computed. The roots of isomorphic subtrees are identified, and we get the compacted

version G' of DAWG(w), see figure below. The whole process takes linear time.

The difference between the actual structure and the dawg is related to lengths of strings which

are labels of edges. In the dawg each edge is labelled by a single symbol. The "naive" approach

could be to decompose each edge labelled by a string of length k into k edges. But the resulting

graph could have a quadratic number of nodes. We apply such an approach with the following

modification. By the weight of an edge we mean the length of its label. For each node v we

compute the heaviest (with the largest weight) incoming edge. Denote this edge by inedge(v).

Then, in parallel for each node v we perform a local transformation local_action(v). It is crucial

that all these local transformations local_action(v) are independent and can be performed

simultaneously for all v.
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Figure 6.3. Identification of isomorphic classes of nodes of the suffix tree. In the algorithm

the labels of the edges are constant-sized names of the corresponding strings.

The transformation local_action(v) consists in decomposing the edge inedge(v) into k edges,

where k is the length of the string z, label of this edge. The label of i-th created edge is i-th letter

of z. There are interleaved k-1 new nodes : (v, 1), (v, 2), ..., (v, k-1). The node (v, i) is at the

distance i from v. For each other incoming edge of v, e = (v1, v) we perform the following

additional action. Suppose that the string, label of e has length p, and that its first letter is a. If

p>1 then we remove the edge e and create an edge from v1 to (v, p-1) whose label is the letter

a. This is graphically illustrated in the figure below.
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Figure 6.4. Local transformation.

New nodes are introduced on the heaviest incoming edge.

Then we apply to all nodes v, except the root, the action local_action(v).

The resulting graph for our example string w is presented in the next figure. This graph is the

required DAWG(w). This completes the proof. ‡
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Figure 6.5. The suffix dawg of baaabbabb.

The proof of the previous statement shows how the dawg DAWG(text) can be built. The

role of the end marker in the preceding proof is allow the suffix tree construction. Whenever it

is removed in the data structure produces the same graph. In particular, the algorithm of the

proof cannot be directly used to build the smallest subword graph accepting Fac(text), in the

sense of automata theory. We do not consider these graphs because their on-line construction is

more technical than that of suffix dawg given in the next section.

6.3. On-line construction
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We describe in this section an on-line linear time algorithm for suffix dawg computation.

The algorithm processes the text from left to right. At each step, it reads the next letter of the

text and updates the dawg built so far. In the course of the algorithm, two types of edges in the

dawg are considered : solid edges (bold ones in Figure 6.6), and non-solid edges. The solid

edges are those contained in longest paths from the root. In other terms, non-solid edges are

those creating shortcuts in the dawg. The adjective solid means that once these edges are

created, they are not modified during the rest of the construction. On the contrary, the target of

non-solid edges may change after a while.

In Algorithm suffix-dawg we compute successively DAWG(text[1]), DAWG(text[1…2]),

..., DAWG(text[1…n]). Figures 6.6 and 6.7 show an application of the algorithm to text =

aabbab.
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Figure 6.6. Iterative computation of DAWG( aabb).

Solid edges are bold faced.
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Figure 6.7. Transformation of DAWG(aabba) into DAWG(aabbab).

The node v9 is a clone of v4.
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Figure 6.8. The suffix dawg of aabbabb.

The schema of one stage of the algorithm is graphically presented in Figure 6.7. It is the

transformation of DAWG(aabba) into DAWG(aabbab), which points out a crucial operation of

the algorithm. Addition of letter b to aabba adds new factors to the set Fac(aabba). They are

all suffixes of aabbab. In DAWG(aabba), nodes corresponding to suffixes of aabba, namely,

v1, v2, v7, will now have an outgoing b-edge. Consider node v2 in DAWG(aabba) . It has an

outgoing non-solid b-edge. The edge is a shortcut between v2 and v4, compared with the

longest path from v2 to v4 which is labelled by ab. The two factors ab and aab are associated to

the node v4. But in aabbab, only ab becomes a suffix, not aab. This is the reason why the node

v4 is split into v4 and v9 in  DAWG(aabbab).  Doing so will cause no problem for the rest of
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the construction, if ever v4 and v9 get different behaviors. But note that the splitting operation is

not necessary if the text ends here, because nodes v4 and v9 of DAWG(aabbab) have the same

outgoing edge.

When splitting a node, it may also happen that some edges have to be re-directed to the

created node. The situation is illustrated in Figure 6.8 by DAWG(aabbabb). In

DAWG(aabbab), the node v5 corresponds to factors bb, abb, and aabb. In aabbabb, just bb

and abb are suffixes. Hence, in DAWG(aabbabb), paths labelled by bb and abb should reach

the node v11, a clone of node v5 obtained by the splitting operation.
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Figure 6.9. One stage of the algorithm, with the current letter a. The non-solid a-edge

from w is transformed into a solid edge onto a clone of v.

In the algorithm, we denote by son(w, a) the son v of node w such that label(w, v)=a. We

assume that son(w, a)=nil if there is no such node v.

On nodes of DAWG(text) is defined a suffix link called suf. It makes lists of working

paths as shown in Figure 6.9. There, the working path is w1, w2=suf[w1], w3=suf[w2],

w=suf[w3]. Generally, the node w is the first node on the path having an outgoing edge (w, v)

labelled by letter a. If this edge is non-solid, then v is split into two nodes : v itself, and

newnode. The latter is  clone of node v, in the sense that outgoing edges and the suffix-pointer

for newnode are the same as for v. The suffix link of newsink is set to newnode. Otherwise, if

edge (w, v) is solid, the only action made at this step is to set the suffix link of newsink to v.



Algorithm suffix-dawg;

begin

create the one-node graph G = DAWG(ε);
root := sink := the node of G; suf[root] := nil;

for i := 1 to n do begin

a := text[i];

create a new node newsink;

make a solid edge (sink, newsink) labelled by a;

w := suf[sink];

while (w≠nil) and (son(w, a)=nil) do begin

make a non-solid a-edge (w, newsink); w := suf[w];

end;

v := son(w, a);

if w=nil then suf[newsink] := root

else if (w, v) is a solid edge then suf[newsink] := v

else begin { split the node v }

create a node newnode;

newnode has the same outgoing edges as v

except that they are all non-solid;

change (w, v) into a solid edge (w, newnode);

suf[newsink] := newnode;

suf[newnode] := suf[v]; suf[v]:=newnode;

w := suf[w];

while (w≠nil) and ((w, v) is a non-solid a-edge) do begin

{*} redirect this edge to newnode; w :=suf[w];

end;

end;

sink:=newsink;

end;

end.

Theorem 6.4

Algorithm suffix-dawg computes DAWG(text) in linear time.

Proof

We estimate the complexity of the algorithm. We proceed similarly as in the analysis of the

suffix tree construction. Let sinki be the sink of DAWG(text[1…i]). What we call the working

path consists of nodes w1=suf[sink], w2=suf[w1] … w=suf[wk]. The complexity of one

iteration is proportional to the length k1 of the working path plus the number k2 of redirections
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made at step (*) in the algorithm. Let Ki be the value of k1+k2 at the i-th iteration. Let depth(u)

be the depth of node u in the graph of suffix links corresponding to the final dawg (the depth is

the number of applications of suf needed to reach the root). Then, the following inequality can

be proved (we leave it as an exercise):

depth(sinki+1) ≤ depth(sinki) - Ki + 2,

and this implies

Ki ≤ depth(sinki) - depth(sinki+1) + 2.

Hence, the sum of all Ki's is linear, which in turn implies that the total time complexity is linear.

This completes the proof that the algorithm works in linear time. ‡

Remark 1

Algorithm suffix-dawg gives another proof that the number of nodes of DAWG(text) is less

than 2|text| : at each step i of the algorithm at most 2 nodes are created, except at step 1 and 2

where only one node is created.

Remark 2

We classify edges of DAWG(text) into solid and non-solid ones. Such classification is an

important feature of the algorithm, used to know when a node has to be split. However, we can

avoid remembering explicitly whether an edge is solid or not. The category of an edge can be

tested from the value length(v) associated to node v. This information happens to be useful for

other purposes. We can store in each node v the length length(v) of the longest path from the

root to v. Then, the edge (v, w) is solid iff |length(v)|+1=|length(w)|. Function length plays a

central role in the algorithm of the next section.

6.4.* Further relations between suffix trees and suffix dawg's

There is a very close relation between our two "good" representations for the set of

factors Fac(text). This is an interesting feature of these data structures. The relation is intuitively

obvious because suffix trees and dawg's are compacted versions of the same object — the

uncompacted tree Trie(text).

Throughout this section (with a short exception) we assume that the pattern text starts

with a symbol occurring only at the beginning of text. In this case the relation between dawg's

and suffix trees is especially tight and simple.

Remark

The uniqueness of the leftmost symbol is not the crucial point for the relation between dawg's

and suffix trees. Even if the leftmost symbol is not unique our construction essentially can be



applied. However, the uniqueness case is easier to deal with in the framework of suffix and

factor automata.

Two factors of text, x and y, are equivalent iff their end-pos sets are equal. This means

that one of the word is a suffix of the other (say y is a suffix of x) and whenever x appears then

y also appears in text. However, what happens if instead of end-positions we consider start-

positions? Let us look from the "reverse perspective" and look at the reverse of the pattern.

Then suffixes become prefixes, and end-positions become first-positions. Denote by first-

pos(x) the set of first positions of occurrences of x in text.

Recall that a chain in a tree is a maximal path whose nodes have out-degree one except

the last one. The following obvious lemma is crucial in understanding the relation between

suffix trees and dawg's (see figure below):

Lemma 6.5

Assume that text has a unique leftmost symbol. Then the following three equalities are

equivalent :

end-pos(x)=end-pos(y) in text;

first-pos(xR)=first-pos(yR) in textR ;

xR, yR are contained in the same chain of the uncompacted tree Trie(textR).

Remark

The first two equalities in the lemma are always true, however the third one can be damaged if

text starts with a non-unique symbol. If text=abba then text=textR and the nodes a, ab are

contained in the same chain. However, first-pos(a)={1, 4} but first-pos(ab)={1}. Fortunately

with a unique leftmost symbol such a situation is impossible.

Figure 6.10. When the text has a unique leftmost symbol :

end-pos(x)=end-pos(y) in text iff first-pos(xR)=first-pos(yR) in textR

iff xR, yR are contained in the same chain of the uncompacted tree Trie(textR).

Corollary 6.6
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The reversed values of nodes of the suffix tree T(textR) are the longest representatives of

equivalence classes of factors of text. Hence nodes of T(textR) can be treated as nodes of

DAWG(text).

We consider first the relation : suffix trees → dawg's. Let T be a suffix tree. We define

shortest extension links (sext links, in short) in T, dented by sext[a, v]. The value of sext[a, v] is

the node w whose value y=val(w) is a shortest word having prefix ax, where x=val(v). If there

is no such node w then sext[a, v]=nil. Observe that sext[a, v]≠nil iff test[a, v]=true. If link[a,

v]≠nil then sext[a, v]=link[a, v].

Lemma 6.7

If we are given a suffix tree T with tables link and test computed then table sext can be

computed in linear time.

Proof

The algorithm is top down. For the root sext links are easy to compute. If table sext was

computed for entries related to v1=father(v) then for each symbol a the value of sext[a, v] is

computed in constant time as follows :

if test[a, v]=false then sext[a, v]:=nil else

if link[a, v1]=nil then sext[a, v]:=sext[a, v1] else

sext[a, v]:=the son w of link[a, v1] such that the label of edge from link[a, v1] to w has

the same first symbol as label of edge (v1, v).

The whole computation takes linear time because it takes constant time for each pair (a, v). This

completes the proof. ‡

Remark

In fact, we could easily modify the algorithm for the construction of suffix trees by removing

table test and replacing tables link and test by a more powerful table sext. Table sext contains

essentially the same information as tables link and test together. This could improve the space

complexity of the algorithm (by a constant factor). Time complexity does not change much.

We leave as an easy exercise a suitable modification of the algorithm.

However we feel that tables link and test make the algorithm easier to understand. Moreover as

we shall see later table link gives solid edges of the dawg for reversed pattern and table sext (in

cases when link has value nil) gives non-solid edges. Also in applications it is better to have

choice of several alternative data structures.

The figure below presents the uncompacted suffix tree for the text text=babaad.



 
Figure 6.11. The uncompacted node-labelled tree T1(text) for text=babaad. The nodes of the

suffix tree are circled. For example sext[a, H] is the shortest extension

of a word x = (a val(H)), it is the node F such that x is a prefix of val(F).

The next figure presents the uncompacted suffix tree from the "reverse perspective". The

equivalence classes of words of the text of textR=daabab are circled.

Figure 6.12. The previous uncompacted subword tree with the values of nodes reversed.
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Figure 6.13. The suffix tree T(babaad) with examples of sext links.

Theorem 6.8

If text has the unique leftmost symbol then DAWG(text) equals the graph of sext links of

suffix tree T=T(textR). Solid edges of the dawg of text are given by table link of T.

Proof

The thesis follows directly from the preceding lemma. The corollary from the lemma says that

nodes of the dawg correspond to nodes of T. In the dawg for text the edge labelled a goes from

the node v with val(v)=x to node w with val(w)=y iff y is the longest representative of the class

of factors which contain word xa. If we consider the reversed text then it means that axR is the

longest word yR such that first-pos(yR)=first-pos(axR) in textR. This exactly means that yR

=sext[a, xR]. |yR |=|xR|+1 iff y=xa and link[a, xR]=yR. According to the remark ending the

previous section this means that table link gives exactly all solid edges.

This completes the proof. ‡



Figure 6.13. DAWG(daabab) = graph of sext links of T(babaad).

Solid edges are given by table link of T( babaad).

Remark

If one wants to construct a dawg using suffix trees and the string text does not start with the left

marker then we can take the string p' = dp which has a left marker d. After constructing the

dawg for p' we simply erase the first edge labelled d and delete the nodes inaccessible from the

root. The first edge leading to a node of the old longest path becomes solid. The transformation

of the dawg from Figure 6.13 is shown below.

Figure 6.14. DAWG(aabab) results from DAWG(daabab), see Figure 6.13.

The edge labelled d is removed. Then nodes inaccessible from the root are deleted :

A and B are deleted. Edge (I, D) becomes solid.
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Let us deal now with the relation : dawg's → suffix trees. An unexpected property of the

dawg construction algorithm is that it computes also the suffix tree of the reversed text if text

starts with a symbol occurring only at the first position (see Figure 6.15).

Figure 6.15. Tree of suffix-links of DAWG( abcbc) = suffix tree T(cbcba).

If text text start with the symbol occurring only at first position then the graph of

suffix-links of DAWG(text) gives the suffix tree T(textR).

We give values of nodes of the dawg and labels of edges of the suffix tree.

Hence the dawg construction gives also an alternative algorithm to construct suffix trees.

Given the dawg G of text text we can easily obtain the suffix tree for the reverse of text.

Let T be a tree of suffix links of G; suf[v] is the father of v. The edge (v, suf[v]) is labelled by

the word z=yR//xR, where x=val(suf[v], y=val(v). The operation // consists of cutting the prefix x

of y. z=yR//xR iff yR=xRz. This operation is well defined in the context (y=val(v), x=val(suf[v])).

The tree T is called the tree of suffix links. This tree is automatically constructed during the

computation of DAWG(text).

Theorem 6.9

If text starts with a unique leftmost symbol then the tree of suffix links of DAWG(text)

equals the suffix tree T(textR).

Proof

The same arguments as in the proof of the previous theorem can be applied. ‡

Remark



There is a functional symmetry between suffix tree and dawg's : essentially they have the same

range of applications. They are closely related : the structure of one of them is "contained" in

the structure of the other. However one of these data structures is a tree while the other is not.

As it was written in [CS 85] : it is remarkable that such functional symmetry is efficiently

achieved by such an integrated asymmetric construction.

From the point of view of applications the dawg can be compressed. This will result in a

considerable saving in space. Such compression allows to see a relation between

G=DAWG(text) and G'=DAWG(textR). It is also possible to make a symmetric version of a

dawg : a good data structure SymRep(text) which can efficiently represent simultaneously

Fac(text) and Fac(textR).

Let us look at a relation between G and G'. Take the example text text=aabbabd. Then G is as

presented in Figure 6.1 and it has 10 nodes. The graph G' is presented in Figure 6.17 and it has

11 nodes.

Figure 6.17. The graph G'=DAWG(textR).

There are three nodes of out-degree greater than 1 (edges go right-to-left).

At first sight it is hard to see any relation between G and G'. Let root and sink be the

names of the root and the sink of G, and let root', sink' be the root and the sink of G'. We have

root=sink' and sink=root' (we can call these nodes external, while other nodes can be called

internal). Let us look at internal nodes with out-degree bigger than one. Call such nodes

essential. There are three essential nodes v1, v2, v3 in G and also three essential nodes in G'. It

happens that there is a one-to-one correspondence between these nodes. Let values of nodes in

G' be words spelled right-to-left (words from the "reverse perspective"). Then we have the

same set of values of essential nodes in G and that in G'. We leave the general proof of this fact

to the reader. We can identify internal nodes of G and G'. Now we define the compressed
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versions of G and G' to be graphs consisting only of essential and external nodes (all other

nodes disappear by compressing chains). Hence the compressed versions are two graphs with

the same set of nodes. Therefore these graphs can be combined (by taking union of edges of

both graphs) and we get a labelled graph which is a symmetric representation SymRep(text).

There will be two kinds of edges in such graph : left-to-right and right-to-left edges. SymRep is

a good representation of Fac(text) and satisfies : SymRep(text)=SymRep(textR).

More precisely : a compressed version compr(G) of the dawg G is the graph whose

nodes are essential (internal) and external nodes of G. The graph compr(G) results by

compressing all chains of G - each internal node of out-degree one is removed and its incoming

edges are redirected. Figures 6.18 and 6.19 show the compressed versions of dawg's for the

word aabbabd and its reverse. The nodes of compr(G) correspond to so called prime factors,

see [BBHME 87], page 580, for a definition. Intuitively these are factors that appear in two

distinct left contents (if extendable to the left) and two distinct right contexts (if extendable to

the right).

Figure 6.18. The graph compr(G) for text=aabbabd.



Figure 6.19. The graph compr(G') for textR=dbabbaa. The direction of edges is right-to-left.

The labels of edges are to be read also right-to-left. SymRep(text) = compr(G')�∪compr(G).

The constructed data structure can be used to "travel" in the dawg in two directions. We

can find some useful information for the factor x, then for its left extension ax, and then for the

right extension axb.

6.5. String-matching using suffix dawg's

In this section, we describe two other string-matching algorithms. They apply the strategy

developed in Chapter 3 and 4 respectively, but are based on suffix dawg's built on the pattern.

For fixed alphabets, the first algorithm yields a real-time search, while the second searching

algorithm is optimal on the average.

A simple application of subword dawg gives an efficient algorithm to compute the

longest common factor of two strings. We have already discussed an algorithm for that

purpose in Chapter 5. There, the solution is based on suffix trees. The present solution is quite

different by several aspects. First, it computes the longest common factor while processing one

of the two input words (a priori, the longer word) in an on-line way. Second, it uses the dawg

of only one word (a priori, the shorter word), which makes the whole process cheaper

according to the space used. The overall algorithm can be adapted from the string-matching

algorithm presented below.

The first string-matching of the present section searches the text for factors of the pattern.

It computes the longest factor of the pattern ending at each position in the text. It is called the

forward-dawg-matching algorithm (FDM for short) because factors are scanned from left to
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right. The algorithm can be viewed as another variation of algorithm MP (Chapter 3). In this

latter algorithm, the text is searched for prefixes of the pattern, and shifts are done immediately

when a mismatch is found. We explain the principles of FDM algorithm.

Let pat and text be the two words. Let DAWG(pat) be the dawg of the pattern. The text is

scanned from left to right. At a given step, let p be the prefix of text that has just been

processed. Then, we know the longest suffix s of p which is a factor of pat, and we have to

compute the same value associated to the next prefix pa of text. It is clear that DAWG(pat) can

help to compute it efficiently if sa is a factor of pat. But, this is still true if sa is not a factor of

pat because in this situation we can use the suffix link of the dawg in a similar as the failure

function is used in MP algorithm (Chapter 3).

Longest factor ending at i 

pat 

text 
len 

i 

Figure 6.20. Current configuration in FDM algorithm.

In a current situation of the forward-factor algorithm, we memorize a state of

DAWG(pat).

But, the detection of an occurrence of pat in text cannot be done only based on the state of

DAWG(pat), because states are usually reachable through different paths. To cope with this

problem, in addition to the current state of DAWG(pat), we compute the length len of the

longest factor of pat ending at the present position in the text. When suffix links are used to

compute the next factor, the algorithm resets the value of len with the help of the function

length defined on states of DAWG(pat). Recall that length(w) is the length of the longest path

form the root of DAWG(pat) to the node w. The next property shows why the computation of

len is valid when going through a suffix link.

Property of DAWG(pat)

Let x be the label of any path from the root of DAWG(pat) to w.

Let y be the label of the longest path from the root of DAWG(pat) to v.

If suf[w] = v, the word y is a suffix of x.

The property is an invariant of the dawg construction of Section 6.3. Note that each time a

suffix link is created in algorithm suffix-dawg the target of the suffix link is also the target of a

solid edge. This is assumed by the splitting operation. So the proof follows by induction.



function FDM : boolean; { forward-dawg-matching algorithm }

{ it computes longest factors of pat occurring in text }

begin

D := DAWG(pat);

len := 0; w := root of D; i := 0;

while not i≤|text| do begin

if there is an edge (w, v) labelled by text[i] then begin

len := len+1; w := v;

end else begin

repeat w := suf[w];

until (w undefined) or

(there is (w, v) labelled by text[i]);

if w undefined then begin

len := 0; w := root of D;

end else begin

let (w, v) be the edge labelled by text[i] from w;

len := length(w)+1; w := v;

end;

{ len = larger length of factor of pat ending at i in text }

if len=|pat| then return(true);

i := i+1;

end;

return(false);

end;

Algorithm FDM can still be improved. The modification is similar to the transformation

of algorithm MP into algorithm KMP. It is done through a modified version of the failure

function. The criterion to be considered is the delay of the search, that is, the time spent on a

given letter of the text. Algorithm FDM has delay O(|pat|) (consider the pattern an). The

transformation of FDM is realized on the suffix link suf as explain below.

Assume that during the search the current letter of the text is a and the current node of the

dawg is w. If no a-edge starts from w, then we would expect that some a-edge starts from

v=suf[w]. But it happens that, sometimes, outgoing edges on v have the same label as outgoing

edges on w. Then, node v does not play its presumed role in the computation, and suf has to be

iterated at the next step. This iteration can in fact be preprocessed because it is independent of

the text.

We define the context of node w of DAWG(pat) as the set of letters, which are labels of

edges starting from w :
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Context(w) = {a ; there is an a-edge (w, w') in DAWG(pat)}.

Then, the improved suffix link is SUF defined as (v=suf[w])

SUF(w) = v, if Context(w) ≠ Context(v),

SUF(w) = suf[v], otherwise.

Note that SUF(w) can be left undefined with this definition because suf[root] is undefined).

In practice,  for the computation of SUF, no context of node is indeed necessary. This is

due to a special feature of dawg's. When v=suf[w], Context(w) is included in Context(v),

because the value of suf[w] is a suffix of the value of w. Thus, tests to compute SUF can be

made only on the sizes of context sets. The following is an equivalent definition of SUF :

SUF(w) = v, if |Context(w)| ≠ |Context(v)|,

SUF(w) = suf[v], otherwise.

Then, computing SUF is done with a standard breadth-first exploration of DAWG(pat).

Quantities |Context(w)| can be stored in each node during the construction of DAWG(pat), to

help afterwards computing SUF.

It is clear that the number of time SUF can be applied consecutively is bounded by the

size of the alphabet. This leads to the next theorem that summarized the overall.

Theorem 6.10

Algorithm FDM searches for pat in text, and computes longest factors of pat ending at

each position in text, in linear time (on fixed alphabet). The delay of the search can be

bounded by O(|A|).

Proof

The correctness comes from the discussion above. If we modify the algorithm FDM, replacing

suf by SUF, then the delay of the new algorithm is obviously O(|A|). ‡

We now present the second string-searching of the section. It is called backward-dawg-

matching algorithm (BDM for short), and is somehow a variant of BM algorithm (Chapter 4).

Algorithm BM searches for a suffix of the pattern pat at the current position of the text text. In

BDM algorithm we search for a factor x of pat ending at the current position in the text. Shifts

use a pre-computed function on x.

The advantage of the approach is to produce an algorithm very fast on the average, not

only on large alphabets, but also for small alphabets. The strategy of BDM algorithm is more

“optimal” than that of BM algorithm: the smaller the cost of a given step, the bigger the shift.

In practice, on the average, the match (and the cost) at a given iteration is usually small, hence,

the algorithm, whose shifts are reversely proportional to local matches, is close to optimal. If

the alphabet is of size at least 2, then the average time complexity of BDM algorithm is O(n

log(m)/m). This reaches the lower bound for the problem. It is however quadratic in the worst

case. But, rather standard techniques, as those applied on BM algorithm (see Chapter 4) lead to

an algorithm that is both linear in the worst case and optimal on the average.



Algorithm BDM makes a central use of the dawg structure. The current factor x of pat

found in text, is identified with the node corresponding to xR in DAWG(patR). We use the

reverse pattern because we scan the window on the text from right to left. A constant-sized

memory is sufficient to identify x. On the current letter a of the text, we further try to match ax

with a factor of pat. This just remains to find an a-edge in DAWG(patR) from the current node.

If no appropriate a-edge is found, a shift occurs.

text 

i 

window 

x 
i+m i+j

Next position of the window
u 

shift = m-|u| 

Figure 6.21. One iteration of Algorithm BDM.

Word x is the longest factor of pat ending at i+m.

Word u is the longest prefix of the pattern that is a suffix of x.

Algorithm BDM; { backward-dawg-matching algorithm }

{ use the suffix dawg DAWG(patR) }

begin

i := 0;

while i ≤ n-m do begin

j:=m;

while j>1 and text[i+j..i+m]∈Fac(pat) do j:=j-1;

if j = 0 then report a match at position i;

shift := BDM_shift[node of DAWG(patR)];

i := i+shift;

end;

end.

We add to each node of DAWG(patR) an information telling whether words

corresponding to that node are suffixes of the reversed pattern patR (i.e. prefixes of pat). We

traverse this graph when scanning the text right-to-left in BDM algorithm. Let again x be the

longest word which is a factor of pat, found at a given iteration. The time spent to scan x is

proportional to |x|. The multiplicative factor is constant if a matrix representation is used for

transitions in the data structure. Otherwise, it is O(log|A|) (where A can be restricted to the

pattern alphabet), which applies for arbitrary alphabets.
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We now define the shift BDM_shift. Let u be the longest suffix of x which is a proper

prefix of the pattern pat. We can assume that we always know the current value of u. It is

associated to the last node on the scanned path in DAWG(pat) corresponding to a suffix of

patR. Then, the shift BDM_shift[x] is m-|u| (see Figure 6.21).

The expected time complexity of BDM algorithm is given in the next statement. We

analyze the average running time of BDM algorithm, considering the situation when the text is

random. The probability that a specified letter occurs at any position in the text is 1/|A|,

independently of the position of the letter.

Theorem 6.11

Let c = |A| > 1. Under independent equiprobability condition, the expected number of

inspections done by BDM algorithm is O((n/logc m)/m).

Proof

We first count the expected number of symbol inspections necessary to shift the pattern m/2

places to the right. We show that O(logc m) inspections are sufficient to achieve that goal. Since

there are 2n/m segments of text of length m/2, we get the expected time O((n\logc m)/m).

Let r = 3.⎣logc m⎦. There are more than m3 possible values of the suffix text[j-r…j]. But, the

number of subwords of length r+1 ending in the right half of the pattern is at most m/2

(provided m is large enough). The probability that text[j-r…j] matches a subword of the pattern,

ending in its right half, is then 1/(2m2). This is also the probability that the corresponding shift

has length less than m/2. In this case, we bound the number of inspections by m(m/2) (worst

behavior of the algorithm making shifts of length 1). In the other case, the number of

inspections is bounded by 3.logcm.

The expected number of inspections that lead to a shift of length at least m/2 is thus less than

3.logc m (1-Error!)  +  m(m/2) Error!;,

which is O(logc m). This achieves the proof. ‡

Theorem 6.11 shows that BDM algorithm realizes an optimal search of the pattern in the

text when branching in the dawg takes constant time. However, the worst-case time of search

can be quadratic.

To speed up BDM algorithm we use the prefix-memorization technique. The prefix u of

size m-shift of the pattern (see Figure 6.22) that matches the text at the current position is kept in

memory. The scan, between the part v of the pattern and the part of the text align with it  (Figure

6.22), is done from right to left. When we arrive at the boundary between u and v in a

successful scan (all comparisons positive), then, we are at a decision point. Now, instead of

scanning u until a mismatch is found, we need only scan (again) a part of u, due to

combinatorial properties of primitive words. The part of u which is scanned again in the worst

case has size period(u)  The crucial point is that if we scan successfully v and the suffix of u of



size per(u) then we know what shift to do without any further calculation: many comparisons

are saved precisely at this moment, and this speeds up BDM algorithm.

text 

i 

window 

i+m 

u 

period(u) 

v 

Prefix of pat 

Figure 6.22. Prefix memorization (u prefix of pat). At most period(u) symbols of u are

scanned again. However, this extra work is amortized by next shifts.

The symbols of v are scanned for the first time.

Algorithm Turbo_BDM;

{ linear-time backward-dawg-matching algorithm }

begin

i := 0; u := empty;

while i ≤ n-m do begin

j := m;

while j>|u|-period(u) and text[i+j..i+m]∈Fac(pat) do

j := j-1;

if j=|u|-period(u) and text[i+j..i+m] suffix of pat

then report a match at position i;

shift := BDM_shift(x);

i := i+shift; u := prefix of pattern of length m-shift;

end;

end.

The proof of Turbo_BDM algorithm essentially relies on the next lemma. It is stated with

the notion of displacement of factors of pat, which is incorporated in BDM shifts. If y ∈

Fac(pat), we denote by displ(y) the smallest integer d such that y = pat[m-d-|y|+1..m-d] (see

Figure 6.23).
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factor y  

displ(y)  

pattern

Figure 6.23. Displacement of factor y in the pattern.

Lemma 6.12 (key lemma)

Let u, v be as in Figure 6.22. Let z be the suffix of u of length period(u), and let x be the

longest suffix of uv that belongs to Fac(pat). Then

zv ∈ FACT(p) implies BDM_shift(x)=displ(zv).

Proof

It follows from the definition of period(u), as the smallest period of u, that z is a primitive

word. The primitivity of z implies that occurrences of z can appear from the end of u only at

distances which are multiples of period(u). Hence, displ(zv) should be a multiple of period(u),

and this easily implies that the smallest proper suffix of uv which is a prefix of pat has size |uv|-

displ(zv). Hence the next shift executed by the algorithm, BDM_shift(x), should have length

displ(zv). This proves the claim. ‡

The transformation of BDM algorithm into Turbo_BDM algorithm can be done as

follows. The variable u is specified by only one pointer to the text. The values of displacements

are incorporated in the data structure DAWG(pat), and similarly the values of periods period(u)

for all prefixes of the pattern can be precomputed and stored in DAWG(pat). In fact, the table of

periods can be removed and values of period(u) can be computed dynamically inside

Turbo_BDM algorithm using constant additional memory. This is quite technical and omitted

here.

Theorem 6.13

On a text of length n, Turbo_BDM algorithm runs in linear time (for a fixed alphabet). It

makes at most 2n inspections of text symbols.

Proof

In Turbo_BDM algorithm at most period(u) symbols of factor u are scanned. Let extra_cost be

the number of symbols of u scanned at the actual stage. Since the next shift has length at least

period(u), extra_cost ≤ next_shift. Hence, all extra inspections of symbols are amortized by the

total sum of shifts, which gives together at most n inspections. The symbols in parts v (see

Figure 6.22) are scanned for the first time at a given stage. These parts are disjoint in distinct

stages. Hence, they give together at most n inspections too. The work spent inside segments u,

and inside segments v altogether is thus bounded by 2n. This completes the proof. ‡
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7. Automata-theoretic approach

Finite automata can be considered both as simplified models of machine, and as

mechanisms used to specify languages. As machines, their only memory is composed of a

finite set of states. In the present chapter, both aspects are considered and lead to different

approaches to  pattern matching. Formally, a (deterministic) automaton G is a sequence (A, Q,

init, δ, T), where A is an input alphabet, Q is a finite set of states, init is the initial state (an

element of Q) and δ is the transition function. For economy reasons we allow δ to be a partial

function. The value δ(q, a) is the state reached from state q by the transition labelled by input

symbol a. The transition function extends in a natural way to all words, and, for the word x,

δ(q, x) denotes, if it exists, the state reached after reading the word x in the automaton from the

state q. The set T is the set of accepting states, or terminal states of the automaton.

The automaton G accepts the language:

L(G) = {x : δ(init, x) is defined and belongs to T}.

The size of G, denoted by size(G) is the number of all transitions of G: number of all pairs (q,

a) (q is a state, a is a single symbol) for which δ(q, a) is defined. Another type of a useful size

of G is the number of states denoted by statesize(G).

Probably the most fundamental problem in this chapter is: construct in linear time a

(deterministic) finite automaton G accepting the words ending by one pattern among a finite set

of patterns, and gives a representation of G of linear size, independently on the size of the

alphabet. Another very important and useful algorithm solves the question of matching a

regular expression.

7.1. Aho-Corasick automaton

We denote by SMA(pat), for String-Matching Automaton, a (deterministic) finite

automaton G accepting the set of all words containing pat as a suffix, and denote by SMA(∏)

an automaton accepting the set of all words containing a word of the finite set of words ∏ as a

suffix. In other terms, noting A* the set of all words on the alphabet A,

L(SMA(pat)) = A*pat and L(SMA(Π)) = A*Π.

In this section we present a construction of the minimal finite automaton G = SMA(pat), where

minimality is understood according to the number of states of G. Unfortunately, the total size

of G depends heavily on the size of the alphabet. We show how to construct these automata in

linear time (with respect to the output).

With such an automaton the following real-time algorithm SMA can be applied to the

string-matching problem (for one or many patterns). The algorithm outputs a string of 0's and

1's that locates all occurrences of the pattern in the input text (1's mark the end position of
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occurrences of the pattern). The algorithm does not use the same model of computation as

algorithms of Chapters 3 and 4 do. There, the elementary operation used by algorithms (MP,

BM, and their variations) is letter comparison. Here, the basic operation is branching

(computation of a transition).

Algorithm SMA { real-time transducer for string-matching }

begin

state := init; read(symbol);

while symbol ≠ endmarker do begin

state := δ(state, symbol);

if state in T then

write(1)   { reports an occurrence of the pattern }

else write(0);

 read(symbol);

end;

end.

We start with the case of only one pattern pat. And show how to build the minimal

automaton SMA(pat). The function build_SMA builds SMA(pat) sequentially. The core of the

construction consists, for each letter a of the pattern, to unfold the a-transition from the last

created state t. This is illustrated by pattern abaaba in Figure 7.1.

0 1 2 3 4 5
a 

b a 

b a 

b 
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b 

a 

b 

b 

a 

61 2 3 4
a 

b a 

b a 

b 

a 
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a 

b 

b 

a 

5
a 

b 

0

Figure 7.1. One step in the construction a sma: from SMA(abaab) to  SMA(abaaba):

unfolding the a-transition from state 5. Terminal states are black.
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function build_SMA (pat) : automaton;

begin

create a state init; terminal := init;

for all b in A do δ(init, b) := init;

for a := first to last letter of pat do begin

temp := δ(terminal, a); δ(terminal, a) := new state x;

for all b in A do δ(x, b) := δ(temp, b);

terminal := x;

end;

return (A, set of created states, δ, init, {terminal});

end;

Lemma 7.1

Algorithm build_SMA constructs the (minimal) automaton SMA(pat) in time O(m.|A|).

The automaton SMA(pat) has (m+1)|A| transitions, and m+1 states.

The proof of Lemma 7.1 is left as an exercise. There is an alternative construction of the

automaton SMA(pat) which shows the relation between sma's and the MP-like algorithm of

Chapter 3. Once we have computed the failure table Bord for pattern pat, the automaton

SMA(pat) can be constructed as follows. We first define Q = {0, 1, …, m}, T = {m}, init = 0.

And the transition function (table) δ is computed by the algorithm below. Figure 7.2 displays

simultaneously the failure links (arrows going to the left) and SMA(abaaba).
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Figure 7.2. The function Bord, and the automaton SMA(abaaba).
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Algorithm { computes the transition function of SMA(pat) }

{ assuming that table Bord is already computed }

begin

for all a in A do δ(0, a) := 0;

if m>0 then δ(0, pat[1]) := 1;

for i := 1 to m do

for all a in A do

if i<m and a=pat[i+1] then δ(i, a) := i+1

else δ(i, a) := δ(Bord[i], a);

end.

In some sense, we can consider that table Bord represents the transition function δ of the

automaton SMA(pat). Then, MP algorithm becomes a mere simulation of algorithm SMA

above. In the simulation, branching operations are substituted by letter comparisons. This

remark is indeed the basis of Simon algorithm (MPS algorithm in Chapter 3). The

representation of SMA(pat) by a failure function makes the size of the representation

independent of the alphabet without increasing the total time complexity of the search phase.

The algorithm above shows that the transition function of SMA(pat) can be computed

from the failure table Bord.

We next apply the same strategy for the recognition of a finite set of patterns. Assume

that we have a set Π of r patterns. The i-th pattern is denoted by pi. Let m be the total length

(sum) of all patterns. We no longer try to build the minimal string-matching automaton

corresponding to the problem. So, SMA(Π) is not necessarily the minimal (deterministic)

automaton of the language A*Π, as it is when Π contains only one pattern.

To construct SMA(Π), we first consider a tree (a word trie) Tree(Π) whose branches are

labelled by elements of Π. The nodes of Tree(Π) are identified with prefixes of words in Π.

The root is the empty word ε. The father of a nonempty prefix xa is the prefix x. We write

father(xa) = x, and son(x, a) = xa. Nodes of Tree(Π) are considered as states of an automaton,

and they are marked as terminal or non terminal. A node is marked as terminal if the word it

represents is in the set Π. All leaves are terminal states, but it may also happen that some

internal node is also a terminal state. This happens when a pattern is a proper prefix of another

pattern. Figure 7.3 displays Tree({ab, babb, bb}).
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Figure 7.3. The word tree of set {ab, babb, bb}. Terminal nodes are starred.

The algorithm  build_SMA below, applied to a set of strings Π, builds an automaton

SMA(Π) from the tree Tree(Π). The states of the automaton are the nodes of the tree. The

algorithm essentially transforms and completes the relation son into the transition δ. The

algorithm is very similar to the case of a single word. Here, no state is created, because they are

taken from the existing tree.
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Figure 7.4. The automaton SMA(∏) for ∏ = {ab, babb, bb}.

Note that node 6 is terminal.

There is however a delicate point related to the computation of terminal states. It may

happen that some word of Π is an internal factor of another word of the set. This is the case for

the set {ab, babb, bb} considered in Figure 7.3. Node 6 of Tree({ab, babb, bb}) becomes a

terminal state in SMA({ab, babb, bb}), because bab ends with the word ab of the set. More
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generally, this happens during the construction when the clone of node x, namely node temp in

the algorithm, is itself a terminal node.

function build_SMA (Π) : automaton;

begin

{ father and son links refer to the tree Tree(Π)  }

{ states of SMA(Π) are the nodes of Tree(Π) }

if root terminal node then T := {root} else T := ∅;

for all b in A do δ(root, b) := root;

for all non-root nodes x of Tree(Π) in bfs order do begin

t := father(x); a := the letter such that x=son(t, a);

temp := δ(t, a); δ(t, a) := x;

if x or temp terminal nodes then add x to T;

for all b in A do

if son(temp, b) defined then δ(x, b) := son(temp, b)

else δ(x, b) := δ(temp, b);

end;

return (A, nodes of Tree(Π), δ, root, T);

end;

Lemma 7.2

The algorithm build_SMA builds a deterministic automaton SMA(Π) having the same set

of nodes as the word trie Tree(Π). It runs in time O(statesize(Tree(Π)).|A|).
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Figure 7.5. One step of the algorithm for the construction of SMA({ab, babb, bb});

Node 6 is a clone of δ(5, b)=3 (on the left). Transitions on node 6 are the same as for 3.

With the automaton SMA(Π) built by the previous algorithm, searching a text for

occurrences of the patterns in Π can be realized by the algorithm SMA. The search is then
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performed in real time, and the space required to store the automaton is

O(statesize(Tree(Π)).|A|). Again, it is possible to represent the automaton SMA(Π) with a

failure function. Its advantage is to represent the automaton within space O(statesize(Tree(Π))),

which is independent of the alphabet. The search becomes then analogue to MP algorithm of

Chapter 3.
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Figure 7.6. The tree Tree(∏) with suffix links Bord (left), and

the automaton SMA(∏) (right), for ∏ = {ab, babb, bb}.

The function Bord related to Π is defined, for a non-empty word u, by

Bord(u) = longest proper suffix of u that is prefix of a pattern in Π.

We also denote by Bord the failure table defined on nodes of Tree(Π) (except on the root). The

relation used by the following algorithm that computes table Bord is (t is a node of Tree(Π)

different from the root):

Bord[ta] = Bordk[t]a, for the smallest k such that Bordk[t]a ∈ Π,

Bord[ta] = ε, otherwise.

Note that the algorithm below also marks nodes as terminal in the same situation explained for

the direct construction of SMA(∏).
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procedure compute_Bord; { failure table on Tree(Π) }

begin

{ father and son refer to the tree Tree(Π) }

{ Bord is defined on nodes of Tree(Π)      }

set Bord[ε] as undefined;
for all a in A do Bord[a] := ε;
for all nodes x of Tree(Π), |x|>2, in bfs order do begin

t := father(x); a := the letter such that x=son(t, a);

z := Bord[t];

while z defined and za not in Tree(Π) do z := Bord[z];

if za is in Tree(Π) then Bord[x] := za else Bord[x] := ε;
if za is terminal then mark x as terminal;

end;

end.

The complexity of the algorithm above is proportional to m.|A|. The analysis is similar to

that for computing Bord for a single pattern. It is enough to estimate the total number of all

executed statements "z := Bord[z]". This statement can be again treated as deleting some

items from a store and z as the number of items. Let us fix a path π of length k from the root to

the leaf. Using the store principle it is easy to prove that the total number of insertions

(increases of z) to the store for nodes of π is bounded by k, hence the total number of deletions

(executing "z := Bord[z]") is also bounded by k. If we sum this over all paths than we get

the total length m of all patterns in Π.

We can again base the construction of an automaton SMA(∏) on the failure table of

Tree(Π). The transition function is defined on nodes of the tree as shown by the following

algorithm.

Algorithm { computes transition function for SMA(Π) }

begin

for all a not in Tree(Π) do δ(ε , a) := ε;
for all nodes x of Tree(Π) in bfs order do

for all a in A do

if xa is in Tree(Π) then δ(x, a) := xa

else δ(x, a) := δ(Bord[x], a);

end.
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function AC(Tree(Π); text) : boolean;

{ Aho-Corasick multi-pattern matching }

{ uses the table Bord on Tree(Π)      }

begin

state := root; read(symbol);

while symbol ≠ endmarker do begin

while state defined and son(state, symbol) undefined do

state := Bord[state];

if state undefined then state := root

else state := son(state, symbol);

if state is terminal then return true;

 read(symbol);

end;

return false;

end;

Algorithm AC is the version of algorithm MP for several patterns. It is a straightforward

application of the notion of the failure table Bord. The preprocessing phase of AC algorithm is

procedure compute_Bord.

Terminal nodes of SMA(∏) can have numbers corresponding to numbering of patterns in

Π. Hence, the automaton can produce in real-time numbers corresponding to those patterns

ending at the last scanned position of the text. If no pattern occurs, 0 is written. This proves the

following statement.

Theorem 7.3

The string-matching problem for a finite number of patterns can be solved in time

O(n+m.|A|). The additional memory is of size O(m).

The table Bord used in AC algorithm can be improved in the following sense. Assume,

for instance that during the search node 6 of Figure 7.6 has been reached, and that the next letter

is a. Since node 6 has no a-son in the tree, AC algorithm iterates function Bord from node 6. It

finds successively nodes 3 and node 4 where the iteration stops. It is clear that the test on node

3 is useless in any situation because it has no son at all. On the contrary, node 4 plays its role

because it has an a-son. Some iterations of the function Bord can be precomputed on the tree.

The transformation of Bord is similar to the transformation of suf into SUF based on contexts

of nodes described in Section 6.5. Figures 7.7 shows the result of the transformation. The

optimization does not change the worst-case behavior of AC algorithm.
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Figure 7.7. Optimized table Bord on Tree({ab, babb, bb}).

Note that the table is undefined on node 4.

7.2. Faster multi-pattern matching

The method presented in the preceding section is widely used, but its efficiency is not

entirely satisfactory. It is similar to the method of Chapter 3. The minimum time complexity of

the search phase in all these algorithms is still linear, which is rather large compared to the

performance of the BM-type algorithms of Chapter 4. The idea is then to have the counterpart

of BM algorithm to search for several patterns. It is possible to extend the BM strategy to the

multi-pattern matching problem, but the natural extension becomes very technical. We present

here another solution based on the use of dawg's.

The search for several patterns combines the techniques used in AC algorithm and in the

backward-dawg-matching algorithm (BDM in Section 6.5). The dawg related to the set of

pattern Π is used to avoid searching certain segments of the text. It must be considered as an

extra mechanism added to the AC automaton SMA(Π) to speed up the search. The search is

done through a window that slides along the text. The size of the window is here the minimal

length of pattern in Π. In the extreme case where the minimal length is very small, the dawg is

not useful, and the AC algorithm, on its own, is efficient enough.

The idea for speeding up AC algorithm is the same as the central idea used in BM

algorithm. On the average, only a short suffix of the window has to be scanned to discover that

no occurrence of a pattern in Π occurs at the current position. In order to achieve an average-

optimal procedure we use the strategy of BDM algorithm. This approach has the further

advantage to simplify the whole algorithm compared to direct extensions of BM algorithm to

the problem.



chapter 7 153 22/7/97

Efficient Algorithms on Texts 153 M. Crochemore & W. Rytter

The algorithm of the present section, for matching a finite set of patterns Π, is called

multi_BDM. The search uses both the automaton SMA(Π) and the suffix dawg of reverse

patterns DAWG(ΠR). The basic work is supplied by the former structure. The role of the latter

structure is to provide large shifts over the text.

AC AC AC AC

shift 1 shift 2 shift 3

stage 1 stage 2 stage 3 stage 4

DAWG DAWG DAWG DAWG

text 

Figure 7.8. Series of stages in multi_BDM search phase.

In the current configuration of multi_BDM algorithm, the window is at position i on the

text. A prefix u of the window has already been scanned through the AC automaton SMA(Π).

The word u is known as a prefix of some pattern. Both the length lp of that prefix, and the

corresponding state state of SMA(Π) are stored. They serve when extending the prefix during

the present stage, if necessary. They also serve to compute the length of the next shift in some

situation. Each stage is decomposed into two sub-stages. We assume that the window contains

the word uv (u as above).

— Substage I, scan with DAWG(ΠR). The part v of the window, not already scanned with

SMA(Π), is scanned from right to left with DAWG(ΠR). Note that the process may stop before

v has been entirely scanned. This happens when v is not a factor of the patterns. This is likely to

happen with high probability (at least if the window is large enough). The longest prefix u' of Π

found during the scan is memorized to be used precisely in such a situation.

— Substage II, scan with SMA(Π). If the part v of the window is entirely scanned at

substage I, then it is scanned again, but, with SMA(Π) and in the reverse direction (from left of

right). Doing so, the possible matches are reported, and we get the new prefix of patterns on

which the window is adjusted. If v is not scanned entirely at substage I, the scan with SMA(Π)

starts from the beginning of u', and the rest is similar to the previous situation. This is the

situation where a part of the text is ignored by the search, which leads to a faster search than

with AC algorithm alone.
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The basic assumption of Substage I is that u is a common prefix of the window and the

patterns. Since the size of the window is fixed and is the minimal length of patterns, in

particular, u is shorter than the shortest pattern. To meet the condition at the end of Substage II,

the scan continues until the current prefix u is shorter than the required length.

text 

i 

window of size m  

i+m 

u v 
Prefix of Π 

lp 

critpos

scan with suffix dawg

Substage I

text 

i 

window of size m  

i+m 

u 

scan with SMA 
automaton

Substage II 

u' 

Figure 7.9. Substages of multi_BDM search phase.

The algorithm is given below. The current position of the window is i. Position critpos

(≥ i) is the position of the input head of automaton SMA(Π). The corresponding state of the

automaton is denoted by state. The first internal while loop executes Substage I. The test

"text[i+j..i+min] Œ Fac(PR)" is assumes to be done with the help of the suffix dawg

DAWG(ΠR). The second internal while loop executes Substage II.
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Algorithm multi_BDM;

{ searches text for the finite set of patterns Π         }

{ G is SMA(Π) (AC automaton of Section 7.1),             }

{ D is DAWG(ΠR) for the reverse patterns (see Chapter 6) }

begin

min := minimal length of patterns;

i := 0;  { i is the position of the window on text }

critpos := 0; state := initial state of G;

while i ≤ n-min do begin

j := min;

while i+j > critpos and text[i+j..i+min] ∈ Fac(ΠR) do

j := j-1;

if i+j > critpos then begin

lp := length of the longest prefix of Π found by D

during the preceding while loop;

state := initial state of G;

critpos := i+min-lp;

end;

while not end of text and (critpos < i+min or length of

the longest prefix of Π found by G ≥ min) do begin

apply G to text[critpos+1..n], reporting matches,

incrementing critpos;

end;

state := state reached by G;

lp := length of the longest prefix of Π found by G;

i := critpos-lp;

end;

end.
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Example

Consider the set of patterns Π = {abaabaab, aabb, baaba}, and the text text =

abacbaaabaabaabbccc.…. Let D = DAWG(Π), and G = SMA(Π).

— Stage 1. The window contains abac. The dawg D discovers that the longest suffix of the

window that is prefix of Π is the empty word. Then, critpos is set 4, which leads to a shift of

length 4.

— Stage 2. The window contains baaa. The dawg D finds the suffix aa as factor of Π. The

factor aa is scanned with G. The length of the shift is 2. Letter b is not scanned at all.

— Stage 3. The window contains aaba. The dawg D scans backward the suffix ba of the

window, reaching the point where is the head of G. Then, G scans forward the same suffix of

the window, and finds that the suffix aba of the window is the longest prefix of Π found at this

position. The resulting shift has length 1.

— Stage 4. The window contains abaa. The dawg scans only its suffix of length 1. Then, G

scans it again. But, since the whole window is a prefix of some pattern, the scan continues

along the factor abaabb of the text. Two occurrences (of baaba and abaabaab) are reported.

The longest prefix of Π at this point is b. The next contents of the window is bccc. ‡

The following statement shows that multi_BDM algorithm makes a linear search of

patterns provided branching in the automata is realized in constant time. The search takes

O(n.log|A|) otherwise, where A can be restricted to the alphabet of the patterns in Π. The second

statement gives the average behavior of multi_BDM algorithm. The theorem makes evident that

the longer is the smallest pattern, the faster is the search.

Lemma 7.4

The algorithm multi_BDM executes at most 2n inspections of text characters.

Proof

Text characters are not scanned more than once by D = DAWG(ΠR), nor more than once by G

= SMA(Π). So, the search executes at most 2n inspections of text characters. ‡

Theorem 7.5

Let c=|A|>1, and m>1 be the length of the shortest pattern of Π. Under independent

equiprobability condition, the expected number of inspections made by multi_BDM

algorithm on a text of length n is O((n.logc m)/m).

Proof

The proof is similar to the corresponding proof for BDM algorithm in Chapter 6. ‡
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7.3. Regular expression matching

In this section we consider a problem more general than string searching. The pattern is a

set of string specified by a regular expression. The problem, called regular expression

matching, or sometimes only pattern matching, contains both the string-matching and the

multiple string matching problems. However, since patterns are more general their recognition

becomes more difficult, and it happens that solutions to pattern matching are not as efficient as

to string-matching.

The pattern is specified by a regular expression on the alphabet A with the regular

operations : concatenation, union, and star. For instance, (a+b)* represents the set of all strings

on the alphabet {a, b}, and the expression ab*+a*b represents the set {a, ab, abb, abbb, …, b,

aab, aaab, aaaab, …}.

Let recall the meaning of regular operations. Assume that e and f are regular expressions

representing respectively the sets of strings (regular languages) L(e) and L(f). Then,

— e.f (also denoted by ef) represents L(e)L(f) = {uv : u ∈ L(e) and v ∈ L(f)},

— e+f represents the union L(e) ∪ L(f),

— e* represents the set L(e)* = {uk : k ≥ 0 and u ∈ L(e)}.

Elementary regular expression are 0, 1, and a (for a ∈ A), which represents respectively the

empty set and the singletons {ε} and {a}.

The formalism of regular expressions is equivalent to that of finite automata. It is the latter that

is used for the recognition of the specified patterns.

The pattern matching algorithm consists of two phases. First, the regular expression is

transformed into an equivalent automaton. Second, the search on the text is realized with the

help of the automaton.

We consider only specific automata having good properties according to the space used

for their representations. We call them normalized automata. They are not necessarily

deterministic, as it is in previous section of the chapter. Such an automaton G is given by the

tuple (Q, i, F, t), assuming that the alphabet is A. The set Q is the finite set of states, i is the

only one initial state, t is the only one terminal state, and F is the set of edges (or arcs) labelled

by letters of the alphabet A or by the empty word ε. The language of the automaton is denoted

by L(G), and is the set of words, labels of paths in G starting at i and ending at t. Finally, the

automaton G and the regular expression e are said to be equivalent if L(G) = L(e). Figure 7.10

displays an automaton equivalent to ab*+a*b.
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a 

b 

a 

b 

i t 

Figure 7.10. A normalized automaton equivalent to the regular expression ab*+a*b.

Edges without label are ε-transitions.

A normalized automaton G = (Q, i, F, t) have specific properties listed here:

— it has a unique initial state i, a unique terminal state t, and i ≠ t;

— no edge starts from t, and no edge points on i;

— on every state, either there is only one outgoing edge labelled by a letter of A, or there

are at most two outgoing edges labelled by ε;

— on every state, either there is only one in-going edge labelled by a letter of A, or there

are at most two in-going edges labelled by ε.

Note that properties satisfied by G have their dual counterparts satisfied by the reverse

automaton GR obtained by exchanging i and t and reversing directions of edges.

The pattern matching process is based on the following theorem. Its proof is given in the

form of an algorithm that builds a normalized automaton equivalent to the regular expression.

We can even bound the size of the automaton with respect of the size of the regular expression.

We define size(e) as the total number of letters (including 0 and 1), number of plus signs, and

number of stars occurring in the expression e. Note that parenthesis and dots that may occur in

e are not reckoned with in the definition of size(e).

Theorem 7.6

Let e be a regular expression. There is a normalized automaton (Q, i, F, t) equivalent to e,

which satisfies |Q| ≤ 2size(e) and |F| ≤ 4size(e).

Proof

The proof is by induction on the size of e. The automaton associated to e by the construction is

denoted by G(e). If e is an elementary expression, its equivalent automaton is given in Figure

7.11.
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i t i t i t a ε

Figure 7.11. Normalized automata equivalent to elementary expressions

0 (empty set), 1 (set {ε}), and a (a letter) from left to right.

Let G(e') = (Q', i', F', t'), and G(e") = (Q", e", F", t") for two expressions e' and e". We assume

that the set of states are disjoint (Q' ∩ Q" = ∅). If e is a composed expression of the form e'e",

e'+e", or e'*, then G(e) is respectively defined by concat(G(e'), G(e")), union(G(e'), G(e")), and

star(G(e')). The operations concat, union, and star on normalized automata are defined in

Figure 7.12, Figure 7.13, and Figure 7.14. In the figure, the design of automata displays their

unique initial and terminal states.

We leave it as an exercise the fact that the constructed automaton is normalized. By the way,

this is clear from the figures.

In the construction, exactly two nodes are created for each element of the regular expression

accounting in its size. This proves, by induction, that the number of states of G(e) is at most

2size(e).

Then the bound on the number of edges in G(e) easily comes from the properties of G(e). This

completes the proof of Theorem 7.6. ‡

i' t'G(e') i" t"G(e") 

i t 

Figure 7.12. Concatenation of two automata

i' t'G(e') 

i" t"G(e") 

i t 

Figure 7.13. Union of two automata
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i t 

i' t'G(e') 

Figure 7.14. Star of an automaton

Figure 7.15 shows the automaton built by the algorithm of Theorem 7.6 from expression

(a+b*)*c.

a 

b 

c 

Figure 7.15. The normalized automaton for (a+b*)*c built by the algorithm.

To evaluate the time complexity of algorithms, it is necessary to give some hints about

the data structures involved in the machine representation of normalized automata. States are

simply indices on an array that stores the transitions. The array has three columns. The first

corresponds to a possible edge labelled by a letter. The two others correspond to possible edges

labelled by the empty word (the three columns can even be compressed into two columns

because of properties of outgoing edges in normalized automata). Initial and terminal states are

stored apart. This shows that the space required to represent a normalized automaton G = (Q, i,

F, t) is O(|Q|). It is then O(size(e)) if G = G(e).

The algorithm that proves Theorem 7.6 is given in the form of 4 functions below. The

overall integrates the analysis of expression e. It is implemented here as a standard predictive

analyzer with one look-ahead symbol (char). The effect of procedure error is to stop the

analysis, in which case no automaton is produced. This happens when the input expression is

not correctly written. Function FACTOR contains a small improvement on the construction

described in the proof of Theorem 7.6 : several consecutive symbols '*' are considered as just

one symbol '*'. This is because (f*)* represents the same set of strings as f*, for any regular

expression f.
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Theorem 7.7

A normalized automaton G(e) equivalent to a regular expression e can be built in time

and space O(size(e)).

Proof

Operation union, concat, and star can be implemented to work in constant time with the array

representation of normalized automata. Then, the algorithm automaton spends a constant time

on each symbol of the input expression. This proves that the whole running time is O(size(e)).

The statement on the space complexity is essentially a consequence of Theorem 7.6, after

noting that the number of recursive calls is less than size(e). ‡

function automaton(e regular expression) : normalized automaton;

{ returns the normalized automaton equivalent to e, }

{ which is defined in the proof of Theorem 7.6     }

begin

char := first symbol of e;

G := EXPR;

if not end of e then error else return G;

end;

function EXPR : normalized automaton;

begin

G := TERM;

while char = '+' do begin

char := next symbol of e;

H := TERM; G := union(G, H);

end;

return G;

end;

function TERM : normalized automaton;

begin

G := FACTOR;

while char in A ∪ {'0', '1', '('} do begin

H := FACTOR; G := concat(G, H);

end;

return G;

end;
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function FACTOR : normalized automaton;

begin

if char in A ∪ {'0', '1'} then begin

G := the corresponding elementary automaton;

char := next symbol of e;

end else if char = '(' then begin

char := next symbol of e;

G := EXPR;

if char = ')' then char := next symbol of e else error;

end else error;

if char = '*' then begin

G := star(G);

repeat char := next symbol of e; until char ≠ '*';

end;

return G;

end;

The automaton G(e) can be used to test if a word x belongs to the set L(e) of patterns

specified the regular expression e. The usual procedure for that purpose is to spell a path

labelled by x in the automaton. But their can be many such paths, and even an infinite number

of them. This is the case for instance with the automaton of Figure 7.15 and x = bc. An

algorithm using a backtracking mechanism is possible, but the usual solution is based on a kind

of dynamic programming technique. The idea is to cope with path labelled by the empty word.

Then, comes up the notion of closure of a set of states as those states accessible from them by

ε-path. For S, a subset of states of the automaton G(e) = (Q, i, F, t), we define

closure(S) = {q ∈ Q : there exist an ε-path in G(e) from a state of S to q}.

We also use the following notation for transitions in the automaton (a ∈ A):

trans(S, a) = {q ∈ Q : there exist an a-edge in G(e) from a state of S to q}.

Testing whether the word x belong to L(e) is implemented by the algorithm below.
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function test(x word) : boolean;

{ test(x) = true iff x belongs to the language L(Q, i, F, t) }

begin

S := closure({i});

while not end of x do begin

a := next letter of x;

S := closure(trans(S, a));

end;

if t is in S then return true else return false;

end;

Functions closure and trans on set of states are realized by the algorithms below. With a

careful implementation, based on standard manipulation of lists, the running times to compute

closure(S) and trans(S, a) are both O(|S|). This is independent of the alphabet.

function closure(S set of states) : set of states;

{ closure of a set of states in the automaton (Q, i, F, t) }

begin

T := S; File := S;

while File not empty do begin

delete state p from File;

for any ε-edge (p, q) in F do
if q is not in T then begin

add q to T; add q to File;

end;

end;

return T;

end;



chapter 7 164 22/7/97

Efficient Algorithms on Texts 164 M. Crochemore & W. Rytter

function trans(S set of states; a letter): set of states;

{ transition of a set of states in the automaton (Q, i, F, t) }

begin

T := ∅;

for all p in S do

if there is an a-edge (p, q) in F then

add q to T;

return T;

end;

Lemma 7.8

Testing whether the word x belongs to the language described by the normalized

automaton (Q, i, F, t) can be realized in time O(|Q|.|x|) and space O(|Q|).

Proof

Each computation of closure(S) and of trans(S, a) takes time O(|S|), which is bounded by

O(|Q|). The total time is then O(|Q|.|x|).

The array representation of the automaton requires O(|Q|) memory space. ‡

The recognition of expression e in the text text uses also the automaton G(e). But the

problem is slightly different, because the test is done on factors of text and not only on text

itself. Indeed we could consider the expression A*e, and its associated automaton, to locate all

occurrences of patterns like prefixes of text. But no transformation of G(e) is even necessarily,

because it is integrated in the searching algorithm. At each iteration of the algorithm, the initial

state is incorporated into the current set of state, as if we restart the automaton at the new

position in the text. Moreover, after each computation of set, a test is done to report a possible

match ending at the current position in the text.

Theorem 7.9

The recognition of patterns specified by a regular expression e in a text text can be realized

in time O(size(e).|text|) and space O(size(e)).

Proof

We admit that the construction of G(e) can be realized in time O(size(e)).

The recognition itself is given by PM algorithm below. The detailed implementation is similar

to that of function test. The statement is essentially a corollary of Lemma 7.8, and a

consequence of Theorem 7.6 asserting that the number of states of G(e) is |Q| = 2size(e). ‡
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Algorithm PM; {  Regular expression matching algorithm   }

{ searches text for the regular expression e represented }

{ by the normalized automaton (Q, i, F, t)               }

begin

S := closure({i});

while not end of text do begin

a := next letter of text;

S := closure(trans(S, a) ∪ {i}));

if t is in S then report an occurrence;

end;

end;

There is an alternative to the pattern procedure presented in this section. It is known that

any (normalized finite) automaton is equivalent to a deterministic automaton (defined by a

transition function). More precisely, any automaton G can be transformed into a deterministic

automaton D such that L(G) = L(D). Indeed, algorithm PM simulates moves in a deterministic

automaton equivalent to G(e). But states are computed again and again without any

memorization.

It is clear that if G(e) is deterministic, algorithms PM and test become much more

simple, similar to algorithm SMA of Section 7.1. Moreover, with a deterministic automaton the

time of the search becomes independent of the size of e with an appropriate representation of

G(e). So, there seems to have only advantages to make the automaton G(e) deterministic, if it is

not already so. The main restriction is that the size of the automaton may grow exponentially,

going from s to 2s. This point is discussed in Section 7.4. We summarize the remark in the

next statement.

Theorem 7.10

The recognition of patterns specified by a regular expression e in a text text can be realized

in time O(|A|.2size(e) + |text|) and space O(2size(e)), where A is the set of letters effectively

occurring in e.

Proof

Build the deterministic version D(e) of G(e), and use it to scan the text. Use a matrix to

implement the transition function of D(e). The branching in D(e) thus takes constant time, and

the whole search takes O(|text|). ‡
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7.4.* Determinization of finite automata: efficient instances

We consider a certain set S of patterns represented in a succinct way by a deterministic

automaton G with n states. The set S is the language L(G) accepted by G. Typical examples of

sets of patterns are S = {pat} a singleton and S = {pat1, pat2, …, patr}  a finite set of words.

For the first example, the structure of G is the line of consecutive positions in pat. The

rightmost state (position) is marked as terminal. For the second example, the structure of G is

the tree of prefixes of patterns. All leaves of the tree are terminal states, and some internal

nodes can also be terminal if a pattern is a prefix of another pattern of the set.

We can transform G into a non-deterministic pattern-matching automaton, noted

loop(G), which accepts the language of all words having a suffix in L(G). The automaton

loop(G) is obtained by adding a loop on the initial state, for each letter of the alphabet. The

automata loop(G) for two examples of the cases mentioned above are presented in Figure 7.16

and Figure 7.17. The actual non-determinism of the automata appears only on the initial state.

We can apply the classical powerset construction (see [HU 79] for instance) to a

nondeterministic automaton loop(G). It appears that, in these two cases of one pattern and of a

finite set of patterns, doing so we obtain efficient deterministic string-matching automata. In the

powerset construction, are only considered, those subsets which are accessible from the initial

subset.

a b a b a 

b 

a 

a 

Figure 7.16. The non-deterministic pattern-matching automaton for abaaba.

The powerset construction gives the automaton SMA(abaaba) of Figure 7.2.

An efficient case of the powerset construction.

However, the idea of using altogether loop(G) and the powerset construction on it is not

always efficient. In Figure 7.18 a non-efficient case is presented. It is not hard to get convinced

that the deterministic version of loop(G), which has a tree-like structure, cannot have less than

27 states. Extending the example shows that a non-deterministic automaton, even of the form

loop(G), with n+1 states can be transformed into an equivalent deterministic automaton having

2n states.
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Figure 7.17. The non-deterministic pattern-matching automaton for the set {ab, babb, bb}.

The powerset construction gives the automaton SMA({ab, babb, bb}) of Figure 7.4.

An efficient case of the powerset construction.

a 

b 
a 

a,b a,b a,b a,b a,b a,b 

Figure 7.18. A non-efficient case of the powerset construction. The presented automaton

results by adding the loop to the initial state of the deterministic automaton accepting words of

length 7 which start with letter a. The smallest equivalent deterministic automaton has 128

states.

Similarly we can transform the deterministic automaton G accepting one word pat into a

non-deterministic automaton FAC(G) accepting the set Fac(pat). The transformation could be

done by simply saying that all states are simultaneously initial and terminal states, but we prefer

creating additional edges from the single initial state to all other states and labelled by all letters.

It happens that again we find an efficient case of the powerset construction if we start with the

deterministic automaton accepting just a single word. The powerset construction gives the

smallest deterministic automaton accepting the suffixes of pat.



chapter 7 168 22/7/97

Efficient Algorithms on Texts 168 M. Crochemore & W. Rytter

a b a b 

a b a b 

a 

b 

b 

Figure 7.19. Efficient case of the powerset construction. Applied to FAC(G) the accepts

Fac(text)

it gives the smallest automaton for the suffixes of pat with a linear number of states.

The powerset construction applied on automata of the form FAC(G) is not always

efficient. If we take as G the deterministic automaton with 2n+3 states accepting the set

S = (a+b)na(a+b)nc, then the automaton FAC(G) has also 2n+3 states. But the smallest

deterministic automaton accepting the set of all factors of words in S has an exponential

number of states.

a 
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Figure 7.20. A non-efficient case of the powerset construction. G (on the left) accepts

(a+b)na(a+b)nc, for n = 3. A deterministic version of FAC(G) (on the right)

has, in this case, an exponential number of states.

Combining loop and FAC gives sometimes an efficient powerset construction. This is

done implicitly in Section 6.5. There the failure function defined on the automaton DAWG(pat)

serves to represent the automaton loop(DAWG(pat)). The overall is efficient because both steps

— from pat to DAWG(pat), and from DAWG(pat) to loop(DAWG(pat)) — are. But, in

general, the whole determinization process is inefficient.
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7.5. Two-way pushdown automata

The two-way deterministic pushdown automaton (2dpda, in short) is an abstract model

of linear time decision computations on texts. A 2dpda G is essentially a usual deterministic

pushdown finite-state machine (see [HU 79]) which differs from the standard model in the

ability to move the input head in two directions.

The possible actions of the automaton are: changing the current state of the finite control,

moving the head by one position, changing locally the contents of the stack "near" its top. For

simplicity, we assume that each change of the contents of the stack is of one of two types:

push(a) - pushing a symbol a onto the stack; pop - popping one symbol off the stack. The

automaton has access to the top symbol of the stack and to the symbol in front of the two-way

head. We assume also that there are special left and right endmarkers on both ends of the input

word. The output of such an abstract algorithm is 'true' iff the automaton stops in an accepting

state. Otherwise, the output is 'false'. Initially the stack contains a special "bottom" symbol, and

we assume that in the final moment of acceptance the stack contains also one element. When

the stack is empty the automaton stops (the next move is undefined).

The problem solved by a 2dpda can be abstractly treated as a formal language L

consisting of all words for which the answer of the automaton is 'true' (G stops in an accepting

state). We say also that G accepts the language L. The string-matching problem, for a fixed

input alphabet, can be also interpreted as the formal language:

 Lsm = { pat&text : pat is a factor of text}.

This language is accepted by some 2dpda. This gives an automata-theoretic approach to linear

time string-matching, because as we shall see latter, 2dpda can be simulated in linear time. In

fact, historically it was one of the first methods for the (theoretical) design of a linear-time

string-matching algorithm.

Lemma 7.11
There is a 2dpda accepting the language Lsm.

Proof
We define a 2dpda G for Lsm. It simulates the naive string-matching algorithm brute-force1

(see Chapter 3). At a given stage of the algorithm, we start at a position i in the text text, and at

the position j = 1 in the pattern pat. The pair (i, j) is replaced by the pair (stack, j), where j is the

position of the input head in the pattern (and has exactly the same role as j in algorithm brute-

force1). The contents of the stack is text[i+1…n] with text[i+1] at the top.

The automaton tries to match the pattern starting from position i+1 in the text. It checks if top

of stack equals the current symbol at position j in the pattern; if so, then (j := j+1; pop). This

action is repeated until a mismatch is found, or until the input head points on the marker '&'. In

the latter case G accepts. Otherwise, it goes to the next stage. The stack should now correspond
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to text[i+1…n] and j = 1. It is not difficult to reach such a configuration. The stack is

reconstructed by shifting the input head back simultaneously pushing scanned symbols of pat

(which have been matched successfully against the pattern).

This shows that the algorithm brute-force1 can be simulated by a 2dpda, and completes the

proof. ‡

Similarly the problem of finding the prefix palindromes of a string, and several other

problems related to palindromes can be interpreted as formal languages. Here is a sample:

 L prefpal = {wwRu: u, w ∈ A*, w is non-empty},

Lprefpal3 = {wwRuuRvvRz : w, u, v ∈ A*, w, u, v non-empty},

 Lpal2 = {wwRuuR : w, u, v ∈ A*, w, u are nonempty}.

All these languages related to symmetries are accepted by 2dpda's. We leave it as an exercise

for a reader to construct the appropriate 2dpda's.

The main result about 2dpda's is that they correspond to some simple linear-time

algorithms. Assume that we are given a 2dpda G and an input word w of length n. The size of

the problem is n (the static description of G has constant size). Then, it is proved below that

testing whether w is in L(G) takes linear time. We give the concepts that leads to the proof of

the result.

The key concept for 2dpda is the consideration of top configurations, also called surface

configurations. The top configuration of a 2dpda retains from the stack only its top element.

The first basic property of top configurations is that they contain enough information for the

2dpda to choose the next move. The whole configuration consists of the current state, the

present contents of the stack, and the position of the two-way input head. Unfortunately, there

are too many such configurations (potentially infinite, as the automaton can loop when making

push operations). It is easy to see that in every accepting computation the height of the stack is

linearly bounded. This also does not help very much because there is an exponential number of

possible contents of the stack of linear height. There comes the second basic property of top

configurations: their number is linear in the size of the problem n.

Formally, a top configuration is a triple C = (state, top symbol, position). The linearity of

the set of top configurations follows obviously from the fact that the number of states, and the

number of top symbols (elements of the stack alphabet) is bounded by a constant; it does not

depend on n.

We can classify top configurations according to the type of next move of the 2dpda: pop

configurations and push configurations. For a top configuration C, we define Term[C] as a

pop configuration C' accessible from C after some number (possibly zero) of moves which are

not allowed to pop the top symbol C. It is as if we started with a stack of height one, and at the

end the height of the stack were still equal to one. If there is no such C' then Term[C] is

undefined. Assume (w. l. o. g.) that the accepting configuration is a pop configuration and the

stack is a simple element.
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The theorem below is the main result about 2dpda's. It is surprising in view of the fact

that the number of moves is usually bigger than that of top configurations. In fact, a 2dpda can

make an exponential number of moves and halt. But the result simply shows that shortcuts are

possible.

Theorem 7.12

If the language L is accepted by a 2dpda, then there is a linear-time algorithm to test

whether x belongs L (for fixed size alphabets).

Proof

Let G be a 2dpda, and let w be a given input word of length n. Let us introduce two functions

acting on top configurations:

— P1(C) = C', where C' results from C by a push move; this is defined only for push

configurations;

— P2(C1, C2) = C', where C' results from C2 by a pop move, and the top symbol of C' is the

same as in C1 (C2 determines only the state and the position).

Let POP be the boolean function defined by: POP(C) = true iff C is a pop configuration.

All these functions can be computed in constant time by a random access machine using the

(constant sized) description of the automaton.

Figure 7.21. The diagram representing the history of the computation of a 2dpda.

Term[C3] = C7, Term[C2] = Term[P2(C2, Term[P1(C2)])],

where P1(C2) = C3, Term[C3] = C7 and P2(C2, C7) = C3, Term[C3] = C7.

It is enough to compute in linear time the value (or find that it is undefined) of Term[C0],

where C0 is an initial top configuration. According to our simplifying assumptions about



chapter 7 172 22/7/97

Efficient Algorithms on Texts 172 M. Crochemore & W. Rytter

2dpda's, if G accepts, then Term[C0] is defined. Assume that initially all entries of the table

Term contain a special value "not computed".

We start with an assumption that G never loops, and ends with a one-element stack. In fact, if

the move of G is at some moment undefined we can assume that it goes to a state in which all

the symbols in the stack are successively popped.

Algorithm; { linear-time simulation of the halting 2dpda }

begin

for all configuration C do onstack[C] := false;

return Comp(C0);

end.

function Comp(C) ; { returns Term[C] if defined, else 'false' }

begin

if Term[C] = "not computed" then

Term[C] := if POP(C) then C else Comp(P2(C, Comp(P1(C))));

return Term[C]

end;

The correctness and time linearity of the algorithm above are obvious in the case of an

halting automaton. The statement "Term[C] := ... " is executed at most once for each C.

Hence, only a linear number of push moves (using function P1) are applied.
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Algorithm Simulate;

{ a version of the previous algorithm that detects loops }

begin

for all configuration C do onstack[C] := false;

return Comp(C0);

end.

function Comp(C) ;

{ returns Term[C] if defined, 'false' otherwise }

begin { C1 is a local variable }

if Term[C] = "not computed" then begin

C1 := P1(C);

if onstack[C1] then return false { loop }

else onstack[C1] := true;

C1 := Comp(C1); onstack[C1] := false; { pop move };

C1 := P2(C, C1);

if onstack[C1] then return false { loop } else begin

onstack[C] := false; onstack[C1] := true

end;

Term[C] := Comp(C1)

end;

return Term[C]

end;

The algorithm Simulate above is for a general case: it has also to detect a possible looping of G

for a given input. We use the table onstack initially consisting of values 'false'. Whenever we

make a push move then we set onstack[C1] to true for the current top configuration C1, and

whenever a pop move is done we set onstack[C1] to false. The looping is detected if we try to

put on the (imaginary) stack of top configurations a configuration which is already on the stack.

If there is a loop then such situation happens.

The algorithm Simulate has also a linear time complexity, by the same argument as in the case

of halting 2dpda's. This completes the proof. ‡

It is sometimes quite difficult to design a 2dpda for a given language L, even if we know

that such 2dpda exists. An example of such a language L is:

L = { 1n : n is the square of an integer}.

A 2dpda for this language can be constructed by a method presented in [Mo 85].

It is much easier to construct 2dpda's for the following languages:
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{anbm : m = 2n}, {anbm : m = n4 }, {anbm : m = log*(n)}.

But it is not known whether there is a 2dpda accepting the set of even palstars, or the set of all

palstars. In general, there is no good technique to prove that a specific language is not accepted

by any 2dpda. In fact the "P = NP?" problem can be reduced to the question: does it exists a

2dpda for a specific language L. There are several examples of such languages. Generally,

2dpda's are used to give alternative formulations of many important problems in complexity

theory.

Bibliographic notes

Two "simple" pattern matching machines are discussed by Aho, Hopcroft, and Ullman

in [AHU 74] and, in the case of many patterns, by Aho and Corasick in [AC 75]. The

algorithms first compute failure functions, and then the automata. The construction given in

Section 7.1 are direct constructions of the pattern matching machines. The algorithm of Aho

and Corasick is implemented by the command "fgrep" of the Unix system.

A version of BM algorithm adapted to the search for a finite set of pattern has been first

sketched by Commentz-Walter [Co 79]. The algorithm has been completed by Aho [Ah 90].

Another version of Commentz-Walter's algorithm is presented in [BR 90]. The version of

multiple search of Section 7.2 is from Crochemore et alii [C-R 93], where are presented

experiments on the real behavior of the algorithm.

The recognition of regular expressions is a classical subject treated in many books. The

first algorithm is from Thompson [Th 68]. The equivalence between regular expressions and

finite automata is due to Kleene [Kl 56]. The equivalence between deterministic automata an

non-deterministic automata is from Rabin and Scott [RS 59]. The very useful command "grep"

of Unix implements the pattern algorithm based on non-deterministic automata (Theorem 7.9).

The command "egrep" makes the search with a deterministic automaton (Theorem 7.10). But

the states of the automaton are computed only when they are effectively reached during the

search (see [Ah 90]).

The determinization of automata can be found in the standard textbook of Hopcroft and

Ullman [HU 79]. The question of efficient determinization of automata is from Perrin [Pe 90].

This paper is a survey on the main properties and last discoveries about automata theory.

The reader can refer to [KMP 77] for a discussion about the 2dpda approach to string-

matching (see also [KP 71]).

The linear-time simulation of 2dpda's is from Cook [Co 71] (see also the presentation by

Jones [Jo 77]). Our presentation is from Rytter [Ry 85]. This paper also gives a different

algorithm similar to the efficient recognition of unambiguous context-free languages. We refer

to Galil [Ga 77] for the theoretical significance of 2dpda's, and interesting theoretical other

questions. An example of interesting 2dpda computation can be found in [Mo 84].
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8. Regularities in texts: symmetries and repetitions

This chapter presents algorithms dealing with regularities in texts. By a regularity we

mean here a similarity between one factor and some other factors of the text. Such a similarity

can be of two kinds: one factor is an exact copy of the other, or it is a symmetric copy of the

other. Algorithmically, an interesting question is to detect situations in which similar factors are

consecutive in the text. For exact copies we get repetitions of of the same factor of the form xx

(squares). In the case of symmetric copies we have words of the form xxR, called even

palindromes. Odd palindromes are also interesting regularities: words of the form xaxR, where

x is a nonempty word. The compositions of very regular words are in some sense also regular:

a palstar is a composition of palindromes and analogously a squarestar is a composition of

squares. Algorithms of the chapter are aimed at discovering regularities in text.

8.1. KMR algorithm: longest repeated factors in words and arrays

We start with a search for copies of the same factor inside a text. Let us denote by

lrepfac(text) the length of the longest repeated factor of text. It is the longest word occurring at

least twice in text (occurrences are not necessarily consecutive). When there are several such

longest repeated factors, we compute any of them. Let also lrepfack(text) be the longest factor

which occurs at least k times in text.

The central notion used in algorithms of the section is called naming or numbering. It

serves to compute longest repeated factors, but its range of application is much wider. The

algorithm that attributes numbers is called KMR, and described below.

To explain the technique of numbering, we begin with the search for repetitions of factors

of a given length r. The algorithm will be an example of the reduction of a string problem to a

sorting problem. Suppose that there are k distinct factors of length r (in fact k is computed by

the algorithm) in the text. Let fac(1), fac(2),…, fac(k) be the sequence of these k different factors

in lexicographic order. The algorithm computes the vector NUMr of length n-r, whose i-th

component is (for i = 1…n-r+1):

NUMr[i] = j iff text[i…i+r-1] = fac(j).

In other words, for each position i (i = 1…n-r), NUMr identifies the rank or index j, inside the

ordered list, of the factor of length r which starts at this position. For example if text = ababab

and r = 4 we have fac(1) = abab, fac(2) = baba and NUM4 = [1, 2, 1]. In this sense, we

compute equivalence classes of positions: two positions are r-equivalent iff the factors of length

r starting at these positions are equal. We denote the equivalence on positions by ≡r. Then, for

two position i and j(1 ≤ i, j ≤ n-r+1),

i ≡r j  iff  NUMr[i] = NUMr[j].
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The equivalences on text are strongly related to the suffix tree of text.

Remark
String-matching can be easily reduced to the computation of the table NUMm defined on text,

for a pattern pat of length m. Consider the string w = pat&text, where & is a special symbol not

in the alphabet. If NUMm[1] = q then the pattern pat starts at all positions i in text (relative to w)

such that NUMm[i] = q.

The algorithm KMR described below is aimed at computing NUMr. For simplicity, we

start with the assumption that r is a power of two. Later the assumption is dropped. We

describe a special function RENUMBER(x) used at each step of KMR algorithm. The value of

RENUMBER applied to the vector x is the vector NUM1 associated to x which is treated as a

text. Doing so, the alphabet of x consists of all distinct entries of x; its size can be large, but it

does not exceed the length of x. The function RENUMBER realizes one step of KMR

algorithm.

Let x be a vector (an array) of size n containing elements of some linearly ordered set.

The function RENUMBER assigns to x a vector x'. Let val(x) be the set of values of all entries

of x. The vector x' satisfies:

(a) if x[i] = x[j] then x'[i] = x'[j], and

(b) val(x') is a subset of [1…n].

There are two variations of the procedure depending on whether the following condition is also

satisfied:

(c) x'[i] is the rank of x[i] in the ordered list of elements of val(x).

Note that condition (c) implies the two others, and can be used to define x'. But the real values

x'[i]'s are of no importance because their role is to identify equivalence classes. We require also

that the procedure computes as a side effect the vector POS: if q is in val(x') then POS[q] is any

position i such that x'[i] = q.

The main part of the algorithm RENUMBER (satisfying conditions (a-c)) is the

lexicographic sort. We explain the action of RENUMBER on the following example:

x = [(1, 2), (3, 1), (2, 2), (1, 1), (2, 3), (1, 2)].

We give a method to compute a vector x' satisfying conditions (a) and (b). We first create the

vector y of composite entries y[i] = (x[i], i). Then, the entries of y are lexicographically sorted.

So, we get the ordered sequence

((1, 1), 4), ((1, 2), 1), ((1, 2), 6), ((2, 2), 3), ((2, 3), 5), ((3, 1), 2).

Next, we partition this sequence into groups of elements having the same first component.

These groups are consecutively numbered starting from 1. The last component i of each

element is used to define the output vector: x'[i] is the number associated to the group of the

element. So, in the example, we get

x'[4] = 1, x'[1] = 2, x'[6] = 2, x'[3] = 3, x'[5] = 4, x'[2] = 5.
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Doing so is equivalent to computing the vector NUM1 for x. A vector POS associated to x' is

POS[1] = 4, POS[2] = 1, POS[3] = 3, POS[4] = 5, POS[5] = 2. ‡

Lemma 8.1

If the vector x has size n, and its components are pairs of integers in the range (1, 2, …,

n), RENUMBER(x) can be can be computed in time O(n).

Proof

The linear time lexicographic sorting based on bucket sort can be applied (see [AHU 83], for

instance). In this way, procedure RENUMBER has the same complexity as sorting n elements

of a special form. ‡

The crucial fact that gives the performance of algorithm KMR is the following simple

observation:

(*)  NUM2p[i] = NUM2p[j] iff (NUMp[i] = NUMp[j]) and (NUMp[i+p] = NUMp[j+p]).

This fact is used in KMR algorithm to compute vectors NUMr. Let us look at how the

algorithm works for the example string text = abbababba and r = 4. The first vector NUM1

identifies the letters in text:

NUM1 = [1, 2, 2,1, 2,1, 2, 2,1].

Then, the algorithm computes successively vectors NUM2, and finally NUM3.

NUM2 = [1, 3, 2, 1, 2,1, 3, 2];

NUM4 = [2, 5, 3, 1, 4, 2].

Algorithm KMR;

{ relatively to text, computes the vector NUMr (r is a power}

{ of two) and, as a side effect, vectors NUMP (p = 2q < r)  }

begin

NUM1 := x := RENUMBER(text); { text considered as a vector }

p := 1;

while p < r do begin

for i := 1 to n-2p+1 do y[i] := (x[i], x[i+p]);

NUM2p := RENUMBER(y);

p := 2.p;

end;

end.

Once all vectors NUMP, for all powers of two smaller than r, are computed we can easily

compute for each integer q < r the vector NUMq in linear time. Let q' be the greatest power of

two not greater than q. We can compute NUMq using a fact similar to (*):
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NUMq[i] = NUMq[j] iff (NUMq'[i] = NUMq'[j]) and (NUMq'[i+q-q'] = NUMq'[j+q-q']).

Equivalences on positions of a text (represented by vectors NUMP) computed by KMR

algorithm, capture the repetitions in the text. The algorithm is a general strategy that can serve

several purposes. A first application, provides a longest factor repeated at least k times in the

text (recall that its length is denoted by lrepfack(text)). And it can produce at the same cost the

position of such a factor. Let us call it REPk(r, text). If r is its length, and if the vector NUMr[i]

on text is known, then lrepfacr(text) can be trivially computed in linear time.

Theorem 8.2
The function lrepfack(text) can be computed in O(n.logn) time for alphabets of size O(n).

Proof

We can assume that length n of the text is a power of two; otherwise a suitable number of

"dummy" symbols can be appended to text. The algorithm KMR can be used to compute all

vectors NUMp for powers of two not exceeding n. Then we apply a kind of binary search using

function REPk(r, text): the binary search looks for the maximum r such that REPk(r, text) ≠

nil. If the search is successful than we return the longest (k times) repeated factor. Otherwise

we report that there is no such repetition. The sequence of values of REPk(r, text) (for r = 1, 2,

…, n-1) is "monotonic" is the following sense: if r1 < r2 and REPk(r2, text) ≠ nil, then

REPk(r1, text) ≠ nil. The binary search behaves like searching an element in a monotonic

sequence. It has logn stages; in each stage the value REPk(r, text) is computed in linear time.

Altogether the computation takes O(n.logn) time. This completes the proof. ‡

Remark

We give later in Section 8.2 a linear time algorithm for this problem. However it will be more

sophisticated, and it uses one of the structures from Chapters 5 and 6.

The longest repeated factor problem generalizes in a straightforward way to an equivalent

two-dimensional problem. It is called the longest repeated sub-array problem. We are given an

n×n array T. The size of the problem is N = n2. For this problem KMR algorithm gives

O(N.logN) time complexity, which is the best upper bound known up to now. The algorithm

works as well for finding repetitions in trees.
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Figure 8.1. A repeated sub-array of size 2p×2p. The occurrences can overlap.

Still, numbering is used on sub-arrays. Let NUMr[i, j] be the number of the r×r sub-

array of the array T having its upper-left corner at position (i, j). There is a fact, analogue to (*),

illustrated by Figure 8.1:

(**) NUM2p[i, j] = NUM2p[k, l] iff

NUMp[i, j] = NUMp[k, l] and NUMp[i+p, j] = NUMp[k+p, l] and

NUMp[i, j+p] = NUMp[k, l+p] and NUMp[i+p, j+p] = NUMp[k+p, l+p].

Using fact (**) all the computation of repeating 2p×2p sub-array reduces to the computation of

repeating p×p sub-arrays. The matrix NUM2p is computed from NUMp by a procedure

analogue to RENUMBER. Now, the internal lexicographic sorting is done on elements having

four components (instead of two for texts). But, Lemma 8.1 still holds in this case, such as

KMR algorithm that is deduced from RENUMBER. This proves the following.

Theorem 8.3

The size of a longest repeated sub-array of an n×n array of symbols can be computed in

O(N.logN) time, where N = n2.

The longest repeated factor problem for texts can be solved in a straightforward way if

we have already constructed the suffix tree T(tree) (see Section 5.7). The value lrepfac(text) is

the longest path (in the sense of length of word corresponding to the path) leading from the root

of T(tree) to an internal node. Generally, lrepfack(text) is the length of a longest path leading

from the root to an internal node whose subtree contains at least k leaves. The computation of

such a path can be accomplished easily in linear time. The preprocessing needed to construct
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the suffix tree makes the whole algorithm much more complicated than the one applying the

strategy of KMR algorithm. Nevertheless, this proves that the computation takes linear time.

Theorem 8.4
The function lrepfack can be computed in time linear in the length of the input text, for

fixed size alphabets.

8.2. Finding squares

It is a nontrivial problem to find a square factor in linear time, that is, a non-empty factor

of the form xx. A naive algorithm gives cubic bound on the number of steps. A simple

application of failure function gives a quadratic algorithm. For that purpose, we can compute a

failure function Bordi for each suffix text[i…n] of the text. Then, there is a square starting at

position i in the text iff Bordi[j] ≥ j/2, for some j (1 ≤ j ≤ n-i+1). Since each failure function is

computed in linear time, the whole algorithm takes quadratic time.

The notions introduced in Section 8.1 are useful to find a square of a given length r.

Using NUMr the test takes linear time, giving an overall O(n.logn) time algorithm. In fact,

values of NUMr, for all sensible values of r, can help to find squares at a similar cost, but KMR

algorithm does not provide all these vectors.

We develop now an O(n.logn) algorithm that test the squarefreeness of texts. And design

afterwards a linear time algorithm (for fixed alphabets). The first method is based on a divide-

and-conquer approach. The main part of both algorithms is a fast implementation of the

boolean function test(u, v) which tests whether the word uv contains a square for two

squarefree words u and v. Then, if uv contains a square, it necessarily begins in u and ends in v.

Thus, the operation test is a composition of two smaller boolean functions: righttest and lefttest.

The first one searches for a square whose center is in v, while the second searches for a square

whose center is in u.

We describe how righttest works on words u and v. We use two auxiliary tables related

to string-matching. The first table PREF is defined on the word v. For a position k on v,

PREF[k] is the size of longest prefix of v occurring at position k (it is a prefix of v[k+1…]. The

second table is called SUF. The value SUFu[k] (k is still a position on v) is the size of longest

suffix of v[1…k] which is also a suffix of u. Table SUFu is a generalization of table S discussed

in Section 4.6. These tables can be computed in linear time with respect to |v| (see Section 4.6).

With the two tables, the existence of a square in uv centered in v reduces to a simple test on

each position of v, as shown by Figure 8.2.
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    Figure 8.2. A square xx of size 2k occurs in uv. The suffix of v[1…k] of size q is also a

suffix of u; the prefix of v[k+1…] of size p is a prefix of v. PREF[k]+SUFu[k] ≥ k.

Lemma 8.5

The boolean value righttest(u, v) can be computed in O(|v|) time (independently of the

size of u).

Proof
The computation of tables PREF and SUFu takes O(|v|) time. It is clear (see Figure 8.2) that

there exists a square centered in v iff for some position k PREF[k]+SUFu[k] ≥ k. All these tests

take again O(|v|) time. ‡

Corollary 8.6

The boolean value test(u, v) can be computed in O(|u|+|v|) time.

Proof

Compute righttest(u, v) and lefttest(u, v). The value test(u, v) is the boolean value of

righttest(u, v) or lefttest(u, v). The computation takes respectively O(|v|) (Lemma 8.5), and

O(|u|) time (by symmetry from Lemma 8.5). The result follows. ‡

We give another very interesting algorithm computing righttest(u, v) in linear time

according to v, but requiring only a constant additional memory space. It is based on the

following combinatorial fact:

— if u, v are squarefree, and we have a situation as in Figure 8.3 (where segments painted with

same color indicate which factors are equal) then i' < max(j, i/2) and i'+j' < test.

The proof is rather technical and is left to the reader as an excellent exercise on word

combinatorics.
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Figure 8.3. One stage of an algorithm to compute righttest(u, v): start at i and check right-to-

left until a mismatch at j; then, assume the middle of a square at j, and check from i+j right-to-

left until a mismatch occurs at position test. Parts of text painted with the same pattern match.

Each part can be empty, but not all together.

One stage of the algorithm consists in finding largest matching segments painted with ,

and then, (if i+j < test) in finding largest matching segments painted with . If we reach

position 1 then a square is found. Otherwise we set i := i', where i' can be taken small according

to the combinatorial fact above. Then, we start the next (similar) stage.
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function righttest(u, v) : boolean;

{ return true iff uv contains a square centered in v }

begin

i := |v|; test := |v|+1;

{ initially, no reasonable bound on i+j is known }

while i ≥ 1 do begin

j := i;

{ traversing right-to-left segments painted with    }

while j ≥ 1 and |u|-i+j ≥ 1 and u[|u|-i+j] = v[j] do

j := j-1;

if j = 0 then return true;

k := i+j;

if k < test then begin

test := k;

{ traversing right-to-left segments painted with    }

while test > i and v[test] = v[j-k+test] do

test := test-1;

if test = i then return true;

end; { if }

i := max(j, ⎡i/2⎤)-1;

end; { main while loop }

return false; { no square centered in v }

end;

We leave as an exercise the proof that the algorithm makes only a linear number of steps.

Symmetrically lefttest can be accomplished in linear time using also a constant-sized memory.

So can implemented the function test.

Lemma 8.7

The function test can be computed in linear time using only O(1) auxiliary memory.

The recursive algorithm SQUARE for testing occurrences of squares in a text is designed

with the divide-and-conquer method, for which function test has been written.
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Theorem 8.8

Algorithm SQUARE tests whether the text text of length n contains a square in time

O(n.logn) with O(1) additional memory space.

Proof

The algorithm has O(n.logn) time complexity, because test can be computed in linear time. The

recursion has a highly regular character, and can be organized without using a stack. It is

enough to remember the depth of recursion and the current interval. The tree of recursion can

be computed in a bottom-up manner, level-by-level. This completes the proof. ‡

function SQUARE(text) : boolean;

{ checks if text contains a square, n = |text| }

begin

if n > 1 then begin

if SQUARE(text[1..⎣n/2⎦]) then return true;

if SQUARE(text[⎣n/2⎦+1..n]) then return true;

if test(text[1..⎣n/2⎦], text[⎣n/2⎦+1..n]) then return true;

return false; { if value true not already returned }

end;

The algorithm SQUARE inherently runs in O(n.logn) time. This is due to the divide-and-

conquer strategy for the problem. But, it can be shown that the algorithm extends to the

detection of all squares in a text. And this shows that the algorithm becomes optimal, because

some texts may contain exactly O(n.logn) squares, namely Fibonacci words.

We show that the question of testing the sqaurefreeness of a word can be done in linear

time on a fixed alphabet. This contrasts with the above problem. The strategy will be again to

use a kind of divide-and-conquer, but with an unbalanced nature. It is based on a special

factorization of texts. The interest is mainly theoretical because of a rather large overhead in

memory usage: the extra memory space is of linear size (instead of O(1) for SQUARE), and an

efficient data structure for factors of the text has to be used. But the algorithm, or more exactly

the factorization defined for the purpose, is related to data compressions methods based on

elimination of repetitions of factors. The algorithm shows another deep application of data

structures developed in Chapters 5 and 6 for storing all factors of a text.
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Figure 10.5. Efficient factorization of the source.

v5 is the longest factor occurring before.

We first define the f-factorization of text (the f stands for factors). It is a sequence of

nonempty words (v1, v2,…, vm), where

— v1 = text[1], and

— for k > 1, vk is defined as follows. If |v1v2…vk-1| = i then vk is the longest prefix u of

text[i+1…n] which occurs at least twice in text[1…i]u. If there is no such u then vk = text[i+1].

Denote by pos(vk) the smallest position l < i (where i = |v1v2…vk-1|) such that an occurrence of

vk starts at l. If there is no such position then take pos(vk) = 0.

The f-factorization of a text, and the computation of values pos(vk) can be done in linear

time with the directed acyclic word graphs G = DAWG(text) (also with the suffix tree T(text)).

Indeed, the factorization is computed while the dawg is built. The overall has the same

asymptotic linear bound as just building the dawg. This leads to the final result of the section,

consequence of the following observation whose proof is left as an exercise.

Lemma 8.9
Let (v1, v2,…, vm) be the f-factorization of text. Then, text contains a square iff for some k

at least one of the following conditions holds:

(1) pos(vk)+|vk|≥|v1v2…vk-1| (selfoverlapping of vk),

(2) lefttest(vk-1, vk) or righttest(vk-1, vk),

(3) righttest(v1v2…vk-2, vk-1vk).
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function linear-SQUARE(text) : boolean;

{ checks if text contains a square, n = |text| }

begin

compute the f-factorization (v1, v2, .., vm) of text;

for k :=1 to m do

if (1) or (2) or (3) hold then { Lemma 8.9 }

return true;

return false;

end;

Theorem 8.10

Function linear-SQUARE tests whether a text of length n contains a square in time O(n)

(on a fixed alphabet), with O(n) additional memory space.

Proof
The key point is that the computation of righttest(v1v2…vk-2, vk-1vk) can be done in O(|vk-1vk|)

time. The total time is thus proportional to the sum of length of all vk's, hence, it is linear. This

completes the proof. ‡

8.3. Symmetries in texts

We start with a decision problem which consists in verifying if a given text has a prefix

which is a palindrome (such palindromes are called prefix palindromes). There is a very simple

linear time algorithm to search for a prefix palindrome:

— compute the failure function Bord for text&textR (of length 2n+1),

— then, text has a prefix palindrome iff Bord(2n+1) ≠ 0.

However, this algorithm has two drawbacks: it is not an on-line algorithm, and

moreover, we could expect to have an algorithm which computes the smallest prefix

palindrome in time proportional to the length of this palindrome (if a prefix palindrome exists).

It will be seen later in the section (when testing palstars) why we impose such requirement.

For time being, we restrict ourselves to even palindromes. We proceed in a similar way

as in the derivation of KMR algorithm. An efficient algorithm will be derived from an initial

brute_force algorithm by examining its invariants. However here more combinatorics on

words is used (as compared with KMR algorithm).

Observe a strong similarity between this algorithm and the first algorithm for string-

matching, brute_force1. The time complexity of the algorithm is quadratic (in worst case). A

simple instance of a worst text for the algorithm is text = abn. On the other hand, the same
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analysis as for algorithm brute_force1 (string-matching) shows that the expected number of

comparisons (if symbols of text are randomly chosen) is linear.

Algorithm brute_force;

{ looking for prefix even palindromes }

begin

i := 1;

while i ≤ ⎣n/2⎦ do begin

{ check if text[1..2i] is a palindrome }

j := 0;

while j < i and text[i-j] = text[i+1+j] do j := j+1;

if j = i then return true;

{ inv(i, j): text[i-j] ≠ text[i+1+j] }

i := i+1;

end;

return false;

end.

The key to the improvement is to make an appropriate use of the information gathered by

the algorithm. This information is expressed by invariant

w(i, j) : text[i-j…i] = text[i+1…i+j].

The maximum value of j satisfying w(i, j) for a given position i is called the radius of the

palindrome centered at i, and denoted by Rad[i]. Hence, algorithm brute_force computes

values of Rad[i] but does not profit from their computation. The information is wasted. At the

next iteration, the value of j is reset to 0. Instead of that, we try to make use of all possible

information, and, for that purpose, the computed values of Rad[i] are stored in a table for

further use. The computation of prefix palindromes easily reduces to the computation of table

Rad. Hence, we convert the decision version of algorithm brute_force into its optimized

version computing Rad. For simplicity assume that the text starts with a special symbol. So a

palindrome centered in i is actually a prefix palindrome iff Rad[i] = i-1.

The key to the improvement is not only a mere recording of table Rad, but also a

surprising combinatorial fact about symmetries in words. Suppose that we have already

computed Rad[1], Rad[2],...., Rad[i]. It happens that we can sometimes compute many new

entries of table Rad without comparing any symbols. The following fact enables to do it.

Lemma 8.11

If 1 ≤ k ≤ Rad[i] and Rad[i-k] ≠ Rad[i]-k, then Rad[i+k] = min(Rad[i-k], Rad[i]-k).

Proof
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Two cases are considered.

— Case (a): Rad[i-k] < Rad[i]-k.

The palindrome of radius Rad[i+k] centered at i-k is contained completely in the longest

palindrome centered in i. Position i-k is symmetrical to i+k with respect to i. Hence, by

symmetry (with respect to position i) the longest palindrome centered in i+k has the same

radius as the palindrome centered at i-k. This implies the conclusion in this case.

— Case (b): Rad[i-k] > Rad[i]-k.

The situation is displayed in Figure 8.4. The maximal palindromes centered at i, i+k and i-k are

presented. Symbols a, b are distinct because of the maximality of the palindrome centered in i.

Hence, Rad[i+k] = min(Rad[i-k], Rad[i]-k).

This completes the whole proof of the lemma. ‡

Figure 8.4. Case (b) of proof of Lemma 8.11.

In one stage of the algorithm that computes prefix palindromes, we can update Rad[i+k]

for all consecutive positions k = 1, 2,... such that Rad[i-k] ≠ Rad[i]-k. If the last such k is, say,

k' then we can later consider the next value of i as i+k', and start the next stage. This is similar to

shifts applied in string-matching algorithms is whose values result form a precise consideration

on invariants. We obtain the following algorithm for on-line recognition of prefix even

palindromes and computation of the table of radii. All positions i satisfying Rad[i] = i-1

(occurrences of prefix palindromes) are output.
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Algorithm Manacher;

{ on-line computation of prefix even palindromes, }

{ and of table Rad; text starts with a unique left endmarker }

begin

i := 2; Rad[1] := 0; j := 0; { j = Rad[i] }

while i ≤ ⎣n/2⎦ do begin

while text[i-j] = text[i+1+j] do j := j+1;

if j = i then write(i); Rad[i] := j;

    k := 1;

while Rad[i-k] ≠ Rad[i]-k do begin

Rad[i+k] := min(Rad[i-k], Rad[i]-k); k := k+1;

end;

{ inv(i, j): text[i-j] ≠ text[i+1+j] }

j := max(j-k, 0);

i := i+k;

end;

end.

The solution presented for the computation of prefix even palindromes adjusts easily to

the table of radii of odd palindromes. They can also be computed in linear time. So are longest

palindromes occurring in the text. Several other problems can be solved in a straightforward

way using the table Rad.

Theorem 8.12

The longest symmetrical factor and the longest (or shortest) prefix palindrome of a text

can be computed in linear time. If text has a prefix palindrome, and if s is the length of the

smallest prefix palindrome, then s can be computed in time O(s).

We now consider another question about regularities in texts. Let P* be the set of words

which are compositions of even palindromes, and let PAL* denote the set of words composed

of any type of palindromes (even or odd). Recall that one-letter words are not palindromes

according to our definition (their symmetry is too trivial to be considered as an "interesting"

symmetry).

Our aim is now to test whether a word is an even palstar, i.e. a member of P*, or a

palstar, i.e. a member of PAL*. We begin with the easier case of even palstars.

Let first(text) be a function whose value is the first position i in text such that text[1…i] is

an even palindrome; it is zero if there is no such prefix palindrome. The following algorithm, in

a natural way, tests even palstars. It finds the first prefix even palindrome, and cuts it.
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Afterwards, the same process is repeated as long as possible. If we are left with an empty

string then the initial word is an even palstar.

function PSTAR(text) : boolean; { is text an even palstar ? }

begin

s := 0;

while s < n do begin { cut text[s+1..n] }

if first(text[s+1..n])=0 then return false;

    s := s+first(text[s+1..n])

end;

return true;

end;

Theorem 8.13

Even palstars can be tested on-line in linear time.

Proof

It is obvious that the complexity is linear, even on-line. In fact, Manacher algorithm computes

the function first on-line. An easy modification of the algorithm gives an on-line algorithm

operating within the same complexity.

However, a more difficult issue is the correctness of function PSTAR. Suppose that text is an

even palstar. Then, it seems reasonable to expect that its decomposition into even palindromes

does not necessarily start with the shortest prefix even palindrome. Fortunately and surprisingly

perhaps, it happens that we have always a good decomposition (starting with the smallest

prefix palindrome) if text is an even palstar. So the greedy strategy of function PSTAR is

correct. To prove this fact, we need some notation related to decompositions. It is defined only

for texts that are even palindromes. Let

parse(text) = min{s : text[1…s] ∈ P and text[s+1…n] ∈ P*}.

Now the correctness of the algorithm follows directly from the following fact about even

nonempty palstars text.

Claim: parse(text) = first(text).

Proof of the claim.

It follows from the definitions that first(text) ≤ parse(text), hence it is sufficient to prove that the

reverse inequality holds. The proof is by contradiction. Assume that text is an even palstar such

that first(text) < parse(text). Consider two cases,

— case (a): parse(text)/2 < first(text) < parse(text),

— case (b): 2 ≤ first(text) ≤ parse(text)/2.

The proof of the claim according to these cases is given in Figure 8.5. This completes the proof

of the correctness and the whole proof of the theorem. ‡
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Figure 8.5 The proof of the claim (by contradiction).

If we try to extend the previous algorithm to all palstars, we are led to consider functions

first1 and parse1, analogue to first and parse respectively, as follows:

parse1(text) = min{s : text[1…s] ∈ PAL and text[s+1…n] ∈ PAL*},

first1(text) = min {s : text[1…s] ∈ PAL}.

Unfortunately, when text is a palstar the equality parse1(text) = first1(text) is not always

true. A counterexample is the text text = bbabb. We have parse1(text) = 5 and first1(text) = 2.

If text = abbabba, then parse1(text) = 7 and first1(text)=4. For text = aabab, we have

parse1(text) = first1(text).

Observe that for the first text, we have parse1(text) = 2.first1(text)+1; for the second text,

we have parse1(text) = 2.first1(text)-1; and for the third text, we have parse1(text) = first1(text).

It happens that this is a general rule that only these cases are possible.

Lemma 8.14

Let text be a nonempty palstar, then

parse1(text) ∈ {first1(text), 2.first1(text)-1, 2.first1(text)+1}.

Proof

The proof is similar to the proof of the preceding lemma. In fact, the two special cases

(2.first1(text)-1, 2.first1(text)+1) are caused by the irregularity implied at critical points by

considering together odd and even palindromes. Let f = first1(text), and p = parse1(text). The

proof of the impossibility of the situation (f < p < 2.f-1) is essentially presented in the case (a)

of the Figure 8.5. The proof of the impossibility of two other cases (p = 2.f) and (p > 2.f+1) are

similar. ‡
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Assume that we have computed the tables F[i] = first1(text[i+1…n]) and

PAL[i]=(text[i+1…n] is a palindrome) for i = (0, 1, …, n). Then, the following algorithm

recognizes palstars.

function PALSTAR(text): boolean; { palstar recognition }

begin

palstar[n] := true; { the empty word is a palstar }

for i := n-1 downto 0 do begin

f := F[i];

if f = 0 then palstar[i] := false

else if PAL[i] then palstar[i] := true

else palstar[i] := (palstar[i+f] or palstar[i+2f-1]

 or palstar[i+2f+1]);

end;

return palstar[0];

end.

Theorem 8.15

Palstars can be tested in linear time.

Proof

Assuming the correctness of function PALSTAR, to prove that it works in linear time, it is

enough to show how to compute tables F and PAL in linear time. The computation of PAL is

trivial if the table Rad is known. This latter can be computed in linear time. More difficult is the

computation of table F. For simplicity we restrict ourselves to odd palindromes, and compute

the table

F1[j] = min {s : text[1…s] is an odd palindrome, or s = 0}.

Assume Rad is the table of radii of odd palindromes. The radius of the palindrome of size

2k+1 equals k. We say that j is in the range of an odd palindrome centered at i iff i-j+1 ≤ Rad[i]

(see Figure 8.6).
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Figure 8.6. Stage(i): while the top position j is in the range of palindrome centered at i do

begin pop(stack); F1[j] := 2(j-i)+1 end; push(i).

A stack of positions is used. Its convenient to have some special position at the bottom. Initially

the first position 1 is pushed onto the stack, and i is set to 2. One stage begins with the situation

depicted in the Figure 8.6. All x's are on the stack (entries of F1 waiting for their values). The

whole algorithm is:

for i := 2 to n do stage(i);

for all remaining elements j on the stack do

{j is not in a range of any palindrome} F1[j] := 0.

The treatment of even palindromes is similar. Then F[i] is computed as the minimum value of

even or odd palindromes starting at position i. This completes the proof. ‡

Remark

In fact the algorithm PALSTAR can be transformed into an on-line linear time algorithm. But

this is outside the scope of the book.

It is perhaps surprising that testing whether a text is a composition of a fixed number of

palindromes seems more difficult than testing for palstars. Recall that P denotes here the set of

even palindromes. It is very easy to recognize compositions of exactly two words from P. The

word text is such a composition iff for some internal position i text[1…i] and text[i+1…n] are

even palindromes. This can be checked in linear time if table Rad is already computed. But this

approach does not give directly a linear-time algorithm for P3. Fortunately, there is another nice

combinatorial property of texts useful for that. Its proof is omitted.
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Lemma 8.16

If x ∈ P, then there is a decompositions of x into words x[1…s] and x[s…n] such that

both are members of P, and that either the first word is the longest prefix palindrome of

x, or the second one is the longest suffix palindrome of x.

One can compute the tables of all longest palindromes starting or ending at positions of

the word by a linear time algorithm very similar to that for table F. Assume now that we have

such tables, and also the table Rad. Then one can check if any suffix or prefix of text is a

member of P2 in constant time because of Lemma 8.16 (only two positions to be checked

using preprocessed tables). Now we are ready to recognize elements of P3 in linear time. For

each position i we just check in constant time if text[1…i] ∈ P2 and text[i+1…n] ∈ P.

Similarly, we can test elements of P4. For each position i we check in constant time if

text[1…i] ∈ P2 and text[i+1…n] ∈ P2. We have just sketched the proof of the following

statement.

Theorem 8.17

The compositions of two, three and four palindromes can be tested in linear time.

As far as we know, there is presently no algorithm to test compositions of exactly five

palindromes in linear time.

We have defined palindromes as nontrivial symmetric words (words of size at least two).

One can say that for a fixed k, palindromes of size smaller than k are also uninteresting. This

leads to the definition of PALk as palindromes of size at least k. Generalized palstars

(compositions of words from PALk) can also be defined. For a fixed k, there are linear time

algorithms for such palstars. The structure of algorithms, and the combinatorics of such

palindromes and palstars are analogous to what has been presented in the section.
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original algorithm proposed by these authors. The linear time algorithm of Section 8.2 is from
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Crochemore [Cr 83] (see also [Cr 86]). A different method achieving linear time has been

proposed by Main and Lorentz [ML 85].

The algorithm for prefix palindrome in Section 8.3 is from Manacher [Ma 75]. The

material of the rest of the section is mainly from Galil and Seiferas [GS 78]. The reader can

refer to [GS 78] for the proof of Lemma 8.16, or an on-line linear time algorithm for

PALSTAR.
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9. Almost optimal parallel algorithms

By an efficient parallel algorithm we mean an NC-algorithm (see Chapter 2). Especially

efficient are optimal and almost optimal parallel algorithms. By optimal we mean an algorithm

whose total number of elementary operations is linear, while an almost optimal algorithm is

one which is optimal within a polylogarithmic factor. From the point of view of any

application, the difference between optimal and almost optimal algorithms is extremely thin. In

this chapter, we present almost optimal algorithms for two important problems: string-

matching, and suffix tree construction. In the first section we present an almost optimal parallel

string-matching algorithm (O(log2n) time, O(n) processors) which is based on a parallel

version of the Karp-Miller-Rosenberg algorithm of Chapter 8, and is called Parallel-KMR. In

fact, it is possible to design a string-matching algorithm using only n/log2n processors (which

is strictly optimal), but such an algorithm is much more complicated to describe, and its

structure is quite different than that of KMR algorithm. KMR algorithm is conceptually very

powerful. The computation of regularities in Section 9.3 is derived from it. And, in the Section

9.4, we present an almost optimal parallel algorithm for the suffix tree construction that can be

also treated as an advanced version of KMR algorithm.

Methodologically we apply two different approaches for the construction of efficient

parallel algorithms:

(1) — design of a parallel version of a known sequential algorithm,

(2) — construction of a new algorithm with a good parallel structure.

The method (1) works well in the case of almost optimal parallel string-matching

algorithms, and square finding. The known KMR algorithm, and the Main-Lorentz algorithm

(for squares) have already a good parallel algorithmic structure. However, method (1) works

poorly in the case of suffix tree construction, and Huffman coding, for instance. Generally,

many known sequential algorithms look inherently sequential, and are hard to parallelize. All

algorithms of Chapter 5 for the problem of suffix tree construction, and the algorithm of

Chapter 10 for Huffman coding are inherently sequential. For these problems, we have to

develop some new approaches, and construct different algorithms. In fact, the sequential

version of our parallel algorithm for suffix tree construction gives a new simple and quite

efficient sequential algorithm for this problem (working in O(n.logn) time). This shows a nice

application of parallel computations to efficient sequential computations for textual problems.

Our basic model of parallel computations is a parallel random access machine without

write conflicts (PRAM). But the PRAM model with write-conflicts (concurrent-writes) is also

discussed (see Chapter 2). The PRAM model is best suited to work with tree structured objects

or tree-like (recursive) structured computations. As a starter we show such a type of

computation. One of the basic parallel operations is the (so-called) prefix computation.
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Given a vector x of n values compute all prefix products: y[1] = x[1], y[2] = x[1]⊗x[2],

y[3] = x[1]⊗x[2]⊗x[3], …. Denote by prefprod(x) the function which returns the vector y as

value. We assume that ⊗ is an associative operation computable on a RAM in O(1) time. We

also assume for simplicity that n is a power of two. The typical instances of ⊗ are arithmetic

operations +, min and max. The parallel implementation of prefprod works as follows. We

assign a processor to each entry of the initial vector of length n.

function prefprod(x); { the size of x is a power of two }

begin

n : = size(x);

if n = 1 then return x else begin

x1 := first half of x; x2 := second half of x;

for each i ∈ {1,2} do in parallel yi : = prefprod(xi);

midval : = y1[n/2];

for each 1 ≤ j ≤ n/2 do in parallel y2[j] : = midval⊗y2[j];

return concatenation of vectors y1, y2;

end;

end.

Lemma 9.1

Parallel prefix computation can be accomplished in O(logn) time with n/logn processors.

Proof

The algorithm above for computing prefprod(x) takes O(logn) time and uses n processors. The

reduction of the number of processors by a factor logn is technical. We partition the vector x

into segments of length logn. A processor is assigned to each segment. All such processors

simultaneously compute all prefix computations locally for their segments. Each processor

makes it by a sequential process. Then, we compress the vector by taking from each segment a

representative (say the first element). A vector x' of size n/logn is obtained. The function

prefprod is applied to x' (now n/logn processors suffice because of the size of x'). Finally, all

processors assigned to segments update values for all entries in their own segments using a

(globally) correct value of the segment representative. This again takes O(logn) time, and uses

only n/logn processors. This completes the proof. ‡

Prefix computation will be used in this paper, for instance, to compute the set of maximal

(in the sense of set inclusion) subintervals of an O(n) set of subintervals of {1, 2, …, n}.

Another basic parallel method to construct efficient parallel algorithms is the (so-called)

doubling technique. Roughly speaking, it consists in computing at each step objects whose size

is twice bigger as before, knowing the previously computed objects. The word "doubling" is



chapter 9 201 21/7/97

Efficient Algorithms on Texts 201 M. Crochemore & W. Rytter

often misleading because in many algorithms of such type the size of objects grows with a ratio

c > 1, not necessarily with ratio c = 2. The typical use of this technique is in the proof of the

following lemma (see [GR 88]). Suppose we have a vector of size n with some of the positions

marked. Denote by minright[i] (resp. maxleft[i]) the nearest marked position to the right (resp.

to the left) of position i. Computing vectors minright and maxleft takes logarithmic parallel

time.

Lemma 9.2

From a vector of size n with marked positions, vectors minright, and maxleft can be

computed in O(logn) time with n/logn processors.

The doubling technique is also the crucial feature of the structure of the Karp-Miller-

Rosenberg algorithm in a parallel setting. In one stage, the algorithm computes the names for

all words of size k. In the next stage, using these names, it computes names of words having

size twice bigger. We explain now how the algorithm KMR of Chapter 8 can be parallelized.

To make a parallel version of KMR algorithm, it is enough to design an efficient parallel

version of one stage of the computation, and this essentially reduces to the parallel computation

of RENUMBER(x). If this procedure is implemented in T(n) parallel time with n processors,

then we have a parallel version of KMR algorithm working in T(n).logn time with also n

processors. This is due to the doubling technique, and the fact that there are only logn stages.

Essentially, the same problems as computed by a sequential algorithm can be computed by its

parallel version in T(n).logn time.

The time complexity of computing RENUMBER(x) depends heavily on the model of

parallel computations used. It is T(n) = logn without concurrent writes, and it is T(n)  = O(1)

with concurrent writes. In the latter case, one needs a memory bigger than the total number of

operations used by what is called a bulletin board (auxiliary table with n2 entries; or, by making

some arithmetic tricks, with n1+ε entries). This looks slightly artificial, though entries of

auxiliary memory have not to be initialized. The details related to the distribution of processors

are also very technical in the case of concurrent writes model. Therefore, we present most of

the algorithms using the PRAM model without concurrent writes. This generally increases the

time by a logarithmic factor. This logarithmic factor gives also a big margin of time for

technical problems related to the assignment of processors to elements to be processed. We

shortly indicate how to remove this logarithmic factor when concurrent writes are used. The

main difference is the implementation of the procedure RENUMBER, and the computation of

equivalent classes (classes of objects with the same name).

9.1. Building the dictionary of basic factors in parallel
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Given the string text, we say that two positions are k-equivalent iff the factors of length k

starting at these positions are equal. Such an equivalence is best represented by assigning at

each position i a name or a number to the factor of length k starting at this position. The name is

denoted by NUMk[i]. This is the numbering technique presented in Chapter 8 (Section 6.1). We

shall compute names of all factors of a given length k for k running through 1, 2, 4, …. We

consider only factors whose length is a power of two. Such factors are called basic factors. The

name of a factor, denoted by is its rank in the lexicographic ordering of factors of a given

length. We also call these names k-names. Factors of length k, and their corresponding k-names

can be considered as the same object. For each k-name r we also require (for further

applications) a link POS[r, k] to any one position at which an occurrence of the k-name r starts.

We consider only factors starting at positions [1.. n-1]. The n-th position contains the special

endmarker #. The endmarker has highest rank in the alphabet. We can generally assume w. l. o.

g. that n-1 is a power of two, adding enough marker otherwise.

The tables NUM and POS are called together the dictionary of basic factors. This

dictionary is the basic data structure used in several applications.

i  = 1 2 3 4 5 6 7 8
text  = a b a a b b a a #######

 ________________

 k = 1 NUM[i,k] = 1 2 1 1 2 2 1 1

 k = 2 NUM[i,k] = 2 4 1 2 5 4 1 3

 k = 4 NUM[i,k] = 3 6 1 4 8 7 2 5

r  = 1 2 3 4 5 6 7 8
________________

 k = 1 POS[r,k] = 1 2 undefined

 k = 2 POS[r,k] = 3 1 8 2 5 undefined

 k = 4 POS[r,k] = 3 7 1 4 8 2 6 5

Figure 9.1. The dictionary of basic factors: tables of names of k-names, and of their

positions. The k-name at position i is the factor text[i…i+k-1]; its name is its rank according to

lexicographic ordering of all factors of length k (order of symbols is: a < b < #). Integers k are

powers of two. The tables can be stored in O(n.logn) memory.

Figure 9.1 displays the data structure for text = abaabbaa#. Six additional #'s are

appended to guarantee that each factor of length 8 starting in [1…8] is well defined. The figure

presents tables NUM and POS. In particular, the entries of POS[*, 4] give the lexicographically

sorted sequence of factors of length 4. This is the sequence of factors of length 4 starting at

positions 3, 7, 1, 4, 8, 2, 6, 5. The ordered sequence is:
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aabb, aa##, abaa, abba, a###, baab, baa#, bbaa.

In the case of arrays, basic factors are k×k subarrays, where k is a power of two. In this

situation, NUM[(i, j), k] is the name of the k×k subarray of a given array text having its upper-

left corner at position (i, j). We will discuss mostly the construction of dictionaries of basic

factors for strings. The construction in the two-dimensional case is an easy extension of that for

one-dimensional data.

The central machinery of KMR algorithm is the procedure RENUMBER that is defined

now. Let x be a vector or an array of total size n containing elements of some linearly ordered

set. We recall the definition of procedure RENUMBER (see chapter 8). The function

RENUMBER assigns to x a vector x'. Let val(x) be the set of values of all entries of x (the

alphabet of x). The vector x' satisfies:

(a) if x[i] = x[j] then x'[i] = x'[j], and

(b) val(x') is a subset of [1…n].

As a side effect, the procedure also computes the table POS : if q is in val(x') then POS[q] is

any position i such that x'[i] = q. Conditions (a) and (b) are obviously satisfied if x'[i] is defined

as the rank of x[i] inside the ordered list of values if x[j]'s. But we do not generally assume such

definition because it is often harder to compute.

Lemma 9.3

Let x be a vector of length n.

(1) RENUMBER(x) can be computed in O(logn) time with n processors on an

exclusive-write PRAM.

(2) Assume that val(x) consists of integers or pairs of integers in the range [1…n]. Then,

RENUMBER(x) can be computed in O(1) time with n processors on a concurrent-write

PRAM. In this case, the size of auxiliary memory is O(n1+ε).

Proof

(1) The main part of the procedure is the sorting (see chapter 8). Sorting by a parallel merge

sort algorithm is known to take O(logn) time with n processors. Hence, the whole procedure

RENUMBER has the same complexity as sorting n elements. This completes the proof of

point (1).

(2) Assume that val(x) consists of pairs of integers in the range [1…n]. In fact, RENUMBER

is used mostly in such cases. We consider an n×n auxiliary table BB. This table is called the

bulletin board. The processor at position i writes its name into the entry (p, q) of table BB,

where (p, q) = x[i]. We have many concurrent writes here because many processors attempt to

write their own position into the same entry of the bulletin board. We assume that one of them

(for instance, the one with smallest position) succeeds and writes its position i into the entry

BB[p, q]. Then, for each position j, the processor sets x'[i] to the value of BB[p, q], where (p,

q) is the value of x[j]. The computation is graphically illustrated in Figure 9.2. The time is
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constant (two steps). Doing so, we use quadratic memory. But applying some arithmetic tricks

it can be reduced to O(n1+ε). This completes the proof. ‡

 

i j k 
x (p,q) (p,q) (p,q)

i j k 
i i i 

p 

q 

i p 

q 

i 

BB BB 

Figure 9.2. Use of a bulletin board. x[i] = x[j] = x[k] = (p, q). Then the values of x at

positions i, j, k are changed, in two parallel steps (with concurrent writes), to the same value i.

Theorem 9.4

The dictionary of basic factors (resp. basic subarrays) of a string (resp. array) of size n

can be computed with n processors in O(log2n) time on an exclusive-write PRAM, and

in O(logn) time on a concurrent-write PRAM (in the latter case auxiliary memory space

of size O(n1+ε) is used).

Proof

We describe the algorithm only for strings. The crucial fact is the property already used in

Chapter 8:

(*) NUM[i, 2k] = NUM[j, 2k] iff (NUM[i, k] = NUM[j, k] and NUM[i+k, k] = NUM[j+k, k]).

The dictionary is computed by the algorithm Parallel-KMR below. The correctness of the

algorithm follows from fact (*). The number of iterations is logarithmic, and the dominating

operation is the procedure RENUMBER. The thesis follows now from the Lemma 9.3.

In the two-dimensional case, there is a fact analogous to (*), which makes the algorithm work

similarly. The size of the k×k array is n = k2. This completes the proof. ‡
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Algorithm Parallel-KMR;

{ a parallel version of the Karp-Miller-Rosenberg algorithm. }

{ Computation of the dictionary of basic factors of text;    }

{ text ends with #, |text| = n, n-1 is a power of two  }

begin

x : = text;

x := RENUMBER(x); { recall that RENUMBER computes POS }

for i in 1..n do in parallel begin

NUM[i, 1] := x[i]; POS[1, i] := POS[i];

end;

k := 1;

while k < n-1 do begin

for i in 1..n-2k+1 do in parallel x[i] := (x[i], x[i+k]);

delete the last 2k-1 entries of x;

x := RENUMBER(x);

for i in 1..n-2k+1 do in parallel begin

NUM[i, 2k] := x[i]; POS[2k, i] : = POS[i];

end;

k := 2k;

end;

end.

9.2. Parallel construction of string-matching automata.

We first present a simple application of the dictionary of basic factors to string-matching.

Then we describe an application to the computation of failure tables Bord and string-matching

automata (see Chapter 7).

The table PREF is a close "relative" of the failure table Bord commonly used in efficient

sequential string-matching algorithms and automata (see Chapter 3). The table PREF is

defined by

PREF[i] = max{j: text[i…i+j-1] is a prefix of text},

while the table Bord is defined by

Bord[i] = max{i : 0 ≤ j < i and text[1…j] is a suffix of text[1…i]}.

The table PREF, and the related table SUF, are crucial tables in the Main-Lorentz square-

finding algorithm (Chapter 8, Section 2), for which a parallel version is given in Section 9.3.

Theorem 9.5
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The table PREF can be computed in O(logn) time with n processors (without using

concurrent writes), if the dictionary of basic factors is already computed.

Proof

Essentially it is enough to show how to compute table PREF within our complexity bounds.

One processor is assigned to each position i of text, and it computes PREF[i] using a kind of

binary search, as indicated in Figure 9.3. This completes the proof. ‡

a b a a b b a 

a b a a b b a 

a b a a b b a 

First test (negative)
NUM[1,4] = NUM[4,4] ?

Second test (positive)
NUM[1,2] = NUM[4,2] ?

Third test (negative)
NUM[1,1] = NUM[4,1] ?

Figure 9.3. The computation of PREF[4] = 2 using binary search (log28 = 3 tests).

Corollary 9.6

String-matching can be solved in time O(log2n) time with n processors in the exclusive-

write PRAM model.

Proof

To find occurrences of pat in text, consider the word pat#text. Compute table PREF for this

word. Then, occurrence of pat in text appears at positions i of text where PREF[i] = |pat|. The

overall takes O(log2n) time with n processors, as a consequence of Theorems 9.4 and 9.5. ‡

Lemma 9.7

The failure table Bord for a pattern pat of length n, can be computed in O(log2n) time

with n processors without using concurrent writes (in O(logn) time if the dictionary of

basic factors is already computed).

Proof

We can assume that the table PREF is already computed (Theorem 9.5). Let us consider pairs

(i, i+PREF[i]-1). These pairs correspond to intervals of the form [i…j]. The first step is to

compute all such intervals which are maximal in the sense of set inclusion order. It can be done

with a parallel prefix computation. For each k, we compute the value
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maxval(k) = max(PREF[1], PREF[2]+1, PREF[3]+2, …, PREF[k-1]+k-2).

Then, we "turn off" all positions k such that maxval(k) ≥ PREF[k]+k-1. We are left with

maximal subintervals (i, RIGHT[i]). Let us (in one parallel step) mark all right ends of these

intervals, and compute the table RIGHT-1[j] for all right ends j of these intervals. For the other

values j, RIGHT-1[j] is undefined. Again, using a parallel prefix computation, for each position

k, we can compute minright[k], the first marked position to the right of k.

Then, in one parallel step, we set

Bord[k] : = 0 if minright[k] is undefined, and

Bord[k] : = max(0, k-RIGHT-1[minright[k]]+1) otherwise (see Figure 9.4).

This completes the proof. ‡

right ends of
intervals

i k 

PREF[i] = k-i+1

Structure of maximal intervals (i, RIGHT[i])

Figure 9.4. Computation of Bord[k] in the case i = RIGHT-1[minright[k]] ≤ k.

One may observe that if the table PREF is given then even n/O(logn) processors are

sufficient to compute table Bord, because our main operations are parallel prefix computations.

Corollary 9.8

The periods of all the prefixes of a word can be computed in O(log2n) time with n

processors without using concurrent writes (in O(logn) time if the dictionary of basic

factors is already computed).

Proof

The period of prefix pat[1…i] is i-Bord[i] (Chapter 2). ‡

We now give another consequence of Lemma 9.7 related to the previous result. It is

shown in Chapter 7 (Section 1) how to build the string-matching automaton for pat, SMA(pat).

It is the minimal deterministic automaton which accepts the language A*pat. The construction

of such automata is the background of several string-matching algorithms. Its sequential

construction is straightforward, and can be related to the failure function Bord. Using this fact,

we develop a parallel algorithm to compute SMA(pat).
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Theorem 9.9

Assume that the basic dictionary of pat is computed, and the alphabet has O(1) size.

Then, we can compute the string-matching automaton SMA(x) in O(logn) time with n

processors on an exclusive-write PRAM. The same result holds for a finite set of

patterns.

Proof

We prove only the one-pattern case. The case with many patterns can be done in essentially the

same way, though trees are to be used instead of one-dimensional tables (see Chapter 7).

Parallel-KMR algorithm works for trees as well.

We can assume that the failure table Bord for pat is already known. Our algorithm is

essentially a parallel version of the construction of SMA(x) shown in Section 7.1. The string-

matching automaton has {0, 1,…, n} as set of states. The initial state is 0 and n is the only

accepting state.

Define first the transition function δ for occurrences of symbols of pat only: let δ[i, a] = i+1

for a = pat[i+1] and δ[0, a] = 0 for a ≠ pat[1]. For each symbol a of the alphabet, define a

modified failure table as follows:

for i < n, Pa[i] = if (pat[i+1] = a) then i else Bord[i],

and Pa[n] = Bord[n].

Let Pa*[i] = Pak[i], where k is such that Pak[i] = Pak+1[i].

Tables Pa are treated here as functions that can be iterated indefinitely. We can easily compute

all tables Pa*[i] in O(logn) time with n processors using the doubling technique (logn

executions of Pa[i] := Pa2[i]). Then, the transition table of the automaton is constructed

as follows:

for each letter a, and position i such that δ[i, a] is not already defined

do in parallel δ[i, a] : = δ[Pa*[i], a].

This completes the proof. ‡

9.3. Parallel computation of regularities

We continue the applications of KMR algorithm with the problem of searching for

squares in strings. Recall that a square is a nonempty word of the form ww. Section 8.2 gives

an algorithm to find a square factor within a word in sequential linear time. But the algorithm is

based on a compact representation of factors of the word. We consider here the other methods

devoted to the same problem and also presented in Section 8.2.

A simple application of failure functions gives a quadratic sequential algorithm. It leads to

a parallel NC-algorithm. To do so, we can compute a failure function Bordi for each suffix

pat[i…n] of the word pat. We have already remarked that there is a square in pat, prefix of the
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pat[i…n], iff Bordi[j] ≥ (j-i+1)/2 for some j > i. Computing a linear number of failure

functions leads to a quadratic sequential algorithm, and to a parallel NC-algorithm. However,

with such an approach, the parallel computation requires a quadratic number of processors. We

show how the divide-and-conquer method used in the sequential case saves time and space in

parallel computation.

The main part of the sequential algorithm SQUARE for finding a square in a word

(Section 8.2) is the operation called test. This operation applies to squarefree words u and v, and

tests whether the word uv contains a square (the square begins in u and ends in v). This

operation is a composition of two smaller tests righttest and lefttest. The first (resp. second)

operation tests whether uv contains a square which center is in v (resp. u).

The operation test can be realized with the two auxiliary tables PREF and SUFu. Recall

that SUFu[k] is the size of longest suffix of v[1…k] which is also a suffix of u. This table SUFu

can be computed in the same way as PREF (computing PREF for uR&vR, for instance).

Lemma 9.10
Tables PREF and SUFu being computed, functions righttest(u, v), lefttest(u, v) and

test(u, v) can be computed in O(logn) time with n/logn processors. The running time is

constant with a  concurrent-write PRAM having n processors.

Proof
Given tables PREF and SUFu, the computation of righttest(u, v) reduces to the comparison

between k and PREF[k]+SUFu[k]. A square of length 2k is found iff the latter quantity is

greater than or equal to k, as shown in Figure 8.2. The evaluation of righttest is done by

inspecting in parallel all positions k on v. Hence, in O(logn) time (and constant time with the

concurrent-writes model), the time to collect the boolean value, we can compute righttest. By

grouping the values of k in intervals of length logn we can even reduce the number of

processors to n/logn. The same holds for lefttest, and thus for test which is a composition of the

two others. This completes the proof. ‡

The function test yields a recursive parallel algorithm for testing occurrences of squares.
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function SQUARE(text): boolean;

{ returns true if text contains a square }

{ W.l.o.g. n = |text| is a power of two  }

begin

if n > 1 then begin

for i ∈ {1, n/2+1} do in parallel

if SQUARE(text[i..i+n/2-1]) then return true;

{ if the algorithm has not already stopped then ... }

if (test(text[1..n/2], text[n/2+1..n]) then return true;

end;

return false; { if the "true" has not been already returned }

end;

Theorem 9.11

The algorithm SQUARE tests the squarefreeness of a word of length n in O(log2n)

parallel time using n processors in the PRAM model without concurrent writes.

Proof

The complexity of the algorithm SQUARE essentially comes from the computation of basic

factors in O(log2n) (Theorem 9.4). Each recursive step during the execution of the algorithm

takes O(logn) time with n processors as shown by Lemma 9.10. The number of step is logn.

This gives the result. ‡

The parallel squarefreeness test above is the parallel version of the corresponding

algorithm SQUARE of Chapter 8. Section 8.2 contains another serial algorithm that solves the

same question in linear time on fixed alphabets. We present now the parallel version of the

latter algorithm.

Recall that the second algorithm is based on the f-factorization of text. It is a sequence of

nonempty words (v1, v2,…, vm) such that text = v1v2…vm and defined by

— v1 = text[1], and

— for k > 1, vk is defined as follows. If |v1v2…vk-1| = i then vk is the longest prefix u of

text[i+1…n] which occurs at least twice in text[1…i]u. If there is no such u then vk = text[i+1].

Recall also that pos(vk) is the position of the first occurrence of vk in text (it is the length of the

shortest word y such that yvk is a prefix of text).

Theorem 9.12

The f-factorization of text of size n, and the associated table Pos, can be computed in

O(logn) time with n processors of a CRCW PRAM.
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Proof

(a) First construct the suffix tree T(text) by the algorithm of [AILSV 88]. The leaves of T(text)

correspond to suffixes of text, and the path from the root to the leaf numbered i spells the suffix

starting at position i in text.

(b) For each node v of T(text) compute the minimal value of the leaf in the subtree rooted at v.

This can be done by a tree-contraction algorithm, for example the one of [GR 88].

(c) For each leaf i, compute the first node v (bottom-up) on the path from i to the root with a

value j < i. Denote by size(i) the length of the string spelled by the path from the root to the

node v. The value j equals pos(i). If there is no such node then pos(i) = i and size(i) = 1.

The computation of tables pos(i) and size(i) can be done efficiently in parallel as follows:

— Let Up[v, k] be the node lying on the path from v to the root whose distance from v is 2k. If

there is no such node then we set Up[v, k] to root.

— For each node v of the tree, compute the table MinUp[v, k] for k =1, 2, …, logn. The value

of MinUp[v, k] is the node with the smallest value on the path from v to Up[v, k]. Both tables

can be easily computed in O(logn time with O(n) processors.

— Next, the values of pos(i) can be computed by assigning one processor to each leaf i. The

assigned processor makes a kind of binary search to find the first j < i on the path from i to the

root. This takes logarithmic time.

(d) Let Next(i) = i+size(i). Compute in parallel all powers of Next. The factorization can then be

deduced because the position of the element vi+1 of (v1, v2, …, vm) is Nexti(1).

The table pos has been already computed at point (c). This completes the proof. ‡

The parallel version of the function linear-SQUARE of Section 8.2 is as follows.
Now the key point is that the computation of righttest(v1v2…vk-2, vk-1vk), implied by the test of

conditions (2) and (3),  can be done in logarithmic time using only O(|vk-1vk|) processors. All

the tests can be done independently.

function Parallel-test(text): boolean;

begin

compute in parallel

the f-factorization (v1, v2, .., vm) of text;

for each k ∈ {1, 2, .., m} do in parallel

if (1) or (2) or (3) hold then { see Lemma 8.8xxx }

return true;

return false;

end;
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Theorem 9.13

The square-freeness test for a given text text of size n can be computed in O(logn) time

using O(n) processors of a CRCW PRAM.

Proof
Each condition can be checked in the algorithm Parallel-test in O(logn) time using O(|vk-1vk|)

processors, due to Lemma 9.10. Thus, the number of processors we need is at most the total
sum of all |vk-1vk|, which is obviously O(n). This completes the proof. ‡

The next application of KMR algorithm is to algorithmic questions related to

palindromes. We consider only even length palindromes: let PAL denote the set of such

nonempty even palindromes (words of the form wwR). Recall that Rad[i] is the radius of the

maximal even palindrome centered at position i in the text text,

Rad[i] = max{k : text[i-k+1…i] = (text[i+1…i+k])R}.

 If k is the maximal integer satisfying text[i-k+1…i] = (text[i+1…i+k])R, then we say that i is

the center of the maximal palindrome text[i-k+1…i+k]. We identify palindromes with their

corresponding subintervals of [1…n].

Lemma 9.14

Assume that the dictionaries of basic factors for text and its reverse, textR, are computed.

Then the table Rad of maximal radii of palindromes can be computed in O(logn) time

with n processors.

Proof

The proof is essentially the same as for the computation of table PREF: a variant of parallel

binary search is used. ‡

Denote by Firstcentre[i] (resp. Lastcentre[i]) the tables of first (resp. last) centers to the right of

i (including i) of palindromes containing position i.

Lemma 9.15

If the table Rad is computed then the table Firstcentre (resp. Lastcentre) can be

computed in O(logn) time with n processors.

Proof

We first describe an O(log2n) time algorithm. It uses the divide-and-conquer approach. A

notion of half-palindrome is introduced and shown on Figure 9.5.
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LEFT[i] i 

Maximal palindrome centered at i Its corresponding half-palindrome

LEFT[i] i 

Figure 9.5. Half-palidromes.

The value Firstcentre[k] is the first (to the right of k including k) right end of an half-

palindrome containing k.

The structure of the algorithm is recursive:

The word is divided into two parts x1 and x2 of equal sizes. In x1 we disregard the half-

palindromes with right end in x2. Then, we compute in parallel the table Firstcentre for

x1 and x2 independently. The computed table, at this stage, gives correct final value for

positions in x2. However, the part of the table for x1 may be incorrect due to the fact that

we disregarded for x1 half-palindromes ending in x2. To cope with this, we apply

procedure UPDATE(x1, x2).

The table is updated looking only at previously disregarded half-palindromes. The structure of

these half-palindromes is shown on Figure 9.6.

Figure 9.6. Structure of half-palindromes.

The half-palindromes can be treated as subintervals [i…j]. We introduce a (partial) ordering on

half-palindromes as follows: [i…j]≤[k…l] iff (i ≤ k and j ≤ l).
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procedure UPDATE(x1, x2);

{ only half-palindromes starting in x1 and ending in x2 are

considered }

begin

remove all half-palindromes but minimal ones;

{ this can be done in logn time by parallel prefix computation }

{ we are left with the situation presented in Figure 9.7      }

we compute for each position k the first (to the left)

starting position s[k] of an half-palindrome;

for each position k in x1 do in parallel

{ see Figure 9.7 }

Firstcentre[k] := min(Firstcentre[k], right end of half-

palindrome starting at s[k]);

end;

Left part of text Right part of text

k 

Firstcenter[k]

Figure 9.7. Table Firstcenter.

At the beginning of the whole algorithm Firstcentre[k] is set to +∞. One can see that the

procedure UPDATE takes O(logn) time using |x1|+|x2| processors. The depth of the recursion

is logarithmic, thus, the whole algorithm takes O(log2n) time.

We now briefly describe how to obtain O(logn) time with the same number of processors. We

look at the global recursive structure of the previous algorithm. The initial level of the recursion

is the zero level, the last one has depth logn-1. The crucial observation is that we can

simultaneously execute UPDATE at all levels of the recursion. However at the q-th level of the

recursion, instead of minimizing the value of Firstcentre[k] we store the values computed at

this level in a newly introduced table Firstcentreq: for each position k considered at this level

the procedure sets Firstcentreq[k] to the right end of half-palindrome starting at s[k] (see

UPDATE). Hence, the procedure UPDATE is slightly modified; at level q it computes the table

Firstcentreq. Assume that all entries of all tables are initially set to infinity.
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After computing all tables Firstcentreq we assign a processor to each position k. It computes

sequentially (for its position) the minimum of Firstcentreq[k] over recursion levels k = 0, 1,...,

logn-1. This globally takes O(logn) time with n processors. But we compute O(logn) tables

Firstcentreq, each of size n, so we have to be sure that n processors suffice to compute all these

data in O(logn) time. The computation of Firstcentreq, at a given level of recursion can be done

by simultaneous applications of parallel prefix computations (to compute the first marked

element to the left of each position k) for each pair (x1, x2) of factors (at the q-th level we have

2q such pairs). The prefix computations at a given level take together O(n) elementary

sequential operations. Hence the total number of operations for all levels is n O(logn). It is easy

to compute Firstcentreq for a fixed q using n processors. This requires O(n.logn) processors

for all levels q, however we have only n processors.

At this moment, we have an algorithm working in O(logn) time whose total number of

elementary operations is O(nlogn). We can apply Brent's lemma: if M(n)/P(n) = T(n) then the

algorithm performing the total number of M(n) operations and working in parallel time T(n)

can be implemented to work in O(T(n)) time with P(n) processors (see for instance [GR 88]).

In our case M(n) = O(n.logn) and T(n) = O(logn). Brent's lemma is a general principle, its

application depends on the detailed structure of the algorithm as to whether it is possible to

redistribute processors efficiently. However in our case we deal with computations of very

simple structure: multiple applications of parallel prefix computations. Hence n processors

suffice to make all computations in O(logn) time. This completes the proof. ‡

Theorem 9.16

Even palstars can be tested in O(logn) time with n processors on the exclusive-write

PRAM model, if the dictionary of basic factors is already computed.

Proof

Let first be a table whose i-th value is the first position j in text such that text[i…j] is an even

nonempty palindrome; it is zero if there is no such prefix even palindrome. Define first[n] = n.

This table can be easily computed using the values of Firstcentre[i]. Then, the sequential

algorithm tests even palstars in the following natural way: it finds the first prefix even

palindrome and cuts it; then such a process is repeated as long as possible; if we are done with

an empty string then we return "true": the initial word is an even palstar. The correctness of the

algorithm is then analogue to that of Theorem 8.12.

We make a parallel version of the algorithm. Compute table first*[i] = firstk[i], where k is such

that firstk[i] = firstk+1[i], using a doubling technique. Now the text is an even palstar iff

first*[1] = n. This can be tested in one step.

This ends the proof. ‡

Unfortunately the natural sequential algorithm described above for even palstars does not

work for arbitrary palstars. But, in this more general case, a similar table first can be defined
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and computed in essentially the same manner as for even palindromes. Palstar recognition then

reduces to the following reachability problem: is there a path according to first from position 1

to n. It is known that the positions are nodes of a directed graph whose maximal outdegree is

three. It is rather easy to solve the reachability problem in linear sequential time, but we do not

know how to solve it by an almost optimal parallel algorithm. In fact, the case of even palstars

can be also viewed as a reachability problem: its simplicity is related to the fact that in this case

the outdegree of each vertex in the corresponding graph is just one.

Lemma 9.17

The table Lastcentre can be computed in O(logn) time with n processors on the

exclusive-write model.

Proof

We compute the maximal (with respect to inclusion) half-palindromes. We mark their leftmost

positions, and then, the table Lastcentre is computed according to Figure 9.8. For position k,

we have to find only the first marked position to the left of k (including k). This completes the

proof. ‡

k 

Lastcenter[k]

Figure 9.8. Table Lastcenter.

Theorem 9.18

Compositions of k palindromes, for k = 2, 3 or 4, can be tested in O(logn) time with

n/logn processors in the exclusive-write PRAM model, if the dictionary of basic factors

is computed.

Proof

The parallel algorithm is an easy parallel version of the sequential algorithm in [GS 78] which

applies to k = 2, 3, 4. The key point is that if a text x is a composition uv of even palindromes

then there is a composition u'v' such that u' is a maximal prefix palindrome or v' is a maximal

suffix palindrome of x. The maximal prefix (suffix) palindrome for each position of the text

can be computed efficiently using the table Lastcentre (in the case of suffix palindromes the

table is computed for the reverse of the string).
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Given the tables Rad and Lastcentre (also for the reversed string) the question "is the text

x[1…i] a composition of two palindromes" can be answered in constant time using one

processor. The computation of logical "or", or questions of this type, can be done by a parallel

prefix computation. The time is O(logn), and O(n/logn) processors suffice (see Lemma 9.1).

This completes the proof. ‡

Several combinatorial algorithms on graphs and strings consider strings on an ordered

alphabet. A basic algorithm often used in this context is the computation of maximal suffixes,

or of minimal non-empty suffixes, according to the alphabetic ordering. These algorithms are

strongly related to the computation of the Lyndon factorization of a word, that is recalled now.

A Lyndon word is a non-empty word which is minimal among its non-empty suffixes. Chen,

Fox and Lyndon proved that any word x can be uniquely factorized as l1l2.. lh such that h ≥ 0,

the li's are Lyndon words, and l1 ≥ l2 ≥ … ≥ lh. It is known also that lh is the minimal non-

empty suffix of x. In the next parallel algorithm, we will use the following characterization of

the Lyndon word factorization of x.

Lemma 9.19
The sequence of non-empty words (l1, l2, …, lh) is the Lyndon factorization of the word

x iff x = l1l2.. lh, and the sequence (l1l2…lh, l2l3…lh, …, lh) is the longest sequence of

suffixes of x in decreasing alphabetical order.

Proof

We only prove the 'if' part and leave the 'only if' part to the reader.

Let s1 = l1l2…l, s2 = l2l3…lh, …, sh = lh, sh+1 = ε. As a consequence of the maximality of the

sequence, one may note that, for each i = 1, …, h, any suffix w longer than si+1 satisfies w > si.

To prove that (l1, l2, …, lh) is the Lyndon factorization of x, we have only to show that each

element of the sequence is a Lyndon word. It is the case for lh since, again by the maximality

condition, lh is the minimal non-empty suffix of x, and thus is less than any of its non-empty

suffixes. Assume, ab absurdo, that v is both a non-empty proper prefix and suffix of li, and let

w be such that vw = si. Since vsi+1 is a suffix of x longer than si+1, we have vsi+1 > si. The

latter expression implies si > w, which is a contradiction. This proves that no non-empty proper

suffix v of li is a prefix of li. But since again vsi+1 > si, we must have v > si, and also v > li. So,

li is a Lyndon word. This ends the proof. ‡

Theorem 9.20

The maximal suffix of the text of length n, and its Lyndon factorization can be computed

in O(log2n) time with n processors on the exclusive-write PRAM.

Proof

We first apply the KMR algorithm of Section 3 using the exclusive-write model to the word

x#…#. Assume here (contrary to the previous sections) that the special character # is the
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minimal symbol. Essentially, it makes no difference for KMR algorithm. We then get the

ordered sequence of basic factors of x given by tables POS. After padding enough dummy

symbols to the right, each suffix of x becomes also a basic factor. Hence, for each position i,

we can get Rank[i]: the rank of the i-th suffix x[i]…x[n] in the sequence of all suffixes. One

may note that the padded character # has no effect on the alphabetical ordering since it is less

than any other character.

Let us define L[i] to be the position j such that both  j ≤ i and Rank[j] = min{Rank[j']: 1 ≤ j' ≤

i}. By the above characterization of the Lyndon word factorization of x, L[i] gives the starting

position of the Lyndon factor containing i. Values L[i] can be computed by prefix computation.

Define an auxiliary table G[i] = L[i]-1. Now, it is enough to compute the sequence G[n], G2[n],

G3[n], …, Gh[n] = 0. In fact, such sequence gives the required list of positions, starting with

position n. It is easy to mark all positions of [0.. n] contained on this list in O(log2n) parallel

time. These positions decompose the word into its Lyndon factorization. This completes the

proof. ‡

9.4. Parallel computation of suffix trees

Efficient parallel computation of the suffix tree of a text is a delicate question. The

dictionary of basic factors leads to a rather simple solution, but which is not optimal. As

already noted in Chapter 8, the equivalences on factors of a text are strongly related to its suffix

tree. And the naming technique used by KMR algorithm to compute the dictionary is precisely

a technique to handle the equivalence classes.

To build the suffix tree of a text, a first coarse approximation of it is built. Afterwards the

tree is refined step by step. The approximation becomes closer to the suffix tree that is reached

at the end of the process. During the construction, we have to answer quickly the queries of the

form: are the k-names (i.e. the factors of length k) starting at positions i and j identical ? This is

needed to compute the k-equivalence relations defined on the nodes of intermediate trees.

Roughly speaking, such relations help to make refinements of the tree and get better

approximations of the final suffix tree.

Assume n-1 is a power of two. The n-th letter of text is a special symbol. A suitable

number of special symbols is padded to the end of text in order to have well defined factors of

length n-1 starting at positions 1, 2, …, n-1. We say that two words x and y are k-equivalent if

they have the same prefix of length 2k.

We build a series of logarithmic number of trees Tn-1, T(n-1)/2, …, T1: each successive

tree is an approximation of the suffix tree. The key invariant of the construction is:

invar(k): for each internal node v of Tk there are no two distinct outgoing edges whose

labels have the same prefix of length k. The label of the path from the root to the leaf i

equals text[i…i+n]. There is no internal node of outdegree one.
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Note that the parameter k is always a power of two. This gives the logarithmic number of

iterations.

Remark
If invar(1) holds, then we have the tree T1 is essentially the suffix tree T(text). Just a trivial

modification may be needed to delete all #'s padded for technical reasons, except one.

The core of the construction is the procedure REFINE(k) that transforms T2k into Tk.

The procedure maintains the invariant: if invar(2k) is satisfied for T2k, then invar(k) holds for

Tk after running REFINE(k) on T2k. The correctness (preservation of invariant) of the

construction is based on the trivial fact expressed graphically below.

x y 

x 
2

y 1

y 
2

x 
1

x 
2

y 
2

x 
1

Figure 9.9. If x ≠ y and x1 = y1, then x2 ≠ y2. If invar(2k) is locally satisfied (on the left),

after insertion of a new node, invar(k) locally holds (on the right).

The procedure REFINE(k) consists of two stages:

(1) insertion of new nodes, one per each non-singleton k-equivalence class;

(2) deletion of nodes of outdegree one.

In the first stage the operation localrefine(k, v) is applied in parallel to all internal nodes v of the

current tree. This local operation is graphically presented in the Figure 9.10. The k-equivalence

classes, labels of edges outgoing a given node, are computed. For each non-singleton class, we

insert a new (internal) node.
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v1 v2 v3 v4 v5 v6 v7 v8

v 

w1 w2 w3

v1 v2 v3 v4 v5 v6 v7 v8

new node

k-name edgelocalrefine(k,v)

k-equivalence classes 

Figure 9.10. Local refinement. The sons (of node v) whose edge labels have the same k-

prefixes are k-equivalent.

To achieve a more complete parallelization, each of operation localrefine(k, v) is

performed with as many processors as the number of sons of v (one processor per son).

Hence, each local refinement is done in logarithmic time, as well as the whole REFINE

operation. Since we apply REFINE logn times, the global time complexity is O(log2n). The

number of processors is linear as is the sum of outdegrees of all internal nodes.

The algorithm is informally presented on the example text abaabbaa#. We start with the

tree T(8) of all factors of length 8 starting at positions 1, 2, …, 8. The tree is almost a suffix

tree: the condition that is only violated is that some internal node v (in fact here, the root) has

two distinct outgoing edges whose labels have a common nonempty prefix. We attempt to

satisfy the condition by successive refinements: the prefixes violating the condition become

smaller and smaller, divided by two at each stage, until they become empty.
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 Figure 9.11.The tree T(8) for text = abaabbaa#. The 8-equivalence is the 4-equivalence,

hence T(8) = T(4). But the 2-equivalence classes are {6, 2}, {3, 7}, {4, 1}, {8}, {5}.

We apply REFINE(2) to get T(2).

Figure 9.12. Tree T(2). Now the 1-equivalence classes are {3}, {7}, {4}, {1}, {v1, v2, 8}, {6,

2}, {v3, 5}. Three new nodes has to be created to obtain T(1).
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Figure 9.13. The tree after the first stage of REFINE(1) : insertion of new nodes v4, v5, v6.

Figure 9.14. Tree T(1) after the second stage of REFINE(1):

deletion of nodes of outdegree one.
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Figure 9.15. The suffix tree T(abaabbaa#).

It results from T(1) by a "cosmetic" modification, elimination of extra #.

The informal description of the construction of the suffix tree T(text) is summarized by

the algorithm below.

Algorithm

{ parallel suffix tree construction; n-1 is a power of two }

procedure REFINE(k);

begin

for each internal node v of T do in parallel begin

localrefine(k, v); delete all nodes of outdegree one;

end;

end;

{ main algorithm }

begin

let T be the tree of height 1 whose leaves are 1..n-1, and

the label of the i-th edge is [i, i+n];

k : = n-1;

repeat { T satisfies invar(k) }

k : = k/2; REFINE(k); { T satisfies invar(k) }

until k = 1;

delete extra #'s;

return T;

end.
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Remark

Observe that the previous strategy followed to build the suffix tree T(text) can be implemented

in the sequential RAM model (one processor). Then, because the computation of equivalence

classes can be done by a sequential linear time algorithm (with the help of radix sorting), we get

an O(n.logn) time simple new algorithm for the computation of suffix trees. The suffix tree

constructions of Chapter 5 are inherently sequential, because the text is scanned from left to

right or in the reverse direction. The nature of the present algorithm is "more parallel", and has

almost no reason to be considered for sequential computations

Theorem 9.21

The suffix tree of  text of length n can be constructed in O(log2n) parallel time with n

processors on a PRAM with exclusive-writes. (With a more elaborated construction even

read conflicts can be avoided).

Proof

The complexity bounds follows directly from the construction, and from the algorithm

computing the dictionary of basic factors. At each stage, it is possible to calculate for each node

how many new sons have to be created for this node. Then, in logarithmic time, we can assign

new processors to the newly created nodes. All calculations are easy because we can calculate

the number of new nodes traversing the tree in pre-order, for instance. Such traversal of the tree

is easily parallelized efficiently. This completes the proof. ‡

In the construction above, the running time can be reduced by the logarithmic factor if

concurrent writes are allowed. Basically, the method is analogue to the computation of the

dictionary of basic factors. The bulletin board technique is used similarly. However, it becomes

more difficult to assign processors to newly created nodes.

Theorem 9.22

Suffix trees can be built in O(logn) parallel time with n processors in the PRAM with

write conflicts.

9.5.* Parallel computation of dawg's

In this section we extend the results of the previous section to the computation of dawg's.

We show how to compute efficiently in parallel the directed acyclic word graph of all factors of

a text, and also its compressed version — the minimal factor automaton. The construction of

dawg's given here consists essentially in a parallel transformation of suffix trees. The basic

procedure is the computation of equivalent classes of subtrees. We encode the suffix tree by a

string in such a way that the subtrees correspond to subwords of the coding string.
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Lemma 9.23

Let T be a rooted ordered tree whose edges are labelled with constant size letters. Then,

we can compute the isomorphic classes of subtrees of T  with O(n) processors in time

O(log2n)  in the exclusive-write PRAM model, and in time O(logn) in the concurrent-

write PRAM model.

Proof

We use an Euler tour technique, we refer the reader to [TV 85] and [GR 88] for more detailed

exposition of this technique. The edge with label X is replaced by two edges: the forward edge

with label X, and the backward edge with label X'. The tree becomes an Eulerian directed graph.

A

B C

A C

B

A C

v1

v2 v3

v4

Figure 9.16. code(v1) = "ABBCAACCCABAACCB"; code(v3) = code(v4).

The code x of the tree T is constructed in parallel by the Euler tour method.

The labels of edges outgoing a given node are sorted. The nodes v4 and v3 are roots of

isomorphic subtrees because x[5…8] = x[12…15].

An Euler tour x is computed such that the edges outgoing a given node of the tree appear in

their original order. Such a tour can be computed in O(logn) time with n processors [TV 85].

The main advantage of the technique is the transformation of tree problems into problems on

strings. Figure 9.16 demonstrates an Euler tour technique for a sample tree.

Let code(v) denote the part of the traversal sequence x corresponding to the subtree rooted at v.

It is possible to compute in O(logn) time with n processors the integers i and j such that

code(v) = x[i…j] for each node v. The subtrees rooted at v1 and v2 are isomorphic iff

code(v1) = code(v2).

We build the dictionary of basic factors for x. Then, each subtree gets a constant size name

corresponding to its code. These names are given directly by the dictionary if the length is a
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power of two. If not, the composite name is created (decomposing the code of the subtree into

two overlapping strings having length a power of two). Afterwards two subtrees are

isomorphic iff they have the same names, and the crucial point is here that the names are of

O(1) size. The procedure RENUMBER can be applied to compute the equivalence classes of

subtrees with the same name. This completes the proof. ‡

Theorem 9.24

DAWG(text) can be constructed in O(log2n) time in the exclusive-write PRAM model,

and in O(logn) time in the concurrent-write PRAM model, using O(n) processors.

Proof

We demonstrate the algorithm on the example string text = baaabbabb. We assume that the

suffix tree of text is already constructed. For technical reasons, the endmarker # is added to the

text. This endmarker is later ignored in the final dawg (however, it is necessary at this stage).

By the algorithm given in the proof of the preceding lemma, the equivalence classes of

isomorphic subtrees are computed. The roots of isomorphic subtrees are identified, and we get

an approximate version G' of DAWG(text) (see Figure 9.17). The difference between the actual

structure and the dawg is related to lengths of strings which are labels of edges. In the dawg

each edge is labelled by a single symbol. The "naive" approach could be to decompose each

edge labelled by a string of length k into k edges and then merge some of them; but the

intermediate graph could have a quadratic number of nodes. We apply such an approach with

the following modification. By the weight of an edge we mean the length of its label. For each

node v, we compute the heaviest (with the biggest weight) incoming edge. Denote this edge by

inedge(v). Then, in parallel, for each node v, we perform a local transformation local-action(v).

It is crucial that all these local transformations are independent and can be performed

simultaneously for all v.
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Figure 9.17. Identification of isomorphic classes of nodes of the suffix tree.

In the algorithm, labels of edges are constant size names corresponding to themselves.
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The transformation local-action(v) consists in decomposing the edge inedge(v) into k edges,

where k is the length of the label z of this edge. The label of i-th edge is i-th letter of z. Are

introduced k-1 new nodes: (v, 1), (v, 2), …, (v, k-1). The node (v, i) is at distance i from v. For

each other edge incoming v, e = (w, v) we perform in parallel the following additional action.

Suppose that the label of e has length p, and that its first letter is a. If p > 1, we remove the edge

e, and create an edge from w to (v, p-1) whose label is the letter a. This is graphically illustrated

in Figure 9.18.
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Figure 9.18. The local transformation. New nodes are introduced on the heaviest

 incoming edge.

Then we execute the statement : for all non-root nodes v in parallel do local-action(v). The

resulting graph for our example string text is presented in the Figure 9.19. Generally, this graph

is the required DAWG(text). This completes the proof. ‡
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Figure 9.19. Dawg (top) and minimal factor automaton (bottom) of baaabbabb.

The dawg DAWG(text) can still be compacted. In fact, the structure can be reduced in the

sense of minimization of automata. This remains to merge equivalent node according to the

path starting from them. The reduction is possible if we do not mark nodes associated to

suffixes of the text. In other words, the structure then accepts the set of all factors of text

without any distinction between them. We call the resulting structure the minimal factor

automaton of text, and denote it by F(text). Figure 9.19 illustrate the notion on the word text =

baaabbabb. We first show how to determine the nodes of DAWG(text) associated to suffixes

of text. The overall gives the minimal automaton accepting suffixes of text, S(text). Then, we

give the construction of F(text) derived from that of DAWG(text).

Theorem 9.25

The minimal suffix automaton of a text of length of length n can be constructed in

O(log2n) time in the exclusive-write PRAM model, and in O(logn) time in the

concurrent-write PRAM model, using O(n) processors.

Proof.

We admit that the minimal suffix automaton S(text) is just DAWG(text) in which nodes

associated to suffixes of text are marked as accepting states. We can assume that we know the

values of nodes of the suffix tree (labels of the path from the root to nodes). In the process of
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identification of roots of isomorphic subtrees, we can assign names to the nodes of the dawg:

the name of node v is the word corresponding to the longest path from the root to v. Then, node

is an accepting state of S(text) iff its name is the suffix of the input word text. This can be

checked for each node v in constant time with the dictionary of basic factors. This completes the

proof. ‡
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Figure 9.20. The suffix tree T(w') for w = bbabbaaab#; w is the reverse of text = baaabbabb,

with an endmarker. We ignore nodes whose incoming edges are labelled only by #.

The values of nodes of this tree are reverses of the labels of their paths in T(w);

they correspond to the nodes of DAWG(text). The node v is redundant iff, simultaneously,

v is a prefix of the father of text, v has only two sons, and at least one of them is a leaf.

Hence, a is not redundant, but nodes ab and abb are.

Theorem 9.26

The minimal factor automaton of a text of length of length n can be constructed in

O(log2n) time in the exclusive-write PRAM model, and in O(logn) time in the

concurrent-write PRAM model, using O(n) processors.

Sketch of the proof

Construct the suffix tree T' = T(w). Let G = DAWG(text) and G' = DAWG(#text). Let w be the

reverse of #text. There is a one-to-one correspondence between nodes of G' and T', if we

reverse all labels of nodes of T'. The original label of the node v of T' is the word

corresponding to the path from the root to v. However, we modify these labels by reversing

these words. We identify all nodes of G with their equivalents in T' by an efficient parallel

algorithm based on the dictionary of basic factors.



chapter 9 230 21/7/97

Efficient Algorithms on Texts 230 M. Crochemore & W. Rytter

The tree T' is the tree of so-called suffix-links of G'. It provides a useful information about G'

and G, since G is a subgraph of G'. Let V' be the set of all nodes (including root) reachable in G

from the root, after removing the edge labelled #; the subgraph G' induced by V' equals G.

Now the graph G = DAWG(text) can be treated as a finite deterministic automaton accepting all

factors of text (the set Fac(text)). All nodes are accepting states. Two nodes of G are equivalent

iff they are equivalent in the sense of this automaton. It happens that equivalence classes are

very simple, each equivalence class consists of at most two nodes. It is easy to compute these

equivalence classes in parallel using the tree T'. We say that the node (state) v is redundant if it

is contained in a two-element equivalence class, and its partner v' (in the equivalence class) has

a longer value. For a redundant node v, denote by π(v) the node v'. Essentially, the problem of

the computation of the minimal factor automaton reduces to the computation of redundant

nodes, and of the function π. Let us identify nodes with their values. Let z be the father of text

in T'.

Claim

The node v of G is redundant iff v is a prefix of z (not necessarily proper), v has only two

sons in T', and one of its sons is a leaf.

Let b be the letter preceding the rightmost occurrence of z in text. Assume that v is a

redundant node, and that v' is a son of v such that the label of the edge (v, v') does not

start with the letter b. Then π(v) = v'.

We leave the technical proof of the claim to the reader (as a non-trivial exercise !). Section 6.4

may be helpful for that purpose. In the example of Figure 9.20, z = abb, its prefixes are a, ab,

and abb. Only ab and abb are redundant; π(ab) = baaab and π(abb) = baaabb.

The claim above allows to compute efficiently in parallel all redundant nodes, and the function

π. After that, we execute: the statement

for each redundant node v do in parallel

 identify v with π(v), redirect all edges coming

from non-redundant nodes to v onto π(v);

The computation of redundant nodes is illustrated in Figure 9.20. Once we know redundant

nodes, the whole minimization process can be done efficiently in parallel. This completes the

proof. ‡

The algorithm gives also another sequential linear-time construction of dawg's, as classes

of isomorphic subtrees can be computed in linear sequential time traversing the tree in a

bottom-up manner and using bucket sort. There is a possible different efficient parallel

algorithm for dawg construction by transforming the suffix tree of the reverse input word into

the dawg of the word. In this case, the correspondence between such suffix trees and dawg's, as

described in chapter 6, can be used. In the presentation above, we parallelize the transformation

of suffix trees into dawg's, which relies on subtrees isomorphism. It is also possible to

parallelize the other transformation, but this becomes much more technical.
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The parallel algorithm for dawg construction can be further extended, and applies to the

computation (in parallel) of complete inverted files. This can be understood as the construction

of the suffix dawg of a finite set of texts.
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10. Text compression techniques

The aim of data compression is to provide representations of data in a reduced form. The

information carried by data is left unchanged by the compression processes considered in this

Chapter. There is no loss of information. In other words, compression processes that we

discuss are reversible.

The main interest of data compression is of practical nature. Methods are used both to

reduce the memory space required to store files on hard disks or other similar devices, and to

accelerate the transmission of data in telecommunications. The question remains important

even regarding the rapid increase of mass memory, because the amount of data increases

accordingly (to store images produced by satellites or scanners, for instance). The same

argument applies to transmission of data, even if the capacity of existing media is constantly

improved.

We describe data compression methods based on substitutions. The methods are general,

which means that they apply to data on which little is known. Semantic data compression

techniques are not considered. So, compression ratios must be appreciate under that condition.

Standard methods usually save about 50% memory space.

Data compression methods try to eliminate redundancies, regularities, and repetitions in

order to compress the data. It is not surprising then that algorithms have common features with

others described in preceding chapters.

After a first section on elementary notions on the compression problem, we consider the

classical Huffman statistical coding (Sections 10.2 and 10.3). It is implemented by the Unix

(system V) command "pack". It admits an adaptive version well suited for telecommunication,

and implemented by the "compact" command of Unix (BSD 4.2). Section 10.4 deals with the

general problem of factor encoding, and contains the efficient Ziv-Lempel algorithm. The

"compress" command of Unix (BSD 4.2) is based on a variant of this latter algorithm.

10.1. Substitutions

The input of a data compression algorithm is a text. It is denoted by s, for source. It

should be considered as a string on the alphabet {0, 1}. The output of the algorithm is also a

word of {0, 1}* denoted by c, for encoded text. Data compression methods based on

substitutions are often described with the help of an intermediate alphabet A on which the

source s translates into a text text. The method is then defined by the mean of two morphisms g

and h from A* to {0, 1}*. The text text is an inverse image of s by the morphism g, which

means that its letters are coded with bits. The encoded text c is the direct image of text by the

morphism h. The set {(g(a), h(a)) : a ∈ A} is called the dictionary of the coding method. When
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the morphism g is known or implicit, the description of the dictionary is just given by the set

{a, h(a)) : a ∈ A}.

We only consider data compression methods without loss of information. This implies

that a decoding function f exists such that s=f(c). Again, f is often defined through a decoding

function h' such that text = h'(c), and then f itself is the composition of h' and g. The lossless

information constraint implies that the morphism h is one-to-one, and that h' is its inverse

morphism. This means that the set {h(a)) : a ∈ A} is a uniquely decipherable code.

The pair of morphisms, (g, h), leads to a classification of data compression methods with

substitutions. We get four principal classes according to whether g is uniform (i.e. when all

images of letters are words of the same length) or not, and whether the dictionary is fixed or

computed during the compression process. Most elementary methods do not use any

dictionary. Strings of a given length are sometimes called in this context blocks, while factors

of variable lengths are called variables. A method is then qualified as block-to-variable if the

morphism g is uniform, or variable-to-variable if neither g nor h are assumed to be uniform.

The efficiency of a compression method that encodes a text s into a text c, is measured

through a compression ratio. It can be |s|/|c|, or its inverse |c|/|s|. It is sometimes more intuitive

to compute the amount of space saved by the compression, (|s|-|c|)/|c|.

 block-to-variable variable-to-variable

  differential encoding       repetition encoding

      fixed dictionary     statistical encoding  factor encoding
         (Huffman)

     evolutive dictionary     sequential statistical encoding Ziv and Lempel's algorithm
 (Faller et Gallager)

The rest of the section is devoted to the description of two basic methods. They appear on

the first line of the previous table: repetition encoding and differential encoding.

The aim of repetition encoding is to efficiently encode repetitions. Let text be a text on the

alphabet A. Let us assume that text contain a certain quantity of repetitions of the form aa…a

for some character a (a ∈ A). Inside text, a sequence of n letters a, can be replaced by &an,

where "&" is a new character (& ∉ A). This corresponds to the usual mathematical notation an.

When the repetitions of only one letter are encoded in that way, the letter itself do need not to

appear, so that the repetition is encoded by &n. This is commonly done for "space deletion".
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1100001 1100001 1100001 1100001 1100001 1100001

a       a       a       a       a       a

encoded by

&       a      6

0100110 1100001 000110

Figure 10.1. Repetition coding (with ASCII code).

The string &an that encodes a repetition of n consecutive occurrences of a, is itself

encoded on the binary alphabet {0, 1}. In practice, letters are often represented by their ASCII

code. So, the codeword of a letter belongs to {0, 1}k with k=7 or 8. There is no problem in

general to choose the character "&" (in Figure 10.1, the real ASCII symbol & is used). Both

symbols & and a appear in the coded text c under their ASCII form. The integer n of the string

&an should also by encoded on the binary alphabet. Note that it is not sufficient to translate n

by its binary representation, because we would be unable to localize it at decoding time inside

the stream of bits. A simple way to cope with that is to encode n by the string 0lbin(n), where

bin(n) is the binary representation of n, and l is the length of it. This works well because the

binary representation of n starts with a "1" (because n>0). There are even more sophisticated

integer representations, but not really suitable in the present situation. On the opposite, a

simpler solution is to encode n on the same number of bits as letters. If this number is k=8 for

instance, the translation of any repetition of length less than 256 has length 3. It is thus useless

to encode a2 and a3. A repetition of more than 256 identical letters is cut into smaller

repetitions. These limitations reduce the efficiency of the method.

The second very useful elementary compression technique is the differential encoding,

also called relative encoding. We explain it on an example. Assume that the source text s is a

series of dates

1981, 1982, 1980, 1982, 1985, 1984, 1984, 1981, ...

These dates appears in binary form in s, so at least 11 bits are necessary for each of them. But,

the sequence can be represented by the other sequence

(1981,  1,  -2,  2,  3,  -1,  0,  -3, ...),

assuming that the integer 1 in place of the second date is the difference between the second and

the first dates. An integer in the second sequence, except the first one, is the difference between

two consecutive dates. The decoding process is obvious, and processes the sequence from left

to right, which is well adapted for texts. Again, the integers of the second sequence appear in

binary in the coded text c. All but the first, in the example, can be represented with only 3 bits

each. This is how the compression is realized on suitable data.

More generally, differential encoding takes a sequence (u1, u2, …, un) of data, and

represents it by the sequence of differences (u1, u2-u1, …, un-un-1) where "-" is an appropriate

operation.
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Differential encoding is commonly used to create archives of successive versions of a

text. The initial text is fully memorized on the tape. And, for each following version, only the

differences with its preceding one is kept on the tape. Several variations on this idea are

possible. For instance, (u1, u2, …, un) can be translated by (u1, u2-u1, …, un-u1), considering

that the differences are all with the first element of the sequence. This element can also change

during the process according to some rule.

Very often several compression methods are combined to realize a whole compression

process. A good example of this strategy is given by the application to facsimile machines

(FAX). Pages to be transmitted are made of lines, each of 1728 bits. A differential encoding is

first applied on consecutive lines. So, if the nth line is

0101001 0101010 1001001 1101001 1011101 1000000...

and the n+1th line is

0101000 0101011 0111001 1100101 1011101 0000000...

the following line is to be sent

0000001 0000001 1110000 0001100 0000000 1000000...

Of course, no compression at all would be achieved if the line were sent as it is. There are two

solution to encode the line of differences. The first solution encodes runs of "1" occurring in the

line both by their length and their relative position in the line. So, we get the sequence

(7, 1),  (7, 4),  (8, 2),  (10, 1), ...

whose representation on the binary alphabet gives the coded text. The second solution makes

use of a statistical Huffman code the encode successive runs of 0's and runs of 1's. These codes

are defined in the next section.

A good compression ratio is generally obtained when the transmitted image contains a

written text. But it is clear that "dense" pages lead to small compression ratio, and that best

ratios are reached with blank (or black) pages.

10.2. Static Huffman coding

The most common technique to compress a text is to redefine the codewords associated

to the letters of the alphabet. This is achieved by block-to-variable compression methods.

According to the pair of morphisms (g, h) introduced in section 10.1, this means that g

represents the usual code attributed to the characters (ASCII code, for instance). More

generally, the source is factorized into blocks of a given length. Once this length is chosen, the

method reduces to the computation of a morphism h that minimizes the size of the encoded text

h(text). The key idea to find h is to consider the frequency of letters, and to encode frequent

letters by short codewords. Methods based on this criterion are called statistical compression

methods.
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Computing h, remains to find the set C = {h(a) : a ∈ A}, which must be a uniquely

decipherable code in order to permit the decoding of the compressed text. Moreover, to get an

efficient decoding algorithm, C is chosen as an instantaneous code, i.e. a prefix code, which

means that no word of C is prefix of another word of C. It is quite surprising that this does not

reduce the power of the method. This is because any code has an equivalent prefix code with

the same distribution of codeword lengths. The property, stated in the following theorem, is a

consequence of what is known as the Kraft-McMillan inequalities related to codeword lengths,

which are recalled first.

Kraft's inequality
There is a prefix code with word lengths l1, l1, …, lk on the alphabet {0, 1} iff

(*) Error!≤ 1.

McMillan's inequality
There is a uniquely decipherable code with word lengths l1, l1, …, lk on the alphabet {0,

1} iff the inequality (*) holds.

Theorem 10.1

A uniquely decipherable code with prescribed word lengths exists iff a prefix code with

the same word lengths exists.

Huffman's method computes the code C according to a given distribution of frequencies

of the letters. The method is both optimal and practical. The entire Huffman's compression

algorithm proceeds in three steps. In the first step, the numbers of occurrences of letters

(blocks) are computed. Let na be the number of times letter a occurs in text.  In the second step,

the set {na : a ∈ A} is used to compute a prefix code C. Finally, in the third step, the text is

encoded with the prefix code C found previously. Note that the prefix code should be appended

��to the coded text because the decoder needs it. It is commonly put inside a header (of the

compressed file) that contains additional information on the file. Instead of computing exact

numbers of occurrences of letters in the source, a prefix code can be computed on the base of a

standard probability distribution of letters. In this situation, only the third step is applied to

encode a text, which gives a very simple and fast encoding procedure. But obviously the coding

is no longer optimal for a given text.
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1

0

0
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Figure 10.2. The trie of the prefix code {0, 10, 1100, 1101, 111}.

Black nodes correspond to codewords.

The core of Huffman's algorithm is the computation of a prefix code, over the alphabet

{0, 1}, corresponding to the distribution of letters {na : a ∈ A}. This part of the algorithm

builds the word trie T of the desired prefix code. The "prefix" property of the code ensures that

there is a one-to-one correspondence between codewords and leaves of T (see Figure 10.2).

Each codeword (and leaf of the trie) corresponds to some number na, and gives the encoding

h(a) of the letter a.

The size of the coded text is

|h(text)| = Error!.

On the trie of the code C the equality translates into

|h(text)| = Error!,
where fa is the leaf of T associated with letter a, and level(fa) is its distance to the root of T. The

problem of computing a prefix code C = {h(a) : a ∈ A} such that |h(text)| is minimum becomes

a problem on trees :

— find a minimum weighted binary tree T whose leaves {fa : a ∈ A} have initial weights

{na : a ∈ A},

where the weight of T, denoted by W(T), is understood as the quantity Error!. The algorithm

below builds a minimum weighted tree in a bottom-up fashion, grouping together two subtrees

under a new node. In other words, at each stage, the algorithm creates a new node that is made

a father of two existing nodes. The weight of a node is the weight of the subtree below it. There

are several possible trees of minimum weight. All trees that can be produced by Huffman

algorithm are called Huffman trees.
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Example

Let text = abracadabra. The number of occurrences of letters are

na = 5,    nb = 2,    nc = 1,    nd = 1,    nr = 2.

The tree of a possible prefix code built by Huffman's algorithm is shown in Figure 10.3.

Weights of nodes are written on the nodes. The prefix code is :

h(a) = 0,   h(b) = 10,   h(c) = 1100,   h(d) = 1101,   h(r) = 111.

The coded text is then

0 10 111 0 1100 0 1101 0 10 111 0

which is a word of length 23. If the initial codewords of letters have length 5, we get the

compression ratio 55/23 ≈ 2.4. However, if the prefix code (or its trie) has to be memorized,

this additionally takes at least 9 bits, which reduces the compression ratio to 55/32 ≈ 1.7. If the

initial coding of letters has also to be stored (with at least 25 bits), the compression ratio is even

worse: 55/57 ≈ 0.96. In the latter case, the encoding leads to an expansion of the source text. ‡
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Figure 10.3. Huffman tree for abracadabra.

As noted in the previous example, the header of the coded text must often contain enough

information on the coding to allow a later decoding of the text. The necessary information is the

prefix code computed by Huffman's algorithm, and the initial codewords of letters. Altogether,

this takes around 2|A|+k|A| bits (if k is the length of initial codewords), because the structure of

the trie can be encoded with 2|A|-1 bits.
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Algorithm Huffman { minimum weighted tree construction }

begin

for a in A do create a one-node tree fa with weight W(fa) = na;

L := queue of trees fa in increasing order of weights;

N := empty queue; { for internal nodes of the final tree }

while |L|+|N| > 1 do begin

let u and v be the elements of L ∪ N with smallest weights;

{ u and v are found from heads of lists }

delete u and v from (heads of) the queues;

create a tree x with a new node as root,

and u and v as left and right subtrees;

W(x) := W(u)+W(v);

add the tree x to the end of queue N;

end;

return the remaining tree in L ∪ N;

end.

Theorem 10.2

Huffman algorithm produces a minimum weighted tree in time O(|A|.log|A|).

Proof

The correctness is based on several observations. First, a Huffman tree is a binary complete

tree, in the sense that all internal nodes have exactly two sons. Otherwise, the weight of the tree

could be decreased by replacing a one-son node by its own son. Second, there is a Huffman

tree T for {na : a ∈ A} in which two leaves at the maximum level are siblings, and have

minimum weights among all leaves (and all nodes too). Possibly exchanging leaves in a

Huffman tree gives the conclusion. Third, let x be the father of two leaves fb and fc in a

Huffman tree T. Consider a weighted tree T' for {na : a ∈ A}-{nb, nc}+{nb+ nc}, assuming

that x is a leaf of weight nb+ nc. Then,

W(T) = W(T')+nb+ nc.

Thus, T is a Huffman tree iff T' is. This is the way the tree is built by the algorithm, joining two

trees of minimal weights into a new tree.

The sorting phase of the algorithm takes O(|A|.log|A|) with any efficient sorting method. The

running time of the instructions inside the "while" loop is constant because the minimal

weighted nodes in L ∪ N are at the beginning of the lists. Therefore, the running time of the

"while" loop is proportional to the number of created nodes. Since exactly |A|-1 nodes are

created, this takes O(|A|) time. ‡
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The performance of Huffman codes is related to a measure of information of the source
text, called the entropy of the alphabet. Let pa be na/|text|. This quantity can be viewed as the

probability that letter a occurs at a given position in the text. This probability is assumed to be

independent of the position. Then, the entropy of the alphabet according to the pa's is defined as

H(A) = - Error!.

The entropy is expressed in bits (log is a based-two log). It is a lower bound of the average

length of the codewords h(a),

m(A) =  Error!.

Moreover, Huffman codes give the best possible approximation of the entropy (among

methods based on a recoding of the alphabet). This is summarized in the following theorem

whose proof relies on the Kraft-McMillan inequalities.

Theorem 10.3

The average length of any uniquely decipherable code on the alphabet A is at least H(A).

The average length m(A) of a Huffman code on A satisfies H(A) ≤ m(A) ≤ H(A)+1.

The average length of Huffman codes is exactly the entropy H(A) when, for each letter a

of A, pa = 2-|h(a)| (note that the sum of all pa's is 1). The ratio H(X)/m(X) measures the

efficiency of the code. In English, the entropy of letters according to a common probability

distribution on letters is close to 4 bits. And the efficiency of a Huffman code is more than

99%. This means that if the English source text is an 8-bit ASCII file, Huffman compression

method is likely to divide its size by two. The Morse code (developed for telegraphic

transmissions), that also takes into account probabilities of letters, is not a Huffman code, and

has an efficiency close 66%. This not as good as any Huffman code, but the Morse code

incorporate redundancies in order to make transmissions safer.

In practice, Huffman codes are built for ASCII letters of the source text, and also for

digrams (factors of length 2) occurring in the text instead of letters. In the latter case, the source

is factorized into blocks of length 16 bits (or 14 bits). On large enough texts, the length of

blocks can be chosen higher to capture some dependencies between consecutive letters, but the

size of the alphabet grows exponentially with the length of blocks.

Huffman's algorithm generalizes to the construction of prefix codes on alphabets of size

m larger than two. The trie of the code is then an almost m-ary tree. Internal nodes have m sons,

except maybe one node which is father of less than m leaves.

The main default of the whole Huffman's compression algorithm is that the source text

must be read twice. The first time to compute the frequencies of letters, and the second time to

encode the text. Only one reading of the text is possible if one uses known average frequencies

of letters. But then, the compression is not necessarily optimal on a given text. The next section

presents a solution avoiding two readings of the source text.
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There is another statistical encoding that produces a prefix code. It is known as the

Shannon-Fano coding. It builds a weighted tree, as Huffman's method does, but the process

works top-down. The tree and all its subtrees are balanced according to their weights (sum of

occurrences of characters associated to leaves). The result of the method is not necessarily an

optimal weighted tree, so its performance is generally within that of Huffman coding.

10.3. Dynamic Huffman coding

We describe now an adaptive version of Huffman's method. With this algorithm, the

source text is read only once. Moreover, the memory space required by the algorithm is

proportional to the size of the current trie, that is, to the size of the alphabet. The encoding of

letters of the source text is realized while the text is read. In some situations, the compression

ratio is even better than the ratio of Huffman's method.

Assume that za (z a word, a a letter) is a prefix of text. We consider the alphabet A of

letters occurring in z, plus the extra symbol # that stands for all letters not occurring in z but that

possibly appear in text. Let us denote by Tz any Huffman tree built on the alphabet A ∪ {#}

with the following weights:

na = number of occurrences of a in z,

n# = 0.

We denote by hz(a) the codeword corresponding to a, and determined by the tree Tz. Note that

the tree has only one leaf of zero weight, namely, the leaf associated to #.

The encoding of letters proceeds as follows. In the current situation, the prefix z of text

has already been coded, and we have the tree Tz together with the corresponding encoding

function hz. The next letter a is then encoded by hz(a) (according the tree Tz). Afterwards, the

tree is transformed into Tza. At decoding time the algorithm reproduces the same tree at the

same time. However, the letter a may not occur in z, in which case it cannot be translated as

any other letter. Here, the letter a is encoded by hz(#)g(a), that is, the codeword of the special

symbol # according the tree Tz, followed by the initial code of letter a. This step also is

reproduced without any problem at decoding time.

The reason why this method is practically effective comes from an efficient procedure to

update the tree. The procedure UPDATE used in the algorithm below can be implemented in

time proportional to the height of the tree. This means that the compression and decompression

algorithms work in real-time for any fixed alphabet, as it is the case in practice. Moreover, the

compression ratio obtained by the method is close to that of Huffman's compression algorithm.
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Algorithm { adaptive Huffman coding }

begin

z := ε; T := Tε;

while not end of text do begin

a := next letter of text; { h is implied by T }

if a is not a new letter then write(h(a))

else write(h(#)g(a)); { g(a) = initial codeword for a }

T := UPDATE(T);

end;

end.

The key-point of the adaptive compression algorithm is a fast implementation of the

procedure UPDATE. It is based on a characterization of Huffman trees, known as the siblings

property. The property does not hold in general for minimum weighted trees.

Theorem 10.4 (siblings property)

Let T be a complete binary weighted tree (with p leaves) in which leaves have positive

weights, and the weight of any internal node is the sum of weights of its sons. Then, T is
a Huffman tree iff its nodes can be arranged in a sequence (x1, x2, …, x2n-1) such that:

1 — the sequence of weights (w(x1), w(x2), …, w(x2n-1)) is in increasing order, and

2 — for any i (1≤i<n), the consecutive nodes x2i-1 and x2i are siblings (they have the

same father).

Proof

If T is a tree built by Huffman algorithm, the ordering on nodes is just given by the order in

which nodes are deleted from queues during the run of the algorithm.

The "if" part of the proof is by induction on the number p of leaves. Consider the two nodes x1

and x2 of the list. It is rather obvious to prove that they are leaves because weights are strictly

positive integers. The leaves x1 and x2 can be chosen first by Huffman algorithm because they

have minimum weights. Let x be their father. The rest of the construction is done as if we had

only p-1 leaves, x1 and x2 being substituted by x. By induction, the existence of the ordering

proves that the tree in which x is a leaf is a Huffman tree. Thus, the initial tree in which x is the

father of x1 and x2, is also a Huffman tree (see the proof of Theorem 10.2). ‡

The characterization of Huffman trees by the siblings property remains true if only one

leaf has a null weight. During the sequential encoding, the transformation of the current tree Tz

into Tza starts by incrementing the weight of the leaf xi that corresponds to a. If point 1 of the

siblings property is no longer satisfied after that, node xi is exchanged with the node xj for

which j is the greatest integer such that w(xj) < w(xi). If necessary, the same operation is
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repeated on the father of xi, and so on. The exchange of nodes is, in fact, the exchange of the

corresponding subtrees. The tree structure is not affected by exchanges because weights strictly

increase from leaves to the root (except maybe in the 3-node tree containing the leaf associated

to #), so that a node cannot be exchanged with any of its ancestors. This proves that the

procedure UPDATE can be implemented in time proportional to the height of the tree. Thus,

we have proved the following.

Lemma 10.5

Procedure UPDATE can be implemented to work in time O(|A|).
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Figure 10.4. Transformation of Tabra into Tabrac. Marked nodes have been excahanged.

Numbers besides nodes give an ordering satisfying the siblings property.

Example

Figure 10.5 shows the sequential encoding of abracadabra. Letters are assumed to be initially

encoded on 5 bits (a -> 00000, b -> 00001, c -> 00010, ..., z -> 11010). The entire translation

of abracadabra is :

00000 000001 0010001 0 10000010 0 110000011 0 110 110 0

        a     b       r    a    c     a     d     a  b   r  a  

We get a word of length 45. These 45 bits are to be compared with the 57 bits obtained by the

original Huffman's algorithm. For this example, the dynamic algorithm gives a better

compression ratio, say 55/45 = 1, 22. ‡
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Figure 10.5. Dynamic Huffman compression of abracadabra.

The precise analysis of the adaptive Huffman compression algorithm has led to an

improved compression algorithm. The idea of the improvement is to choose a specific ordering

for the nodes of the Huffman tree. One may note indeed that, in the ordering given by the

siblings property, two nodes of same weight are exchangeable. The improvement is based on a

specific ordering that corresponds to a width-first tree-traversal of the tree from leaves to the

root. Moreover, at each level in the tree, nodes are ordered from left to right, and leaves of a

given weight precede internal nodes of the same weight. The algorithm derived from this is
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efficient even for texts of few thousands characters. The encoding of larger texts save almost

one bit per character compared with Huffman's algorithm.

10.4. Factor encoding

Data compression methods with substitutions find all their power when the substitution

applies to variable-length factors instead of blocks. The substitution is defined by a dictionary:

D = {(f, c) : f ∈ F, c ∈ C},

where F is a (finite) set of factors of the source text s, and C is the set of their corresponding

codewords. The set F acts as the alphabet A of Section 10.1. The source text is a concatenation

of elements of F.

Example

Let text be a text composed of ordinary ASCII characters encoded on 8 bits. One may choose

for C the 8-bit words that correspond to no letter of text. Then, F can be a set of factors

occurring frequently inside the text text. Replacing in text factors of F by letters of C

compresses the text. This amounts to increase the alphabet on which text is written. ‡

In the general case of factor encoding, a data compression scheme must solve the three

following points:

— find the set F of factors that are to be encoded,

— design an algorithm to factorize the source text according to F,

— compute a code C in one-to-one correspondence with F.

When the text is given, the computation of such an optimal encoding is a NP-complete

problem. The proof can be done inside the following model of encoding. Let A be the alphabet

of the text. The encoding of text is a word of the form d#c where d (∈ A*) is supposed to

represent the dictionary, # is a new letter (not in A), and c is the compressed text. The part c of

the encoded string is written on the alphabet A ∪ {1, 2, …, n}×{1, 2, …, n}. A pair (i, j)

occurring in c means a reference to the factor of length j which occurs at position i in d.

Example

On A = {a, b, c}, let text = aababbabbabbc. Its encoding can be bbabb#aa(1, 4)a(0, 5)c. The

explicit dictionary is then

D = {(babb,  (1, 4)),  (bbabb,  (0, 5))} ∪ A×A. ‡

Inside the above model, the length of d#c is the number of occurrences of both letters and

pairs of integers that appear in it. For instance, this length is 12 in the previous example. The

search for a shortest word d#c that encodes a given text reduces to the SCS-problem — the
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Shortest Common Superstring problem for a finite set of words — which is a classical NP-

complete problem.

When the set F of factors is known, the main problem is to factorize the source s

efficiently according to the elements of F, that is, to find factors f1, f2, …, fk ∈ F such that

s = f1f2…fk.

The problem arises from the fact that F is not necesarily a unique decipherable code, so several

factorizations are often possible. It is important that the integer k be as small as possible, and

the factorization is said to be an optimal factorization when k is minimal.

The simplest strategy to factorize s is to use a greedy algorithm. The factorization is

computed sequentially. So, the first factor f1 is naturally chosen as the longest prefix of s that

belongs to F. And the decomposition of the rest of the text is done iteratively in the same way.

Remark 1

If F is a set of letters or digrams (F ⊆ A ∪ A×A), the greedy algorithm computes an optimal

factorization. The condition may seem quite restrictive, but in French, for instance, the most

frequent factors ("er", "en") have length 2.

Remark 2

If F is a factor-closed set (all factors of words of F are in F), the greedy algorithm also

computes an optimal factorization.

Another factorization strategy, called here semi-greedy, leads to optimal factorizations

under wider conditions. Moreover, its time complexity is similar to the previous strategy.

Semi-greedy factorization strategy of s

— let m = max{|uv| : u, v ∈ F, and uv is a prefix of s};

— let f1 be an element of F such that f1v is prefix of s, and |f1v| = m, for some v ∈ F;

— let s = f1s';

— iterate the same process on s'.

Example

Let F = {a, b, c, ab, ba, bb, bab, bba, babb, bbab}, and s = aababbabbabbc. The greedy

algorithm produces the factorization

s = a ab ab babb ab b c

which has 7 factors. The semi-greedy algorithm gives

s = a a ba bbab babb c

which is an optimal factorization. Note that F is prefix-closed (prefixes of words of F are in F)

after adding the empty word. ‡
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The interest in the semi-greedy factorization algorithm comes from the following lemma

whose proof is left as an exercise. As we shall see later in the section, the hypothesis of the set

of factors F arises naturally for some compression algorithms.

Lemma 10.6

If the set F is prefix-closed, the semi-greedy factorization strategy produces an optimal

factorization.

When the set F is finite, the semi-greedy algorithm may be realized with the help of a

string-matching automaton (see Chapter 7). This leads to a linear-time algorithm to factorize a

text.

Finally, if the set F is known, and if the factorization algorithm has been designed, the

next step to consider in order to perform a whole compression process is to determine the code

C. As for statistical encodings of Sections 10.2 and 10.3, the choice of codewords associated

with factors of F can take into account their frequencies. This choice can be done once for all,

or in a dynamic way during the factorization of s. Here is an example of a possible strategy: the

elements of F are put into a list, and encoded by their position in the list. A move-to-front

procedure realized during the encoding phase tends to attribute small positions, and thus short

encodings, to frequent factors. The idea of encoding a factor by its position in a list is applied in

the next compression method.

Factor encoding becomes even more powerful with an adaptive feature. It is realized by

the Ziv-Lempel method (ZL method, for short). The dictionary is built during the compression

process. The codewords of factors are their positions in the dictionary. So, we regard the

dictionary D as a sequence of words (f0, f1, …). The algorithm encodes positions in the most

efficient way according to the present state of the dictionary, using the function lg defined by:

lg(1) = 1 and,

lg(n) = ⎡log2(n)⎤, for n > 1.
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Algorithm ZL; { Ziv-Lempel compression algorithm }

{ encodes the source s on the binary alphabet }

begin

D := {ε};  x := s#;
while x ≠ ε do begin
fk := longest word of D such that x = fkay, for some a ∈ A;

a := letter following fk in x;

write k on lg|D| bits;

write the initial codeword of a on lg|A| bits;

add fka at the end of D;

x := y;

end;

end.

Example

Let A = {a, b, #}. Assume that the initial codewords of letters are 00 for a, 01 for b, and 10 for

#. Let s = aababbabbabb#. Then, the decomposition of s is

s = a ab abb abba b b#

which leads to

c = 000 101 1001 1100 00001 10110.

After that, the dictionary D contains seven words:

D = (ε, a, ab, abb, abba, b, b#). ‡

Intuitively, ZL algorithm compresses the source text because it is able to discover some

repeated factors inside it. The second occurrence of such a factor is encoded only by a pointer

onto its first position, which can save a large amount of space.

From the implementation point of view, the dictionary D in ZL algorithm can be stored

as a word trie. The addition of a new word in the dictionary takes a constant amount of time

and space.

There is a large number of possible variations on ZL algorithm. The study of this

algorithm has been stimulated by its good performance in practical applications. Note, for

instance, that the dictionary built by ZL algorithm is prefix-closed, so the semi-greedy

factorization strategy may help to reduce the number of factors in the decomposition.

The model of encoding valid for that kind of compression method is more general than

the preceding one. The encoding c of the source text s is a word on the alphabet A ∪ {1, 2 , …,

n}×{1, 2, …, n}. A pair (i, j) occurring in c references a factor of s itself: i is the position of the

factor, and j is its length.
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Example

Let again s = aababbabbabb#. It can be encoded by the word

c = a (0, 1)b (1, 2)b (3, 3)a b (11, 1)#,

of length 10, which corresponds to the factorization found by ZL algorithm. ‡
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Figure 10.6. Efficient factorization of the source.

v5 is the shortest factor not occurring on its left.

The number of factors of the decomposition of the source text reduces if we consider a

decomposition of the text similar to the f-factorization of Section 8.2. The factorization of s is a

sequence of words (f1, f2, …, fm) such that s = f1f2…fm, and that is iteratively defined by (see

Figure 10.6):

fi is the shortest prefix of fifi+1…fm which does not occurs before in s.

Example

The factorization of s = aababbabbabb# is

(a, ab, abb, abbabb#)

which accounts to encode s into

c = a (0, 1)b (1, 2)b (3, 6)#,

word of length 7 only, compared with the previous factorization. ‡

Theorem 10.7

The f-factorization of a string s can be computed in linear time.

Proof

Use the directed acyclic word graph DAWG(s), or the suffix tree T(s). ‡

The number of factors arising in the f-factorization of a text measures, in a certain sense,

the complexity of the text. The complexity of sequences is related to the notion of entropy of a

set of strings as stated below. Assume that the possible set of texts of length n (on the alphabet

A) is of size |A|hn (for all length n). Then h (≤1) is called the entropy of the set of texts. For

instance, if the probability of appearance of a letter in a text does not depend on its position,

then h is the entropy H(A) considered in Section 10.2.
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Theorem 10.8

The number m of elements of the f-factorization of long enough texts is upper bounded

by hn/logn, for almost all texts.

We end this section by reporting some experiments on compression algorithms. Table

10.1 gives the results. Rows are indexed by algorithms, and columns by types of text files.

"Uniform" is a text on a 20-letter alphabet generated with a uniform distribution of letters.

"Repeated alphabet" is a repetition of the word abc…zABC…Z. Compression of the five files

have been done with Huffman method, Ziv-Lempel algorithm (more precisely, COMPRESS

command of UNIX), and the compression algorithm, called FACT, based on the f-

factorization. Huffman method is the most efficient only for the file "Uniform", which is not

surprising. For other files, the results for COMPRESS and FACT are similar.

Source   French text  C programLisp program    Uniform    Repeated alphabet

Initial length 62816 684497 75925 70000 530000

Huffman 53.27 % 62.10 % 63.66 % 55.58 % 72.65 %

COMPRESS 41.46 % 34.16 % 40.52 % 63.60 % 2.13 %

FACT 47.43 % 31.86 % 35.49 % 73.74 % 0.09 %

Table 10.1. Sizes of some compressed files

(best scores in bold).

10.5.* Parallel Huffman coding

The sequential algorithm for Huffman coding is quite simple, but unfortunately it looks

inherently sequential. Its parallel counterpart is much more complicated, and requires a new

approach. The global structure of Huffman trees must be explored deeper. In this section, we

give a polylogarithmic time parallel algorithm to compute a Huffman code. The number of

processors is M(n), where M(n) is the number of processors needed for a (min, +)

multiplication of two n by n real matrices in logarithmic parallel time. We assume, for

simplicity, that the alphabet is binary.

A binary tree T is said to be left-justified iff it satisfies the following properties:

(1) — the depths of the leaves are in non-increasing order from left to right,

(2) — if a node v has only one son, then it is a left son,

(3) — let u be a left brother of v, and assume that the height of the subtree rooted at v is at

least l. Then the tree rooted at u is full at level l, which means that u has 2l descendants at

distance l.



Chapter 10 252 21/7/97

Efficient Algorithms on Texts 252 M. Crochemore & W. Rytter

For the present problem, the most important is the following property of left-adjusted

trees.

Basic property:

Let T be a left-justified binary tree. Then, it has a structure illustrated in Figure 10.7. All

hanging subtrees have height at most logn.

1
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cost-low
compute

n = i
7

Figure 10.7. A left-justified Huffman tree. The hanging subtrees are of logarithmic height.

Lemma 10.9
Assume that the weights p1, p2, ..., pn are pairwise distinct and in increasing order. Then,

there is Huffman tree for (p1, p2, ..., pn) which is left-justified.

Proof

We first show the following claim:

For each tree T we can find a tree T' satisfying (1), (2), (3), whose leaves are a

permutation of leaves of T, and such that the depths of corresponding leaves in the trees T

and T' are the same.

This claim can be proved by induction with respect to the height h of the tree T. Let T1 be

derived from T by the following transformation : cut all leaves of T at maximal level; the

fathers of these leaves become new leaves, called special leaves in T1. The tree T1 has height h-

1. It can be transformed into a tree T1' satisfying (1), by applying the inductive assumption.

The leaves of height h-1 of T1' form a segment of consecutive leaves from left to right. They

contain all special leaves. We can permute the leaves at height h-1 in such a way that special

leaves are at the left. Then, we insert back the deleted leaves as sons of their original fathers

(special leaves in T1 and T1'). The resulting tree T' satisfies the claim.

Let us consider an Huffman tree T. It can be transformed into a form satisfying conditions (1)

to (3), with the weight of the tree left unchanged. Hence, after the transformation, the tree is
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also of minimal weight. Therefore, we can consider that our tree T is optimal and is left-

justified. It is enough to prove that leaves are in increasing order of their weights pi, from left to

right. But this is straightforward since the deepest leaf has the smallest weight. Hence, the tree

T satisfies all requirements. This completes the proof. ‡

Theorem 10.10

The weight of a Huffman tree can be computed in O(log2n) time with n3 processors. The

corresponding tree can be constructed within the same complexity bounds.

Proof
Let weight[i, j] = pi+1+pi+2+…+pj. Let cost[i, j] be the weight of a Huffman tree for (pi+1,

pi+2, …, pj), and whose leaves are keys Ki+1, Ki+2, …, Kj. Then, for i < j-1, we have:

(*)  cost[i, j] = min{cost[i, k]+cost[k, j]+weight[i, j] : i < k < j}.

Let us use the structure of T shown in Figure 10.7. All hanging subtrees are shallow, they are

of height at most logn. So, we first compute the weights of such shallow subtrees.

Let cost-low[i, j] be the weight of the Huffman tree of logarithmic height, whose leaves are

keys  Ki+1, Ki+2, …, Kj.

The table cost-low can be easily computed in parallel by applying (*). We initialize cost-low[i,

 i+1] to pi, and cost-low[i, j] to ∞, for all other entries. Then, we repeat logn times the same

parallel-do statement:

for each i, j, i < j-1 do in parallel

cost-low[i, j] := min{cost-low[i, k]+cost-low[k, j] : i < k < j} + weight[i, j].

We need n processors for each operation "min" concerning a fixed pair (i, j). Since there are n2

pairs (i, j), globally we use a cubic number of processors to compute cost-low's.

Now, we have to find the weight of an optimal decomposition of the whole tree T into a

leftmost branch, and hanging subtrees. The consecutive points of this branch correspond to

points (1, i). Consider the edge from (1, i) to (1, j), and identify it with the edge (i, j). The

contribution of this edge to the total weight is illustrated in Figure 10.8.

i

j

Figure 10.8. edge-cost[i, j] = cost-low[i, j] + weight[1, j].

We assign to the edge (i, j) the cost given by the formula:

edge-cost(i, j) = cost-low[i, j] + weight[1, j].

It is easy to deduce the following fact:
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the total weight of T is the sum of costs of edges corresponding to the leftmost branch.

Once we have computed all cost-low's we can assign the weights to the edges correspondingly

to the formula, and we have an acyclic directed graph with weighted edges. The cost of the

Huffman tree is reduced to the computation of the minimal cost from 1 to n in this graph. This

can be done by logn squarings of the weight matrix of the graph. Each squaring corresponds to

a (min, +) multiplication of n×n matrices, so, can be done in logn time with n3 processors.

Hence log2n time is enough for the whole process. This completes the proof of the first part of

the theorem.

Given costs, the Huffman tree can be constructed within the same complexity bounds. We

refer the reader to [AKLMT 89]. This completes the proof of the whole theorem. ‡

i 

j k 

l 

Figure 10.9. The quadrangle inequality: (cost of plain lines) ≤ (cost of dashed lines).

In fact the matrices which occur in the algorithm have a special property called the

quadrangle inequality. This property allows the number of processors to be reduced to a

quadratic number.

A matrix C has the quadrangle inequality iff for each i < j < k < l we have:

C[i, k] + C[j, l] ≤ C[i, l] + C[j, k].

Let us consider matrices that are strictly upper triangular (elements below the main diagonal,

and on the main diagonal are null). Such matrices correspond to weights of edges in acyclic

directed graphs. Denote by © the (min, +) multiplication of matrices:

A © B = C iff C[i, j] = min{A[i, k]+B[k, j] : i < k < j}.

The proof of the following fact is left to the reader.

Lemma 10.11

If the matrices A and B satisfy the quadrangle inequality then A © B also satisfies this

property.

For matrices occurring in the Huffman tree algorithm, the (min, +) multiplication is

easier in parallel, and the number of processors is reduced by a linear factor, due to the

following lemma.
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Lemma 10.12

If the matrices A and B satisfy the quadrangle inequality then A © B can be computed in

O(log2n) time with O(n2) processors.

Proof

Let us fix j, and denote by CUT[i] the smallest integer k for which the value of A[i, k]+B[k, j] is

minimal. The computation of A © B reduces to the computation of vectors CUT for each j. It is

enough to show that, for j fixed, this vector can be computed in O(log2n) time with n

processors.

imid

i1

i2

CUT(imid)

CUT(i1)

CUT(i2)
j

Figure 10.10. Computing cuts by a divide-and-conquer strategy.

The structure of the algorithm is the following:

let imid the middle of interval [1, 2, …,n]; compute CUT[imid] in O(logn) time with n

processors assuming that the value of CUT is in the whole interval [1, 2, …,n].

Afterwards it is easy to see, due to the quadrangle inequality, that

CUT[i] ≤ CUT[imid] for all i ≤ imid,

CUT[i] ≥ CUT[imid] for all i ≥ imid.

Using this information we compute CUT[i] for all i ≤ imid, knowing that its value is above

CUT[imid]. Simultaneously we compute CUT[i] for all i > imid, knowing that its value is not

above CUT[imid]. Let m be the size of the interval in which the value of CUT[i] is expected to

be (for i in the interval of size n). We have the following equation for the number P(n, m) of

processors:

P(n, m) ≤ max(m, P(n, m1)+P(n, m2)), where m1+m2 = m.

Obviously P(n, n) = O(n). The depth of the recursion is logarithmic. Each evaluation of a

minimum takes also logarithmic time. Hence, we get the required total time. For a fixed j,
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P(n, n) processors are enough. Altogether, for all j, we need only a quadratic number of

processors. This completes the proof. ‡

The lemma implies that the parallel Huffman coding problem can indeed be solved in

polylogarithmic time with only a quadratic number of processors. This is still not optimal,

since the sequential algorithm makes only O(n.logn) operations. We refer the reader to

[AKLMT 89] for an optimal algorithm.
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11. Approximate pattern matching

In practical pattern matching applications, the exact matching is not always pertinent. It is

often more important to find objects which match a given pattern in a reasonably approximate

way. In this chapter, approximation is measured mainly by the so-called edit distance: the

minimal number of local edit operations to transform one object into another. Such operations

are well suited for strings, but they are less natural for two-dimensional patterns or for trees.

The analogue for DNA sequences is called the alignment problem. Algorithms are mainly

based on the algorithmic method called dynamic programming. We present also problems

strongly related to the notion of edit distance, namely, the computation of longest common

subsequences, string-matching allowing errors, and string-matching with don't care symbols.

At the end of the chapter, we give the scheme of an algorithm to compute efficiently the edit

distance in parallel.

11.1. Edit distance — serial computation

An immediate question arising in applications is to be able to test the equality of two

strings allowing some errors. The errors correspond to differences between the two words. We

consider in this section three types of differences between two strings x and y:

change — symbols at corresponding positions are distinct,

insertion — a symbol of y is missing in x at corresponding position,

deletion — a symbol of x is missing in y at corresponding position.

It is rather natural to ask for the minimum number of differences between x and y. We translate

it as the smallest possible number of operations (change, deletion, insertion) to transform x into

y. This is called the edit distance between x and y, and denoted by edit(x, y). It is clear that it is a

distance between words, in the mathematical sense. This means that the following properties

are satisfied:

— edit(x, y) = 0 iff x = y,

— edit(x, y) = edit(y, x) (symmetry),

— edit(x, y) ≤ edit(x, z) + edit(z, y) (triangle inequality).

The symmetry of edit comes from the duality between deletion and insertion: a deletion of the

letter a of x in order to get y corresponds to an insertion of a in y to get x.
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ACCATGAA---ACTTCTTATCCTCACCTGCCTCGTGGCTG

ACCATGAGTGCACTTCTGATCCTAGCCCTT---GTGGGAG

Figure 11.1. Alignment of two DNA sequences showing

changes, insertions (- in top line), and deletions (- in bottom line).

Below is an example of transformation of x = wojtk into y = wjeek.

w o j t   k

  ↓   deletion

      ↓     change

        ↓   insertion

w   j e e k

This shows that edit(wojtk, wjeek) ≤ 3, because it uses three operations. In fact, this is the

minimum number of edit operations to transform wojtk into wjeek.

From now on, we consider that words x and y are fixed. The length of x is m, and the

length of y is n, and we assume that n ≥ m. We define the table EDIT by

EDIT[i, j] = edit(x[1…i], y[1…j]),

with 0 ≤ i ≤ m, 0 ≤ j ≤ n. The boundary values are defined as follows (for 0 ≤ i ≤ m, 0 ≤ j ≤ n):

EDIT[0, j] = j, EDIT[i, 0] = i.

There is a simple formula to compute other elements

(*) EDIT[i, j] = min(EDIT[i-1, j]+1, EDIT[i, j-1]+1, EDIT[i-1, j-1]+∂(x[i], y[j])),

where ∂(a, b) = 0 if a = b, and ∂(a, b) = 1 otherwise. The formula reflects the three operations,

deletion, insertion, change, in that order.

There is a graph theoretical formulation of the editing problem. We can consider the grid

graph, denoted by G, composed of nodes (i, j) (for 0 ≤ i ≤ m, 0 ≤ j ≤ n). The node (i-1, j-1) is

connected to the three nodes (i-1, j), (i, j-1), (i, j) when they are defined (i.e. when i ≤ m, or

j ≤ n). Each edge of the grid graph has a weight according to the recurrence (*). The edges

from (i-1, j-1) to (i-1, j) and (i, j-1) have weight 1, as they correspond to insertion or deletion of

a single symbol. The edge from (i-1, j-1) to (i, j) has weight ∂(x[i], y[j]). Figure 11.2 shows an

example of grid graph for words cbabac and abcabbbaa. The edit distance between words x

and y equals the length of a shortest path in this graph from the source (0, 0) (left upper corner)

to the sink (m, n) (right bottom corner).
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a b c a b b b a a

c

b

a

b

a

c

=

=

=

=

source

sink

x 

y 

=

delete letter of x 

change letter of x 
by letter of y 

insert letter of y into x 

no change

Figure 11.2. The path corresponds to the sequence of edit operations:

insert(a), insert(b), delete(b), insert(b), insert(b), change(c, a).

function edit(x, y)  { computation of edit distance }

{ |x| = m, |y| = n, EDIT is a matrix of integers }

begin

for i := 0 to m do EDIT[i, 0] := i;

for j := 1 to n do EDIT[0, j] := j;

for i := 1 to m do

for j := 1 to n do

EDIT[i, j] = min(EDIT[i-1, j]+1, EDIT[i, j-1]+1,

 EDIT[i-1, j-1] + ∂(x[i], y[j]));

return EDIT[m, n]

end.

The algorithm above computes the edit distance of strings x and y. It stores and computes

all values of the matrix EDIT, although the only one entry EDIT[m, n] is required. This serves

to save on time, and this feature is called the dynamic programming method. Another possible

algorithm to compute edit(x, y) could be to use the classical Dijkstra's algorithm for shortest

paths in the grid graph.

Theorem 11.1

Edit distance can be computed in O(mn) time using O(m) additional memory.

Proof

The time complexity of the algorithm above is obvious. The space complexity follows from the

fact that we have not to store the whole table. The current and the previous columns (or lines)

are sufficient to carry out computations. ‡
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Remark

We can assign specific costs to edit operations, depending on the type of operations, and on the

type of symbols involved. Such a generalized edit distance can still be computed using a

formula analogous to (*).

Remark

As noted in the proof of the previous theorem, the whole matrix EDIT does not need to be

stored (only two rows are necessary at a given step) in order to compute only edit(x, y).

However, we can keep it in memory if we want to compute a shortest sequence of edit

operations transforming x into y. This is essentially the same process as reconstructing a

shortest path from the table of sizes of all-pairs shortest paths.

11.2. Longest common subsequence problem

In this section, we consider a problem that is a particular case of the edit distance problem

of previous section. This is the question of computing longest common subsequences. We

denote by lcs(x, y) the maximal length of subsequences common to x and y. For fixed x and y,

we denote by LCS[i, j] the length of a longest common subsequence of x[1…i] and y[1…j].

a b c a b b a 

c 

b 

a 

b 

a 

c 

source

sink

Figure 11.3. The size of the longest subsequence is the maximal number of shadowed boxes

on a monotonically decreasing path from source to sink. Compare to Figure 11.4.

There is a strong relation between the longest common subsequence problem and a

particular edit distance computation. Let editdi(x, y) be the minimal number of operations delete

and insert to transform x into y. This corresponds to a restricted edit distance where changes are

not allowed. A change in the edit distance of Section 11.1 can be replaced by a pair of

operation, deletion and insertion. The following lemma shows that the computation of lcs(x, y)

is equivalent to the evaluation of editdi(x, y). The statement is not true in general for all edit
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operations, or for edit operations having distinct costs. However, the restricted edit distance

editdi remains to give weight 2 to changes, and weight 1 to deletions and insertions. Recall that

x and y have respective length m and n, and let EDITdi[i, j] be editdi(x[1…i], y[1…j]).

Lemma 11.2
2lcs(x, y) = m + n - editdi(x, y), and,

for 0 ≤ i ≤ m and 0 ≤ j ≤ n, 2LCS[i, j] = i + j - EDITdi[i, j].

Proof

The equality can be easily proved by induction on i and j. This is also visible on the graphical

representation in Figure 11.4. Consider a path from the source to the sink in which diagonal

edges are only allowed when the corresponding symbols are equal. The number of diagonal

edges in the path is the length of a subsequence common to x and y. Horizontal and vertical

edges correspond to a sequence of edit operations (delete, insert) to transform x into y. If we

assign cost 2 to diagonal edges, the length of the path is exactly the sum of lengths of words,

m+n. The result follows. ‡

a b c a b b a 

c 

b 

a 

b 

a 

c 

source

sink

Figure 11.4. Assigning cost 2 to diagonal edges, the length of the path is m+n.

Diagonal edges correspond to equal letters, others to edit operations.

As a consequence of Lemma 11.2, computing lcs(x, y) takes the same time as computing

the edit distance of the strings. A longest common subsequence can even be found with linear

extra space (see bibliographic references).

Theorem 11.3

A longest common subsequence of x and y can be computed in O(mn) time using O(mn)

additional memory.
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Proof
Assume that the table EDITdi is computed for zero-one costs of edges. Table LCS can be

recomputed from Lemma 11.2. A longest common subsequence can be constructed from the

table LCS. ‡

Let r be the number of shadowed boxes in Figure 11.3. More formally, it is the number

of pairs (i, j) such that x[i] = y[j]. If r is small (which often happens in practice) compared to

mn, then there is an algorithm to compute longest common subsequence faster than the

previous algorithm.

The algorithm is given below. It processes the word x sequentially from left to right.

Consider the situation when x[1…i-1] has just been processed. The algorithm maintains a

partition of positions on the word y into intervals I0, I1, …, Ik, …. They are defined by

Ik = {j ; lcs(x[1…i-1], y[1…j]) = k}.

In other words, positions in a class Ik correspond to prefixes of y having the same maximal

length of common subsequence with x[1…i-1].

Consider, for instance, y = abcabbaba and x = cb…. Figure 11.5 (top) shows the

partition {I0, I1, I2} of positions on y. For the next symbol of x, letter a, the figure (bottom)

displays the modified partition {I0, I1, I2, I3}. The computation remains to shift to the right,

like bowls on a wire, positions corresponding to occurrences of a inside y.

The algorithm lcs below implements this strategy. It makes use of operations on intervals

of positions: CLASS, SPLIT, and UNION. They are defined as follows. For a position p on y,

CLASS(p) is the index k of the interval Ik to which it belongs. When p is in the interval [f, f+1,

…, g], and p ≠ f, then SPLIT(Ik, p) is the pair of intervals ([f, f+1, …, p-1], [p, p+1, …, g]).

Finally, UNION is the union of two intervals; in the algorithm, only unions of disjoint

consecutive intervals are performed.
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b 

Figure 11.5. Hunt-Szymanski strategy: Like an abacus!

Word y = abcabbaba. Partitions of positions just before processing

letter a of x = cba (top), and just after (bottom).

function lcs(x, y) : integer;  { Hunt-Szymanski algorithm }

{ m = |x| and n = |y| }

begin

I0 := {0,1,…,n}; for k := 1 to n do Ik := ∅;

for i := 1 to m do

for each p position of x[i] inside y in decreasing order do

begin

k := CLASS(p);

if k = CLASS(p-1) then begin

(Ik, X) := SPLIT(Ik, p);

Ik+1 := UNION(X, Ik+1);

end;

end;

return CLASS(n);

end;
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Theorem 11.4

Algorithm lcs computes the length of a longest common subsequence of words of length

m and n (m ≤ n) in time O((n+r)logn) time, where r = |{(i, j) ; x[i] = y[j]}|.

Proof

The correctness of the algorithm is left as an exercise.

The time complexity of the algorithm strongly relies on an efficient implementation of intervals

Ik's. With an implementation with B-trees, it can be shown that each operation CLASS, SPLIT,

and UNION takes O(logn) time. Preprocessing lists of occurrences of letters of the word y

takes O(nlogn) time. The rest of the algorithm takes then O(rlogn) time. The result follows. ‡

According to Theorem 11.4, if r is small, the computation of lcs by the last algorithm

takes O(nlogn) time, which is faster than with the dynamic programming algorithm. But, r can

be of order mn (in the trivial case where x = am, y = an, for instance), and then the time

complexity becomes O(mnlogn), which is larger than with the dynamic programming

algorithm.

The problem of computing lcs's can be reduced to the computation of longest increasing

subsequence of a given string of elements belonging to a linearly ordered set. Let us write the

coordinates of shadowed boxes (as in Figure 11.3) from the first to the last row, and from left

to right within rows. Doing so, we get a string w. No matrix table is needed to build w. The

words x and y themselves suffice. For example, for the words of Figure 11.3 we get the

sequence w = ((1,3), (2,2), (2,5), (2,6), (3,1), (3,4), (3,7), (4,2), (4,5), (4,6), (5,1), (5,4), (5,7),

(6,3)).

Define the following linear order on pairs of positions

(i, j) << (k, l) iff ((i = k) & (j > l)) or ((i ≠ k) & (j< l)).

Then the longest increasing (according to <<) subsequence of the string w gives the longest

common subsequence of the words x and y. There is an elegant algorithm to compute such

increasing subsequences running in time O(rlogr). This gives an alternative to the above

algorithm.

11.3. String-matching with errors

String-matching with errors differs only slightly from the edit distance problem. Here,

we are given pattern pat and text text, and we want to compute min(edit(pat, y) : y ∈ Fac(text)).

Simultaneously, we want to find a factor y of text realizing the minimum, and the position of

one of its occurrences in text. We consider the table SE (that stands for String-matching with

Errors), of the same type as table EDIT:

SE[i, j] = min(edit(pat[1…i], y) : y ∈ Fac(text[1…j])).
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The computation of table SE can be done with dynamic programming. It is very similar to the

computation of table EDIT (Section 11.1).

Theorem 11.5

The problem of string-matching with errors can be solved in O(mn) time.

Proof

Surprisingly the algorithm is almost the same as that for computing edit distances. The only

difference is that we initialize SE[0, i] to 0, instead of to i for EDIT. This is because the empty

prefix of pat matches an empty factor of text (no error). The formula (*) works also for SE.

Then, SE[m, n] is the distance between pat and one of its best match y in the text. To find an

occurrence of y and its position in text, we can use the same graph-theoretic approach as for the

computation of longest common subsequences (Section 11.2). A suitable path should be

recovered using the computed table SE. This completes the proof. ‡

One of the most interesting problems related to string-matching with errors concerns the

case when the allowed number of errors is bound by a constant k. The number k is usually

understood as a small fixed constant. We show that the problem can be solved in O(n) time, or

more exactly in O(kn) time if k is not fixed. For a fixed value of the parameter k, this gives an

algorithm having an optimal asymptotic time complexity. Recall that the string edit table SE is

computed according to the recurrence:

(*) SE[i, j] = min(SE[i-1, j]+1, SE[i, j-1]+1, SE[i,j]+∂(x[i], y[j])),

for words x and y.

Suppose that we have a fixed bound k on the number of errors. We have to compute only

those entries of the table SE which contain values not exceeding k. The basic difficulty, in order

to reduce the time complexity of the algorithm, is that the size of the table SE is O(mn), but we

require that the complexity is O(kn). Only O(kn) entries of the table must be considered. The

basic algorithmic trick is to consider only so-called d-nodes, which are entries of the table SE

satisfying special conditions. The d-nodes are defined in such a way that we have altogether, for

d = 0, 1, …, k, O(kn) such nodes.

We consider diagonals of the table SE. Each diagonal is oriented top-down, left-to-right.

We define a d-node as the last pair (i, j) on a given diagonal with SE[i, j] = d. Note that it is

possible that a diagonal has no d-node. The approximate string-matching problem reduces to

the computation of d-nodes. And it is clear that there is an occurrence of the pattern with d

errors ending at position j in text iff (m, j) is a d-node.

Computation of d-nodes is done in the order d = 0,1, …, k. Computation of 0-nodes is

equivalent to string-matching without errors. Assume that we have already computed the (d-1)-

nodes. We show how to compute d-nodes. Two auxiliary concepts are necessary: d-special

nodes, and maximal subpaths of zero-weight on a given diagonal.
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diagonal p p p+1 p p-1

d-special nodes (d-1)-nodes

1
1

1

Figure 11.6. The computation of d-special nodes:

nodes reachable by one edge of weight 1 from a (d-1)-node.

A d-special node is a node reachable from a (d-1)-node by a single edge of weight one.

The computation of d-special nodes is illustrated in Figure 11.6.

For a node (i, j), define the node NEXT(i, j) = (i+t, j+t) as a lowest node on the same

diagonal as (i, j) reachable from (i, j) by a subpath of zero weight. The subpath can be of zero

length, and, in this case, NEXT(i, j) = (i, j).

d-special node

d-node

(i, j)

(i+t, j+t)

maximal subpath
of zero weight

diagonal p 

Figure 11.7. The computation of d-nodes from d-special nodes.
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Once d-special nodes are computed, the d-nodes can be found easily, as suggested in

Figure 11.7. The structure of the whole algorithm is given below.

Algorithm Approximate_string_matching with at most k errors;

begin

compute 0-nodes { exact string-matching }

for d = 1 to k do begin

compute d-special nodes; { see Figure 11.6 }

{ computation of d-nodes }

S := {NEXT(i,j) : (i,j) is a d-special node};

for each diagonal p do

select, on diagonal p, lowest node which is in the set S;

selected nodes form the set of d-nodes

end;

end.

Theorem 11.6 

Assume that the alphabet is of a constant size. Approximate string-matching with k errors

can be done in O(kn) time.

Proof

It is enough to prove that we can run O(kn) calls of the function NEXT in O(kn) time. We show

that, after a linear-time preprocessing, each value NEXT(i, j) can be computed in constant time.

The equality NEXT(i, j) = (i+t, j+t) means that t is the size of the longest common prefix of

pat[i…m] and text[j…n]. Assume that we have computed the common suffix tree for pat and

text. The computation of the longest common prefix of two suffixes is equivalent to the

computation of their lowest common ancestor (LCA) in the tree. There is an algorithm

(mentioned in Section 5.7) which preprocesses any tree in linear time in order to allow further

LCA queries in constant time. This completes the proof. ‡

Remark

It can be shown that the same algorithm, implemented in the PRAM model, gives an efficient

parallel algorithm for the approximate string-matching problem.

11.4. String-matching with don't care symbols

In this section, we assume that pattern pat and text text can contain occurrences of the

symbol ø, called the don't care symbol. Several different don't care symbols can be considered
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instead of only one, but the assumption is that they are all undistinguishable from the point of

view of string-matching. These symbols match any other symbol of the alphabet. We define an

associated notion of matching on words as follows. We say that two symbols a, b match if

they are equal, or if one of them is a don't care symbol. We write a ≈ b in this case. We say that

two strings u and v (of same length) match if u[i] ≈ v[i] for any position i. String-matching

with don't care symbols is the problem of finding a factor of text that matches the pattern pat

according to the present relation ≈.

a b ∅a b ∅a b ∅a b ∅a 

b ∅

a 

a b ∅ a b ∅a b a b a a 

Figure 11.8. Matching words with the don't care symbol ø.

The string-matching with don't care symbols does not use any of the techniques

developed for other string-matching questions. This is because the relation ≈ is not transitive (a

≈ ø and ø ≈ b does not imply a ≈ b). Moreover, if symbol comparisons (involving only the

relation ≈) are the only access to input texts, then there is a quadratic lower bound for the

problem, which additionally proves that the problem is quite different from other string-

matching questions. The algorithm presented later is an interesting example of a reduction of a

textual problem to a problem in arithmetics.

Theorem 11.7

If symbol comparisons are the only access to input texts, then O(n2) such comparisons

are necessary to solve the string-matching with don't care symbols.

Proof

Consider a pattern of length m, and a text of length n = 2m, both consisting entirely of don't

care symbols ø. Occurrences of the pattern start at all positions 0…m. If the comparison "pat[j]

≈ text[i]", for 1 ≤ j ≤ m and m < i ≤ n, is not done, then we can replace pat[j] and text[i] by two

distinct symbols a, b (that are not don't care symbols). Then the output remains unchanged, but

one of the occurrences is disqualified. Hence, the algorithm is not correct. This proves that all

comparisons "pat[j] ≈ text[i]", for 1 ≤ j ≤ m and m < i ≤ n, must be done. This gives m(m+1)/2

= O(n2) comparisons. This completes the proof. ‡

Contrary to what is done elsewhere, we temporarily assume that positions in pat and text

are numbered from zero (and not from one). We start with an algorithm which "multiplies"

two words in a similar manner as two binary numbers are multiplied, but ignoring the carry.

We define the product operation • as the composition of ≈ and the logical "and" in the

following sense. If x, y are two strings, then z = x • y is defined by
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z[k] = AND(x[i] ≈ y[j] : i+j = k).

In other words, it is the logical "and" of all values x[i] ≈ y[j] taken over all i, j such that both

i+j = k and x[i], y[j] are defined. We can write symbolically:  •  =  (≈, and).

Let p to be the reverse of pattern pat, and consider z = p • text. Let us examine the value

of z[k]. We have z[k] = true iff (p[m-1] ≈ text[k-m+1] and p[m-2] ≈ text[k-m+2] and … and

p[0] ≈ text[k]). So, "z[k] = true" exactly means that there is an occurrence of pat ending at

position k in text. Hence, the string-matching with don't care symbols reduces to the

computation of products •.

Let us define an operation on logical vectors similar to •. If x, y are two logical vectors,

then z = x ◊ y is defined by

z[k] = OR(x[i] and y[j] : i+j = k).

For a word x and a symbol a, denote by logical(a, x) the logical vector whose i-th component is

true iff x[i] = a. Define also

LOGICALa, b(x, y) = logical(a, x) ◊ logical(b, y).

It is now easy to see the following fact: 

For two words x, y, the vector x • y equals the negation of logical OR of all vectors

LOGICALa, b(x, y) over all distinct symbols a, b which are not don't care symbols.

A consequence of the above fact is that, for a fixed-size alphabet, the complexity of

evaluating the product • is of the same order as that of computing the operation ◊.

Now, we show that the computation of the operation ◊ can be reduced to the computation

of the ordinary product * of two integers. Let x, y be two logical vectors of size n. Let k = logn.

Replace logical values true and false by ones and zeros, respectively. Next, insert between each

two consecutive digits an additional group of k zeros. We obtain two numbers x', y' (in binary

representation). Let z' be the integer, product of these numbers, z' = x * y. The vector z = x ◊ y

can be recovered from z' as follows. Take the first digit (starting at position 0), and then each

(k+1)-th digit of z'; convert ones and zeros into true and false, respectively. In this way, we

have proved the following statement.

Theorem 11.8

The string-matching problem with don't care symbols can be solved in IM(nlogn) time,

where IM(r) denotes the complexity of multiplying two integers of size r.

The value IM(r) depends heavily on the model of computations considered. If bit

operations are counted, then the best known solution for the problem is given by the

Schönhage-Strassen multiplication, which works in time only slightly larger than O(rlogr).

Even with the serial model of computation considered throughout the book, uniform RAM

model (with logarithmic-sized integers), then, the best known complexity is at least O(rlogr).
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In fact, no linear-time algorithm for the problem is known. This gives an O(nlog2n)-time

algorithm for the string-matching problem with don't care symbols.

String-matching with don't care symbols has a methodological interest because of its

relation to arithmetics. It should be also interesting to find relations between some other typical

textual problems to arithmetics.

11.5*. Edit distance — efficient parallel computation

The parallel computation of the edit distance can be ruled out as a shortest path problem

for the corresponding grid graph G (see Section 11.1). Assume for simplicity that words x and

y are of the same length n. Then, G has (n+1)2 nodes. Let A be the matrix of weights associated

to edges of G. We can use (min, +) matrix multiplications to get the required value of the edit

distance. Assume that the weight from the sink node to itself is zero. Then,

 edit(x, y) = An[0, n].

The matrix An can be computed by successive squarings (or an adaptation of it, if n is not a

power of 2):

repeat logn times A := A2.

Obviously, k3 processors are enough to multiply two k×k matrices in O(logk) time on a CREW

PRAM. In our case k = (n+1)2, so, this proves that n6 processors suffice to compute the edit

distance. The time of computation is O(log2n). However, there is a more efficient algorithm,

due to the special structure of the grid graph G. The grid graph can be decomposed into four

grid graphs of the same type, see Figure 11.9. The partition of G leads to a kind of parallel

divide-and-conquer computation.

x 
A

y 

B

C

sink

z 

D

x 
A

y 

B

sink

z 

D

Figure 11.9. Decomposition of the shortest path problem into subproblems.
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Theorem 11.9

The edit distance of two words of length n can be computed in log3n time with n2

processors.

Proof

The edit distance problem reduces to the computation of a shortest path from the source (left

upper corner) to the sink (right lower corner) on the weighted grid graph G. We compute

(recursively) the matrix A of all costs of paths, from positions x on the left or top boundary to

any position y on the right or bottom boundary of G.

Let us partition the grid into four identical subgrids, as in Figure 11.9. If we know the matrices

of costs between boundary points for all subgrids, then all costs of paths between boundary

positions of the whole grid can be computed with O(M(n)) processors in O(log2n) time, by a

constant number of matrix multiplications. Here M(n) denotes the number of processors

needed to multiply, in log2n time, two matrices satisfying the quadrangle inequality. In chapter

8, we have seen that M(n) = O(n2). For n/2×n/2 subgrids we need M(n/2) processors at one

level of recursion. Altogether M(n) processors suffice, since we have the inequality: 4M(n/2) ≤

M(n) (because M(n) = c n2). This completes the proof of the theorem. ‡

Bibliographic notes

The edit distance computation seems to have been first published by Wagner and Fischer

[WF 74]. Various applications of sequence comparisons are presented in a book edited by

Sankoff and Kruskal [SK 83]. Algorithms of Sections 11.1 and 11.2 are widely used for

molecular sequence comparisons, for which a large number of variants have been developed

(see for instance [GG 89]). Computation of a longest common subsequence (not only its

length) in linear space is from Hirschberg [Hi 75]. The last algorithm of Section 11.2 is from

Hunt and Szymanski [HS 77]. It is the base of the "diff" command of Unix system. An

algorithm for the longest increasing subsequence can be found in [Ma 89].

There are numerous substantial contributions to the problem, among them are those by:

Hirschberg [Hi 77], Nakatsu, Kambayashi and Yajima [NKY 82], Hsu and Du [HD 84],

Ukkonen [Uk 85b], Apostolico [Ap 86] and [Ap 87], Myers [My 86], Apostolico and Guerra

[AG 87], Landau and Vishkin [LV 89], Apostolico, Browne and Guerra [ABG 92], Ukkonen

and Wood [UW 93].

A subquadratic solution (in O(n2/logn) time) to the computation of edit distances has

been given by Masek and Paterson [MP 80] for fixed-size alphabets.

The first efficient string-matching with errors is by Landau and Vishkin [LV 86b]. A

parallel algorithm is given in [GG 87b].

The computation of lower common ancestors (LCA) is discussed by Schieber and

Vishkin in [SV 88] (see the bibliographic notes at the end of Chapter 5).
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The best asymptotic time complexity of the string-matching with don't care symbols is

achieved by the algorithm of Fischer and Paterson [FP 74].

Practical approximate string-matching is discussed by Baeza-Yates and Gonnet [BG 92],

and by Wu and Manber [WM 92]. The solutions are close to each others. the second algorithm

has been implemented under UNIX as command "agrep".

The parallel algorithm computing the edit distance (Section 11.5) is by Apostolico,

Atallah, Larmore, and McFaddin [AALF 88]. It is also observed independently in [Ry 88] that

the reduction of the edit distance problem to the shortest path problem for grid graphs leads to

the use of parallel matrix multiplication. For parallel approximate string-matching the reader

can also refer to [LV 89].
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12. Two-dimensional pattern matching

The chapter is devoted to pattern matching in two-dimensional structures. These objects

can be considered as images represented by matrices of pixels (bit-map images). Questions

related to pattern matching in strings extend naturally to similar questions on images. However,

not all algorithms have easy extensions in this sense. The two-dimensional pattern matching is

interesting due to its relation to image processing. The efficiency of algorithms is even more

important in the two-dimensional case because the size of the problem, number of pixels of

images, is very large in practical situations.

We mainly consider rectangular images. The pattern matching problem is to locate an

m×m' pattern array PAT inside an n×n' (text) array T. The position of an occurrence of PAT in

T is a pair (i, j), such that PAT = T[i+1…i+m, j+1…j+m'] (see Figure 12.1).

We give two different solutions to two-dimensional pattern matching. The first reduces

the problem to multi-pattern matching. The second is based on two-dimensional periodicities

and the notion of duels. We then consider non-rectangular pattern in relation to approximate

matching. The method of sampling is presented for two-dimensional patterns and reveals to be

very powerful for almost all patterns. Finally, in the last section, we apply the naming technique

to several problems concerning regularities in images.

i 

j 

m 

m' 

PAT 

Figure 12.1. PAT occurs at position (i, j) in T.

12.1. Multi-pattern approach: Baker and Bird algorithms

 The first solution to 2-D pattern matching is to translate the problem into a string-

matching problem. The pattern is viewed as a set of strings, its columns. To locate columns of

the pattern inside columns of the text array remains to search for several patterns. Moreover,

the occurrences of patterns must be found in a particular configuration inside rows: all columns

of the pattern are to be found in the order specified by the pattern, and ending all on a same row
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of the text array. In this section, we use the Aho-Corasick approach (Section 7.1) to solve the

multi-pattern matching.

occurrence

pattern arraytext array

1 2 3 1 2 1

1 2 3 1 2 1

Figure 12.2. Two-dimensional pattern matching: searching for columns of the pattern.

The strategy to search for PAT in the text array T is the following. Let Π be the set of all

(distinct) columns of PAT (treated as words). We first build the string-matching automaton G

= SMA(Π) with terminal states (see Section 7.1). Each terminal state corresponds to a pattern of

Π. So, columns of the pattern are identified with states of the SMA automaton. There can be

less than m terminal states because of possible equalities between columns. Then, the

automaton is applied to each column of T. We generate an array T' of the same size as T, and

whose entries are states of G. The pattern PAT itself is replaced by a string pat over the set of

states: the i-th symbol of pat is the state identified with the i-th column of PAT. The rest of the

procedure consists in locating pat inside the lines of T'. The strategy is illustrated by Figures

12.3, 12.4 and 12.5. This yields the next result.

Theorem 12.1

The two-dimensional pattern matching can be done in O(Nlog|A|) time, where N = n*n' is

the size of the text array, and A is the alphabet.

Proof

The time to build the automaton SMA(Π) is O(Mlog|A|) where M = m*m' is the size of the

pattern PAT. The construction of the array of column numbers T' takes O(Nlog|A|) time. The

final search phase, string-matching inside lines of T' takes O(N) time. Thus, the result holds

assuming that M ≤ N. ‡
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Figure 12.3. A pattern array, and the SMA automaton of its columns.

Columns 1 and 2 are identified with state 4, column 3 with state 5.
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Figure 12.4. A text array, and its associated array of states

(according to the SMA automaton of Figure 12.3).
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Figure 12.5. Occurrences of "445" in the array of states give

occurrences of the pattern array in the original text array of Figure 12.4

Pattern "445" corresponds to the pattern array of Figure 12.3 (left).

The above algorithm seems to be inherently dependent on the alphabet. This is because of

the automaton approach. The problem of existence of a linear time algorithm with a time

complexity independent of the size of the alphabet (for two-dimensional pattern matching) is

interesting and important from the practical point of view. We show a partial solution in the
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next section (alphabet-independent searching phase, but alphabet-dependent preprocessing

phase).

12.2. Periodicity approach: Amir-Benson-Farach algorithm

The algorithm of the present section is based on the idea of duels. The string-matching

algorithm by duels presented in Chapter 3 for "one-dimensional" strings extends to the two-

dimensional case. The advantage of the approach is to produce a two-dimensional pattern

matching algorithm whose search phase takes linear time, independently of the alphabet. The

two-dimensional settings for duels, witnesses and consistency relation are necessary to adapt

the string-matching algorithm by duels.

A period of the m×m' pattern array PAT is a non-null vector p = (r, s) such that -m < r <

m, 0 ≤ s < m', and PAT[i, j] = PAT[r+i, s+j] whenever both sides of the equality are defined.

Note that the second component of a period is assumed to be a non-negative integer, which

remains to consider that vector periods are always oriented from left to right. There are two

categories of the periods, see Figures 12.7 and 12.8, according to whether r is negative or not.

If there are close occurrences of the pattern in the text array, then there is an overlap of the

pattern over itself, that is, a periodicity. If x and y are close positions of two occurrences PAT in

the array T, assuming that y is to the right of x, the vector y-x is a period of the pattern.

j' l'

k'

i'

i 

k 

j l 

x 

y x'

y'

Figure 12.6. Orderings on positions: x <b y (left), x' <t y' (right).

Positions in arrays are numbered top-down (rows) and left-to-right (columns). We define

two partial orderings <b (for bottom) and <t  (for top) on positions in the array T:

(i, j) ≤b (k, l) iff i ≥ k and j ≤ l,

(i, j) ≤t (k, l) iff i ≤ k and j ≤ l.
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The relation x <b y means that position x is to the left and at the bottom of y. The relation x <t y

means that position x is to the left and at the top of y. For instance, we have (i, j) ≤b (k, l) and

(i', j') ≤t (k', l') in Figure 12.6.

(i, j)
vector (r, s)
a period of pattern

(i+r, j+s)

Figure 12.7. When (i, j) <t (k, l). If two occurrences of PAT overlap, PAT has a period

(r, s) = (k, l)-(i, j). Otherwise, a duel between (i, j) and (k, l) can be applied.

(i, j)

(i+r, j+s)

vector (r, s)
a period of
second type

Figure 12.8. The second category of period, when (i, j) <b (k, l).
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Making duels during the searching phase of the pattern matching algorithm suppose that

we have an analogue to the witness table considered for strings. For arrays, the two-

dimensional witness table WIT is defined as follows:

WIT[r, s] = any position (p, q) such that PAT[p, q] ≠ PAT[r+p, s+q],

WIT[r, s] = 0, if there is no such (p, q).

The definition is illustrated in Figures 12.9 and 12.10 for the two categories of vector (r, s)

(depending on whether r ≥ 0 holds or not).

.

(r, s)

(r+p, s+q)

witness

Figure 12.9. The first category of witnesses.

The vector (r, s) is not a period, (p, q) = WIT[r, s], and PAT[p, q] ≠ PAT[r+p, s+q].

(r, s)

(r+p, s+q)

witness

Figure 12.10. The second category of witnesses.

The vector (r, s) is not a period, (p, q) = WIT[r, s], and PAT[p, q] ≠ PAT[r+p, s+q].



Chapter 12 300 — 281 22/7/97

Efficient Algorithms on Texts 300 — 281 M. Crochemore & W. Rytter

A duel is only performed on close positions according to the following notion. A position

(k, l) is said to be in the range of the position (i, j) (according to the size of PAT) iff |k-i| < m

and |l-j| < m'. In addition, two positions x and y such that y is to the right of x, are said to be

consistent iff y is not in the range of x, or if WIT[y-x] = 0, which means that y-x is a period of

PAT.

Let us recall the notion of duel. If the positions x and y are not consistent, the pattern PAT

cannot appear both at x and at y in the array T. In constant time, we can remove one of them as

a candidate for a position of an occurrence of the pattern. Such an operation, called a duel, can

be described as follows. Assume that positions x and y are not consistent, with y to the right of

x. Let z = WIT[y-x]. Let a = PAT[z], and b = PAT[y-x+z]. By definition of the witness table

WIT, symbols a and b are distinct. Let c be the symbol T[y+z]. This symbol cannot be both

equal to a and b, so at least one of the positions x, y is not a matching position for PAT. If b ≠

c, the pattern cannot occur at position x. If a ≠ c, the same holds for y. So, comparing c with a

and b permits to eliminate (at least) one of the position. Note that in some situations both

positions could be eliminated, but, for simplicity of the algorithm, exactly one position is

always removed at a time. This is a mere duplication of the strategy developed for "one-

dimensional" string-matching. Let duel be defined by

duel(x, y) = (if b = c then x else y).

The value duel(x, y) is the position which "survives" after the duel, the other position is

eliminated.

We now describe the two-dimensional pattern matching algorithm based on duels. We

assume the witness table of the pattern PAT is computed. Its precomputation is sketched at the

end of the section. The first step of the searching phase reduces the problem to a two-

dimensional pattern matching for unary patterns, as if all entries of PAT were the unique

symbol a.

We want to eliminate from the text array T a set of candidate positions in such a way that

all remaining positions are pairwise consistent. Removed positions cannot be matching position

of the pattern. Then, to each position x on the text array we associate the value 1 iff, after duels,

it corresponds to the symbol compatible with occurrences of the pattern placed at any position

in the range of x. Otherwise we associate 0 to position x. Doing so, we are left with a new text

array consisting only of zeros and ones. Finally, we look for occurrences of an m×m' array

containing only 1’s. So, the algorithm is essentially the same as in the one-dimensional case.

But here, the relation between positions is a bit more complicated. This is why relations <b and

<t have been introduced.

The following property of consistent positions is crucial for the correctness of the

algorithm.
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Consistency property (transitivity):
let x <t y <t z, or x <b y <b z.

If x, y are consistent, and y, z are consistent, then x, z are also consistent.

According to relations <b and <t, consistency refines to bottom consistency and top

consistency. A set of positions is bottom consistent iff for any two positions x, y of the set, such

that x <b y, the positions are consistent. Bottom consistent positions are defined similarly. It is

clear that two elements are consistent iff they are top and bottom consistent. The same refers to

sets of (pairwise) consistent positions.

Let R be a subrectangle of the text array T. The set S of positions in R is said to be good

with respect to R if both positions in S are pairwise consistent, and there is no matching

position inside R-S.

Let k be a column of the text array T. In the searching algorithm, we maintain the

following invariant. A good set of consistent positions in the columns k, k+1, …, n' is known.

First, we construct good sets of consistent positions in each column separately. This gives the

invariant for k = n'. Then we satisfy the invariant for k = n'-1, n'-2, …, 1. At the end we have a

good set of consistent positions for the whole text array.

leftmost
elements
in rows

order of
processing
elements in
current column

consistent elements
in current column

Figure 12.11. The situation when processing the next column.

The current column contains positions mutually consistent inside this column.

Then, positions inconsistent with other columns are removed.

When processing the k-th column, we run through consistent positions of this column in

a top-down fashion. We maintain the following invariant:
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inv(x, z, k):

z is the leftmost consistent position in its own row; let R be the rectangle composed of

rows above z, and columns k, …, n'; the set S of all remaining positions in R is a good

set in R.

Let x1, x2 be two consecutive (in the top-down order) consistent positions in the k-th

column. Figure 12.12 illustrates how the process goes from inv(x1, z1, k) to inv(x2, z2, k).

The set of consistent positions in columns k+1, …, n' is maintained as a set of stacks.

These stacks correspond to the rows. The positions in a given row, from left to right, are on

their stack from top to bottom: the leftmost position in i-th row (in columns k+1, …, n') is at

the top of the i-th stack. The duels of x1 against elements of the i-th row are done using the

same stack procedure as in the string-matching algorithm by duels (see Chapter 3).

x1

z1

x2

z2

x2

i1

j1

i2

j2 j2

elements consistent
with x1

elements consistent
with x2column kcolumn k

Figure 12.12. From inv(x1, z1, k) to inv(x2, z2, k).

Assume that z1 is in the i1-th row, and x1 is the j1-th row. Only positions in columns

k+1, …, n' are considered (the duels are done between them and x1). We process rows in the

order i1, i1+1, …; each row is processed from left to right, starting with the leftmost element.

During the processing, we make duels between x1 and considered positions.

Assume that we start a given phase with position x1 in the k-th column, and with position

z1 in the i1 row (see Figure 12.12). The rows are processed top down and left-to-right, starting

with z1, and ending before or at the row containing x1. Initially z = z1. Then, assume that we

consider a candidate z in a column to the right of x1. The basic operation is the duel between x1

and z. Three cases are possible:
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(1) — both x1 and z survive (they are consistent); the crucial point is that we know at this

moment (due to transitivity of consistency) that all candidates to the right of z and in the same

row as z are consistent with x1; we do not have to process them; we just go to the next row,

starting with the leftmost candidate z (to the right of k-th column) in this row;

(2) — z is "killed" by x1 in the duel; we process the next candidate z in the same row as

last z; if there is no such candidate we just go to the next row;

(3) — x1 is "killed" and z survives; then, the processing of x1 is finished; x1 is removed

as a candidate, z1 = z, and we start the next phase with the next candidate x2 below x1 in the

same column as x1; if there is no such candidate, then the processing of the whole column is

finished; take x1 as the topmost candidate in the (k-1) column, and start processing column k-1.

Doing so, we obtain a set of consistent positions in the sense of the ordering <t. If x, y are

in this order, and are in the set, then they are consistent. After that, we process again the whole

text array, but in a bottom-up manner, performing essentially the same algorithm as described

above for the top-down ordering. The rows are again processed from left to right. The

remaining set of positions is guaranteed to be bottom consistent. Thus, the final set S is a good

consistent set.

The problem is reduced to "unary" pattern matching, in which the pattern consists only of

one symbol, as follows. For each position x in the text array, find any position y in S such that x

is in the range of y. Place the pattern at position y on the text array, and check if the symbol at x

matches the corresponding symbol of the pattern. If "yes", associate "1" to position x. If "no",

or if there is no such position y, associate "0" to x. In this way, we obtain a new array of zeros

and ones. It just remains to search for a rectangular shape of size m×m' containing only 1's

inside the new array. This is straightforward, and is left to the reader. The above discussion

gives a proof of the next statement.

Theorem 12.2

If the witness table for the pattern array is computed, the search phase for the two-

dimensional pattern matching can be done in linear time, independently of the size of the

alphabet.

The computation of the witness table given below makes use of a suffix tree. It takes a

time which depends on the size of the alphabet, though it is linear with respect to the length of

the pattern. This is due to the construction of suffix trees. In the computation of the witness

table the basic operation is to check the equality of two subrows of the pattern. This is done on

the suffix tree for the set of rows of the pattern, and by preprocessing the tree for LCA queries.
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Theorem 12.3

The witness table for an m×m' two-dimensional pattern can be computed in O(mm'log|A|)

time, where A is the alphabet.

Proof

Let us examine the situation, when the witness for the position (r, s) of PAT is to be computed.

Let k = m-s+1. Assume that elements of the first, and of the s-th columns are names of the

rows of size k starting at position of these columns to the right. Denote the resulting columns

by C1(k) and Cs(k) (see Figure 12.13).

length k

r 

s 

(r, s)

C (k)
s 

1C 
(k)

Figure 12.13.

Let ST be the suffix tree of all rows of the pattern. It takes O(mm'log(|A|)) time to build it.

Preprocess the tree to be able to answer LCA queries in constant time (see Section 5.7).

Consider also the table PREF as defined in Chapter 3.

Claim
The table PREF of the column Cs(k) with respect to C1(k) can be computed in O(m) time, once

the tree ST is given.

Proof (of the claim)

the computation of this table essentially reduces to the computation of the table of border

lengths, see Chapter 3. We don’t need actually the names of entries of the columns Cs(k) and

C1(k), these names represent subrows of length k. It is enough to make comparisons in

constant time, hence, it is enough to be able to check quickly the equality between two subrows

of the same size k. This can be done by LCA queries about the rows of the pattern array.

Assume first that (r, s) is a period of the pattern. Then PREF[r] = m-r. Otherwise, PREF[r]

gives the index of the row where the witness position is. To find the witness position it is
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enough to find the longest common prefix of two subrows of length k. this can be done again

by the use of ST and LCA queries. This complete the proof. ‡

12.3. Matching with don’t care symbols, and non-rectangular patterns

Assume that the two-dimensional pattern contains a certain number of holes. Holes can

be regarded as filled with a special symbol that matches any other symbol. It is the don't care

symbol ∅ considered in Chapter 11 for approximate string-matching. If the pattern is not

rectangular, we can also complete it , adding enough don't care symbols so that it fits into an

m×m' rectangle. Doing so, both questions become similar.

the pattern 

m

m

2m 

2m 

Figure 12.14. Searching a non-rectangular m×m' pattern inside pieces of shape 2m×2m'.

Theorem 12.4

Two-dimensional pattern-matching with don’t care symbols, and pattern-matching of

non-rectangular patterns can be done in O(Nlog2m) time (with an m×m' pattern, m ≥ m',

and an n×n' text array, N = nn').

Proof

We linearize the problem. Let PAT be a non-rectangular pattern which fits into an m×m'

rectangle, with m ≥ m'. We consider windows of shape 2m×2m' on the text array. We first

solve the problem as if n = 2m. We define Lin(PAT) as a one-dimensional version of PAT. It is

a string with don't care symbols of size O(m) constructed as follows:

— place PAT inside a 2m×2m' shape S. All positions not occupied by PAT are filled with the

don't care symbol ∅; then, concatenate the rows of S, starting from the topmost row; in the

string obtained in this way, remove the largest prefix, and the largest suffix containing only

don't care symbols. The resulting string is Lin(PAT).

The basic property of the transformation Lin is:

Lin(PAT) is independent of the position where PAT is placed inside the shape S.
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Let T be an 2m×2m' text array. Let Lin'(T) be the string obtained by concatenating all rows of

T, starting from the topmost row.

Then, searching PAT in T is equivalent to search Lin(PAT) inside Lin'(T). This can be done by

methods for string-matching with don't care symbols (Section 11.4). It is proved there how to

do it in time O(nlog2n), which becomes here O(m2log2m).

A text array of size greater than 2m×2m' can be decomposed into such (overlapping) subarrays

on which the above procedure is applied. The total time becomes then O(Nlog2m). This

completes the proof. ‡

12.4. Matching with mismatches

The definition of a distance between two arrays is more complicated than for (one-

dimensional) strings. Insertions or deletions of a symbol can result in an increase or decrease of

the length of one row (column). Therefore, for simplicity, we concentrate here on the

approximate pattern matching with only one edit operation: replacement of one symbol by

another. This corresponds to unit-cost mismatches.

For two strings x, y denote by MISMk(x, y, i) the set of first (left-to-right) mismatch

positions, up to k, between the substring y[i…i+|x|-1] and x. We are not interested in more than

k mismatches.

Lemma 12.5

Assume we are given two strings x and y, and their suffix trees with the LCA

preprocessing. Then, the computation of MISMk(x, y, i) can be done in time O(k) for each

position i in the text y.

Proof

First we find the longest common prefix of y[i…n] and x. This is done by an LCA query for the

leaves corresponding to y and x in the joint suffix tree for these both texts. In this way, we

obtain the first mismatch position i1. Then, we look for the longest common prefix of x[i1-

i+1…m] and y[i1…n]. This is done again by asking a suitable LCA query about leaves related

to x[i1-i+1…m] and y[i1…n]. We obtain the next mismatch position (if it exists). We continue

in this way until k mismatch positions are found, or (in the case there are less than k mismatch

positions) all mismatch positions are found. The time is proportional to the number of LCA

queries, that is O(k). This completes the proof. ‡

Theorem 12.6

Assume the alphabet is of a constant size. The problem of pattern matching with a fixed

number k of mismatches inside an n×n text array T can be solved in time O(kn2).

Proof
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Let PAT be the m×m pattern, where m ≤ n. The algorithm starts as in the exact two-

dimensional pattern matching, by a multi-pattern string-matching. The Aho-Corasick

automaton for all columns of the pattern is built. Then, the automaton is applied to all columns

of T to get a state array T'. The pattern array is replaced by a string of states PAT'.

looking for bad columns

approximate matching
for bad columns

(r, s)

bad columns

Figure 12.15. Approximate matching. There is at most k bad columns. If there is match with at

most k mismatches, then the total number of mismatches in all bad columns cannot exceed k.

Figure 12.15 illustrates how we check the approximate match at position (r, s) with at most k

mismatches. Let y be the r-th row of T'. We compute MISMk(PAT', y, s). This produces all

columns which contain at least one mismatch with the pattern PAT placed at (r, s). Let us call

these columns the bad columns. We compute the total number of mismatch positions in bad

columns with respect to the corresponding columns of the pattern (assuming it is placed at

position (r, s)). We are only interested in at most k mismatches in total. All mismatches are

found by using the function MISM. The total complexity is proportional to the number of all

LCA queries done in the algorithm. We make at most k such queries. Hence, for a fixed

position (r, s) the complexity, after the preprocessing, is O(k). Since there is a quadratic

number of position, the total time complexity is as required. This completes the proof. ‡

12.5. Multi-pattern matching

In this section we consider a set of k square pattern arrays X1, X2, …, Xk. For a given n×n

text array T we want to check if any of these patterns occurs in T. This is the multi-pattern

matching in two dimensions. Assume, for simplicity, that the size of the alphabet is constant.

The strategy developed for the Karp-Miller-Rosenberg algorithm (Chapter 8) yields a solution

to the general multi-pattern problem which works in O(n2logn) time. We omit the obvious

proof.
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Fact

The two-dimensional multi-pattern matching can be solved in O(n2logn) time using the

KMR algorithm.

Indeed, the above result can be improved to O(n2logk) time, where k is the number of

patterns. Of course, k can be of the same order as n, and this does not provide a substantial

improvement. But we are also interested in alternative algorithms and some interesting new

ideas behind them which enrich the algorithmics of two-dimensional matching.

The natural alternative algorithm considered here is based on an extension of the Aho-

Corasick string-matching automaton to the two-dimensional case. By the way, this also shows

the important extension of the notion of border, suffix, and prefix to two-dimensional arrays.

This also provides another pattern matching algorithm for one pattern: it shows that searching

the pattern along a fixed diagonal of the text array is reducible to the one-dimensional string-

matching. Again, LCA preprocessing is crucial for the two-dimensional pattern matching

algorithm of the section.

First consider the simple case when all the patterns are of the same shape. Assume that

they are m×m arrays. The method of section 12.1 generalizes easily to this situation. This gives

a linear time algorithm when all patterns of the same size.

Theorem 12.7

The two-dimensional multi-pattern matching can be solved in time O(N) when the

alphabet is fixed and all patterns are of the same size (where N is the total size of the

problem).

Proof

The algorithm works as follows. The Aho-Corasick machine is constructed for all columns of

all patterns. Then, each pattern array is transformed into a string of states. We obtain a set of

strings x1, x2, …, xk. The text array T is replaced by the state array T’ in the same way as in

Section 12.1. Any multi-pattern string-matching algorithm then gives a solution. This gives a

linear time algorithm for this special case (fixed alphabet). ‡

Next, we consider the general case, when the patterns are square arrays of possibly

different sizes. Again, the algorithm is an extension of the Aho-Corasick multi-pattern

matching.

A prefix (resp. suffix) of a square array is a square subarray containing the left top corner

(resp. right bottom corner) of the array. We construct the two-dimensional version of the Aho-

Corasick multi-pattern automaton M as follows. Each pattern is considered as a string: its i-th

letter is the i-th segment of the array. The i-th segment is composed of the upper part of the i-th

column, and the left part of the i-th row, beginning both at the i-th position on the diagonal (see
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Figure 12.16). The states of M are prefixes of all the pattern arrays. The set of states is

organized in a tree whose nodes correspond to the two-dimensional prefixes of the patterns.

i 

i 

Figure 12.16. The i-th segment of a pattern array.

The edges outgoing a node at the depth i-1 are labeled by the names of the i-th segments

of the patterns. We can give consistent names to i-th segments of all patterns in O(klogk) time

for a given i, since there are at most k such segments, one for each pattern. The equality of two

segments can be checked in constant time by an LCPref query (a longest common prefix

query) after a suitable preprocessing of the tree whose edge labels are names of segments.

After that, the failure table Bord on the tree is built as in Section 7.1. The notion

corresponds to borders of square arrays as illustrated in Figure 12.17. They are largest proper

subarrays which are both prefix and suffix of the given array.

subarray X a pattern
array

border of X

Figure 12.17. A border of a subarray X of a pattern.

We say that a segment π1 is a part of a segment π2 iff the column part of π1 is a prefix

of the column part of π2 and a similar relation holds between rows of the segments. Define the

following relation == between two segments. Let π1, π2 be i-th and j-th segments,

respectively, with i ≤ j. Then, we write π1 == π2 iff either, both i = j holds and the names of

the segments are the same, or, π1 is a part of π2. The table Bord for the two-dimensional case

is defined as for strings, except that relation == is considered instead of equality.
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Theorem 12.8

Assume that the alphabet is fixed. Then the two-dimensional multi-pattern matching can

be solved in time O(Nlogk) time, where k is the number of patterns.

Proof

The two-dimensional pattern matching is essentially reduced to one-dimensional multi-pattern

matching. The equality = of symbols is replaced by the relation ==, and the corresponding table

Bord works similarly. ‡

the i-th
diagonal

r

s

Figure 12.18. Checking occurrence of a pattern at position (r, s) in the text array.

12.6. Matching by sampling

The concept of deterministic sample introduced in Chapter 3 for one-dimensional patterns

is very powerful. Its wide applicability appears, for instance, in the domain of parallel

computations, leading to a constant-time parallel string-matching. The aim of this section is to

extend and use the concept of deterministic sample to the two-dimensional case. Almost each

non-periodic pattern has a deterministic sample whose properties are analogue to those for one-

dimensional patterns. The use of 2D-sampling (for short) gives solutions both to sequential

computation requiring only small extra space, and to constant-time parallel computation for the

two-dimensional pattern matching problem.

A deterministic sample S for PAT is a set of positions in the pattern PAT satisfying

certain conditions. The sample S occurs at position x = (i, j) in the text array iff PAT[y] =T[x+y]

for each y in S (Figure 12.19).
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the sample

occurrence of
sample

potential occurrence
of the pattern

only match for these
positions is checked

Figure 12.19. A deterministic sample S.

The central idea related to samples is the field of fire of the sample S. Finding an

occurrence of the sample in the text assures us that there is an m/2×m/2 square in the text, called

the field of fire of the occurrence of S, where there is only one possible matching position of the

pattern. This possible matching position is z = (k, l) relatively to the origin of the field of fire

(see Figure 12.20). Let x be a position of S in the text array. Denote by fofire(x, S) the

corresponding field of fire: it is the m/2×m/2 subsquare of the text array at position x-z. The

field of fire should satisfy the following condition.

Field of fire condition:

whenever the sample S occurs at position x in the text array, then there is no occurrence of

the pattern inside the area fofire(x, S) of the text array, except maybe at position x.

The size of a square S, denoted by |S|, is defined here as the length of its side. The

deterministic sample S must be small, but effective in "killing" other positions. It must satisfy

the following conditions:

(*) |S| ≤ O(logm),

(**) |fofire(x, S)| ≥ m/4.
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text  array

k 

l 

fofire(x, S)

occurrence of the
sample at point x

k 

l 

Figure 12.20. The field of fire of the sample S.

We consider only very particular samples. They are special segments: horizontal factor of

length 4logm at position (m/2, m/2) in the pattern. In other words, it is the factor of length

4logm starting at position m/2+1 in the m/2+1 row of the pattern (see Figure 12.21). Moreover,

we say that the pattern PAT is good if its special segment occurs only once in PAT. Note that

any segment lying "far enough" from the boundaries of the array would work as well.

special segment

Figure 12.21. The special segment of PAT, and its field of fire.

Theorem 12.9

Assume that the alphabet contains at least two symbols. Then

— almost all patterns are good,

— for almost all patterns there is a logarithmic-size sample whose field of fire is an

m/2×m/2 square,

— both, the sample can be found, and the goodness of the pattern can be checked either

in constant extra space and linear serial time, or in constant parallel time with O(m2)

processors.
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Proof

The first point follows by simple calculations.

If the pattern is good the special segment is the sample. It is of logarithmic size. Its field of fire

is the left upper m/2×m/2 quadrant of the pattern. If the sample occurs at position x in the text

array, then no occurrence of the pattern in the text has position x+(k, l) for 0 ≤ k ≤ m/2, 0 ≤ l ≤

m/2, and (k, l) ≠ (0, 0), because then there would be two occurrences of the special segment in

the pattern.

The last point follows from the fact that all occurrences of the special segment can be found

within claimed complexities using algorithms for string-matching of Chapters 13 and 14.

This completes the sketch of the proof. ‡

Theorem 12.10

Assume that the alphabet contains at least two symbols. Then

— the two-dimensional pattern matching can be solved in constant extra space and linear

serial time, for almost all patterns,

— the two-dimensional pattern matching can be solved in constant parallel time with

O(n2) processors, for almost all patterns.

Sketch of the proof

Only good patterns are considered, so results hold only for them.

The whole text array is partitioned into m/2×m/2 windows. In each window, we search for

occurrences of the special segment with a serial algorithm working with the claimed

complexities. For each occurrence of the segment (sample) we check naively if it corresponds

to an occurrence of the whole pattern. This is done for all windows independently, window

after window.

The proof of the second point is analogue to the above argument. But now, all windows are

processed simultaneously with a constant-time parallel string-matching algorithm. ‡

12.7. An algorithm fast on the average

A natural question related to pattern matching is to design algorithms that are fast in

practice. Since the notion of "practice" is not formal, it is often considered algorithms that are

fast on the average. In this section, we construct an algorithm making O(Nlog(M)/M)

comparisons on the average for the two-dimensional pattern matching (the pattern is an m×m

array, the text is an n×n, N = n2, and M = m2). All symbols appear with the same probability

independently of each others in arrays. If M is of the same order as N, the algorithm makes

only O(log N) comparisons on the average. The method described here is similar to the use of

special segments in Section 12.6. We assume for simplicity that the alphabet has only two
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elements, and each of the two symbols of the text is chosen independently with the same

probability. Let r be equal to 4logm.

m

m

window

small 
subwindow

O(logm)

Figure 12.22. Searching the pattern starting in the window, first check the subwindow.

The algorithm is similar to the algorithm fast_on_average presented at the end of

Chapter 4 as a variation of the Boyer-Moore algorithm for string-matching.

Informal description of the algorithm

— Partition the text array into windows of shape m×m;

— the sub-window of a window consists of the last r positions of the lowest row of the

window;

— first check if the text contained in the sub-window is a factor of any row of the pattern;

— if so, the search for an occurrence of the pattern having its left upper corner position in

the window is done by any linear time algorithm; the same procedure is applied to each

window.

The suffix of length r of the last row of the pattern behaves like a fingerprint. It has only

logarithmic size, by definition. But it is unlikely to appear in sub-windows. The test at line 3

above can be done with the help of a suffix tree or a suffix dawg. On fixed alphabets, this takes

O(r) time. There are N/M windows, and a simple calculation shows the following (see end of

Chapter 4).

Theorem 12.11

The two-dimensional pattern matching can be done with O(n2log(m)/m2) comparisons

on the average, for fixed alphabets, after preprocessing the pattern.
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12.8. Finding regularities in parallel

We consider in this section three problems on arrays. These problems consist in finding a

largest subarray which:

(1) repeats (occurs at least twice), or

(2) is a common subarray of two given arrays, or

(3) is symmetric.

The algorithmic solutions for these problems resemble the solutions for the corresponding one-

dimensional problems.

Denote by Cand1(s) (resp. Cand2(s), Cand3(s)) a function whose value is any subarray

of size s which satisfies the condition (1) (resp. condition (2), condition (3)). If there is no such

subarray then the value of the function is nil. The values of the function are candidates of size s.

The problem is to find a non-nil candidate with maximum size s. More generally, we assume

that we have a function Cand(s) satisfying the following monotonicity property:

Cand(s+1) ≠ nil => Cand(s) ≠ nil.

Denote by Maxcand a candidate of maximal size,

Maxcand = {Cand(s) : s is maximum such that Cand(s) ≠ nil}.

Assume also that Cand(0) is some special value.

Lemma 12.12

If the value Cand(s) can be computed in T(n) parallel time with P(n) processors, then, the

value of Maxcand can be computed in O(T(n)logn) time with the same number of

processors.

Proof

We can assume w. l. o. g. that n is a power of two, and that Cand(n) = nil. A variant of binary

search can be applied. We look at Cand(n/2). If it is nil then we try Cand(n/4), otherwise we

look at Cand(n/2+n/4), and so on. In this way, after a logarithmic number of steps we get

Maxcand. This completes the proof. ‡

The algorithm of Chapter 9 related to the computation of the dictionary of basic factors

for strings has a natural counterpart for arrays. The naming technique applies as well. This is

because an array of size 2k is composed of four (fixed finite number) subarrays of size k.

Recall that a basic subarray has shape k×k with k a power of two. Each such subarray is given a

name (or a number) through NUMk.

Assume that the dictionary of basic subarrays is computed for the input array. Testing the

equality of two subarrays whose size is a power of two reduces to a mere comparison of their

associated names. If the size of subarrays is not a power of two we can also test their equality

in constant time. For that purpose, we define identifiers for subarrays whose size s is not a
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power of two. Let k be the highest power of 2 less than s. The identifier of the s×s subarray at

position v1 is Ident(v1, s) = (NUMk(v1), NUMk(v2), NUMk(v3), NUMk(v4)), where position

v2, v3, and v4 are as in Figure 12.23. It is clear that, if the dictionary of basic subarrays is

computed, the equality of two subarrays is equivalent to the equality of their identifiers, and can

be checked in constant time. The key point is that identifiers are of constant size.

v1 v2

v3 v4

s 

k 

k 

k 

k 

Figure 12.23. Identifier of a subarray of size s:

Ident(v1, s) = (NUMk(v1), NUMk(v2), NUMk(v3), NUMk(v4))

where k is the highest power of 2 less than s.

Identifiers of subarrays can be used to search for subarrays. This gives a straightforward

parallel solution to the two-dimensional pattern matching problem. The algorithm is simple but

not optimal. A parallel optimal solution is presented in Chapter 14.

Theorem 12.13

The two-dimensional pattern matching problem can be solved with n2 processors in

O(log2n) parallel time on the exclusive-write PRAM model, and in O(logn) parallel time

on the concurrent-write PRAM model.

Proof

Let PAT be the m×m pattern array, let T be the n×n text array. We create the dictionary of basic

factors common to PAT and T. The identifier ID of the pattern is computed. Then we search in

parallel for a subarray P' of T (of same size as PAT) whose identifier equals ID. The search

phase takes constant time, and the computation of the dictionary relies on algorithms of

Chapter 9. This completes the proof. ‡
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Observe that none of the linear time sequential algorithms for two-dimensional pattern

matching (Section 12.1) is easily parallelizable. We now come to the problems of the present

section. We apply Lemma 12.12 successively to functions Cand1, Cand2, and Cand3. The

complexities of algorithms for these three problems are analogue to the complexity of the

pattern matching algorithm of Theorem 12.13.

Theorem 12.14

The largest repeated subarray of an n×n array can be computed with n2 processors in

O(log2n) parallel time on the exclusive-write PRAM model, and in O(logn) parallel time

on the concurrent-write PRAM model.

Proof

In view of Lemma 12.12, it is enough to show how to compute Cand1(s) with n2 processors

in O(logn) time on the exclusive-write PRAM model, and in O(1) time on the concurrent-write

PRAM model.

Given identifiers of all subarrays, for each position x on the text array, it is an easy matter to

compute in O(logn) time two positions with the same identifier. We can sort pairs (Ident(x, s),

x) lexicographically. Any two such consecutive pairs with the same identifier part in the sorted

sequence give required positions. The model is the exclusive-write PRAM.

With concurrent writes we can use an auxiliary bulletin board table, and proceed similarly as in

the proof of Lemma 9.4. No initialization of the bulletin board is required, and this gives O(1)

time. This completes the proof. ‡

Theorem 12.15

The largest common subarray of two n×n arrays can be computed with n2 processors in

O(log2n) parallel time on the exclusive-write PRAM model, and in O(logn) parallel time

on the concurrent-write PRAM model.

Proof

In this case we compute, at the beginning, the common dictionary for both text arrays S, T. The

rest of the proof is essentially the same as the proof of Theorem 12.14. There are small

technical differences. We sort pairs (Ident(x, s), x) lexicographically. Now x's are positions in S

and T. We can partition the sorted sequence into segments consisting of pairs having the same

first component (identifier). In these segments it is now easy to look for two positions x, y such

that x is a position in S and y is a position in T. This completes the proof. ‡
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Theorem 12.16

The largest symmetric subarray of an n×n array can be computed with n2 processors in

O(log2n) parallel time on the exclusive-write PRAM model, and in O(logn) parallel time

on the concurrent-write PRAM model.

Proof

Let X be an n×n array. In view of Lemma 12.12, it is enough to compute Cand3(s) with n2

processors in O(logn) time on the exclusive-write PRAM model, and in O(1) time on the

concurrent-write PRAM model.

Let us compute the array T which results by reflecting each entry of X with respect to the center

of the array. Denote by Reflect(x, s) the position in T of the s×s subarray B, reflection of the

subarray A occurring at position x in X (see Figure 12.24). Now we can compute the common

dictionary of basic subarrays of arrays X and T. The subarray A of X is symmetric iff A = B,

which can be checked in constant time using s-identifiers at position (i, j) in X, and at position

Reflect((i, j), s) in T. The function Reflect is easily computable in constant time. Once we know

which s×s subarrays are symmetric we can easily choose one of them (if there is any) as the

value of Cand3(s). Hence, Cand3(s) can be computed within the required complexity bounds.

This completes the proof. ‡

A 

B 

(i, j)

(i', j')

(i', j') = Reflect(i, j, k)

symmetry
with respect
to the center

center of the array

Figure 12.24. The s×s subarray A is symmetric iff A = B iff Ident((i, j), s) = Ident((i', j'), s).

12.9. Simple geometry of 2-dimensional periodicities.

This section prepares some theoretical tools for the Galil-Park 2d-pattern matching

algorithm of Section 12.11. The proofs of several simple facts are omitted, they are left as

exercises.

Let PAT be a two-dimensional pattern of shape m×m, with its rows and columns

numbered by 1, 2, ..., m. The vectors of PAT are denoted by π and β. We consider only two-
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dimensional vectors with integer components. Recall that a vector π is a period of PAT iff

PAT[x] = PAT[x+π], whenever both sides are defined. If both sides are defined for at least one

point x, then π is a non-trivial period. We also write that π is a 1d-period to emphasize its 1-

dimensional status. The main difference between 1d-dimensional and 2d-dimensional pattern

matching lies in different structures of periods of patterns. In two dimensions, some periods

are inherently two-dimensional and are called 2d-periods.

A pair μ = (π, β) of non-colinear vectors is a 2d-period of PAT iff π and β are non-trivial

periods, and each linear combination of π and β is a 1d-period of PAT. An equivalent

formulation is: PAT can be extended to an infinite plane in which π and β are periods. By a

linear combination we always mean a combination with integer coefficients, i.e. a vector

i.π+j.β, where i, j are integers. Two (or more) vectors are said to be colinear iff they are in the

same direction, which does not necessarily mean in this case that one is an integer combination

of other (others). Let us denote by Lattice(μ) the set of all linear combinations of π, β. The

elements of Lattice(μ) are called the lattice points. So, the pair μ is a 2d-period iff all elements

of Lattice(μ), as vectors, are periods.

A vector π = (r, c) is said to be small iff its components r, c satisfy |r|, |c| < d.m, where d

= 1/16. A 2D-period is small iff its both components are small vectors. The pattern PAT is

called periodic (lattice-periodic  or 2d-periodic ) iff it has any small 1d-period (2d-period).

Remark. In one-dimensional string-matching a linear combination of small 1d-periods is

always a period. But this is not generally valid in two dimensions, even for non-negative

combinations of colinear vectors (as well as for non-colinear vectors, of course). If all elements

of the array PAT are the same letter except for a small number of elements closed to one fixed

corner, then there is a great number of 1d-periods, but there is no non-trivial 2d-period. The

parts around the corners are responsible for irregularities.

The 2d-period μ = (π, β), is said to be normal iff π is a quad-I period and β is a quad-II

period.

Lemma 12.17 (Normalizing lemma)

If the pattern has a small 2d-period then it has a small normal 2d-period.

A notion of divisibility for two 2d-periods μ1, μ2 is introduced as follows:
μ1 | μ2 iff Lattice(μ1) includes Lattice(μ2).

We introduce also the notion of a smallest 2d-period μ = period(PAT). It is a fixed small

2d-period of PAT that "divides" each other small 2d-period: in other words μ | μ' for each

small 2d-period μ'. There are several ways to precise which μ is to be chosen, but any of them

is good. Assume PAT is 2d-periodic. We define period(PAT) as a small normal 2d-period (π,
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β), where π is a quad-I small period of a minimal length (in case of ties the most horizontal

vector is chosen), and β is a quad-II small period of a minimal length (in case of ties the most

vertical vector is chosen). Lemma 12.17 guarantees that the definition makes sense. It can be

proved that any small 1-d period corresponds to a point in Lattice(PAT). This fact toghether

with Lemma 12.17 implies the following lemma.

Lemma 12.18 (2d-periodicity lemma)

(a) Assume μ1, μ2 are small 2d-periods of PAT. Then, there is a 2d-period μ such that

μ | μ1 and μ | μ2.

(b) Assume PAT is lattice-periodic and π is a small vector. Then π is a 1d-period of PAT

iff π is in Lattice(period(PAT)). Moreover, period(PAT) | μ for all small 2d-periods μ .

Observation. Assume we know which points of PAT are small sources (see below). Then,

period(PAT) can be computed in O(M) time independently of the alphabet, if it exists.

Lemma 12.19 (overlap lemma)
Assume the patterns PAT1 and PAT2 are 2d-periodic subsquares of the same rectangle,

period(PAT1) = μ1, and period(PAT2) = μ2, where |μ1| , |μ2| < m'/2 ≤ m. If PAT1 and

PAT2 overlap on an m'×m' square, then μ1 = μ2.

According to their periodicities, 2d-patterns are classified into four main categories:

— non-periodic : no small period at all,

— lattice-periodic (or 2d-periodic): at least one small 2d-period,

— radiant-periodic : at least two non-colinear small 1d-periods, but not lattice-periodic,

— line-periodic: all periods in the same direction.

We have already defined quad-I periods and quad-II periods. We recall these definitions

and introduce similar categories for so-called sources. The pattern is divided into four m/2×m/2

disjoint squares, called quads, and named quad I, quad II, quad III, and quad IV, according to

the anticlockwise ordering, and starting with the upper left corner. So quad I corresponds to

upper left square corner, and quad II corresponds to lower left square corner.

For technical reasons it is convenient that these categories are disjoint. So we assume that

horizontal vectors are not quad-II vectors, and vertical vectors are not quad-I vectors. In this

way, each 1d-period oriented from left to right is exactly of one type: a quad-I period or a quad-

II period.

Let Centers(PAT) = PAT’ be the central subarray of PAT which results after "peeling off"

the s boundary columns and rows (from top, down, right and left). The shape of such subarray

is (m-2s)×(m-2s). Below we state the key lemma used to avoid the radiant-periodic case in the

main algorithm. Its proof is omitted.
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Lemma 12.20 (Radiant-periodicity Lemma)
Assume that PAT is radiant periodic. Then Center2d.m(PAT) is not radiant-periodic.

 A vector π can be identified a the point     π     of PAT, extremity of π when its origin is at the

quad-I top left corner (point (0, 0)) or at the quad-II corner (point (m, 0)) of the pattern. The

point     π     is called the quad-I beginning point, or the quad-II beginning point respectively,

corresponding to π. If π is a period and the quad-I beginning point     π     is in PAT then π is called

a quad-I period, and     π     is called a quad-I source. Quad-II periods and sources are defined

analogously. Using the terminology of sources, the periodicity type of pattern PAT can be

characterized (equivalently) as follows:

— non-periodic : no small source;

— lattice-periodic or (2d-periodic): at least one quad-I source and one quad-II source;

— radiant-periodic : not lattice-periodic and at least two non-colinear small sources;

— line-periodic: all sources on the same line.

Let μ = (π, β) be a 2d-vector. We say that two points x, y are μ-equivalent iff x-y is in

Lattice(μ). A μ-path is a path consisting of edges that are vectors π, -π, β or -β. The

processing of certain difficult patterns is done by exploring some simple geometry of paths on

a lattice generated by two vectors π, β belonging to the same quadrant. If we have two points x,

y containing distinct symbols and we have a (π, β)-path from x, to y inside the pattern, then,

one of the edges of the path gives a witness of non-periodicity to one of vectors π or β. This is

due to the fact that the initial and terminating positions do not match, so there should be a

mismatch “on the way” from x to y. The length of the path is the number of edges it contains.

Observation. The basic difficulty with such approach is the length of the path. It can happen

that μ is a small 2D-period, but the length of a shortest μ-path between two μ-connected points

of an m×m square is quadratic. Consider, for instance, μ = ((m/2, 1), (1, 0)), x = (m/2, 0), and

y = (m/2, m-1).

Despite the above observation in some situations we can find useful short paths, as

shown in the next lemma. Let Cut_Cornerss(A) be the part of array A without top-right and

bottom-left corner squares of shape s×s.

Lemma 12.21 (Linear-path Lemma)

Assume π, β are quad-I vectors of size at most k. Let S be a subsquare of size k×k of a

larger square A, and let x be the point which is the bottom-left corner or top-right corner

of S. Assume x is inside Cut_Corners2k(A). Then, there is a linear-length μ-path inside A

from x to a point y ≠ x in S. Such a path can be computed in O(k) time.
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Proof

We can assume, without loss of generality that x is the quad-II corner of S, and that π, β are

quad-I vectors of size at most k. Moreover, we can assume that the array A is of shape 3k×3k,

and S is the square of size k×k at the top-left corner of A. Then, x is the point of A at position (k,

 0). Assume that β is more a horizontal vector than π. We find a path and a point y by the

algorithm GREEDY below.

We prove that the algorithm GREEDY terminates successfully after a linear number of

iterations and generates the required path. Consider the lines L0, L1, L2, …, where Lh is the line

parallel to π and containing the points x+hβ. So, points x+iβ+jπ (j integer) belong to the line Li.

If some line Li cuts the two horizontal borders of S, or its two vertical borders, then the

segment of the line that is inside S is longer than π. Thus, x+iβ+jπ belongs to S for some

(negative) integer j. If each line Li cuts both an horizontal border of S and a vertical border of it

then let i be such that lines Li and Li+1 surround the diagonal segment of S; then it can be

proved that, either there is a point x+iβ+jπ in S or a point x+(i+1)β+j'π in S. Values of variable

y in the algorithm are points of a μ-path inside A because if "y-π not in A", y+β is in A. It

remains to explain why the path has linear length, which at the same time proves that the

algorithm works in O(k) time. Let π = (r, c) and β = (r', c'). The point x+rβ-r'π is on the same

column as x, and can be the point y if it is in S. It is clear that the μ-path followed by the

algorithm is entirely (except maybe the last edge) inside the triangle (x, x+rβ, x+rβ-r'π). Thus,

the length of the μ-path followed by the algorithm is no longer than r+r' which is O(k). ‡

algorithm GREEDY

begin

y := x;

repeat

if y - π is outside the area A then y := y + β

else y := y - π;

until y is in S;

end.
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Figure 12.25. A short path from a given point x to some other point y of the square S.

We introduce a special type of duels called here long-duels. Assume we have small quad-

I vectors π, β, and a point x at distance at least 2k from quad-II and quad-IV corners. Assume

also that if y is any point such that y-x is a small quad-II vector, then PAT[x] ≠ PAT[y]. The

procedure long_duel(π, β, x) "kills" one of the vectors π, β, and finds its witness. It works as

follows: a (π, β)-path from a given point x to some point y in the pattern is found by the

algorithm of the Linear-path Lemma. The path consists of a linear number of edges. Endpoints

x and y contain distinct symbols. So one of the edges on the path gives a witness for π or β.

Doing so, one of the potential small periods π or β is "eliminated" in linear time.
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Theorem 12.22 (Long-duel Theorem)

Assume we have a set X of small quad-I vectors, where |X| = O(m), and we are given a

position x in Cut_Corners2d.m(PAT). Assume also that if y is any point such that y-x is a

small quad-II vector, then PAT[x] ≠ PAT[y]. Then, we can find in linear time, using long

duels, witnesses for all small quad-I vectors except maybe for a set of vectors on a same

line L.

Proof

We run the following statement:

while X is non-empty do begin

take any element β from X; add β to Y, and delete β from X;

while there are two non-colinear vectors π, β in Y do

execute long-duel(π, β, x) and delete the "looser" from Y;

end;

We keep in the set Y the elements of X that have not been eliminated so far. Initially Y is empty.

The invariant of the loop is: non-null witnesses for all elements not in the current sets X or Y are

computed, and all elements of Y are on the same line L. Altogether, the execution time is O(m2)

and alphabet independent. All remaining vectors (with non-null witnesses up to now) are, at the

end, on a same line L. This completes the proof. ‡

Let us call the algorithm of the Long-duel Theorem the long-duel algorithm. There is a

natural analogue of the theorem for quad-II small vectors, and for quad-I, quad-III corners.

The crucial point in the processing of a difficult type of patterns (corner patterns) is the

role played by the following suffix-testing problem: given m strings x1, …, xm of total size

O(m2), compute the m×m table Suf-Test defined as follows:

Suf-Test[i, j] = nil if the i-th string is a suffix of the j-th string,

Suf-Test[i, j] = position of the rightmost mismatch otherwise.

The algorithm is given below as Algorithm Suffix-Testing. We sketch its rough structure to

show that it runs in linear-time independently of the alphabet. It is enough to compute for each

pair i, j, the length SUF[i, j] of the longest common suffix of xi and xj.

The algorithm can be easily implemented to work in O(m2) time. The main point in the

evaluation of the time complexity is that if a position takes part in a positive comparison (when

two symbols match), then, this position is never inspected again. When we process a given k

and compute SUF[k, j] for j > k, then we look first for SUF[i, j], where i = MAX[j, k-1], and

then for SUF[i, k]. These data are available at this moment, due to invariant. The word xj is

scanned backwards starting from position SUF[i, j]. The pointers go only backwards. This

proves the next theorem.
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Algorithm Suffix-Testing;

begin

assume that strings x1, …, xm are in increasing order of

their lengths;

{ invariant(k): for all i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ m,

SUF[i, j] is computed, and, for each j, 1 ≤ j ≤ m,

we know MAX[j, k] = i, where i is the index i ≤ k which

maximizes SUF[i, j]}

make invariant(1);

for k = 2 to m do

make invariant(k) using invariant(k-1);

end.

Theorem 12.23 (Suffix-testing Theorem)

The suffix-testing problem for m strings of total size O(m2) can be solved in O(m2) time,

independently of the alphabet.

12.10.* Patterns with large monochromatic centers

The alphabet-independent linear-time computation of 2d-witness tables is quite technical,

hence the present and next sections may be considered as optional. In this section, we present

an alphabet-independent linear-time computation of witnesses for special patterns whose

"large" central part is "monochromatic". The pattern PAT is called mono-central iff all symbols

lying in Centerk are equal to the same letter a of the alphabet, and for k < 3/8m. Then, the

central subarray of PAT of size at least m/4×m/4 is monochromatic. A position containing a

letter different from letter a is called a defect. Assume the existence of at least one defect

(otherwise the preprocessing is trivial). Opposite corners of PAT are the corners lying on the

same forward or backward diagonal of PAT (quad-I and quad-III, or quad-II and quad-IV

corners). A mono-central pattern PAT is called corner if there is a pair of opposite corners x, y

of PAT such that each defect can be reached by at most two small vectors from x or y. The

corner patterns are the hardest with respect to their witness computation, and this is because

they can be radiant-periodic. The non-corner patterns are simpler to deal with, due to the

following observation.

Observation
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If PAT is a periodic non-corner mono-central pattern, then PAT is non-periodic or line-

periodic (so, PAT is not radiant-periodic).

The applicability of the long-duel algorithm follows from the next lemma.

Lemma 12.24 (Subsquare Lemma)

Let us assume that PAT is mono-central, and that there is a defect inside the area A =

Cut_corners2k(PAT). Then there is a defect position x inside A satisfying one of the

following conditions:

(1) x is a quad-I or quad-III corner of a k×k subsquare S containing no defect position

strictly inside S;

(2) x is a quad-II or quad-IV corner of a k×k subsquare S containing no defect position at

all, except x.

Proof

Take a defect point in A closest to the center of PAT. ‡

Theorem 12.25 (Non-corner Theorem)

The witness table for all small vectors of a mono-central non-corner pattern PAT can be

computed in O(m2) time.

Proof

Consider the defect z closest to the center of PAT. Assume without loss of generality that z is in

quadrant II. The position z is the witness (of non-periodicity) for all small quad-II vectors,

except maybe vertical vectors. The case of vertical and horizontal periodicities is very easy to

process, so, we assume that all witnesses for vertical and horizontal vectors are computed and

PAT is not vertically nor horizontally periodic. The set of potential small quad-I periods is

sparsified using vertical duels in columns. Afterwards, in quadrant I we have only a linear

number of candidates for small periods. Denote by X the set of these candidates. To compute

witnesses for quad-I small vectors it is enough to find a point x satisfying the assumptions of

the Long-duel Theorem. Take the defect x implied by the Subsquare Lemma. If condition (1) of

this lemma holds, then x is itself the witness for all quad-I vectors which are not vertical nor

horizontal vectors. Otherwise, x is “good” to apply the long-duel Theorem. The case of

horizontally or vertically periodic pattern can be easily processed. This completes the proof. ‡

Theorem 12.26 (Corner Theorem)

Consider an m×m array PAT that is a mono-central corner pattern. Then, witnesses for all

vectors of size at most m/8 can be computed in O(m2) time.

Proof

Assume that opposite corners from the definition of corner patterns are quad-II and quad-IV

corners. So, all defects are closed to quad-II and quad-IV corners. These corners are separated
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by a large area of non-defects. So, we can compute periods and witnesses with respect to each

corner separately. Hence, without loss of generality, we can assume that all defects are close to

the quad-II corner, and, in particular, that there is no defect that contains the same symbol a in

quadrants I, III and IV. Assume PAT contains at least one defect in quadrant II. PAT has

obviously no small quad-II periods, since the rightmost defect gives witnesses against all quad-

II vectors. We show how to compute witnesses for small quad-I vectors.

Let PAT1 be the following transformation of the pattern. Replace in each row all symbols by a,

except the rightmost non-a symbol of each row. Replace these rightmost non-a symbols by a

special symbol $. Let X be the set of positions containing the symbol $; call them special

positions.

For x in X denote by string(x) the word in PAT consisting of the part of the row containing x

from the left side up to x (including x). Let π be a vector of size at most m/4. Then, it is easy to

see the following:

π is not a period iff

(1) π is not a period in PAT1, or

(2) for two positions x, y in X we have y-x = π and string(x) is not a suffix of string(y)

(then, a witness for π is given by a mismatch between string(x) and string(y)).

The computation of all witnesses for vectors of size at most k in PAT1 is rather easy. Only

quad-I vectors are to be processed. Assume there is no small vertical period. Then, the set of

potential small quad-I periods is sparsified using duels in columns. Afterwards a linear number

of candidates remain. Each of them is checked against all (linear number) symbols at special

positions in a naive way. The witnesses arising from condition (2) are computed using directly

the Suffix-testing Algorithm. This completes the proof. ‡

We extend the definition of defects. Assume a mono-central pattern PAT has a lattice-

periodic central subarray C of size at least m/4. We say that x is a lattice-defect iff x does not

agree with (contains a symbol different from) any point y in C that is lattice-equivalent to x. Let

Mono(PAT) be the pattern in which all positions which are not lattice-defects are replaced by

the same special symbol. We omit the proof of the following simple lemma.

Lemma 12.27 (Mono Lemma)

If a small vector π is in the lattice generated by the smallest period of C, then, π is a

period of PAT iff π is a period of Mono(PAT).
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12.11.* A version of the Galil-Park algorithm

Recall that the periodicity type of a subarray depends on its size. When we say that the

witnesses for a given array or subarray are computed we mean the witnesses, if there are any,

for all vectors small according to the size of the presently considered array.

Lemma 12.28 (Line Lemma)

Assume we have a set S of points in a fixed quadrant of PAT, such that all of them are on

the same line L. Then, we can check which of them correspond to periods and compute

witnesses, wherever they are, in O(m2) time independently of the alphabet.

Proof

The proof reduces to the computation of witness tables for m one-dimensional strings of size

2m each. Let Li be all lines parallel to L; take m pairs of lines (Li, Ki), where Ki is parallel to Li

and the distance between Ki and Li equals the distance between the point (0, 0) and L. Each line

is taken as a string of symbols. For each i, lines Li and Ki are concatenated, and witnesses for

these strings are computed by a one-dimensional classical algorithm. ‡

Assume C is a central subarray of shape s×s, where s ≤ m. Denote Large_Extend(C) =

D, where D is a central subarray of shape 2s×2s. If ever 2s > m, we define Large_Extend(C) =

PAT. Observe that a small period with respect to Large_Extend(C), in case Large_Extend(C) ≠

PAT, means a vector of size at most 2d.s (d = 1/16, see Section 12.9). Large_Extend(C) is

twice larger than C except maybe at the last iteration of the algorithm. The reason for such

irregularity is that while making duels for small vectors in D we use mismatches in C and we

should guarantee that D is enough large with respect to C and that vectors (taking part in a duel)

starting in C do not go outside the pattern PAT. Define also Small_Extend(C) as a central

subarray of shape 3/2s×3/2s.

Due to Lemma 12.20, if Large_Extend(C) ≠ PAT and if it is radiant-periodic then

Small_Extend(C) is not radiant periodic. This saves one case (radiant-periodic) in the algorithm:

C is never radiant-periodic.

Before each iteration in GP algorithm the witnesses and periods are already known for a

central subarray C whose shape is s×s. The witnesses for a larger central subarray D are

computed, where D = Large_Extend(C), or D = Small_Extend(C) in the case

Large_Extend(C) is radiant-periodic and Large_Extend(C) ≠ PAT. In the latter case, D is of

shape 3/2s×3/2s, and Lemma 12.20 guarantees that D is not radiant-periodic. Then C is set to

D and the next iteration starts.
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Algorithm GP;{ modified Galil-Park algorithm; computes witnesses for all small vectors

}

begin

C := an initial constant-sized non radiant-periodic central

subarray of PAT;

compute the witness table of C in O(1) time;

D := Large_Extend(C);

while C ≠ PAT do begin {main iteration, C has s×s shape}

if C is non-periodic then begin

the witness table of C is used to make duels between

candidates for small periods in D;

after duelling, only a constant number of candidates

remains;

the witnesses for them are computed in a naive way;

end else if C is line-periodic then begin

consider the areas Q1, Q2 of candidates of small

(with respect to D) periods in respectively quad I and

quad II of D; divide each area into d.s×d.s subsquares;

in each smaller subsquare do begin

make duels between candidates using witnesses from C;

only candidates on the same line survive,

apply the algorithm from the Line Lemma;

end;

end else {C is lattice-periodic} begin

let μ = period(C);

for each small candidate period π ∉ Lattice(μ) do

{use Lemma 1}

find a μ-equivalent point y in C in quad I or quad II,

then the witness corresponding to y gives easily a

witness for x;

for each small candidate period π ∈ Lattice(μ) do

compute witness of π in Mono(PAT); {Mono Lemma}

{use algorithms from Non-corner or Corner Theorems}

end;

if D ≠ PAT and D is radiant-periodic then

D := Small_Extend(C)

else begin C := D; D := Large_Extend(C) end;

end; {main iteration}
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end.

Three disjoint cases are considered in the algorithm depending on whether C is non-

periodic, lattice-periodic, or line-periodic. The first case (non-periodic) is very simple. At each

iteration we spend O(r2), where r is the size of the actual array D; this size grows at least by a

factor 3/2 at each iteration. Altogether, the time is linear with respect to the total size of the

pattern, as the sum of a geometric progression.

When the witness table is eventually computed, the Amir-Benson-Farach searching

phase of Section 12.2 can be applied. Altoghether we have proved the following result.

Theorem 12.29

There is a 2d-pattern matching algorithm whose time complexity is linear and

independent of the alphabet (including the preprocessing).
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13. Time-space optimal string-matching

In the chapter, we discuss the optimality of the string-matching problem according to

both time and space complexities.

String-matching algorithms of Chapter 3 make a heavy use of the failure function Bord.

This function gives the lengths of borders of pattern prefixes. This is equivalent to memorizing

all the periods of pattern prefixes. A more useful information to deal with shifts in KMP

algorithm would be the periods of words ua, for all prefixes u of pat and all possible letters of

the alphabet A of the searched text. Indeed, this is realized by the minimal deterministic

automaton recognizing the set of words ending with the pattern pat: the SMA automaton of

Chapter 7. But the memory space needed to implement the automaton, in a straightforward

way, is O(|A|.|pat|), quantity which depends on the size of the alphabet. This chapter presents

three different solutions to string-matching that all lead to algorithms running in linear time and

using simultaneously only bounded space in addition to the text and the pattern. These

algorithms are thus time-space optimal.

The first two presented solutions to time-space optimal string-matching are GS and CP

algorithms. These algorithms, called factorized string-matching, may be considered as

intermediate between KMP and BM algorithms. Like them, they run in linear time (including

the preprocessing phase), but require only a bounded memory space compared to space linear

in the size of the pattern for KMP and BM. The general scheme, common to GS and CP

algorithms, is given in the next section.

The last section presents another more recent solution to optimal string-matching. The

algorithm uses a left-to-right scan of the pattern, as KMP does. It is based on a memoryless

lazy computation of periods. The great theoretical interest in scanning the pattern from left to

right is that the algorithm naturally finds all "overhanging" occurrences of the pattern in the text.

And this yields a time-space optimal algorithm to compute the periods of a word.

13.1. Prelude to factorized string-matching

CP and GS algorithms have a common feature. Scans depend on a factorization uv of the

pattern pat. The scan for a position of the window is conceptually divided into two successive

phases. The first phase (right scan) consists in matching v only against text. The letters of v are

scanned from left to right. When a mismatch is found during the first phase (right mismatch),

there is no second phase and the pattern is shifted to the right. Otherwise, if no mismatch

happens during the first phase, that is, when an occurrence of v is found in text, the second

phase starts (left scan). The left part u of the pattern is matched against the text. The word u can

be scanned from right to left as in the Boyer and Moore approach, but the direction of this scan
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is not important. If a mismatch occurs at the second phase (left mismatch), the pattern is shifted

to the right according to a rule different from the rule used in the case of right mismatch. After

a shift the same process repeats until an occurrence of pat is eventually found, or the end of text

is reached.

text 

pat 

window on the text

first scansecond scan,
if necessary

u v 

Figure 13.1. Scheme for factorized string-matching.

An important property of GS and CP algorithms is that shifts they perform are

computable in constant time and constant space. The scheme for factorized string-matching is

shown below.

Algorithm time-space-optimal-string-matching(text, pat);

{ n = |text|; m = |pat|; }

begin

(u, v) := factorize(pat);

pos := 0;  i := |u|;

while pos ≤ n-m do begin

{ right scan }

while i < m and pat[i+1] = text[pos+i+1] do i := i+1;

if i=m then begin

{ left scan }

if text[pos+1, …, pos+|u|] = u then return true;

end;

(pos, i) := shift(pos, i);

end;

return false;

end.

The preprocessing of the pattern consists in splitting it into two parts u and v (pat = uv).

GS and CP algorithms greatly differ in the way they decompose the pattern, and also in the
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way they shift the pattern. We explain informally what are the main features of these

algorithms.

The decomposition of the pattern used in GS algorithm is called a perfect factorization. It

gives a position inside the pattern from which at most one highly periodic factor starts (to the

right). For the shifts, the algorithm distinguishes between two cases according to whether a

highly periodic prefix of the right part of the factorization is found or not in the text.

CP algorithm uses a decomposition of the pattern called a critical factorization. This

factorization gives a position inside the pattern where the local period coincides with the global

period of the pattern. The rule for shifts takes into account the period of the entire pattern, which

is a great advantage from the point of view of practical time complexity.

The precise description of these algorithms is given in following sections. However, the

next lines summarize the rules applied by the algorithms to shift the pattern along the text.

Shift in GS:

shift(pos, i) = if v[1…i-|u|] not highly periodic then (pos+(i-|u|)/3+1), |u|)

   else (pos+p, i-p), where p is the unique small period of prefixes of v.

Shift in CP:

shift(pos, i) = if i<m then (pos+i-|u|, |u|) else (pos+p, max(|u|, i-p)),

where p is period(pat), the smallest period of the pattern.

The main conclusion of the present chapter is summarized in the next statement.

Theorem 13.1

The string-matching problem can be solved in O(|text|+|pat|) time using constant space in

addition to the pattern and the text. The constants involved in 'O' notation are independent

of the size of the alphabet.

13.2. GS algorithm : search phase

This section is devoted only to the search phase of first time-space optimal string-

matching algorithm of the chapter, GS algorithm. The preprocessing phase is treated in the next

section.

GS algorithm can be regarded as a space efficient implementation of KMP algorithm

(Chapter 3). Its space efficiency is based on properties of repeated factors inside the pattern pat.

While CP algorithm deals with squares (repetitions) from their center, GS algorithm treats

repetitions (of higher order) from their left end. In the context of KMP algorithm, the idea to

save on space is to avoid storing all the periods of prefixes of the pattern. Only small periods
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are memorized, where "small" is relative to the length of the prefix. Approximations of other

periods are computed when needed during the search phase.

In this section we consider an integer k > 1. It is a parameter of the method we are

discussing, and typically we shall consider k = 3. Let x be a non-empty word. A primitive word

w is called a k-highly repeating prefix of x (a k-hrp of x, in short) if wk is a prefix of x. Recall

that a word w is said to be primitive if it is not a (proper) power of another word. Primitive

words are non empty, so are k-hrp's.

Example

Consider the word abaababaabab. It has two 2-hrp's, namely aba and abaab. The periods of

its prefixes are shown in the next array.

a b a a b a b a a b a b

Prefix lengths : 0 1 2 3 4 5 6 7 8 9 10 11 12

Periods : - 1 2 2 3 3 3 5 5 5 5 5 5

Exponents : - 1 1 1.5 1.3 1.7 2 1.4 1.6 1.8 2 2.2 2.4

Only 4 prefixes have an exponent greater than or equal to 2. The shortest of them, abaaba, is

the square of the first 2-hrp. The three other prefixes are "under the influence" of the second 2-

hrp abaab. ‡

w 
1

w 
1

w 
2

w 
2

w 
2

w 
3

w 
3

pattern

[----] [-----------------------] [------------]
scope of scope of w 

1
scope of w 

2
w 

3

Figure 13.2. Scopes of three highly repeating prefixes (w1, w2, w3).

When w is a k-hrp of x, period(w2) = |w|. Thus, we can consider the longest prefix z of x

that has period |w|. We define the scope of w as the interval of integers [|w2|, |z|]. Note that, by

definition, any prefix of x whose length falls inside the scope of w has period |w|. Some shorter

prefixes may also have the same period, but we do not deal with them. Figure 13.2 shows the

structure of scopes of k-hrp's of a word x. It happens that scopes are disjoint (see proof of

Lemma 13.3.

Example (continued)
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Inside the word abaababaabab, the scope of aba is [6, 6], and the scope of abaab is [10, 12].

‡

We first present a simple string-matching algorithm based on the notion of scopes of k-

hrp's. The algorithm is a version of KMP algorithm. During a run of the algorithm, lengths of

shifts are computed with the help of scopes of k-hrp's. We assume that these intervals have

been computed previously.

Algorithm Simple-Search;

{ An O(r)-space version of KMP, where r is the number }

{ of k-highly repeating prefixes of pat and }

{ ([Lj, Rj] / j=1,…,r) is their sequence of scopes }

begin

pos := 0;  i := 0;

while pos ≤ n-m do begin

while i < m and pat[i+1] = text[pos+i+1] do i := i+1;

if i = m then report match at position pos;

if i belongs to some [Lj, Rj] then begin

pos := pos+Lj/2;  i := i-Lj/2;

end else begin

pos := pos+⎣i/k⎦+1;  i := 0;

end;

end;

end.

Inside algorithm Simple-Search, the test "i belongs to some [Lj, Rj]" can be implemented

in a straightforward way so that it needs O(1) space, and that its time does not affect the

asymptotic time complexity of the whole algorithm.

Lemma 13.2

If the pattern pat has r k-hrp's, algorithm Simple-Search runs in time O(|text|) using O(r)

space. It makes less than k.|text| symbol comparisons.

Proof

To evaluate the time performance of the algorithm it can be shown that the value of expression

k.pos+i is strictly increased after each symbol comparison. ‡
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The correctness of algorithm Simple-Search is a direct consequence of the following lemma. It

essentially gives a lower bound on periods of prefixes whose length does not belong to any

scope of a highly repeating prefix.

Lemma 13.3
Let ([Lj, Rj] / j=1,…,r) be the sequence of scopes of all k-hrp's of a word x. Then any

non-empty prefix u of x satisfies :
— period(u) = Lj/2 if |u| ∈ [Lj,Rj] for some j,

— period(u) > |u|/k otherwise.

Proof
We first prove that two different scopes [L1, R1] and [L2, R2] are disjoint. Let w1 and w2 be

their corresponding k-hrp's, and assume that, for instance, |w1| < |w2|. We show that R1 < L2.

Let z be the prefix of length R1 of x. If L2 ≤ R1, the square w22 is a prefix of z. Therefore the

periodicity lemma applies to periods |w1| and |w2| of w22. It implies that gcd(|w1|, |w2|) is a

period of this prefix. But, since |w1| < |w2|, gcd(|w1|, |w2|) < |w2|, and we get a contradiction

with the primitivity of w2.

Let u be a non-empty prefix of x. If |u| does not belong to any scope of k-highly repeating

prefix, then obviously period(u) > |u|/k.
Assume that |u| belongs to some [Lj,Rj]. It is then a prefix of some power wje (e ≥ k > 1) of the

k-highly repeating prefix wj. The quantity |wj| = Lj/2 is a period of u. Moreover, it is the

smallest period of u, because otherwise |u| would belong to another scope, a contradiction. Then
period(u) = Lj/2. ‡

The preprocessing phase required by algorithm Simple-Search is presented below. Its

correctness is left to the reader. It is an adaptation of algorithm Simple-Search, and it works as

if the pattern is being searched for inside itself. It also runs in linear time.

Algorithms Simple-Search and Scopes require O(r) extra space to work. This space is

used to store the r scopes of k-hrp's of the pattern pat. A simple application of the periodicity

lemma shows that, for k ≥ 3, any word x has no more than logk-1|x| k-hrp's. This relies on the

following fact : if u and v are two k-hrp's of x and |u| < |v|, then the even stronger inequality

holds: (k-1)|u| < |v|. For k = 2, the same kind of logarithmic bound also holds (see next

examples). So, algorithms Simple-Search and Scopes together solve the string-matching

problem in linear time with logarithmic extra space.
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Algorithm Scopes

{ Compute the list of scopes of all k-hrp's of pat }

begin

SCOPE := empty list;

pos := 1; i := 0;

while pos+i < m do begin

while pos+i < m and pat[i+1] = pat[pos+i+1] do i := i+1;

if pos ≤ (pos+i)/k then add [2*pos, pos+i] to end of SCOPE;
if i belongs to some [Lj, Rj] in SCOPE then begin

pos := pos+Lj/2; i := i-Lj/2;

end else begin

pos := pos+⎣i/k⎦+1; i := 0;

end;

end;

return the list SCOPE;

end.

Example
Let k = 2, and consider the Fibonacci word Fib9 displayed in Figure 13.3 (recall that the

sequence of Fibonacci words is defined by Fib1 = b, Fib2 = a, and Fibi = Fibi-1Fibi-2 for i >

2). Figure 13.3 shows the scopes of its 2-hrp's. It can be proved that the number of 2-hrp's of a

Fibonacci word F is Θ(log|F|) (see next example). ‡

6,6 10,11 16,19 26,32

a a ab b a ab a a ab b a a ab b a ab a a ab b a ab a a ab b

a a ab b a ab a a ab b a a ab b a ab a a ab b a ab a a ab b

[] [-] [-------------][------]

Figure 13.3. Four scopes in a Fibonacci word.

Fibonacci words have a logarithmic number of 2-hrp's.

Example

We give words having the maximum number of square prefixes (indeed, maximum number

of 2-hrp's). They are the squares of words hi, i ≥ 1, defined inductively by

h1 = a, h2 = aab, h3 = aabaaba, and

hi = hi-1 hi-2, for i > 3.
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For instance, h52 = aabaabaaabaabaaba.aabaabaaabaabaaba. Its square prefixes are h12,

h22, h32, h42, and h52 itself. In other terms, its 2-hrp's are h1, h2, h3, h4, and h5. Note that h52

has the same length as the Fibonacci word Fib9 (see previous example). But, this latter word

has only four 2-hrp's.

It can be proved that words shorter than hi2 start with less than i squares (of primitive words),

or, equivalently, with less than i 2-hrp's. Moreover, for all i ≥ 4, word hi is the unique word

starting with i 2-hrp's. ‡

We are now ready to present GS algorithm. Let k = 3. The idea is to scan the pattern from

a position where at most one k-hrp starts. Fortunately, such a position always exists because

words satisfy a remarkable combinatorial property stated in the next theorem and proved in

Section 13.3.

Theorem (perfect factorization theorem)

Any non-empty word x can be factorized into uv such that

— |u| < 2.period(v), and

— v has at most one 3-hrp.

The example of pattern aaa…a shows that we cannot require that the right part v of the

factorization has no 3-hrp. A factorization uv of x that satisfies the conclusion of the theorem is

called a perfect factorization. After a preprocessing phase aimed at computing a perfect

factorization, GS algorithm presented below follows the scheme introduced in Section 13.1,

and uses the algorithm Simple-Search.

Algorithm GS; { informal description }

{ search for pat in text }

begin

(u, v) := perfect factorization of pat;

find all occurrences of v in text with Simple-Search;

for each position q of an occurrence of v in text do

if u ends at q then report the match at position q-|u|;

end.

The following theorem shows that GS algorithm is time-space optimal.
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Theorem 13.4

 GS algorithm computes all positions of occurrences of pat inside text.

The algorithm runs in time O(|pat|+|text|), and uses a bounded memory space.

The number of letter comparisons made during the search phase is less than 5|text|.

Proof

The correctness mainly comes from that of algorithm Simple-Search.

We assume that the first statement of GS algorithm runs in time O(|pat|). This assumption is

satisfied by the preprocessing algorithm of Section 13.3.

By Lemma 13.2 the search for v in text uses at most 3.|text| symbol comparisons. The distance

between two consecutive occurrences of v in text is not less than period(v). Thus, the condition

|u| < 2.period(v) implies that a given letter of text is matched against a letter of u (during the test

"u ends at q ?") at most twice, which globally gives at most 2.|text| more symbol comparisons.

‡

13.3. Preprocessing the pattern : perfect factorization

This section is devoted to the preprocessing phase of GS algorithm presented in the

previous section. The preprocessing consists in computing a perfect factorization of the pattern.

The method relies on a constructive proof of the perfect factorization theorem. We first prove

that such a factorization exits, and then, we analyze the complexity of the factorization

algorithm. The parameter k of Section 13.2 is set to 3 all along the present section. So, the hrp's

(highly repeating prefixes) that are considered should be understood as 3-hrp's, but all the

results are also valid for k-hrp's with k > 3. We are thus interested in cubes occurring in the

pattern. If the pattern is cube-free, no preprocessing for GS algorithm is even needed.

In the following, we denote by hrp1(x) and hrp2(x) respectively, the shortest and the

second shortest hrp of a given non-empty word x, when they are defined.

The structure of the factorization algorithm is based on a sequence W(x) of hrp1's. The

elements of the sequence W(x) = (w1, w2,…, wr) are called the working factors of x, and are

defined as follows. The first element w1 is hrp1(x) if x starts with a cube, and is x itself

otherwise. Let x = w1x', and assume that x' is a non-empty word. Then w2 is defined in the

same manner on x', and so on, until there is no hrp. The last element of the sequence is a suffix

of x that does not start with a cube. In particular, the sequence is reduced to x itself if it does not

start with a cube.

We shall see that there is a perfect factorization uv of x of the form u = w1w2…wj, v =

wj+1…wr. So, a natural procedure to factorize x would be to compute the positions of working

factors, and test, at each position, whether there are two hrp's starting there. The procedure

would stop as soon as at most one hrp is found starting at the current position. Unfortunately,

this could cost a quadratic number of comparisons. In order to keep the time complexity linear,
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the test is done only at some specific positions, called testing points. The first testing point on x

is the position 0. When x has no second hrp, there is no more testing point, and the factor u of

the perfect factorization of x is empty. Assume now that x has a second hrp, z = hrp2(x). Then,

the second testing point is the last position of a working factor inside z. In other terms, the

second testing point is |w1w2…wj|, where j is the largest integer such that |w1w2…wj| < |z|. The

rest of the sequence of testing point is defined in the same way on the rest of the word x (i.e. on

wj+1…wr).

w 1 w 
2

pattern

hrp2(x) hrp2(x) 

w 
3

w 
4

x 

Figure 13.4. The first two testing points .

The working factor w4 as the same length as hrp2(x).

w 1 w 
2

pattern

w 3 w 
4

x 

hrp2

hrp2

at most one hrp

u v 

Figure 13.5. The sequence of working factors w1, w2,… leads to

testing points , and eventually to a perfect factorization uv of x.

The preprocessing phase of GS algorithm, which reduces to the computation of a perfect

factorization of the pattern, is shown below. It computes the sequence of positions i of working

factors from left to right, and checks at each testing point whether a second hrp (or cube) starts.
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Algorithm Perfect_fact;

{ preprocessing pat for GS algorithm;  m = |pat| }

{ computes a perfect factorization of pattern pat }

begin

i := 0;  h1 := |hrp1(pat)|;  h2 := |hrp2(pat)|;

while h1 and h2 exist do begin

i := i+h1;  h1 := |hrp1(pat[i+1…m])|;

if h1 ≥ h2 then h2 := |hrp2(pat[i+1…m])|;

end;

return factorization (pat[1…i], pat[i+1…m]) of pat;

end.

Theorem 13.5

Algorithm Perfect_fact computes a perfect factorization of the pattern pat. It runs in time

O(|pat|) and requires constant extra space.

Proof

The proof strongly relies on Lemma 13.6 below.

Correctness. A straightforward verification shows that variable i runs through the positions of

working factors of pat, w1, w2,…, wr. At the end of the execution of the algorithm, the value of

i is the last testing point on pat, |w1w2…wr-1|. The output is the factorization uv defined by u =

w1w2…wr-1 and v = wr. By construction, v starts with at most one hrp. Thus, it remains to

prove that the condition on lengths is also satisfied, |pat[1…i]| < 2.period(pat[i+1…|pat|]), or,

equivalently, to prove the inequality |w1w2…wr-1| < 2.period(wr).

The property is obviously true if the sequence (w1, w2,…, wr) is reduced to pat itself, because

in this situation u is the empty word. Thus, we assume r > 1, which implies that the sequence

of hrp2's computed by the algorithm is not empty. Let it be (z1, z2,…, zt) (note that 0 < t < r).

We certainly have |u| < |z1|+|z2|+…+|zt|. We also have |zt| ≤ period(v) because the contrary

would contradict part (c) of Lemma 13.6. Furthermore, by part (d) of Lemma 13.6, we get |zj|

< |zt|/2t-j. The conclusion comes :

|u| < |z1|+|z2|+…+|zt| < 2.|zt| ≤ 2.period(v),

This ends the proof of correctness of the algorithm.

Complexity. First note that algorithm Scopes of Section 13.2 can be used to compute hrp1's

(resp. hrp2's). The trick is simply to stop the execution of the algorithm the first time it

discovers the first hrp (resp. the second hrp). Doing so, the computation of hrp1(y) for a given

a word y, takes time O(|hrp1(y)|) if hrp1(y) exists, and O(|y|) otherwise. The same is true for

hrp2's. The extra space needed to compute these values is constant because the list SCOPE

used in algorithm Scopes contains at most one element. Thus, the global algorithm also needs

only constant extra space.
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The time complexity of the algorithm may be analyzed as follows. The total cost of

computation of hrp1's, by the above argument, is proportional to the total length of working

factors (including the last one that may have no hrp), which is exactly |pat|. The same argument

also shows that the total cost of computation of hrp2's is proportional to their total length, plus

the length of v (last test): |z1|+|z2|+…+|zt|+|v|. We have already seen above that |z1|+|z2|+…+|zt|

< 2.|zt|, and, since 2.|zt| < |pat| (indeed 3.|zt| ≤ |pat|), the previous sum is less than 2.|pat|.

The time complexity of the algorithm is thus linear as expected. ‡

The following lemma may be regarded as a constructive version of the perfect

factorization theorem. Part (d), which roughly says that each hrp2 is at least twice longer than

the preceding one, is the key point used both in the correctness and in the time analysis of

algorithm Perfect_fact (proof of Theorem 13.5).

Lemma 13.6
Let W(x) = (w1, w2,…, wr) be the sequence of working factors for x.

(a) — If j < k, then wj is a prefix of wk; lengths of wi's are in non decreasing order.

Assume that both hrp2(x) exists, and x has a second testing point i = |w1w2…wj|.

(b) — hrp2(x) is at least twice longer than w1, |hrp2(x)| > 2.|w1|.

(c) — If j < r, the next working factor is not shorter than hrp2(x), |wj+1| ≥ |hrp2(x)|.

(d) — If hrp2(x[i+1…|x|]) exists, it is at least twice longer than hrp2(x).

Proof

Parts (a) and (b) are mere applications of the periodicity lemma (see Chapter 2). Part (d) is a

consequence of (b) and (c) together. So, it only remains to prove part (c).

Let h be hrp2(x). We want to show that wj+1 cannot be shorter than h. The assumptions imply

that wj+1 overlaps the boundary between the first two occurrences of h, as shown in Figures

13.6 and 13.7. Assume that |wj+1| < |h| holds. Let y and y' be the non-empty words defined by

the equalities h = w1w2…wjy', and wj+1 = y'y. Because we assume that wj+1 is shorter than h, y

is a prefix of h, so that we can consider the word z defined by h = yz. We now focus our

attention on the occurrence of the word g = zy, rotation of h, occurring at position |y| in x.

Case 1 (Figure 13.6). We first consider the situation when the beginning of g inside h falls

properly inside some wk. Integer k is less that j+1 because |wj+1| < |g|. Since h = hrp2(x), h3 is a

prefix of x. Therefore, another occurrence of g follows immediately the occurrence we

consider. Because wj+1 is an hrp1, wj+1 is a prefix of g. Part (a) implies that wk is a prefix of

both wk+1 and wj+1, and then is also a prefix of g. This eventually implies that wk is an internal

factor of wkwk, a contradiction with the primitivity of wk (consequence of the weak periodicity

lemma).
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w 1 w 
2

w 3 w 
4

pattern x 

h = hrp2(x) h 

y z z 

w 
2

Figure 13.6. Proving (c), i.e. on the figure |w4| ≥ |h|.

Case 1: impossible because w2 is primitive.

Case 2 ( Figure 13.7). The second situation is when g (= zy) = wk…wjwj+1. Again, hypothesis

|wj+1| < |h| leads to k < j+1. This implies 2|wk| ≤ |h|, and then, the word wk is an hrp of zyz.

Thus, just after the occurrence of g that is considered, wk is still an hrp1. This proves, through

part (a), that wj+1 = wk. But then, g is a non-trivial power of wk, and its rotation h = hrp2(x) is

not primitive, a contradiction.

This completes the proof of Lemma 3.14. ‡

w 1 w 
2

w 3 w 
4

pattern x 

h = hrp2(x)

y z 

h 

z 

Figure 13.7. Proving (c), i.e. on the figure |w4| ≥ |h|.

Case 2: |w2| = |w3| = |w4|, impossible because h = hrp2(x) is primitive.

Note

We can also consider perfect factorizations with the parameter k = 2. But then, not all words

have a perfect factorization. A counterexample is given by the word x = (aabaabab)4. The

longest suffix of x having only one 2-hrp (or one square prefix) is v = baababaabaabab of

period 8. The corresponding prefix u = (aabaabab)2aa has length 18. With exponent e instead

of 4, we can make the ratio |u|/period(v) as big as required, provided e is chosen large enough.

So, there is no statement equivalent to the perfect factorization theorem for squares.
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13.4. CP algorithm : search phase

This section deals with the search phase of the second time-space optimal string-

matching algorithm of the chapter, CP algorithm. The preprocessing phase of the whole

algorithm, and the proof of the combinatorial theorem on which CP algorithm is based, are

given in the next section. We first introduce the notions on words related to the design of CP

algorithm, and afterwards, we present its search phase.

Let x be a non-empty word, and let uv be a factorization of x. Denote by l the length of u

(0 ≤ l ≤ |x|). A non-empty word w is called a repetition for the factorization uv, or a repetition

at position l in x, if the two following conditions are satisfied :

— w is a suffix of u, or u is a suffix of w,

— w is a prefix of v, or v is a prefix of w.

The generic situation for a repetition is when the cut between factors u and v of x is the center of

a square occurring in x (see Figure 13.8). The other cases correspond to a cut close to the ends

of x, or equivalently to an overflow of w. Note that the word w = vu is a repetition for uv, so

that any factorization of x has a repetition.

The length r of a repetition for the factorization uv is called a local period for uv, or a

local period of x at position l. The smallest possible value of r is called the local period for uv,

and denoted by r(u, v). It is convenient to reformulate the definition of a local period as follows.

A positive integer r is a local period of x at position l if x[i] = x[i+r] for all indices i such that l-

r+1 ≤ i ≤ l, and such that both sides of the equality are defined (see Figure 13.8). The word w

of the previous definition, repetition at position l, is then defined by

w[i] = x[l+i] or w[i] = x[l-r+i]

(for 1 ≤ i ≤ r) according to which expression is defined on the right-hand side.

x
l

w w

l+r1 l-r +1

Figure 13.8. A local period r, and repetition w at position l in x.

Example

Consider the word x = abaabaa. Its local period at position 3 is r(aba, abaa) = 1, which

corresponds to the repetition w = a. At position 2, r(ab, aabaa) = 3, and the shortest repetition

is w = aab.
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The local period of the word x = aababab at position 6 is r(aababa, b) = 2 with repetition w =

ba. Finally, the shortest repetition at position 2 is r(aa, babab) = 7, corresponding to w =

bababaa. ‡

It is an easy consequence of the definitions that, when x = uv,

1 ≤ r(u, v) ≤ period(x).

A factorization uv of x that satisfies r(u, v) = period(x) is called a critical factorization, and the

position l = |u| is called a critical position of x. At a critical position, the local period coincides

with the smallest period of the whole word. The string-matching algorithm of this section relies

on the combinatorial property of words stated in the following theorem. Its proof is given in

Section 13.5.

Theorem (critical factorization theorem)

 Any word x has at least one critical factorization uv (i.e. r(u, v) = period(x)). Moreover, u

can be chosen such that |u| < period(x).

Example

The (smallest) period of the word aabababaab is 7. Its local periods are given in the next array.

a a b a b a b a a b

Positions : 0 1 2 3 4 5 6 7 8 9 10

Local periods : 1 1 7 2 2 2 2 7 1 3 1 

This shows that factorizations (aa, bababaab) and (aababab, aab) are critical. ‡

CP algorithm is designed according to the scheme of Section 13.1. In the following, it is

assumed that uv is a critical factorization of pat that satisfies |u| < period(pat). The rules that

guide shifts in CP algorithm are relatively simple. In case of a mismatch during the right scan,

the shift pushes the cut of the critical factorization to the right of the letter of the text that caused

the mismatch. Otherwise, the length of the shift is the period of pat (see Figure 13.9).

The searching algorithm has an additional feature : prefix memorization. This trick has

already been used in Chapter 4 to improve on the worst-case time complexity of BM

algorithm. It is used here with the same purpose.

The first instance of CP algorithm is presented below as CP1 algorithm. It assumes that

both the period period(pat), and a critical factorization uv with |u| < period(pat) have been

computed previously. Precomputations are discussed in the next section.
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Algorithm CP1; { informal description, see Figure 13.9 }

{ uv is a critical factorization of pat }

begin

align left end of pat and text;

while not end of text do begin

{ right scan } scan v from left to right against text;

if mismatch then shift pat of the length of the scan

else begin

{ left scan } scan u against text,

and report possible match;

shift pat of length period(pat);

end;

end;

end.

a

scan 

text 

pat c u 

c u 

shift length = scan length 

w 

w 

a

scan scan 

v c 

v c 
shift

period of pattern

text 

pat 

v w 

w 

w 

Figure 13.9. CP string-matching : shift after a mismatch on the right (top),

and after a mismatch on the left (bottom).
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Algorithm CP1;

{ search for pat in text; m = |pat|; n = |text| }

{ p = period(pat) }

{ uv is a critical factorization of pat such that |u| < p }

begin

pos := 0; s := 0;

while (pos+m ≤ n) do begin

i := max(|u|, s)+1;

{ right scan }

while (i ≤ m and pat[i] = text[pos+i]) do i := i + 1;

if (i ≤ |pat|) then begin

pos := pos+i-|u|; s := 0;

end else begin

j := |u|;

{ left scan }

while (j > s and pat[j] = text[pos+j]) do j := j - 1;

if (j ≤ s) then report match at position pos;

pos := pos + p; s := m - p;

end;

end;

end.

The algorithm uses four local variables i, j, s and pos. The variables i and j are used as

cursors on the pattern to perform the scan on each side of the critical position respectively (see

Figure 13.10). The variable s is used to memorize a prefix of the pattern that matches the text at

the current position, given by the variable pos (see Figure 13.11). Variable s is updated at every

mismatch. It can be set to a non-zero value only in the case of a mismatch occurring during the

scan of the left part of the pattern.
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atext 

pat c u 

pos pos+i 

i 

a

v c 

text 

pat 

pos 

v 

j 

pos+j 

w 

w 

w 

w 

Figure 13.10. The role of variables pos, i, j.

text 

pat 

pos 

s 

Figure 13.11. The role of variable s : prefix memorization.

Before proving the correctness of the algorithm, we first give a property of a critical

factorization of a word.

Lemma 13.7

Let uv be a critical factorization of a non-empty word x. If w is both a suffix of u and a

prefix of v, then |w| is a multiple of period(x).

Proof

The property trivially holds if w is the empty word. Otherwise, since period(x) is also a period

of w, this word can be written (yz)ey with |yz| = period(x), z non-empty, and e > 0. If y is non-

empty, it is a repetition for uv. But |y| < period(x) contradicts the fact that uv is a critical

factorization (see Figure 13.12). Hence, |w| = e.period(x) as expected. ‡
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yz yz yz yz yz

w w 

period(x)

Figure 13.12. A repetition w for a critical factorization.

Lemma 13.8 (correctness of CP1)

CP1 algorithm computes the positions of all occurrences of pat inside text.

Proof
Let q1, q2,…, qK be the successive values of the variable pos during a run of CP1 on inputs pat

and text. It is clear that the algorithm reports position qk if and only if it is a position of an

occurrence of pat in text. So, it remains to show that no matching position is missed:

(*) any position of an occurrence of pat in text is some qk.

Before coming to the proof of (*), the reader may note that the following property is an

invariant of the main "while" loop:

pat[s'] = text[pos+s'], 1 ≤ s' ≤ s,

i.e. the prefix of pat of length s occurs in text at position pos.

Proof of (*). We prove that no position q strictly between two consecutive values of pos can be

a matching position. Let q be a matching position such that qk < q. Consider the step of the

main "while" loop where the initial value of pos is qk. Let i' be the value assigned to the variable

i by the right scan, and let s' be the value of s at the beginning of the step. We now consider two

cases according to a mismatch occurring in the right part or in the left part of the pattern. In

both cases, we use the following argument : if, after a mismatch, the shift is too small, then its

length is a multiple of the period of the pattern, which implies that the same mismatch recurs.
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atext 
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q  +i' k q 
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Figure 13.13. Case of right mismatch.

 Case 1 (Figure 13.13). If i' ≤ |pat| a mismatch has occurred during the right scan, and we have

:

pat[l+1…i'-1] = text[qk+|u|+1…qk+i'-1], and pat[i'] ≠ text[qk+i'].

Let w be the word text[qk+|u|+1…q+l].

If q < qk + i' - |u|, the above equality implies

pat[l+1…l+q-qk] = w.

Since q ∈ Pos(pat, text) the suffixes of length max(1, |u|+1-q+qk) of w and of pat[l+1-q+qk…l]

coincide. The quantity q-qk is then a local period at the critical position |u| and, by Lemma 13.7,

q-qk is a multiple of period(pat). So, pat[i'] = pat[i'-q+qk]. But, since q is a matching position,

we have pat[i'-q+qk] = text[q+i'-q+qk] which gives a contradiction with the mismatch pat[i'] ≠

text[qk+i']. This proves q ≥ qk + i' - |xl|.

So far, we have proved that, if a mismatch occurs during the right scan, q is greater than or

equal to qk+i-|u|, quantity which is exactly qk+1.

a

c 

text 

pat 

q  +i' k q 
k 

q 

i' 
c 

w 

w w 

w 

Figure 13.14. Case of left mismatch.

Case 2 (Figure 13.14). If no mismatch is met during the right scan, the right part v of pat

occurs at position qk+|u| in text. The word w = text[qk+|u|+1…q+l] then occurs in pat at

position |u|. Since q is a matching position, w also occurs at the left of position |u|. Thus, |w| is a
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local period at the critical position |u|, and |w| ≥ period(pat). We get q-qk ≥ period(pat). Since

qk+1 = qk+period(pat), in this second case again the inequality q ≥ qk+1 holds.

This proves assertion (*), and ends the proof of the theorem. ‡

The time complexity of CP1 algorithm is proportional to the number of comparisons

between letters of pat and text. This number is bounded by 2.|text| as shown by the following

lemma.

Lemma 13.9

The execution of CP1 algorithm uses less than 2.|text| symbol comparisons.

Proof

Each comparison done during the right scan strictly increases the value of pos+i. Hence, their

number is at most |text| - |u|, because expression pos+i has initial value |u|+1 and terminal value

|text| in the worst case.

During the left scan, comparisons are done on letters of the left part of the pattern. After the left

scan, the length of the shift is period(pat). Since, by assumption, the length of u is less than

period(pat), two different comparisons performed during left scans are done on letters of text

occurring at different positions inside text. Then, at most |text| letter comparisons are done

during all left scans.

This gives the upper bound 2.|text| to the number of letter comparisons. ‡

CP1 algorithm uses the period of the pattern. A previous computation of this period is

possible with KMP algorithm. But since we want an algorithm that is globally linear in time

with constant extra space, it is desirable to improve on the precomputation of the period of the

pattern. There are two ways to achieve that goal. One way is a direct computation of the period

by an algorithm working in linear time and constant space. Such an algorithm is described in

Section 13.6. The approach described here is different. It avoids the use of the period of the

pattern in some situations. A variant CP2 is designed for that purpose. The key point is that the

period of the pattern is actually needed only when it is small, which roughly means that the

period is less than half the length of the pattern. So, CP2 algorithm is intended to be used when

the period of the pattern is large. This approach has the additional advantage to keep the

maximal number of comparisons spent by the algorithm relatively small.

CP2 algorithm is described below. It differs from CP1 in two points. First, the "prefix

memorization" is no longer used. Second, it treats differently mismatches occurring during left

scans (left mismatches). In this situation, instead of shifting the pattern period(pat) places to the

right, it is only shifted q places to the right with q ≤ period(pat). Since q can be less than

period(pat), prefix memorization is indeed impossible.

The correctness of CP2 algorithm is straightforward from that of CP1. Note that, if we

choose q = 1, we get a kind of naive algorithm absolutely inefficient! In fact, CP2 is to be
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applied with an integer q satisfying the additional condition q > max(|u|, |v|) (recall that uv is a

critical factorization of pat). With this assumption, the maximal number of symbol

comparisons used by CP2 is less than 2.|text|, as it is for CP1.

Algorithm CP2;

{ search for pat in text; m = |pat|; n = |text| }

{ search phase without p = period(pat) }

{ q satisfies 0 < q ≤ p }

{ uv is a critical factorization of pat such that |u| < p }

begin

pos := 0;

while (pos+m ≤ n) do begin

i := |u|+1;

{ right scan }

while (i ≤ m and pat[i] = text[pos+i]) do i := i + 1;

if (i ≤ m) then

pos := pos + i-|u|;

else begin

j := |u|;

{ left scan }

while (j > 0 and pat[j] = text[pos+j]) do j := j - 1;

if (j = 0) then report match at position pos;

pos := pos + q;

end;

end;

end.

Lemma 13.10

CP2 algorithm computes the positions of all occurrences of pat inside text.

Furthermore, if the parameter q of the algorithm satisfies q > max(|u|, |v|), the number of

letter comparisons used by CP2 is less than 2.|text|.

Proof

One can get the first assertion by reproducing a simplified version of the proof of correctness

of CP1 (Lemma 13.8).

We first prove that the total number of comparisons performed during right scans is bounded

by |text|. Consider two consecutive values k and k' of the sum pos+i. If these values are obtained

during the same scan, then k' = k+1 because i is increased by one unit. Otherwise, pos is

increased either by instruction "pos := pos + i-|u|" or by instruction "pos := pos + q". In the first
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case, k' = k-|u|+|u|+1 = k+1 again. In the second case, k' ≥ k+q-|u|, and the assumption q >

max(|u|, |v|) implies k' ≥ k+1. Since comparisons during right scans strictly increase the value of

pos+i, which has initial value |u|+1 and final value at most |text|+1, the claim is proved.

We show that the number of comparisons performed during left scans is also bounded by |text|.

Consider two values k and k' of the sum pos+j respectively obtained during two consecutive left

scans. Let p be the value pos has, during the first of these two scans. Then k ≤ p+l, and k' ≥ p' =

p+q. The assumption q > max(|u|, |v|) implies k' ≥ k+1. Thus, no two letter comparisons made

during left scans are done on a same letter of text, which proves the claim.

The total number of comparisons is thus bounded by 2.|text|. ‡

The complete CP string-matching algorithm is shown below. It calls a procedure to

compute a critical factorization uv of the pattern, suitable for CP1 and CP2 algorithms.

Moreover, as we shall see in Section 13.5, the procedure computes the period of the right part v

without any additional cost. After this preprocessing phase, a simple test allows to decide

which version of the search phase is to be run, CP1 or CP2.

Algorithm CP { search for pat in text }

begin

(u, v) := critical factorization of pat

such that |u| < period(pat);

p := period(v);

if (u is a suffix of v[1…p]) then

{ p = period(pat) }

run CP1 algorithm on text using u, v, and period p

else begin

q := max(|u|, |v|) + 1;

run CP2 algorithm on text using u, v, and parameter q;

end;

end.

Theorem 13.11

CP algorithm computes the positions of all occurrences of pat inside text.

The algorithm runs in time O(|pat|+|text|), and uses a bounded memory space.

The number of letter comparisons made during the search phase is less than 2.|text|.
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Proof

We assume that the first instruction of CP algorithm runs in time O(|pat|) with bounded extra

space. An algorithm satisfying this condition is presented in Section 13.5.

We have to prove that, after the first statement, and the succeeding test, conditions are met to

realize the search phase either with CP1 or with CP2 algorithms.

Assume first that u is a suffix of v[1…p]. Then, obviously, the integer p is also a period of pat

itself. Thus, CP works correctly because CP1 does (see Lemma 13.8).

Assume now that u is a not a suffix of v[1…p]. In this situation the correctness of CP depends

on that of CP2. The conclusion comes from Lemma 13.10, if we prove that q = max(|u|, |v|)+1

satisfies q ≤ period(pat). And, since |u| < period(|pat|) by assumption, it remains to show that

|v| < period(|pat|). Equivalently, because uv is a critical factorization, we show that v is shorter

than the local period for uv.

We prove that there is no non-empty word w such that wu is a prefix of pat. Assume, the

contrary, that is, wu is prefix of pat. If w is non-empty its length is a local period for uv, and

then, |w| ≥ period(pat) ≥ period(v). We cannot have |w| = period(v) because u is not a suffix of

v[1…p]. We cannot either have |w| > period(v) because this would lead to a local period for uv

strictly less than period(v), a contradiction. This proves the assertion, and ends the correctness

of CP algorithm.

The conclusions on the running time of CP algorithm, and on the maximum number of

comparisons executed by CP algorithm readily come from Lemmas 13.9 and 13.10, and from

the assumption made at the beginning of the proof on the first instruction. ‡

Note

We shall see that the first instruction of CP algorithm uses less than 4.|pat| symbol

comparisons of the kind "<, =, >". Since the test "u is a suffix of v[1…p] ?" takes at most

|pat|/2 comparisons, the preprocessing phase globally uses 4.5.|pat| comparisons. ‡

We end this section by giving examples of the behavior of CP algorithm. The examples

are presented in Figure 13.15 where the letters of the pattern scanned during the search phase of

the algorithm are underlined.

On pattern pat = anb the algorithm finds its unique critical factorization (an, b). The

search for pat inside the text text = bm uses 2|text|/|pat| comparisons, and so does BM

algorithm. Both algorithms attempt to match the last two letters of pat against the letters of text,

and shift pat n+1 places to the right as shown in Figure 13.15 (i).

The pattern pat = anban has period n+1. Its critical factorization computed by CP

algorithm is (an, ban). CP algorithm behaves like CP1, and uses 2|text|-2e-2 comparisons to

match pat in text = (anba)ean-1 (see Figure 13.15 (ii)). The same number of comparisons is

reached when searching for pat = anban-1 inside text = (anb)ean-1, but, in this latter case, the

algorithm behaves like CP2 (see Figure 13.15 (iii)).
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(i)

bbbbbbbbb…

aab
aab

aab

aabaa

aabaaabaaabaa…

aabaa
aabaa
aabaa

(ii)

aabaa

aaabaaabaaabaa…

aaabaa
aaabaa

aaabaa

(iii)

Figure 13.15. Behavior of the search phase of CP algorithm.

13.5.* Preprocessing the pattern : critical factorization

In this section we are interested in the computation of critical factorizations, which is the

central part of the preprocessing of CP algorithm. Among the existing proofs of the critical

factorization theorem for x, one relies on the property that if x = ayb (a, b are letters), then a

critical factorization of x either comes from a critical factorization of ay, or from a critical

factorization of yb. This leads to a quadratic algorithm. Another proof relies on the notion of a

Lyndon factorization. It leads, via the use of a linear time string-matching algorithm to a linear

time algorithm for computing a critical factorization. This method is not suitable for our

purpose, because the aim is to incorporate the algorithm in a string-matching algorithm.

The proof of the critical factorization theorem presented here gives a method both

practically and algorithmically simple to compute a critical position, and which, in addition,

uses only constant additional memory space. The method relies on a computation of maximal

suffixes that is presented afterwards.

Remark

A weak version of the critical factorization theorem occurs if one makes the additional

assumption that the inequality 3.period(x) ≤ |x| holds. Indeed, in this case, one may write x =

l.w.w.r where |w| = period(x), and w is chosen alphabetically minimal among its cyclic shifts.

This means, by definition, that w is a Lyndon word (see Chapter 15). One can prove that a

Lyndon word is unbordered. Consequently the factorization (lw, wr) is critical. ‡

The present proof of the theorem (in the general case) requires two orderings on words

that are recalled first. Each ordering ≤ on the alphabet A extends to an alphabetical ordering on

the set A*. It is defined as usual by x ≤ y if either

— x is a prefix of y, or

— x is strongly less than y, denoted by x << y (i.e. x = w.a.x' , y = w.b.y' with w, x', y'

words of A* and a, b two letters such that a < b).
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The following theorem shows the existence of critical factorizations adapted to CP algorithm.

The statement involves two alphabetical orderings on words. The first one is ≤ induced by a

given ordering ≤ on the alphabet. The second ordering on A*, called the reverse ordering and

denoted by ⊆, is obtained by reversing the order ≤ on A.

Remark

The ordering ⊆ is not the inverse of ≤. For instance, on A = {a, b} with a < b, we have both

abb ≤ abbaa and abb ⊆ abbaa.

In fact, it is easy to see that the intersection of the orderings ≤ and ⊆ is exactly the prefix

ordering. Which means that, for any words x and y, inequalities x ≤ y and x ⊆ y are equivalent to

x is a prefix of y. ‡

Theorem 13.12

Let x be a non-empty word on A. Let x = uv = u'v', where v (resp. v') is the alphabetically

maximal suffix of x according to the ordering ≤ (resp. ⊆).

If |v| ≤ |v'| then uv is a critical factorization of x. Otherwise, u'v' is a critical factorization of

x. Moreover, |u|, |u'| < period(x).

Proof

We first rule out the case where the word x has period 1, that is to say, when x is a power of a

single letter. In this case any factorization of x is critical.

We now suppose that |v| ≤ |v'| and prove that uv is a critical factorization. The other case (|v'| <

|v|) is symmetrical. Indeed, |v| < |v'| because x contains at least two different letters. Let us prove

first that u ≠ ε. Let indeed x = ay with a in A. If u = ε, then x = v = v', and both inequalities y ≤ x

and y ⊆ x are satisfied by definitions of v and v'. Thus, y is a prefix of x whence period(x) = 1

contrary to the hypothesis.

Let w be the shortest repetition for uv (|w| = r(u, v)). We distinguish four cases according to

whether w is a suffix of u or vice-versa, and to whether w is a prefix of v or vice-versa.

Case 1 : w is both a suffix of u, and a prefix of v.

The word v can be written wz (z ∈ Α∗). Since wv and z are suffixes of x, by the definition of v

we have wv ≤ v and z ≤ v. The first inequality can be rewritten wwz ≤ wz and implies wz ≤ z.

The second inequality gives z ≤ wz. We then obtain z = wz, whence w = ε, a contradiction.

Case 2 : w is a suffix of u, and v is a prefix of w.

The word w can be written vz (z ∈ Α∗). But then, vzv is a suffix of x strictly greater than v, a

contradiction with the definition of v.

Case 3 (Figure 13.16): u is a suffix of w, and v is a prefix of w.
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u v 

w w 

Figure 13.16. Case 3.

The integer |w| is a period of x because x is a factor of ww. The period of x cannot be shorter

than |w| because this quantity is the local period for uv. Hence period(x) = |w|, which proves that

the factorization uv is critical.

Case 4 (Figure 13.17): u is a suffix of w and w is a prefix of v.

u v 

w w w 

u' 

u' u y 

v' 

u" z 

Figure 13.17. Case 4.

Let w = zu and v = wy (z, y ∈ Α∗). Since |w| is the local period for uv, as in the previous case

we only need to prove that |w| is a period of x.

Let u" be the non-empty word such that u = u'u" (recall that hypothesis |v| < |v'| implies that u' is

a proper prefix of u). Since u"y is a suffix of x, by the definition of v', we get u"y ⊆ v' = u"v,

hence y ⊆ v. By the definition of v, we also have y ≤ v. By the remark above, these two

inequalities imply that y is a prefix of v. Hence, y is a border of v, and v is thus a prefix of we

for some integer e > 0. Then, x is a factor of we+1, which shows that |w| is a period of x as

expected. This ends Case 4.

The proof shows that cases 1 and 2 are impossible. As a consequence, |u| is less than the local

period. We then get |u| < period(x) because the factorization uv is critical. We also get |u'| <

period(x) when |u'| < |u|. The same argument holds symmetrically under the assumption |v'| <

|v|. This completes the whole proof. ‡

According to Theorem 13.12, the computation of a critical factorization reduces to that of

maximal suffixes. More accurately, it requires the computation of two maximal suffixes

corresponding to reversed orderings of the alphabet.

The rest of the section is devoted to the preprocessing part of CP algorithm. It is given

below. The design of this phase of CP algorithm is a direct consequence of Theorem 13.12.
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The algorithm calls the procedure MS that essentially computes the maximal suffix of a word.

For a word x, it returns both (u, v) such that x = uv and v is the maximal suffix of x, and p =

period(v). The next algorithm runs in linear time and uses only a bounded memory space

because, as we shall see afterwards, algorithm MS has the same performance.

Algorithm { preprocessing of pat for CP algorithm }

{ compute a critical factorization of pat }

begin

(u, v, p) := MS(pat) according to ≤;

(u', v', p') := MS(pat) according to ⊆;

if (|v| < |v'|) then

return (u, v) and p the period of v;

else

return (u', v') and p' the period of v';

end.

Example

Consider the word abaabaa of period 3. Its maximal suffix for the usual ordering on letters is

baabaa. The factorization (a, baabaa) is not critical because its local period is 2 (repetition ba).

According to the reverse ordering, the maximal suffix becomes aabaa. The factorization (ab,

aabaa) is critical.

The word ababaabbababa has period 8. Its maximal suffixes for usual and reverse orderings

are respectively bbababa and aabbababa. Their associated factorizations (ababaa, bbababa)

and (abab, aabbababa) are both critical. ‡

We end the section with a brief description of algorithm MS. The algorithm below is

strongly related to the Lyndon factorization of a word presented in Chapter 15. The reader

should refer to this chapter to develop a proof of correctness of the algorithm.
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Algorithm MS(x) { computes Maxsuf(x) and its period }

{ operates in linear and constant space }

begin

ms := 0;  j := 1;  k :=1;  p := 1;

while (j + k ≤ n) do begin

a' := x[ms+k];  a := x[j+k];

if (a < a') then begin

j := j+k; k := 1; p := j-ms;

end if (a = a') then

if (k ≠ p) then

k := k+1

else begin

j := j+p; k := 1;

end

else { a > a' } begin

ms := j; j := ms+1; k := 1; p := 1;

end;

end;

return (x[1…ms], x[ms+1…|x|], p);

end.

Let Maxsuf(x) be the suffix of x which is maximal for alphabetic ordering. We consider

the words f, g, and the integer e > 0 such that Maxsuf(x) = feg with |f| = period(Maxsuf(x)), and

g is a proper prefix of f. We define Per and Rest by Per(x) = f, Rest(x) = g. Note that Rest(x) is

a border of Maxsuf(x), and that Border(Maxsuf(x)) = fe-1g, even when e = 1.

The interpretation of the variables ms, j, k occurring in the algorithm MS is indicated on

Figure 13.18. The integer p is the period of Maxsuf(x), that is also the length of Per(x). The

integer ms is the position of Maxsuf(x) in x, and j is the position of the last occurrence of

Rest(x) in Maxsuf(x).
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x 

ms ms+k j j+k 

Maxsuf(x) 

Per(x) 

Rest(x)

Rest(x)Per(x) ....

a' a 

Figure 13.18. Variables in MS algorithm.

Example

Let x = abcbcbacbcbacbc. Then, for the usual ordering, Maxsuf(x) = cbcbacbcbacbc, which is

also (cbcba)2cbc.

The maximal suffix of xa is cbcbacbcbacbca = Maxsuf(x)a, which is a border-free word.

The maximal suffix of xb is cbcbacbcbacbcb = Maxsuf(x)b. This word has the same period as

Maxsuf(x).

Finally, the maximal suffix of xc is cc. ‡

The correctness of MS algorithm essentially relies on Lemma 13.13 (see Chapter 15 for a proof

of a similar result). Its time complexity is stated in Lemma 13.14.

Lemma 13.13

Let x be a word and a be a letter. Let a' be the letter such that Rest(x)a' is a prefix of

Maxsuf(x). Then the triple (Maxsuf(xa), Per(xa), Rest(xa)) is equal to

(Maxsuf(x)a, Maxsuf(x)a, ε) if a < a',

(Maxsuf(x)a, Per(x), Rest(x)a) or (Maxsuf(x)a, Per(x), ε) if a =a',

(Maxsuf(Rest(x)a), Per(Rest(x)a), Rest(Rest(x)a)) if a > a'.

Lemma 13.14

MS algorithm runs in time O(|x|) with constant additional memory space. It makes less

than 2.|x| letter comparisons.

Proof

The value of expression ms + j + k is increased by at least one unit after each symbol

comparison. The result then comes from inequalities 2 ≤ ms + j + k ≤ 2.|x| +1. ‡
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13.6. Optimal computation of periods

In this section we develop yet another time-space optimal string-matching algorithm,

which naturally extends to the computation of periods of word with the same performance.

 GS and CP algorithms factorize the pattern pat into uv according to some property of the

periodicities existing inside the pattern. The search phase is thereafter guided by the search for

the right part v of the pattern. Both algorithms tend to avoid some periodicities of the pattern to

make the search faster. This contrasts with both KMP algorithm and MPS algorithm whose

first phase amounts to compute periods of the pattern. The present algorithm adopts the same

strategy as the latter. It computes periods to realize shifts. This is done "on the fly" during the

search phase using maximal suffix computations, and periods are not stored. Moreover, no

preprocessing is needed.

When a shift is to be done, the strategy is to compute the period of the scanned segment

of the text (including the mismatch letter). The algorithm does not always find the exact period

of this segment, but in any case it computes an approximation of it. The approximation is good

enough to produce an overall linear-time algorithm, and the computation requires only a

bounded extra memory space.

Algorithm { preliminary version of algorithm P }

{ search for pat in text; no preprocessing needed  }

begin

pos := 0;  i := 0;

while (pos ≤ n-m) do begin

while i < m and text[pos+i+1] = pat[i+1] do i := i+1;

if i = m then report match at position pos;

(u, v, p) := MS(pat[1…i]text[pos+i+1]);

if (u suffix of v[1…p]) then begin

pos := pos+p;  i := i-p;

end else begin

pos := pos+max(|u|,⎣(i+1)/2⎦)+1;  i := 0;

end

end;

end.

The algorithm above resembles KMP algorithm. It makes use of a left-to-right scan of

the pattern against the text. When, during the execution, a mismatch is encountered, or an

occurrence of the pattern is discovered, the algorithm shifts the pattern to the right. The shift is

computed as follows. Let y be the longest prefix of the pattern found at the current position in
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the text. Let also b be the letter in the text that follows immediately the occurrence of y. Then,

the algorithm tries to make a shift of length as close as possible to period(yb) (in the above

algorithm, yb is pat[1…i]text[pos+i+1]). This quantity corresponds to the best possible shift in

such a situation. The computation of an approximation of period(yb) is done after the

computation of the maximal suffix of yb. This is an analogue to what is done at the

preprocessing phase of CP algorithm in Section 13.5.

The correctness of the algorithm amounts to prove that the length of the shift is not larger

than the period of x = yb. But, this is a direct consequence of Lemma 13.16 below that relates

the factorization of x to its maximal suffix, and to the period of this suffix. To state it we need

to introduce the notion of MS-factorization of a non-empty word x.

Let v be the maximal suffix of x (according to the alphabetical ordering). Let u be such

that x = uv. Considering its (smallest) period, the word v can be written wew’ where e ≥ 1, |w| =

period(v), and w’ is a proper prefix of w. Recall that the pattern x is non-empty so that words u,

v, w and w’ are well defined. The sequence (u, w, e, w’) is called the MS-factorization of x (MS

stands for maximal suffix).

The MS-factorization of x into uwew’ gives a rather precise information on the period of

x. Among interesting properties it is worth noting that w is border-free (it has no smaller period

than its length). The inequality period(x) > |u| is a rather intuitive property of the maximal

suffix, saying that this suffix must start inside the first period of the word (see Theorem 13.12).

Lemma 13.15

Let uwew’ be the MS-factorization of a non-empty word x, and v = wew’ be the maximal

suffix of x. Then, the five properties hold:

(1) — the word w is border-free.

(2) — if u is a suffix of w, period(x) = period(v),

(3) — period(x) > |u|,

(4) — if |u| ≥ |w|, period(x) > |v| = |x|-|u|,

(5) — if u is not suffix of w, and |u| < |w|, period(x) > min(|v|, |uwe|).

Proof

(1) Assume that w = zz’ = z”z for three non-empty words z, z’ and z”. The word zwe-1w’ is a

suffix of x distinct from v, so, it is greater than v according to the alphabetical ordering. The

inequality zwe-1w’ < v rewrites as zwe-1w’ < zz’we-1w’, and implies we-1w’ < z’we-1w’.

Moreover, zwe-1w’ is not a prefix of v because otherwise the smallest period of v would be |z”|,

less than |w|, contrary to the definition of w. Since then we-1w’ is not a prefix of z’we-1w’, there

is a word y, and letters a and b such that simultaneously ya is a prefix of we-1w’, yb is a prefix

of z’we-1w’, and a < b. Since ya is also a prefix of v, we get v < z’we-1w’, a contradiction with

the definition of v.

Thus, w cannot be properly written simultaneously as zz’ and z”z. This means that w is

borderfree, or, equivalently, period(w) = |w|.
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(2) When u is a suffix of w, |w| is obviously a period of the whole word x. The smallest period

of x cannot be less than the smallest period of its suffix v. Since this period is precisely |w|, we

get the conclusion period(x) = period(v) = |w|.

(3) We prove that period(x) > |u|. Otherwise, if period(x) ≤ |u|, there is an occurrence of v in x

distinct from its occurrence as suffix. In other words, x can be written u’vv’ with |u’| < |u|, and

|v’| > 0. But the suffix vv’ is then alphabetically greater than v, a contradiction with the definition

of v.

u  

u  

w  w'   w  w  

z  z  z  

Figure 13.19. Impossible : no suffix of u can be a prefix of w.

(4) (Figure 13.19) Assume that |u| ≥ |w|. We prove that period(x) > |v| (= |x|-|u|). If the contrary

holds, there is an occurrence of u in x distinct from the prefix occurrence. This occurrence

overlaps v. Then, taking into account that |u| ≥ |w|, there is a non-empty word z that is both a

prefix of w and a suffix of u. The former property shows that v can be written zz’ (for some

word z’), and the latter property shows that zv is a suffix of x. The maximality of v implies v >

zv, that is zz’ > zv. But this yields z’ > v, a contradiction with the definition of v.

u  

u  

w  w'   w  

w  

border of w   

Figure 13.20. Impossible because w is border-free.

(5) (Figure 13.20) Assume that u is not a suffix of w, and that |u| < |w|. Assume also, ab

absurdo, that period(x) ≤ min(|v|, |uwe|). Let z be the prefix of x of length period(x). The word x

itself is then a prefix of zx. From period(x) ≤ |v| we deduce that the word zu is a common prefix

to x and zx. And from period(x) ≤ |uwe| we know that u overlaps we. If u overlaps the

boundary between two w’s, or the boundary between the last w and w’, the same argument as

in case (4) applies and leads to a contradiction. The remaining situation is when u is a factor of

w, as shown in Figure 13.20. The last occurrence of w in the prefix zuw of zx overlaps an
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occurrence of w in the prefix uwe of x. Note that these occurrences of w cannot be equal or

adjacent because u is not suffix of w. This gives a contradiction with the border-freeness of w

stated in (i).

This completes the proof of the lemma. ‡

Note

One may note that, in case (4), u cannot be a suffix of w, because this would imply u = w

which is impossible by (3). ‡

An immediate consequence of Lemma 13.15 is that condition (2) is certainly true for

words having a small period, id est, having a period not greater than half their length (period(x)

≤ |x|/2). The computation of the smallest period of these words can then be deduced from a

computation of their maximal suffixes (and MS-factorization), together with a test "is u a suffix

of w ?". This fact is used in CP algorithm (Section 13.4) to approximate smallest periods of

patterns. The following lemma amounts to the correctness of algorithm P. It provides an

accurate approximation of the smallest period of the word x.

Lemma 13.16

Let uwew’ be the MS-factorization of a non-empty word x, and let v (= wew’) be the

maximal suffix of x.

— If u is a suffix of w, period(x) = period(v) = |w|.

— Otherwise, period(x) > max(|u|, min(|v|, |uwe|)) ≥ |x|/2.

Proof

This is mainly a corollary of Lemma 13.15.

When u is not a suffix of w, statements (3), (4), and (5) of Lemma 13.15 show that the

inequality period(x) > max(|u|, min(|v|, |uwe|)) holds. It remains to prove that the last quantity is

greater than |x|/2.

The inequality is trivially satisfied if |u| ≥ |x|/2. Otherwise, quantity |v|, which is equal to |x|-|u| is

greater than |x|/2. And |uwe|, equal to |x|-|w’|, is also greater than |x|/2 because |w’| < |w|. Then,

min(|v|, |uwe|) > |x|/2, which ends the proof. ‡

Examples

Bounds on the smallest period given in Lemma 13.15 are sharp. We list few examples of

patterns that give evidence of this fact. We consider words on the alphabet {a, b, c} with the

usual ordering (a < b < c).

Let x be aaaaba. The maximal suffix of x is v=ba whose smallest period is 2. In the MS-

factorization uwew’ of x, u = aaaa, w = ba, and w’ is empty. Then, period(x) = 5 = |u|+1. As

stated in Lemma 13.15 case (3), period(x) is greater than |u|, but only by one unit.
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The word x = aababa meets case (4) of Lemma 13.15. Here u = aa, w = ba, and w’ is empty.

The smallest period of x, 5, is exactly one unit more than the length of the maximal suffix

baba.

We exhibit two examples for case (5) of Lemma 13.15. The first example is x = acabca. We

have u = a, w = cab, and w’ = ca. Then, the quantity min(|v|, |uwe|) is |uwe| = 4. The smallest

period of x is period(x) = 5. The word satisfies period(x) = |uwe|+1 = |v|. The second example

is x = ababbbab. For it, u = aba, w = bbba, and w’ = b. This is a reverse situation where

min(|v|, |uwe|) = |v| = 5. The smallest period of x is now 6, and we have period(x) = |v|+1 <

|uwe|. ‡

Algorithm MS may be implemented to run in linear time (see Section 13.5). But even

with this assumption, algorithm P does not always run in linear time. Quadratic complexity is

due to computations of maximal suffixes. For instance, if the pattern is am-1b and the text is a

long repetition of the only letter a, at each position in the text, the maximal suffix of am is re-

computed from scratch, leading to an O(|pat|.|text|) time complexity.

Indeed, quadratic behavior of the algorithm is only reached with highly periodic patterns

(or, more precisely, with patterns having a highly periodic prefix). But, with such kind of

pattern, entire re-computations of maximal suffixes are not necessary. So, the trick to reduce

the running time is to save as much as possible of the work done to compute the maximal

suffix. We introduce a new algorithm for that purpose. It is called Next_MS, and shown below.

It is a mere transformation of algorithm MS of Section 13.5. The tuple of variables of MS, (ms,

j, k, p), is made accessible to the string-matching algorithm, so that it can control its values. The

tuple (ms, j, k, p) is called the MS-tuple of x. It is related to the MS-factorization (u, w, e, w’) of

x by the equalities :

ms = |u|, j = |uwe|, k = |w’|+1, p = |w| = period(v).

Figure 13.21 displays the situation. The value of ms is the position in x of its maximal suffix v,

and j is the position of the rest w’. The period of v, that is also the length of w, is given by p.

u  w  w'   w  w  

u  maximal suffix  v   

1 i  j  

p  

j +k  

k  

Figure 13.21. The MS-tuple (ms, j, k, p) of the pattern.

The string-matching algorithm is shown below as algorithm P (for Periods). The

difference with the preliminary version lies in the computation of the MS-tuple (ms, j, k, p). In
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this version, the MS-tuple is still initialized, as in the preliminary version, at the beginning of a

run of the algorithm and after each shift, except in one situation met with highly periodic

pattern. In this case the variable j of the MS-tuple is just decreased by the period p, length of the

shift. Algorithm P contains another modification: it computes all overhanging occurrences of

the pattern pat inside the text text (when text is prefix of z.pat). This is realized by a change on

the test of the main 'while' loop, and by the technical instruction "if pos+i = n then i :=

i-1" whose purpose is to avoid considering symbols beyond the end of the text.

Algorithm P;

{ search for pat in text }

{ time-space optimal; no preprocessing needed }

begin

pos := 0;  i := 0;  (ms,j,k,p) := (0,1,1,1);

while (pos ≤ n) do begin

while pos+i+1 ≤ n and i+1 ≤ m and text[pos+i+1] = pat[i+1]

do i := i+1;

if pos+i = n or i = m then report match at position pos;

if pos+i = n then i := i-1;

let scanned be pat[1…i]text[pos+i+1];

(ms,j,k,p) := Next_MS(pat[1…i]text[pos+i+1],(ms,j,k,p));

if pat[1…ms] suffix of

the prefix of length p of pat[ms+1…i]text[pos+i+1] then

if j-ms > p then begin { shift = period in an hrp }

pos := pos+p;  i := i-p;  j := j-p;

end else begin { shift = period outside an hrp }

pos := pos+p;  i := i-p;  (ms,j,k,p) := (0,1,1,1);

end

else begin { shift close to period }

pos := pos+max(ms, min(i-ms,j))+1;  i := 0;

(ms,j,k,p) := (0,1,1,1);

end;

end;

end.

Provided algorithm Next_MS is proved correct, the correctness of algorithm P relies on

Lemma 13.16 (as the correctness of the preliminary version does), and on Lemma 13.17

below. Before proving it, we first explain the main idea on an example.
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Example

Consider the pattern pat = babbbabbbab. Its maximal suffix is v = bbbabbbab. Both words

have smallest period 4. With the notation of MS-factorizations, we have u = ba, w = bbba, and

w’ = b. The exponent of w in v is e = 2. If the last four letters of pat are deleted, corresponding
for instance to a shift of 4 positions to the right, we are left with the word x1 = babbbab. Its

MS-factorization is u1 = ba, v1 = bbbab, w1 = bbba and w1’ = b. Note that the second

factorization is produced from the first one by pruning one occurrence of w. Indeed, this

generalizes to any word for which the exponent e of the MS-factorization is greater than 1 (see

Figure 13.22). The above result does not necessarily hold when e = 1. Let, for instance, pat be

bbabbbabb. It has period 4, like its maximal suffix v = bbbabb. Deletion of the last four letters
yields x1 = bbabb, which is its own maximal suffix and has period 3. This situation is quite far

from the previous one. ‡

u  w  w'   w  

u  w'   w  

maximal suffix of uwww'  

maximal suffix of uww'  

Figure 13.22. Highly periodic pattern.

Lemma 13.17

Let (u, w, e, w’) be the MS-factorization of a non-empty word x (wew’ is the maximal

suffix of x = uwew’). If u is a suffix of w and e > 1, then (u, w, e-1, w’) is the MS-

factorization of x’ = uwe-1w’. In particular, the word we-1w’ is the maximal suffix of x’.

Proof

Let v = wew’ be the maximal suffix of x. Any proper suffix of v of the form zwe-1w’ (with z ≠

ε) is less than v itself by definition. But, since w is border-free (Lemma 13.15), the longest

common prefix of w and z is shorter than z. This leads to w > z and proves that w is greater

than all its proper suffixes. This further proves that we-1w’ is its own maximal suffix. And,

since hypothesis period(x) = |w| is equivalent to “u is a suffix of w”, this also proves that we-

1w’ is the maximal suffix of uwe-1w’.

The equality period(we-1w’) = |w| is another consequence of the border-freeness of w stated in

Lemma 13.15. Thus, (u, w, e-1, w’) is the MS-factorization of x’ as announced. ‡

A pattern x which satisfies hypothesis of Lemma 13.17 has a rather small period, and

may be considered as highly periodic. Its smallest period is not greater than half its length.
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Conversely, if the smallest period of x is not greater than |x|/3, the conclusion of Lemma 13.17

applies.

We now explain how Lemma 13.17 is used to improve on the complexity of the

preliminary version of the string-matching algorithm. When a shift done according to a period

leaves a match between the text and the pattern of the form uwe-1w’, we avoid computing the

next maximal suffix from scratch. We better exploit the known factorization of the match.

Inside algorithm P the test "j-ms > p" is equivalent to condition "e > 1" of Lemma 13.17.

Doing so, we get a linear time algorithm. Below is the modification of Algorithm MS used in

algorithm P.

Algorithm Next_MS (x[1…m], (ms,j,k,p));

begin

while (j + k ≤ n) do begin

if (x[i+k] = x[j+k]) then begin

if (k = p) then begin

j := j+p; k := 1;

end else k := k+1;

end else if (x[i+k] > x[j+k]) then end

j := j+k; k := 1; p := j-ms;

end else begin

ms := j; j := ms+1; k := 1; p := 1;

end;

end;

return (ms, j, k, p);

end.

Lemma 13.18

The number of letter comparisons executed during a run of algorithm P on words pat

and text is less than 6.|text|+5. This includes comparisons done during Next_MS calls.

Proof

First consider the test for prefix condition in algorithm P (third "if"). The comparisons

executed on the prefix pat[1…i] of the pattern can be charged to text[pos+1…pos+i].

Whichever shift follows the test, the value of pos increases by more then ms. Thus, never

again, the comparisons are charged to the factor text[pos+1…pos+i] of the text. The total

number of these comparisons is thus bounded by |text|.

We next prove that each other letter comparison executed during a run of algorithm P

(including comparisons done during calls of Next_MS) leads to a strict increment of the value
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of expression 5pos+i+ms+j+k. Since its initial value is 3, and its final value is 5|text|+8, this

proves the claim.

Whatever is the result of the letter comparison inside algorithm Next_MS, the value of ms+j+k

increases by 1, and even by more than 1 when the last line of the algorithm is executed. It is

worth to note that the inequality k ≤ j-ms always holds.

Successful comparisons at the first instruction of algorithm P trivially increase i, and

consequently expression 5pos+i+ms+j+k. At the same line, there is at most one unsuccessful

comparison. This comparison is eventually followed by a shift. We examine successively the

three possible shifts in the order they appear in algorithm P.

The effect of the first shift is to replace 5pos+i+ms+j+k by 5(pos+p)+(i-p+1)+ms+(j-p)+k. The

expression is thus increased by 3p+1, which is greater than 1.

The second shift is executed when j-ms > p does not hold. This means indeed that j-ms = p (j-

ms is always a multiple of p). We also know that ms < p (see Lemma 13.15 case (2)). One can

observe on algorithm Next_MS that k ≤ p. Now, immediately after the shift, i is decreased by p-

1, ms and k are decreased by less than p, and j = ms+p is decreased by less than 2.p. Since pos

is replaced by pos+p the value of 5pos+i+ms+j+k is increased by more than 1.

Finally, consider the effect of the third shift on the expression. If s is the value of max(ms,

min(i-ms, j))+1, the increment of expression 5pos+i+ms+j+k is I = 5s-(i-1)-ms-(j-1)-(k-1) =

5s-i-ms-j-k+3, that is, 5s-2i-ms+2, because j+k = i+1. The value s is greater than or equal to

both ms and i/2. So I ≥ 2, which proves that the third shift increases the value of

5pos+i+ms+j+k by more than 1.

The effect of the second "if" in algorithm P, that can decrease i by one unit, is of no importance

in the preceding analysis. ‡

Since algorithm P computes all overhanging occurrences of the pattern inside the text, it

can be used, in a natural way, to compute all periods of a word. Each (overhanging) position of

x inside x itself (except position 0) is a period of word x. We give below a straightforward

adaptation of algorithm P that computes the smallest period of a word. It can easily be extended

to compute all periods of its input. As a consequence of Lemma 13.18, we get the following

result.

Theorem 13.19

The periods of a word x can be computed in time O(|x|) with a constant amount of space

in addition to x.
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function Per(x);

{ time-space optimal computation of period(x) }

begin

per := 1; i := 0; (ms,j,k,p) := (0,1,1,1);

while per+i+1 ≤ |x| do begin

if x[per+i+1] = x[i+1] then i := i+1

else begin

(ms,j,k,p) := Next_MS(x[1…i]x[per+i+1],(ms,j,k,p));

if (x[1…ms] suffix of

the prefix of length p of x[ms+1…i]x[per+i+1]) then

if (j-ms > p) then begin

per := per+p; i := i-p+; j := j-p;

end else end

per := per+p; i := i-p+; (ms,j,k,p) := (0,1,1,1);

end

else begin

per := per+max(ms, min(i-ms,j))+1; i := 0;

(ms,j,k,p) := (0,1,1,1);

end;

end;

end;

return(per);

end.
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14. Time-processors optimal string-matching

There are two types of optimal parallel algorithms for the string-matching problem. The

first type uses in an essential way the combinatorics of periods in texts. In the second type, no

special combinatorics of texts is necessary. In this chapter, we first follow the approach of

Vishkin's algorithm. Then, the Galil's sieve method is shown. It produces a constant-time

optimal algorithm. These algorithms are of the first type. Next, we present the suffix-prefix

algorithm of Kedem, Landau and Palem (KLP). This algorithm is of the second type. It is

essential for the optimality of this algorithm that we use the model of parallel machine with

concurrent writes (CRCW PRAM). KLP algorithm can be viewed as a further application of

the dictionary of basic factors (Chapter 9). The suffix-prefix string-matching introduced there is

extended to the case of two-dimensional patterns at the end of the section.

14.1. Vishkin's parallel string-matching by duels and by sampling

Historically, the first optimal parallel algorithm for string-matching used the notion of

expensive duels, see Chapter 3. Moreover, it was optimal only for fixed alphabets. The notion

has been strengthened to the more powerful operation of duel that leads to an optimal parallel

string-matching. Unfortunately, preprocessing the table of witnesses required by the method is

rather complicated. So, we just state the result, but omit the proof and refer the reader to

references at the end of the chapter.

Theorem 14.1

The smallest period and the witness table of a pattern of length m, can be computed in

O(logm) time with m/logm processors of a CRCW PRAM, or in O(log2m) time with

m/log2m processors of a CREW PRAM.

Suppose that v is the shortest prefix of the pattern which is a period of the pattern. If the

pattern is periodic (vv is a prefix of the pattern) then vv— is called the non-periodic part of the

pattern (v— denotes the word v with the last symbol removed). We omit the proof of the

following fact, which justifies the name "non-periodic part" of the pattern:

Lemma 14.2

If the pattern is periodic (it is twice longer than its period) then its non-periodic part is

non-periodic.
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The witness table is relevant only for the non-periodic pattern. So, it is easier to deal with

non-periodic patterns. We prove that such assumption can be done without loss of generality,

by ruling out the case of periodic patterns.

Lemma 14.3

Assume that the pattern is periodic, and that all occurrences (in the text) of its non-

periodic part are known. Then, we can find all occurrences of the whole pattern in the text

(i) — in O(1) time with n processors in the CRCW PRAM model,

(ii) — in O(logm) time with n/logm processors in the CREW PRAM model.

Proof

We reduce the general problem to unary string-matching. Let w = vv— be the non-periodic part

of the pattern. Assume that w starts at position i in the text. By a segment containing position i

we mean the largest segment of the text containing position i and having a period of size |v|. We

assign a processor to each position. All these processors simultaneously write 1 into their

positions if the symbol at distance |v| to the left contains the same symbol. The last position

containing 1 to the right of i (all positions between them also contain ones) is the end of the

segment containing i. Similarly, we can compute the first position of the segment containing i.

It is easy to compute it optimally for all positions i in O(logm) time by a parallel prefix

computation (see Chapter 9). The constant time computation on a CRCW PRAM is more

advanced, we refer the reader to [BG 90]. Some tricks are used by applying the power of

concurrent writes. This completes the proof. ‡

Now we can assume that the pattern is non-periodic. We use the witness table used in

Chapter 3 in two sequential string-matching algorithms: by duels and by sampling. The parallel

counterparts of these algorithms are presented.

Recall that a position l on the text is said to be in the range of a position k iff k < l < k+m.

We say that two positions k < l on the text are consistent iff l is not in the range of k, or if

WIT[l-k] = 0. If the positions are not consistent, then, in constant time we can remove one of

them as a candidate for a starting position of the pattern using the operation duel, see Chapter 3.

Let us partition the input text into windows of size m/2. Then, the duel between two

positions in the same window eliminates at least one of them. The position which "survives" is

the value of the duel. Define the operation ⊗ by i ⊗ j = duel(i, j). The operation ⊗ is

“practically” associative. This means that the value of i1 ⊗ i2 ⊗ i3 ⊗ …⊗ im/2 depends on the

order of multiplications, but all values (for all possible orders) are equivalent for our purpose.

We need any of the possible values.

Once the witness table is computed, the string-matching problem reduces to instances of

the parallel prefix computation problem. We have the following algorithm.
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algorithm Vishkin_string_matching_by_duels;

begin

consider windows of size m/2 on text;

/* sieve phase */

for each window do in parallel

/* ⊗ can be treated as if it were associative */

compute the surviving position i1 ⊗ i2 ⊗ i3 ⊗ .. ⊗ im/2,

where i1, i2, i3, ..., im/2 are consecutive positions

in the window;

/* naive phase */

for each surviving position i do in parallel

check naively an occurrence of pat at position i

using m processors;

end.

Theorem 14.4

Assume we know the witness table and the period of the pattern. Then, the string-

matching problem can be solved optimally in O(logm) time with O(n/logm) processors

of a CREW PRAM.

Proof
Let i1, i2, i3, …, im/2 be the sequence of positions in a given window. We can compute i1 ⊗

i2 ⊗ i3 ⊗ …⊗ im/2 using an optimal parallel algorithm for the parallel prefix computation,

see Chapter 9. Then, in a given window, only one position survives; this position is the value of

i1 ⊗ i2 ⊗ i3 ⊗ …⊗ im/2. This operation can be done simultaneously for all windows of size

m/2. For all windows, this takes time O(logm) with O(n/logm) processors of a CREW PRAM.

Afterwards, we have O(n/m) surviving positions altogether. For each of them we can check the

match using m/logm processors. Again, a parallel prefix computation is used to collect the

result, that is, to compute conjunction of m boolean values (match or mismatch, for a given

position). This takes again O(logm) time with O(n/logm) processors.

Finally, we collect O(n/m) boolean values by a similar process. It gives an optimal parallel

algorithms working with the announced complexities. This completes the proof. ‡

The consequence of Lemma 14.1 and Theorem 14.4 altogether is the basic result of this

section stated as the following corollary.

Corollary 14.5

There is an O(log2n) time parallel algorithm that solves the string matching problem

(including preprocessing) with O(n/log2n) processors of a CREW PRAM.
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The idea of deterministic sampling was originally developed for parallel string-matching.

In Chapter 3, a sequential use of sampling is shown. Recall the definition of the good sample.

A sample S is a set of positions in the pattern. A sample S occurs at position i in the text iff

pat[j] = text[i+j] for each j in S. A sample S is called a deterministic sample iff it is small (|S| =

O(logm)), and it has a big field of fire — a segment [i-k…i+m/2-k]. If the sample occurs at i in

the text, then positions in the field of fire of i, except i, cannot be matching positions. The

important property of samples is that if we have two positions of occurrences of the sample in

a window of size m/2, then one "kills" the other: only one can possibly be a matching position.

algorithm Vishkin-string-matching-by-sampling;

begin

consider windows of size m/2 on text;

/* sieve phase */

for each window do in parallel begin

for each position i in the window do in parallel

kill i if the sample does not occur at i;

kill all surviving positions in the window,

except the first and the last;

eliminate one of them in the field of fire of the other;

end;

/* naive phase */

for each surviving position i do in parallel

check naively an occurrence of pat starting at i

using m processors;

end.

In the sieve phase, we use nlogm processors to check a sample match at each position. In

the naive phase, we have O(n/m) windows, and, in each window, m processors are used. This

proves the following.

Theorem 14.6

Assume we know the deterministic sample and the period of the pattern. Then, the string-

matching problem can be solved in O(1) time with O(nlogm) processors in the CRCW

PRAM model.
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The deterministic sample can be computed in O(log2m) time with n processors by a

direct parallel implementation of the sequential construction of deterministic samples presented

in Chapter 3. But faster sampling methods are possible (see bibliographic notes).

14.2.* Galil's sieve

The constant time parallel sampling algorithm of the last section is not optimal but only

by a logarithmic factor (logm). In order to produce an optimal searching phase, we apply a

method to eliminate all but O(n/logm) candidate positions in constant time with n processors.

We call it the Galil's sieve. After applying the sieve with the sampling algorithm of the last

section, only O(n/logm) positions have to be checked as sample matches. Hence, we can do the

search phase of the string-matching in constant time with an optimal number of processors

(linear number of processors). This is stated in the next theorem.

Theorem 14.7

There is a preprocessing of the pattern in O(log2m) time with m processors such that the

search phase on any given text can be done in constant time with linear number of

processors.

The proof of Theorem 14.7 relies on the next lemmas of the section. The present proof

consists in the description of Galil's sieve. It is based on a simple combinatorial fact described

below. Let T be an r×r zero-one array. We say that a j-th column hits a i-th row iff T[i, j] = 1.

A set of columns hits a given row if at least one of its columns hits this row, see Figure 14.1.

Figure 14.1. A hitting set of columns: the three columns hit all rows.
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Lemma 14.8 (hitting set lemma)

Assume we have r×r zero-one array T such that each row contains at least s ones. Then,

there is a set H of O(r/s logr) columns that hits all the rows of T.

Proof

The required set H is constructed by the following algorithm.

algorithm Hitting-set;

begin

H := empty set; R := set of all rows of the array;

while R non-empty do begin

choose a column j hitting the largest number of rows of R;

delete from R the rows hit by the j-th column;

add the j-th column to H;

end;

return H;

end.

It is enough to prove the following:

the number of iterations of the algorithm "Hitting-set" is O(r/s logr).

Let total be the total number of ones in all rows of R. Since there are r columns (containing

altogether all ones), the selected j-th column contains at least total/r ones. We remove at least

total/r rows, each containing at least s ones. This implies that we remove at least s.total/r ones.

Doing so, the total number of ones decreases at each iteration by a factor at least (1-s/r). It is

easy to calculate that there is a number k = O(r/s logr), such that (1-s/r)k < 1/r2. Initially, we

have globally at most r2 ones. Hence, after k iterations there is no one, and R is empty. This

completes the proof. ‡

Let us consider occurrences of the pattern which start in a "window" of size m/4 on the

text, see Figure 14.2. It is enough to remove all but O(m/logm) candidate positions in such a

window. Let us fix one such window. Let us partition the pattern into four quarters. The

window corresponds to the first quarter of the pattern. Let us call the two middle quarters the

essential part of the pattern. Let z be a factor of size logm/4 of the essential part, and which has

the highest number of occurrences inside this part. The segment of length m/2 of the text

immediately following the window is called the essential part of the text.



Chapter 14 365 — 349 22/7/97

Efficient Algorithms on Texts 365 — 349 M. Crochemore & W. Rytter
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in this area
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Figure 14.2. The factor z in the essential part of the pattern.

We assume for simplicity that the alphabet is binary. If the alphabet is unbounded, it has

no more than n letters, and the sieve method is considered for small subwords of length doubly

logarithmic.

Lemma 14.9

If an occurrence of the pattern starts in the window, then we can find one occurrence of z

inside the essential part of the text in constant time with m processors.

Proof

There are at least s = m0.5 occurrences of z inside the essential part of the pattern, since there are

m/2 occurrences and at most 2logm/4 possible subwords of length logm/4. Let us consider all

possible occurrences of the pattern starting in the window and the relative occurrences of z in

the essential part. Consider m/4 shifts of the pattern, and, in each of them, put 1 at starting

positions of z. We have m/4 rows, each of them with √m ones. According to the hitting-set

lemma there is a set H of positions (corresponding to columns in the "hitting set" lemma) in

the essential part of the text such that, if there is any occurrence of the pattern starting in the

window, then there is an occurrence of z in the essential part of text starting at a position in H.

The set H is small, |H| = O(m/logm), in fact it is even of lower order, due to the hitting-set

lemma. So, it is enough to check for an occurrence at positions in the hitting set. This can be

done on a CRCW PRAM in constant time with |z| processors for each position in H.

Altogether a linear number of processors is enough. This completes the proof. ‡

We introduce the idea of segments related to the factor z (in text or in pattern). A segment

of an occurrence of z in a given word w is the maximal factor of w containing z, and having the

same period as z. We leave the proof of the following technical fact to the reader.
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Lemma 14.10

Assume we are given the period of z and an occurrence of z in a given text. Then the

segment of the occurrence of z can be found in constant time with n processors of a

CRCW PRAM.

Lemma 14.11 (Galil's sieve lemma)

Assume that the pattern is non-periodic, and both the subword z and its hitting set H of

size m/logm are constructed. Then, we can eliminate all but O(m/logm) candidate

positions for matching positions in a given window in constant time with m processors.

Proof

We have to remove all but O(m/logm) candidates from the window. First, we find one

occurrence of z in the essential part of the text. This can done optimally according to Lemma

14.9. If there is no occurrence then all positions in the window can be eliminated. Therefore, we

assume that there is an occurrence, and we find one. Now there are two cases according to

whether z is periodic or non-periodic.

Case 1 (z is non-periodic)
This is the simpler case. Let k1, k2, …, kp be the sequence of positions of occurrences of z in

the pattern, see Figure 14.3. There are at most O(m/|z|) occurrences due to the non-periodicity

of z. This number is O(m/logm) because |z| = logm.

z
pattern

z z
k1

k 2

k 3

Figure 14.3. Positions of z in the pattern.

Now, if we found an occurrence of z at position i in the essential part of the text, then the

possible candidates for matching positions of the pattern in the window are only i-k1, i-k2, …, i-

kp, see Figure 14.4. All positions in the window which do not appear in this sequence are

eliminated. This completes the proof in the non-periodic case.
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Figure 14.4. Possible matching position i-kj.

Case 2 (z is periodic)

Now we cannot apply directly the same argument when z is periodic, because the number of

occurrences of z can be larger than O(m/logm). However, we shall deal with extended

occurrences of z: the segments of z. Let us fix z. It is easy to see that two segments cannot

overlap more than at |z|/2 positions. Hence, the number of segments in the pattern is

O(m/logm). For a given z found in the essential part of the text we compute its segment. Then

the end of this segment corresponds to an end of some segment in the pattern, or the beginning

of the segment corresponds to the beginning of some segment in the pattern. We use the same

argument as in the first case. This completes the proof. ‡

The conclusion of the section, corollary of the previous lemma, gives a constant-time

string-matching algorithm.

Theorem 14.12

The search of a preprocessed pattern in a text of length n can be done in constant time

with O(n) processors in the CRCW PRAM model.

14.3. The suffix-prefix matching of Kedem, Landau and Palem

The method discussed in the present section is based on the naming (or numbering)

technique, which is intensively used by KMR algorithm (see Chapters 8 and 9). The crucial

point in the optimal parallel string-matching algorithm presented here is to give consistent

names to some segments of the pattern. The basic tool is the dictionary of basic factors (DBF,

in short). However, the main drawback of the DBF is its size: it contains names for nlogn

objects. The solution proposed by KLP algorithm is to use a weak form of the DBF. It contains
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only names for all subwords of length 2k that start at a position in the text divisible by 2k (for

each integer k = 0, 1, …, logn). We call this structure the weak dictionary of basic factors

(weak DBF, for short).

Lemma 14.13

The weak DBF contains the names of O(n) objects. It can be constructed in O(logn) time

with O(n/logn) processors of a CRCW PRAM.

Proof

The construction of the weak DBF can be carried out essentially in the same way as that of the

DBF. But then the total work is linear, due to the fact that the total number of objects is linear.

Hence O(n/logn) processors are enough. ‡

KLP algorithm reduces the string-matching problem to the suffix-prefix problem

(below). That is, we have to give names only to (some) suffixes and prefixes of two strings.

The number of objects is linear, and due to this fact, an algorithm with linear total work is

possible. The problem consists essentially in building a dictionary for prefixes and suffixes.

This is why the dictionary of basic factors is useful.

Let p and s be words of length n. The suffix-prefix (SP, for short) problem for words p

and s of the same length is defined as follows.

SP problem:

name consistently all prefixes of p and all suffixes of s together.

A linear time sequential computation is straightforward: the SP problem for two words

of length n can be solved sequentially in O(n) time. This is a simple application of Knuth-

Morris-Pratt algorithm, and of the notion of failure function (see Chapter 3).

The SP problem can be solved by an optimal parallel algorithm, but this requires a non-

trivial construction. It is postponed after the application to string-matching presented in the next

theorem. The theorem shows the significance of the SP problem. It is also presented here to

acquaint the reader with the problem, before constructing an optimal parallel algorithm.

Theorem 14.14

Assume that the SP problem for two strings can be solved by an optimal parallel

algorithm. Then, the string-matching problem can also be solved by an optimal parallel

algorithm.

Proof

Let us factorize the text into (disjoint) segments of size m (length of the pattern). Then the

string-matching is reduced to 2n/m SP problems of size m. If the pattern overlaps the border

between the i-th and (i+1)-th segment then some prefix u of the pattern should be a suffix of
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the i-th segment, and the associated suffix v of the pattern should be a prefix of the (i+1)-th

segment (see Figure 14.5).

 .

text 

pattern u v 

i-th segment i+1-th segment

m m 

m 

Figure 14.5. Suffix-prefix matching.

We have O(n/m) SP problems of size m. They can be computed independently, each with

O(m) work. Altogether the algorithm works in logarithmic time (O(logm), with a total work of

O(n). This completes the proof. ‡

One of the basic parts of KLP algorithm is the reduction of the number of objects. This

reduction is possible due to encoding of segments of length logn by their names of O(1) size

(small integers). The main tool to do that is the string-matching automaton for several patterns.

In what follows we assume that the input alphabet is of a constant size. This assumption is only

used in the proof of Lemma 14.15 below. In fact, the lemma also holds for unbounded

alphabet, but the proof is more complicated (see bibliographic notes). Hence the whole suffix-

prefix algorithm works essentially with the same complexity even if the assumption on the size

of alphabet is dropped.

Lemma 14.15

Assume we have r patterns of the same length k. Then in time O(k) on a CRCW PRAM

(a) — we can construct the string-matching automaton G of the patterns with work

O(kr);

(b) — if G is computed, then we can find all occurrences of the patterns in a given text of

length n with O(n) work.

Proof

The proof of point (a) is essentially the parallel implementation of the sequential algorithm for

the multi-pattern machine (see Chapter 7). The structure of this machine is based on the tree T

of the prefixes of all patterns. The states of the automaton correspond to prefixes. The tree

grows in a breadth-first-search order. We use the algorithm for the construction of the multi-

pattern automaton without use of the failure table. The transitions from a node at a given level

are computed in a constant time, while transitions for all states at higher levels are computed,
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see Chapter 7. The bfs order is well suited to parallel construction level-by-level. At a given

level we process all nodes simultaneously with rk processors. As a side effect, we have

consistent names for all patterns: two patterns are equal iff they have the same names. There is

a special name corresponding to all words of length k which are not equal to any of the k

patterns.

The proof of the point (b) is rather tricky. The constructed automaton can be used to scan the

text. For each segment composed of the last k symbols read so far, write the name of the

pattern equal to that segment, or the special value if no pattern matches. One automaton can

process sequentially a factor of length 2k of the text, and give names to the last k positions

(occurrences or non-occurrences of patterns) in that portion of the text. We can activate a copy

of the automaton G at each position divisible by k (one can assume that k divides n). The n/k

automata work simultaneously for 2k steps. After that all segments of length k got their names.

All automata traverse the same (quite big) graph representing the automaton G. The total time

is O(2k), and the total work is O(n). ‡

For technical reasons we need to consider the following extended SP problem.

ESP problem:
Given strings s and p1, p2, …, pr of the same length k,

name consistently all prefixes of p1, p2, …, pr and all suffixes of s.

A striking fact about the ESP problem is that there is an algorithm that processes prefixes and

suffixes in a non symmetric fashion. In the lemma below we privilege prefixes, though one can

make a reverse construction.

Lemma 14.16 (key lemma)
The ESP problem for strings s and p1, p2, …, pr of the same length k can be solved in

time O(logk), and work O(kr + klogk).

Proof

Assume for simplicity that k is a power of two. Let us look for a computation on both s and

one of the pi’s, which is denoted by p. The same processing applies to all pi’s simultaneously.

Compute the complete DBF for s and the weak DBF for p together. In the weak DBF names

are given only to words of size 2h starting at positions divisible by 2h, for any h ≥ 0. The weak

DBF is of O(k) size, while the complete DBF is of O(klogk) size. For all patterns, there are r

weak DBF’s, so the work spent on them is now O(kr).

The algorithm proceeds in logk stages. Let us call an h-word any word whose length is

divisible by 2h. An h-word is maximal if it cannot be extended to the right into a different h-

word. The end of the maximal h-word starting at position j is denoted by endh(j). The basic

property of endh(j) is that the difference endh(j) - endh+1(j) is either 0 or 2h.
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Figure 14.6.

In the algorithm we maintain the following invariant.

INV(h): all maximal h-words of s, and all h-prefixes of p have consistent names.

After computing the DBF for s, and the weak DBF for p, this invariant holds for h = logk. In

fact, the computation of the ESP problem reduces to satisfying INV(0). We describe how to

efficiently preserve the invariant from h+1 to h.

procedure STAGE(h);

{ INV(h+1) holds }

begin

for each position j in s do in parallel begin

if endh+1(j) ≠ endh(j) then

combine names of subwords

s[j..endh+1(j)] and s[endh+1(j)..endh(j)];

for each (h+1)-prefix p[1..i] of p do in parallel

combine names of p[1..j] and p[j..j+2h]

to get names for p[1..j+2h];

end;

{ INV(h) holds }

end.

The procedure can be simply extended to handle all patterns pi simultaneously. Then, the whole

algorithm has the following structure:

for h := logn-1 downto 0 do STAGE(h).

O(k) processors are obviously enough to process s, one processor per each position j. Hence,

O(klogk) work is spent on s. But for a given pi of length k we spend only O(k) work, since at
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stage h we process only (h+1)-prefixes. The total number of all h-prefixes, for h running from

0 to logn, is linear. Hence, the total work spent on a single pi is O(k), and it is O(rk) on all pi's.

This complete the proof. ‡

Theorem 14.17

The SP problem for two words p, s of same length n can be solved on a CRCW PRAM

in logarithmic time with linear work.

Proof
Assume for simplicity that n is divisible by logn. Consider the subwords p1, p2, …, plogn of p

of length n-logn starting inside the prefix of length logn of p, see Figure 14.7.

lognlogn

p 

p 1

p 2

p logn 

Figure 14.7.

Factorize the text s into segments of length logn, and call them small patterns. We can find all

occurrences of the small patterns in p with O(n) work, due to Lemma 14.15. The name of the

small segment starting at position j in p is consistent with the name of a small pattern starting at

that position.

Now we can factorize each pi into segments of length logn. We name the segment consistently

with names of small patterns. The name of a small segment starting at a given position of p can

be found in O(1) time after finding all occurrences of small patterns. Doing so, we compress s

into a text s’, and each pattern pi into a text pi’ of length n/logn.

We solve the ESP problem for s’ and p1’, p2’, p3’, …, plogn’. The time is logarithmic and the

total work is linear due to Lemma 14.16. This proves the following:

Claim 1

We can compute, in logarithmic time with linear work, consistent names for all suffixes

of s and all prefixes of subpatterns pi’s whose length is divisible by logn.

Consider now the prefix     p     of length logn of p, and all logn-segments   s  i of s. Assign one

processor to each segment    s   i. This processor computes the SP problem for     p     and    s   i
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sequentially in logn time, due to Lemma 14.16. There are n/logn processors, hence the total

work is linear. In this way we have proved:

Claim 2

We can compute optimally consistent names for all prefixes of     p     and all suffixes of

logarithmic-size segments    s   i.

Now we are ready to solve the original SP problem for p and s. Take the prefix of p of a given

size i, and the suffix of s of same size i. We have enough information to check in constant time

if the equality p[1…i] = s[n-i+1…n] holds. We can write i as i = i1+i2, where i1 ≤ logn and i2

is divisible by logn.

u v 

i1 i2

text s 

text p 

logn

logn

u v 

i1 i2

p 

s k 

Figure 14.8.

Now it is enough to check names of the suffix of s of length i2, and prefix of pi1 of length i2,

see Figure 14.8. This can be done in constant time, due to Claim 1, since i2 is divisible by logn.

Next, we check the names of the (small) prefix of p of length i1 and the suffix s[ni+1…n-i2] of

a logarithmic segment    s   k of s. This can be done in constant time due to Claim 2. We perform

this operation simultaneously for all i. This completes the proof. ‡

14.4. A variation of KLP algorithm

In this section we present a variation of the KLP algorithm. Its aim is to provide a version

the KLP algorithm that extends easily to the two-dimensional case. The basic parts of KLP

algorithm and the dictionary algorithm (parallel version of KMR algorithm) are constructions

of dictionaries which enable to check in a constant time whether some factors of text or pattern

match.
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Recall that factors whose length is a power of two are said to be basic factors. One can

also assume that the size of the pattern is a power of two. If not, then we can search for two

subpatterns which are prefix and suffix of the pattern, and whose common size is the largest

possible power of two. A basic factor f of the pattern is called a regular basic factor iff an

occurrence of it starts in the pattern at a position divisible by the size of f. The basic property of

regular factors is that a pattern of size n has O(n) regular basic factors. This fact implies the key

lemma, which has already been proved in Chapter 9.

Lemma 14.17 (key lemma )

Consider t patterns, each of size M. There is an algorithm to locate all of them in a one-

dimensional string or a two-dimensional image of size N in time O(logM) with total

work O(NlogM+tM).

Proof

The algorithm is derived form the parallel version of KMR algorithm. If we look closer at the

pattern matching algorithm derived from KMR algorithm, then it is easy to see that the total

work of the algorithm is proportional to the number of considered factors. We can assume

w.l.o.g. that the size M of patterns is a power of two. So, in patterns, only regular factors need

to be processed. Hence, the work spent on one pattern is O(M). Similarly, for the t patterns of

size M, the work is O(tM). This completes the proof. ‡

Let us fix the integer k as a parameter of order logm. Lengths of texts are assumed to be

multiples of k. The factors of length k of texts and patterns are called small factors. The small

factors which have an occurrence at a position divisible by their size are called regular small

factor. Let x be a string of length n, and let small(x, i) be the small factor of x starting at position

i (1 < i ≤ n). The string small(x, i) is well defined if x is padded with k-1 special endmarkers at

the end. Define the string   x   =    x   1   x   2…  x  n by

   x   i = name(small(x, i)), for 1 < i ≤ n,

where name(f) is the name of the regular small factor equal to f. Names are assumed to be
consistent: if small(x, i) = small(x, j) then   x  i =   x  j.

The string    x    is called here the dictionary of small factors of x. A simple way to compute

such dictionary is to use the parallel version of the Karp-Miller-Rosenberg algorithm. This

gives nloglogn total work, very close to optimal. the optimality can be achieved, if the alphabet

is of constant size, using a kind of the "four Russian trick", as explained below.

In this paragraph, we consider for simplicity that the alphabet is binary, and that k =

logm/4. There are potentially only m1/2 binary strings of length 2k. For each of them, we can

precompute the names of all their small factors of length k. These names can be the integers

having the corresponding factors as binary representations. We have enough processors for all

the m1/2 binary strings of length 2k to do that, since the total number of processors must be

O(n/logm). Then, to produce   x   the dictionary of small factors of a string x of length n (≥ m), it
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is first factorized into segments of length 2k. Independently and at the same time each segment

is treated. One processor can encode it into a binary number in O(logm) time, looking at the

precomputed table of names of its small factors, and writing down k consecutive entries of the

string   x   in time O(k) = O(logm). Thus, the overall procedure works in time O(logm) with

O(n/logm) processors. This proves the next lemma on fixed alphabets.

The breakthrough for this approach is done by KLP algorithm: the assumption on fixed-

size alphabet can be dropped. This is because only names corresponding to regular small

factors have to be considered in the naming procedure for all factors (two factors whose names

are not equal to any regular small factor can have the same name, even if they are equal). The

total length of all small regular factors is linear, and each of them has logarithmic size. The

Aho-Corasick pattern machine for all regular basic factors can be constructed by an optimal

algorithm, due to the linearity of their total length. But, such an approach does not work if we

want to make a pattern matching machine for all small factors.

Lemma 14.19

The dictionary of small factors can be computed in O(logm) time with linear work.

The description of the string-matching algorithm of the section is written in a way

suitable for the two-dimensional extension of Section 14.5. The algorithm for two dimensions

is conceptually a natural extension of the one-dimensional case. The basic parts of one-

dimensional and two-dimensional pattern-matching algorithms are similar:

— computation of the dictionary of small factors,

— compression of strings by encoding disjoint logm-size blocks by their names, and

— application of the algorithm of Lemma 14.18.

Two auxiliary functions are necessary: shift and compress. Let k = logm. We assume that n

(length of text) and m (length of pat) are multiples of k. For 0 ≤ r ≤ k-1, let us denote by

shift(pat, r) (see Figure 14.9) the string defined by

shift(pat, r) = pat[1+r…m-k+r].

For a string z let us denote by compress(z) the string defined by

compress(z) =    z   1   z  k   z  2k …  z  (h-1)k,

where h = |z|/k. The string compress(z) contains the same information as z, but is shorter by a

logarithmic reduction factor. Each letter of the new string encodes a logarithmic size block of z.

Intuitively speaking compress(z) is a concatenation of names of consecutive small factors,

which compose the string z. Small factors (strings of length logm) are replaced by one symbol.

The compression ratio is logm. In the following,     p    i is the name of the small factor of pat

starting at position i in pat, and    t   i is the name of the small factor of text starting at position i in

text.
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pat 

shift(pat, r)
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Figure 14.9. Operation shift. To test a match it is enough to identify the part shift(pat, r),

and the first and last full small factors of the pattern, p1 and pm-k.

The identification of shift(pat, r) is done by searching for its compressed version.

The correctness of the algorithm below is based on the following obvious observation: an

occurrence of pat occurs at position i in text iff the following conditions are satisfied

(*) compress(shift(pat, k-(i mod k))) starts in compress(text) at position (i div k),

    p    1 =    t   i+1, and     p    m-k =    t   i+m-k.

The condition (*) is illustrated by Figure 14.10 (see also Figure 14.9). The structure of the

algorithm based on condition (*) is given below.
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Figure 14.10. Test at position i in text. x1x2x3x4 = compress(shift(pat, k-(i mod k)+1)),

compress(text) = y1y2y3y4y5y6y7; pat occurs at position i in text iff

x1x2x3x4 starts at the 3rd position of y1y2y3y4y5y6y7,     p    1 =    t   i+1, and     p    m-k =    t   i+m-k.
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Algorithm { parallel optimal string-matching }

begin

build the common dictionary of small factors of pat and text;

construct tables    p    and    t   ;

localize all patterns compress(shift(pat,0)),

compress(shift(pat,1)),.., compress(shift(pat,k-1))

in compress(text) by the algorithm of Lemma 14.18;

for each position i do in parallel

{ in constant time by one processor

due to previous localizations }

if condition (*) holds for i then

report the match at position i;

end.

Theorem 14.20

The above algorithm solves optimally the string-matching problem on a CRCW PRAM.

It runs in O(logm) time with O(n/logm) processors (the total work is linear).

Proof

The compressed text has size n/logm. There are logm compressed patterns, each of size

m/logm. Hence, according to Lemma 14.18, the total work, when applying the algorithm of this

lemma, is O((n/logm)logm + logm(m/logm)) = O(n). This completes the proof. ‡

14.5. Optimal two-dimensional pattern matching

In this section, we show how the algorithm of the previous section generalizes to two-

dimensional arrays, and leads to an optimal two-dimensional pattern matching algorithm. We

assume w.l.o.g. that the pattern and the text are squares: PAT is an m×m array, T is an n×n

array. The general case of rectangular arrays can be handled in the same way. But then the

shorter side of the pattern must be is at least logm long, that is, the pattern must not be thin.

Otherwise, the algorithm of section 14.4 can be adapted to this specific problem.

Recall that subarrays whose length is a power of two are said to be basic subarrays. We

assume that m is a power of two. If not, then we can search for four (possibly overlapping)

subpattern whose length is a power of two. We say that a basic subarray of shape s×s' is

regular iff it starts at a position whose horizontal and vertical coordinates are, respectively,

multiples of s and s'. The size of the two-dimensional image is its area.

There is a fifth type of subarrays in addition to regular and/or basic subarrays: thin

subarrays. It is a natural generalization of small factors of the previous section to the two-
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dimensional case. Thin factors are m×logm subarrays of the pattern, and n×logm subarrays of

text. They arise if we cut the two-dimensional pattern by m/logm-1 lines at distance logm from

each others (see Figure 14.11).

The algorithm below provides an optimal two-dimensional matching. It is based on the

fact that the key lemma of Section 14.4 (Lemma 14.18) works similarly for two-dimensional

images. The compression realized with the help of small factors in the case of strings, is done

by thin subarrays in the case of two-dimensional. The text array as well as the pattern are cut

into thin pieces on which the main part of the search is done. We assume, for the simplicity of

presentation, that we deal with images whose sides have lengths divisible by m. Formally, the

cut-lines are columns logm, 2logm, …, n-logm of the text array, see Figure 14.11. There are

n/logm-1 cut lines.
Let us denote by Pj the j-th column of PAT. For 0 ≤ r ≤ k-1 denote by SHIFT(PAT, r)

the rectangle composed of columns P1+r, …, Pm-k+r. For a rectangle Z denote by

COMPRESS(Z) the array    Z   1   Z   k   Z   2k …    Z   (h-1)k, where h = |Z|/k, and     Z    i is the column of names

of logm-size rows of the thin subarray Zi. The rectangle COMPRESS(Z) contains the same

information as Z, but in smaller form. Each column of the new rectangle encodes a thin

subarray. Two-dimensional (thin) objects are reduced to one-dimensional objects. The

compression ratio on sizes of arrays is logm. We denote by    P   i the compressed thin subarrays

of PAT starting at column i, and by    T    the array of names of logm-size factors of rows of T. The

algorithm of the section implements the same idea as in the former section. The correctness of

the algorithm is based on the following obvious observation (see Figure 14.11). An occurrence

of PAT occurs at (i, j) in the image T iff the following condition is satisfied:

(**) COMPRESS(SHIFT(PAT, k-(j mod k))) occurs in COMPRESS(T) at position
(i, j div k),    P   1 occurs at position (i, j) in     T     , and    P   m-k occurs at position (i, j+m-k) in    T   .
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Figure 14.11. Partitioning of the pattern and the text arrays by cut-lines.We search for the

compressed part of pattern image    X   1   X   2   X   3 in the compressed text array,

and then search for the first and last thin subarrays of PAT, P1 and Pm-k.

The structure of the two-dimensional algorithm is essentially the same as the algorithm of

section 14.4. It yields the following result.

Theorem 14.21

Under the CRCW PRAM model, the algorithm below solves optimally the two-

dimensional pattern matching problem in time O(logm) and linear work.

Proof

The proof is similar to that of Theorem 14.20. It is a simple application of Lemma 14.18. Here

the size of the compressed text array is N/logm (N = n2). The number of shifted patterns is still

logm. So, the total work is (N/logm)logm + logm(M/logm) = O(N). ‡
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Algorithm { optimal two-dimensional pattern matching }

begin

compute the dictionary of small subarrays together

for rows of PAT and T;

construct tables of names    P    and    T   ;

localize patterns COMPRESS(SHIFT(PAT,0)),

COMPRESS(SHIFT(PAT,1)),.., COMPRESS(SHIFT(PAT,k-1))

in the image COMPRESS(T) by the algorithm of Lemma 14.18;

for each j do in parallel

find all occurrences of the first and last columns of    P   

in the j-th column of    T    ;

{ of the first and last thin factors of pattern,

one-text/one-pattern algorithm }

for each position (i,j) of T do in parallel

 { in constant time by one processor for each (i,j)

due to the information already computed }

if condition (**) holds for (i,j) then

report a match at position (i,j);

end.

14.6. Recent approach to optimal parallel computation of witness tables:
the splitting technique.

Quite recently a new approach was discovered to compute the witness table WIT of the

pattern. It uses what is called the splitting technique. We sketch here only the basic ideas of the

technique. Several open problems have been cracked by this approach. We list the four most

interesting problems that are so solved positively:

1 — existence of a deterministic optimal string-matching algorithm working in O(logm)

time on a CREW PRAM,

2 — existence of a randomized string-matching algorithm working in constant time with

a linear number of processors on a CRCW PRAM,

3 — existence of an O(logn) time string-matching algorithm working on a hypercube

computer with a linear number of processors,

4 — existence of an O(n1/2) time string-mtching algorithm on a mesh-connected array of

processors.

Theroem 14.22
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There exist algorithms for each of the four points listed above.

The technique also provides a new optimal deterministic string-matching algorithm

working in O(loglogn) time on a CRCW PRAM.

Recall that the CRCW PRAM is the weakest model of the PRAM with concurrent writes

(whenever such writes happen the same value is written by each processor), and the CREW

PRAM is the PRAM without concurrent writes. Vishkin's algorithm (see Section 14.1) works

in O(log2n) time if implemented on a CREW PRAM. An optimal O(logn loglogn) time

algorithm for the CREW PRAM model was given before by Breslauer and Galil.

The power of the splitting technique is related to the following recurrence relations:

 (*)  time(n) = O(logn) + time(n1/2),

(**)  time(n) = O(1) + time(n1/2).

Claim 1:

The solutions to recurrence relations (*) and (**) satisfy, respectively:

time(n) = O(logn) and time(n) = O(loglogn).

Let P be a pattern of length m. The witness table WIT is computed only for the positions

inside the interval FirstHalf = [1…m/2]. We say that a set S of positions is k-regularly sparse

iff S is the set of positions i inside FirstHalf such that i mod k = 1. If S is regularly sparse then

let sparsity(S) be the minimal k for which S is k-regularly sparse. Let us notee

P(q) = P(q)P(k+q)P(2k+q)P(3k+q)…,

for 1 ≤ q ≤ k. Denote by SPLIT(P, k) the set of strings P(q), 1 ≤ q ≤ k.

Example

SPLIT(abacbdabadaa, 3) = {acad, bbba, adaa}. ‡

Assume S is a k-regularly sparse set of positions. Denote by COLLECT(P, k) the

procedure which computes values of the witness table for all positions in S, assuming that the

witness tables for all strings in SPLIT(P, k) are known.

Claim 2:

Assume the witness tables for all strings in SPLIT(P, k) are known. Then COLLECT(P,

k) can be implemented by an optimal parallel algorithm in O(logm) time on a CREW

PRAM, and in O(1) on a CRCW PRAM.

The next fact is more technical. Denote by SPARSIFY(P) the function which computes

the witness table at all positions in FirstHalf except at a set S that is k-regularly sparse. The
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value returned by the function is the sparsity of S; when k > m/2, S is empty. In fact, the main

role of the function is the sparsification of non-computed entries of the witness table.

Claim 3:

SPARSIFY(P) can be computed by an optimal parallel algorithm in O(logm) time on a

CREW PRAM, and in O(1) on a CRCW PRAM.

The value k of SPARSIFY(P) satisfies k ≥ m1/2.

The basic component of the function SPARSIFY is the function FINDSUB(P) that finds

a non-periodic subword z of P of size m1/2, or reports that there is no such subword. A similar

construction is used in the sieve algorithm of Section 14.2. It is easy to check whether the

prefix z' of size m1/2 is non-periodic or not (we have a quadratic number of processors with

respect to m1/2); if z' is periodic we find the continuation of the periodicity and take the last

subword of size m1/2. The computed segment z can be preprocessed (its witness table is

computed). Then, all occurrences of z are found, and based of them the sparsification is

performed.

We present only how to compute witness tables in O(logm) time using O(mlogm)

processors. The number of processors can be further reduced by a logarithmic factor, which

makes the algorithm optimal. The algorithm is shown below as procedure

Compute_by_Splitting.

According to the recurrence relation (*), the time for computing the witness table using

the procedure Compute_by_Splitting is O(logm) on a CREW PRAM, and O(loglogm) on a

CRCW PRAM. Implementations of the subprocedures SPARSIFY and COLLECT on an

hypercube and on a mesh-connected computer give the results stated in points 3 and 4 above.

procedure Compute_by_Splitting(P);

begin

k := 1;

while k ≤ m/2 do begin

k := SPARSIFY(P);

(P(1), P(2),.., P(k)) := SPLIT(P, k);

for each q, 1 ≤ q ≤ k do in parallel

Compute_by_Splitting(P(q));

COLLECT(P, k);

end;

end;
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The constant-time randomized algorithm (point 2) is much more complicated to design.

After achieving a large sparsification, the algorithm stops further calls, and starts a special

randomized iteration. Indeed, it is more convenient to consider an iterative algorithm. The

definition of SPARSIFY(P) needs to be slightly changed: the new version sparsifies the set S of

non-computed entries of the witness table assuming that S is already sparse. The basic point is

that the sparsity grows according to the inequality:

k' ≥ k.(m/k)1/2,

where k is the old sparsity, and k' is the new sparsity of the set S of non-computed entries. The

randomization starts when sparsity ≥ m7/8. This is achieved after at most three deterministic

iterations.

The constant-time string-matching requires also a quite technical (though very interesting)

construction of several deterministic samples in constant time. But this is outside the scope of

the book. We refer the reader to bibliographic notes for details.

Bibliographic notes

The first optimal parallel algorithm for string-matching was given by Galil in [Ga 85].

The algorithm is optimal only for alphabets of constant size. Vishkin improved on the notion of

slow duels of Galil, and described the more powerful concept of (fast) duels that leads to an

optimal algorithm independently of the size of the alphabet [Vi 85]. The optimal parallel string-

matching algorithm working in O(log2n) time on a CREW PRAM is also from Vishkin [Vi

85].

The idea of witnesses and duels was later used by Vishkin in [Vi 91] in the string-

matching by sampling. The concept of deterministic sampling is very powerful. It has been

used by Galil to design a constant-time optimal parallel searching algorithm (the preprocessing

is not included). This result was an improvement upon the log*n result of Vishkin, though

practically log*n can be also treated as a constant.

If preprocessing is included, the lower bound for the parallel time of string-matching is

loglogn. It has been proved by Breslauer and Galil [BG 90], who also gave an optimal loglogn

time algorithm. The algorithm uses a scheme similar to an optimal algorithm for finding the

maximum of n integers by Shiloach and Vishkin [SV 81]. Recently it has been shown that it is

possible to combine a loglogn time preprocessing with the constant-time optimal parallel search

of Galil, see [C-R 93b].

Section 14.3 is adapted from the suffix-prefix approach of Kedem, Landau, and Palem

[KLP 89]. The counterpart to the relative simplicity of their algorithm is the use of a large

auxiliary space (though space n1+ε is enough, for any ε>0, with the help of some arithmetic

tricks). Algorithms of Galil and Vishkin require only linear space, but their algorithms are

much more sophisticated. The assumption on the size of alphabet in Section 14.3 can be
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dropped (see [KLP 89]). We do not know how to convert the KLP suffix-prefix algorithm into

an optimal fast parallel string-matching algorithm working on a CREW PRAM. Such an

algorithm working in O(log2n) time was given by Vishkin, see [Vi 85].

The "four Russian trick" of encoding small segments by numbers is a classical method.

It is used in particular in [Ga 85], and in [ML 85] for string problems.

The optimal O(logn) time parallel two-dimensional pattern matching is from [CR 92].

An optimal searching algorithm running in O(loglogn) time is presented in [ABF 92b]. The

splitting technique of Section 14.6 is adapted from [C-R 93c]. Consequences of the technique

can also be found in this paper.
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15. Miscellaneous.

The chapter presents several interesting questions on strings that are not already

considered in previous chapters. They are: string-matching by hashing and its extension to two-

dimensional pattern matching, tree-pattern matching as an example of pattern matching

questions on trees, shortest common superstrings, cyclic equality of words and Lyndon

factorization of words, unique decipherability problem of codes, equality of words over

partially commutative alphabets, and breaking paragraphs into lines. The treatment of problems

is not always done in full details.

15.1. String matching by hashing: Karp-Rabin algorithm

The concept of hashing and fingerprinting is very successful from the practical point of

view. When we have to compare two objects x and y we can look at their "fingerprints" given

by hash(x), hash(y). If the fingerprints of two objects are equal, there is a strong suspicion that

they are really the same object, and we can apply then a more deeper test of equality (if

necessary). The two basic properties of fingerprints are:

— efficiently computable,

— highly discriminating: it is unlikely to have both x ≠ y and hash(x) = hash(y).

The idea of hashing is used in the Karp-Rabin string-matching algorithm. The fingerprint

FP of the pattern (of length m) is computed first. Then, for each position i on the text, the

fingerprint FT of text[i+1…i+m] is computed. If ever FT = FP, we check directly if the

equality pat = text[i+1…i+m] really holds.

Going from a position i on the text to the next position i+1 efficiently, requires another

property of hashing functions for this specific problem (see Figure 15.1):

— hash(text[i+1…i+m]) should be easily computable from hash(text[i…i+m-1]).

a b 

h1 = hash(ax) 

h2 = hash(xb) 

x 
text

Figure 15.1. h2 should be easily computable from h1;

h2 = f(a, b, h1), where f is easy to compute.
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Assume for simplicity that the alphabet is {0,1}. Then each string x of length m can be

treated as a binary integer. If m is large, the number becomes too large to fit into a unique

memory cell. It is convenient then to take as fingerprint the value "x mod Q", where Q is a

prime number as large as possible (for example the largest prime number which fits into a

memory cell). The fingerprint function is then

hash(x) = [x]2 mod Q,

where [u]2 is the number whose binary representation is the string u of length m. All strings

arguments of hash are of length m. Let g = 2m-1 mod Q. Then, the function f (see Figure 15.1)

can be computed by the formula:

f(a, b, h) = 2(h-ag)+b.

Proceeding that way, the third basic property of fingerprints is satisfied: f is easily computable.

This is implemented in the algorithm below.

Algorithm Karp-Rabin; { string-matching by hashing }

begin

FP := [pat[1..m]]2 mod Q;  g := 2m-1 mod Q;

FT := [text[1..m]]2 mod Q;

for i := 0 to n-m do begin

if FT = FP { small probability } then

check equality pat = text[i+1..i+m]

applying symbol by symbol comparisons, { cost = O(m) }

and report a possible match;

FT := f(text[i+1], text[i+m+1], FT);

end;

end.

The worst case complexity of the algorithm is quadratic. But it could be difficult to find

interesting input data causing the algorithm to make a quadratic number of comparisons (the

non-interesting example is when pat and text consist only of repetitions of the same symbol).

On the average, the algorithm is fast, but the best time complexity is still linear. This is to be

compared with the lower bound of string-matching on the average (which is O(nlogm/m)), and

the best time complexity of Boyer-Moore type of algorithms (which is O(n/m)). String-

matching by hashing produces a straightforward O(logn) randomized optimal parallel

algorithm because the process is reduced to prefix computations.

One can also apply other hashing functions satisfying the three basic properties above.

The original Karp-Rabin algorithm chooses the prime number randomly.

Essentially, the idea of hashing can also be used to the problem of finding repetitions in

strings and arrays (looking for repetitions of fingerprints). The algorithm below is an extension
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of Karp-Rabin algorithm to two-dimensional pattern matching. Let m be the number of rows of

the pattern array. Fingerprints are computed for columns of the pattern, and for factors of

length m of columns of the text array. The problem then reduces to ordinary string-matching on

the alphabet of fingerprints. Since this alphabet is large, an algorithm whose performance is

independent of the alphabet is actually required.

Algorithm two-dimensional pattern matching by hashing;

{ PAT is an m×m' array, T is an n×n' array }

begin

pat := hash(P1)…hash(Pm'), where Pj is the j-th column of PAT;

text := hash(T1)…hash(Tn'), where Tj is the prefix of length m

 of the j-th column of T;

for i := 0 to n-m do begin

if pat occurs in text at position j then

check if PAT occurs in T at position (i, j)

applying symbol by symbol comparisons, { cost = O(mm') }

and report a possible match;

if i ≠ n-m then { shift one row down }

for j := 1 to n' do

text[j] := f(T[i+1, j], T[i+m+1, j], text[j]);

end;

end.

15.2. Efficient tree-pattern matching

The pattern matching problem for trees consists in finding all occurrences of the pattern

tree P in the host tree T. The sizes (number of nodes) of P and T are, respectively, m and n. An

example of occurrence of a pattern P in a tree T is shown in Figure 15.2.

We consider rooted trees whose edges are labelled by symbols. We assume that the edges

leading to the sons of the same node have distinct labels. If the tree is ordered (the sons of each

node are linearly ordered) then this assumption can be dropped, because then the number of a

son is an implicit part of the label.
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Figure 15.2. An occurrence of pattern P in the tree T.

Let p(v) be the path from the root of P to the node v in P. The previous assumption allows

to identify this path with its label (the string of labels of edges along the path). The paths p(v)'s

are called here node-paths. We say that a path (string) p occurs at node w if there is a path down

the tree starting at w and labelled by p. Then, we say that pattern P occurs at node w in T iff

paths p(v) occur at w, for all leaves v of P. The usual string-matching problem for a single

pattern is a special case of the tree-pattern matching problem. In this case P and T are single

paths. If the pattern is a single path and T is an arbitrary tree, then, the problem is also easy to

carry out. Just build the KMP string-matching automaton G for P, and traverse the tree T in a

DFS or BFS order computing the occurrences of P along the paths. The total time is linear. In

fact, the same procedure can be applied if the set of all p(v)’s is suffix-free (a set of strings is

suffix-free if no string is a suffix of another one in the set).

Lemma 15.1 (easy tree-pattern matching)

If the set of all node-paths corresponding to leaves of P is suffix-free, then we can find all

occurrences of P in T in linear time.

Proof

Construct the multi-pattern string-matching automaton G, where the set of string-patterns is

given by all p(v)’s. Then, traverse T using G, and, for each node w where ends an occurrence of

p(v) for some leaf v, record it in the ancestor u of w at distance heightP(v) from w. There is a

linear number of such recordings due to the fact that no p(v) can end on a same node.

Afterwards, we check for each node u if it has the record for each leaf v of P. If yes, then u is the

beginning of an occurrence of P in T. Altogether this takes linear time. ‡
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We say that a pattern is a simple caterpillar if it consists of one path, called the backbone,

and edges leading from a backbone to leaves (see Figure 15.3). The edges of the backbone are

labelled by a, and all other edges are labelled by b.

 

b a 

pattern P 

labels of edges

an occurrence
of pattern P 

another
occurrence

Figure 15.3. The tree-pattern matching corresponds here to string-matching with don’t cares,

where text = 1010111101111100, and pat = 1Ø11Ø1Ø.

Lemma 15.2 (easy tree-pattern matching)

Let P and T be simple caterpillars. All occurrences of P in T can found in time

O(nlog2n).

Proof

The problem reduces to the string-matching with don’t care symbols, which has the required

complexity (in fact even slightly smaller), see Chapter 11. We place 1 on a given node of the

backbone if there is a b-edge outgoing that node, otherwise we place 0. The pattern is processed

similarly, except that instead of zeros we put don’t care symbols Ø, see Figure 15.3. This

symbol matches any other symbol. In this way, P and T are substituted by two strings. The

string-matching with don’t care symbols is then applied. This completes the proof. ‡

Lemma 15.3 (easy tree-pattern matching)

Assume that the pattern tree P contains a suffix-free set S of size k of node-paths. Then,

all occurrences of P in T can be found in time O(nm/k + mlogm).
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Proof

First we show how to find such a set S, when it is known to exists. S is found by constructing

the suffix tree for the set of all reversed node-paths with added endmarker #. Afterwards, edges

labelled with # are removed. This guarantees that there is a node for each reversed node-path.

This suffix tree can be constructed in O(mlogm) time adapting the construction of suffix trees

for a single string. The path p(v) is not a suffix of p(v’) if the node corresponding to p(v)R in the

constructed suffix tree is not an ancestor of node corresponding to p(v’)R. The assumption of the

lemma implies that there are at least k leaves in the suffix tree. Choose any k leaves. They

correspond to a suffix-free set S of node-paths of P. In this way, S is built.

Then, identify S with the sample sub-pattern of P consisting only of the node-paths of P which

are in S. We can find all occurrences of the sample S in linear time, due to Lemma 15.1. It can

be checked that there are at most n/k occurrences of S in T. For each of the occurrences of the

sample, we check by a "naive" O(m)-time algorithm a possible occurrence of the whole pattern

P. This takes O(nm/k) time. Globally, the matching takes O(nm/k + mlogm) time as announced

in the statement. ‡

Lemma 15.4 (easy tree-pattern matching)

Assume P is of height h. Then, all occurrences of P in T can found in time O(nh).

Proof

The naive algorithm actually works in that time. The proof is left to the reader. ‡

The aim is to design an algorithm working in time O(nm0.5). Let l = m0.5. If we have k ≥ l

in Lemma 15.3, or h < 3l in Lemma 15.4, then we have an algorithm with the required

complexity. In any case, the sub-pattern consisting of node-paths of length at most 3l can be

matched separately, using Lemma 15.4. Therefore, we are left with hard patterns, which do not

satisfy assumptions of Lemmas 15.3 or 15.4. The pattern P is said to be hard iff it satisfies:

(*) — in each set of at least l node-paths there are two strings such that one is the suffix

of the other,

(**) — the depth of all leaves is at least 3l.

The key to the efficient algorithm is the high periodicity of node-paths of a hard pattern

tree. For a leaf v of P, consider the bottom l+1 ancestors of v. Then, there are two distinct

ancestors u, w such that p(u) is a proper suffix of p(w). The segment p of size |p(w)|-|p(u)| is a

period of p(w), and the latter word results by cutting off the path t from v to w. This path t is

called the tail.

Let us take the lowest nodes u, w. Then p is primitive. The pair (t, p) is uniquely

determined by v. It is called the tail-period of p(v) and of v. We leave to the reader the proof that

there are at most l distinct tail-period pairs, and that they can be found all in time O(ml) (by a

version of KMP algorithm). This proves the following lemma.
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Lemma 15.5

Assume that P is hard. Then each node-path of P has a period p ≤ l (= m0.5), after cutting

off a part t of size at most l at the bottom. The word p is primitive. There are O(p) distinct

tail-period pairs (t, p), and they can be found all in time O(ml).

The main result of the section stated below gives an upper bound to the tree-pattern

matching problem.

Theorem 15.6

The tree-pattern matching problem can be solved in time O(nm0.5log2n).

Proof

Let P’ = P(t, p) be the part of pattern P formed by all node-paths with a given characteristics

(t, p). It is enough to show how to find all occurrences of P’ in T in linear time. There are at

most

|p| leaves of P', hence it is enough to prove that all occurrences of each node-path of P in T can

be found in time O(n/|p|). This looks impossible, because n/|p| is much smaller than n, but the

whole tree T of size n is to be searched. However, the key point is that we can make a suitable

preprocessing which takes linear time, and which can be used later for all node-paths of P'.

After the preprocessing, the tree T is compressed into a smaller structure of size O(n/|p|). We

have to look carefully at the structure of node-paths of P' of periodicity p, together with the tails t

outgoing; they have all the same characteristic (t, p).

The tree P' consists of a small top tree, and a set of branches which results by cutting off that

tree. These branches are called main branches. Each such branch starts with the full occurrence

of the period p. At some points, where an occurrence of p ends, an occurrence of the tail t can

start, see Figure 15.4. There are at most p main branches. All path-nodes of the small tree are

proper suffixes of the period p. We leave to the reader as an exercise to find all occurrences in T

of the top tree in time O(n). It is enough now to find occurrences of all branches in time O(n).

First we preprocess the tree T. We find all occurrences of the period p, and of the tail t in T in

linear time due to Lemma 15.1. Each subpath of T from a node v to some node w corresponding

to an occurrence of p is replaced by a special edge (v, w) labelled a. After that, we remove

isolated special edges (one-edge biconnected components), as each main branch contains at least

two p's. Then, for each node w, if an occurrence of the tail t starts at w, we add a special edge (w,

w') labelled b, where w' is a newly created leaf. Let us consider the graph T' consisting of such

special edges. The constructed graph is a forest, since the tail is not a continuation of p (p is

primitive).
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Figure 15.4. The structure of the tree P' = P(t, p), and its decomposition.

The forest T' consists of disjoint caterpillars. We leave as an exercise to show that the total size

of T' is O(n/p).

 Let us compress each main branch of P' in a similar way as we transformed T into T', see

Figure 15.5. The basic point is that after compression each main branch becomes a simple

caterpillar! It is easy to see that it is enough to find all occurrences of such caterpillars in T'.

Now we can use Lemma 15.2. Each compressed main branch (a simple caterpillar) can be

matched against the set T' of compressed caterpillars in time O(n/p.log2n), due to Lemma 15.2.

There are O(p) branches. Hence, the total time is O(n) for finding all occurrences of P(t, p). But

there are only O(m0.5) such trees. Therefore, the total time needed for the tree-pattern matching

is O(nm0.5). This completes the proof. ‡
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Figure 15.5. The compression of a main branch into a simple caterpillar.

15.3. Shortest common superstrings: Gallant algorithm

The shortest common superstring problem is defined as follows: given a finite set of

strings R find a shortest text w such that Fac(w) ⊇ R. The size of the problem is the total size

of all words in R.

The problem is known to be NP-complete. So the natural question is to find a

polynomial approximation of the exact algorithm. The method of Gallant consists in

computing an approximate solution.

Without loss of generality, we assume (throughout this section) that R is a factor-free set,

this means that no word in R is a factor of another word in R. Otherwise, if u is a factor of v (u,

v ∈ R), a solution for R-{u} is a solution for R. For two words x, y define Overlap(x, y) as the

maximal prefix of y which is a suffix of x. If v = Overlap(x, y), then x, y are of the form

x = u1v, y = vu2.

Let us define x © y as the word u1vu2 ( = u1y = xu2). Observe that the shortest superstring of

two words u, v is u © v, or v © u. Since the set R is factor-free, the operation © has the

following properties:
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(*) — operation © is associative (on R),

(**) — the minimal shortest superstring for R is of the form x1©x2©x3©…©xk where

x1, x2, x3, …, xk is a permutation of all words of the set R.

function Gallant(R); { greedy approach to SCS }

begin

if R consists of one word w then

return w

else begin

find two words x, y such that Overlap(x,y) is maximal;

S := R - {x, y} ∪ {x © y};

return Gallant(S);

end;

end;

The above algorithm is quite effective in the sense of compression. The superstring

represents (in a certain sense) all subwords of R. Let n be the sum of lengths of all words in R.

Let wmin be a shortest common superstring, and let wGal be the output of Gallant algorithm.

Note that wmin ≤ wGal ≤ n. The difference n - |wmin| is the size of compression. The better is the

compression the smaller is the shortest superstring. The following lemma states that the

compression reached by Gallant algorithm is at least half the optimal value (see bibliographic

references).

Lemma 15.7
n - |wGal| ≥ (n - |wmin)/2.

Example
Take the following example set R = {w1, w2, w3, w4 , w5}, where

w1 = egiakh, w2 = fbdiac, w3 = hbgegi, w4 = iacbd, w5 = bdiach.

Then, the shortest superstring has length 15. However, Gallant algorithm produces the

following result

wGal = Gallant(w1, w2 © w5, w3, w4)

= Gallant(w3 © w1, w2 © w5, w4)

= Gallant(w3 © w1 © w2 © w5, w4)

= w3 © w1 © w2 © w5 © w4.

Its size is

n - Overlap(w3, w1) - Overlap(w1, w2) - Overlap(w2, w5) - Overlap(w5, w4)

= 29 - 3 - 0 - 5 - 0 = 21.
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In this case, n - |wGal| = 8, and n - |wmin| = 14. ‡

An alternative approach to Gallant algorithm is to find a permutation x1, x2, x3, …, xk of

all words of R, such that x1©x2©x3©…©xk is of minimal size. But, this produces exactly a

shortest superstring (property **). Translated into graph notation (with nodes xi's, linked by

edges weighted by lengths of overlaps) the problem reduces to the Travelling salesman

problem, which is also NP-complete. Heuristics for this latter problem can be used for the

shortest superstring problem.

The complexity of Gallant algorithm depends on the implementation. Obviously the

basic operation is computing overlaps. It is easy to see that for two given strings u, v the

overlap is the size of the border of the word v#u. Hence, methods from Chapter 3 can be used

here. This leads to an O(nk) implementation of Gallant method. Best known implementations

of the method work in time O(nlogn), using sophisticated data structures.

15.4. Cyclic equality of words, and Lyndon factorization

A conjugate or rotation of a word u of length n is any word of the form

u[k+1…n]u[1…k], denoted by u(k) (note that u(0) = u(n) = u).

Let u, w be two words of the same length n. They are said to be cyclic-equivalent (or

conjugate) iff u(i) = w(j) for some i, j. In other terms, words u and w have the same set of

conjugates. If words u and w are written as circles, they are cyclic-equivalent if the circles

coincide after appropriate rotations.

There are several linear time algorithms for testing the cyclic-equivalence of two words.

The simplest one is to apply any string-matching to pattern pat = u and text text = ww (words u

and w are conjugate iff pat occurs in text). Another algorithm is to find maximal suffixes of uu

and ww. Let u' (resp. w') be the prefix of length n of the maximal suffix of u (resp. w). Denote

u' = maxconj(u), w' = maxconj(w). The word u' (resp. w') is a maximal conjugate of u (resp.

w). Then, it is enough to check if maxconj(u) = maxconj(w).

We have chosen this problem because there is a simpler interesting algorithm, working

in linear time and constant space simultaneously, which deserves presentation.
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Algorithm { checks cyclic equality of u, w of common length n }

begin

x := ww, y := uu ;

i := 0; j := 0;

while (i < n) and (j < n) do begin

k := 1;

while x[i+k] = y[j+k] do k := k+1;

if k > n then return true;

if x[i+k] > y[j+k] then i := i+k else j := j+k;

{ invariant }

end;

return false;

end.

Let D(w) and D(u) be defined by

D(w) = {k : 1 ≤ k ≤ n and w(k) > u(j) for some j},

D(u) = {k : 1 ≤ k ≤ n and u(k) > w(j) for some j}.

We use the following simple fact:

if D(w) = [1…n], or D(u) = [1…n] then words u, w are not cyclic equivalent.

Now the correctness of the algorithm follows from preserving the invariant:

D(w) ⊇ [1…i], and D(u) ⊇ [1…j].

The number of symbol comparisons is linear. We leave to the reader the estimation of this

number. The largest number of comparisons is for words u = 111..1201 and w = 1111...120.

There is strong connection between the preceding problem and the Lyndon factorization

of words that is considered for the rest of the section. The factorization is related to Lyndon

words defined according to a lexicographic ordering on words on a fixed alphabet A.

Let u and v be two words from A*. We say that u is strongly smaller than v, denoted by u

<< v,  if u and v can be written wau' and wbv' respectively, with w, u', v' words, and a, b letters

such that a < b. The lexicographic ordering induced on A* by the ordering of letters is also

denoted by ≤, and is defined by

u ≤ v iff (u << v or u prefix of v).

A Lyndon word is a non-empty word u such that u < u(k) for 0 < k < |u|. So, a Lyndon

word is smaller than its conjugates (in a non-trivial sense). It is equivalent to say (but not

entirely straightforward) that the non-empty word u is smaller than (according to the

lexicographic ordering) its proper non-empty suffixes. This is the reason why the algorithm

below is also closely related to the computation of the maximum suffix of a word (see
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algorithm Maxsuf in Chapter 13). It is useful to notice that a Lyndon word u is border-free,

which means that period(u) = |u|.

A Lyndon factorization of a word x is a sequence of Lyndon words (u1, u2, …, uk), for k

≥ 0, such that both x = u1u2…uk, and u1 ≥ u2 ≥ … ≥ uk. In fact, there is a unique Lyndon

factorization of a given word, as stated by the next theorem. Since letters are Lyndon words,

any non-empty word is a composition of Lyndon words. Regarding Lemma 15.9, the Lyndon

factorization is such a factorization having the minimum number of elements.

Theorem 15.8

Any word has a unique Lyndon factorization.

Algorithm Lyndon_Fact(x);

{ computes the Lyndon factorization of x of length n }

{ operates in linear time and constant space }

begin

x[n+1] := '#'; { # is smaller than all other letters }

ms := 0;  j := 1;  k := 1;  p := 1;

while (j + k ≤ n+1) do begin

a' := x[ms+k];  a := x[j+k];

if (a' < a) then begin

j := j+k; k := 1; p := j-ms;

end else if (a' = a) then

if (k ≠ p) then

k := k+1

else begin

j := j+p; k := 1;

end

else {a' > a} begin

repeat

writeln(x[ms+1..ms+p]); ms := ms+p;

until ms = j;

j := ms+1; k := 1; p := 1;

end;

end;

end.
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Example

Let A be {a, b} with the usual ordering (a < b). The set of Lyndon words on A contains

b, a, ab, aab, abb, aaab, aabb, abbb, ….

It also contains the words aababbababbb, or aababbaabbabab, for instance.

The Lyndon factorization of babababbabaababaabaa is

(b, abababb, ab, aabab, aab, a, a). ‡

The algorithm Lyndon_Fact above produces the Lyndon factorization of its input string.

We do not prove formally its correctness, but indicate how the algorithm works, and what are

the main properties useful to prove it.

x

j1 j+kms 

u 1 v  u  
f  

...... a 

p  p  

u g u g+1

Figure 15.6. Variables in Lyndon_Fact algorithm.

Figure 15.6 shows the variables used in the algorithm. The invariant of the main loop is

the following. The prefix x[1…j+k-1] of x is factorized as u1u2…ugug+1…ufv, with

— u1, u2, …, ug, ug+1, …, uf are Lyndon words,

— u1 ≥ u2 ≥ … ≥ ug > ug+1 = … = uf,

— v is a proper prefix of uf (possibly empty),

— ug >> ug+1…ufv.

The variable ms is such that x[1…ms] = u1u2…ug. In other terms, ms is the position of the

factor ug+1 in x. The Lyndon factorization of prefix x[1…ms] of x is already computed when

ms has this value. Moreover, u1, u2, …, ug are the g first elements of the Lyndon factorization

of the whole word x. The variable j stores the position of v in x, that is, is such that x[1…j] =

u1u2…uf. The value of variable p is the common length of ug+1, …, uf. It is also the period of

ug+1…ufv. Finally, k = |v|+1.

At the current step of the algorithm, the next letter a of x is compared with the

corresponding letter a' in ug+1 (letter following the prefix v of ug+1). Three cases come from

the comparison of letters. If they coincide, then the same periodicity (as that of ug+1…ufv)

continues, and the algorithm has essentially to maintain the third property. If a is smaller than

a', ug+1, …, uf become elements of the Lyndon factorization of x, and the whole factorization

process restarts at the beginning of v. In the third situation, a' is smaller than a. The very

surprising fact is that all properties implies then that the word ug+1…ufva is a Lyndon word.

Since va' is a prefix of the Lyndon word uf, and a' < a, by Lemma 15.10, va is a Lyndon word.

Moreover, we have uf < va (and even uf << va). Thus, applying Lemma 15.9 successively, we



Chapter 15 381 22/7/97

Efficient Algorithms on Texts 381 M. Crochemore & W. Rytter

get that ufva, uf-1ufva, …, and finally ug+1…uf-1ufva are Lyndon words (all greater than ug+1).

So, the proof of correctness, is essentially a consequence of the two next lemmas. The first one

provides an important property of Lyndon words, which can be used to generate them in

lexicographic order.

Lemma 15.9

If u and v are Lyndon words such that u < v, then uv is a Lyndon word and u < uv < v.

Proof

We prove that proper non-empty suffixes z of uv are greater than uv itself.

First, consider the case z = v. We have to prove uv < v. This is obvious when u << v.

Otherwise, u is a proper prefix of v, that is, v = uw for a non-empty word w. Since v is a

Lyndon word, we have v < w, which implies uv < uw as required.

If z is a proper suffix of v, we have uv < v < z, because v is a Lyndon word, and by the above

result.

Finally, let z be a suffix of uv of the form wv, with w a proper non-empty suffix of u. Since u is

a Lyndon word, we have u < w, and even u << w because u cannot be a prefix of w. Thus,

uv < wv. ‡

Lemma 15.10

If vb is a prefix of a Lyndon word, and b < c (b, c letters), then vc is a Lyndon word.

Proof

Let u be the Lyndon word having prefix vb.

We prove that proper non-empty suffixes of vc are greater than vc itself. These suffixes are of

the form zc. For some word w, zbw is a suffix of u. Since u is a Lyndon word, u < zbw.

If zb is not a prefix of u, we have indeed u << zb, and thus also v << zb, because v is a prefix of

u not shorter than zb. Therefore vc < zb < zc.

If zb is a prefix of u, it is also a prefix of v, and we have directly v < zc. ‡

15.5. Unique decipherability problem

A set of words H is said to be a uniquely-decipherable code if words that are

compositions of words of H have only one factorization according to H. The unique

decipherability problem is to test whether a set of words satisfies the condition. The size of the

problem when H is a finite set, n, is the total length of all elements of H; in particular, the

cardinality of H is also bounded by n. Note that we can consider that ε ∉ H, because otherwise

H is not uniquely decipherable and the problem is solved

Another way to set up the problem is to consider a coding function h, or substitution,

from B* to A* (B, and A two finite alphabets). The function is a morphism (i.e. it satisfies both
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properties: h(ε) = ε, h(uv) = h(u)h(v) for all u, v), and the set H, called the code, is {h(a) : a ∈

B}. The elements of H are called code-words. Then, asking whether h is a one-to-one function

is equivalent to the unique decipherability for H, provided all h(a)'s are pairwise distinct.

Coding functions related to data compression algorithms are considered in Chapter 10. We can

assume that all code-words h(a) are non-empty and pairwise distinct. If not, then obviously the

function is not one-to-one and the problem is solved.

We translate the unique decipherability condition for H into a problem on a graph G that

is defined now. The nodes of G are suffixes of the code-words (including the empty word).

There is an edge in G from u to v iff v = u//x or v = x//u for some code-word x. The operation

y//z is defined only if z is a prefix of y, that is, if y = zw for some word w, and the result is

precisely this word w.

In the graph G, is defined the set of initial nodes, Init. Initial nodes are those of the form

x//y where x, y are two (distinct) code-words. Let us call the empty word the sink. Then, it is

easy to prove the following fact:

the code H is uniquely decipherable iff there is no path in G from an initial node to the

sink.

Example

Let H = {ab, abba, baaabad, aa, badcc, cc, dccbad, badba}. The corresponding graph G is

presented in Figure 15.7.

This code is not uniquely decipherable because there is a path from ba to the sink. The word ba

is an initial node because ba = abba//ab. The path is:

ba  →  aabad  →  bad  →  cc  →  ε.

We have baaabad//ba = aabad; aabad//aa = bad; badcc//bad = cc; cc//cc = ε. The path

corresponds to two factorizations of the word baaabadcc:

baaabad.cc  and  ba.aa.badcc. ‡

ba aabad bad cc ε

dcc 

dba 

initial node sink

Figure 15.7. Graph G for the example code.
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The size of graph G is O(n2), and we can search a path from an initial node to the sink in

time proportional to the size of the graph by any standard algorithm. We show that the

construction of G can also be accomplished within the same time bound. If we can answer

questions like "is x//y defined?" and "is y//x defined" in constant time, then, there is at most a

quadratic number of such questions, and we are done. The question "is y//x defined" is

equivalent to "does the pattern x start in the text y at position |y|-|x|?", so it is related to string

matching. Hence, it is enough for each code word y treated as a text to make string-matchings

with respect to all other code-words x treated as patterns. For a fixed code-word y (as a text)

this takes O(n+|y|) time, since n is the total size of all code-words. Altogether this takes O(n2)

time if we sum over all y's. This proves the following.

Theorem 15.11

The unique decipherability problem can be solved in time O(n2).

A more precise estimation of the same algorithm shows that it works in time O(nk),

where k is the number of codewords. By applying some data structures, the space complexity

can also be improved for some instances of the problem. The close relationship between the

unique decipherability problem and accessibility problem in graphs is quite inherent, especially

if space complexity is considered. Indeed, the problems are mutually reducible using additional

constant memory of a random access machine (or logn deterministic space of a Turing

machine).

15.6.* Equality of words over partially commutative alphabets

Assume that we have a symmetric binary relation C over the alphabet A. The relation is

called the commutativity relation. Relation C induces an equivalence on A*. Two words x and y

over A are said to be equivalent, denoted by x ≈ y, iff one of them can be obtained from the

other by commuting certain symbols in the word several times. Formally, we define ubav ≈

uabv when (a, b) ∈ C (symbols a, b commute), and we get an equivalence relation by closing

this relation under reflexivity and transitivity. We consider the complexity of the following

problem: check the equivalence of two strings x, y of the same length n.

At first glance, the problem looks like an NP-complete problem. The straightforward

algorithm is to generate all strings equivalent to x and check if one of them is y. But the

equivalence class of x can contain an exponential number of words (for example when symbols

a, b commute and x = ambm), leading to an exponential-time algorithm. Fortunately, there is a

very simple algorithm with linear time complexity in the case of fixed size alphabets. This is

due to a specific combinatorial property of words over partially commutative alphabets.
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Denote by ha,b the morphism which erases from its input word all symbols except

occurrences of a and b. Let #a(x) be the number of occurrences of symbol a in x.

Lemma 15.12

Words x and y are equivalent, x ≈ y, iff the following two conditions hold:

(1) — #a(x) = #a(y) for each symbol a of the alphabet,

(2) — ha,b(x) = ha,b(y) for each pair of distinct non-commuting symbols a, b.

As a simple corollary we have the following theorem.

Theorem 15.13

The equality of two words over a partially commutative alphabet of fixed size can

checked in linear time.

We shortly discuss what happens when the size k of the alphabet is not treated as a

constant. The lemma implies an O(k2n) algorithm, because the number of distinct pairs of

letters is quadratic. However, instead of taking morphisms leaving only two symbols in texts

(erasing all others) we can consider morphisms leaving a set of mutually non-commuting

symbols. Denote by hX the morphism which erases in the text all symbols except symbols in

set X. Let ∏ be a family of subsets of the alphabet such that each two symbols contained in the

same set do not commute, and each two non-commuting symbols are contained together in

some set from ∏. Then condition (2) of Lemma 15.12 is equivalent to: hX (x) = hX (y) for each

X in ∏. The cardinality of ∏ can be much smaller than the number of all non-commuting pairs.

For example, consider the following relation C over alphabet {1, 2, 3, 4, 5, 6}:

(i, j) ∈ C iff |i-j] = 1.

There are 10 pairs of non-commuting symbols, while we can take ∏ of cardinality 5,

∏ = {{a, c, e}, {b, d, f}, {c, f}, {d, a, f}, {e, b}}.

Hence, we have only to check equality of 5 pairs of words instead 20.

But there are cases when this approach does not help. Take the alphabet {1, 2, …, 2r}

with commutativity relation:

(i, j) ∈ C iff i, j ≤ r or i, j > r.

The size of the alphabet is here k = 2r. The graph of C consists of two disjoint cliques, each of

size r. There is a quadratic number of non-commuting pairs, and no set ∏ helps because for

each three distinct symbols two of them commute. This suggests that the algorithm should

have complexity of order k2n. However, there is a simple O(kn)-time algorithm to check x ≈ y
in this case. Let #1(z) be a vector of size r whose i-th component is the number of occurrences

of the i-th symbol in z, and let #2(z) be a vector of size r whose i-th component is the number

of occurrences of the (r+i)-th symbol in z. For each word x, let H(x) be the string obtained

from x by replacing each factor z between two consecutive symbols from {1, 2, …, r} by
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#2(z). Then, each word z (over {1, 2, …, r}) between two consecutive vectors newly inserted

is replaced by #1(z). H(x) can be computed in O(nk) time. Finally, it is easy to see that x ≈ y iff

H(x) = H(y).

It is typical for problems related to partially commutative alphabets that their complexity

depends on the structure of the commutativity relation graph.

For many textual problems the introduction of partial commutativity of the alphabet

changes their complexity dramatically. The typical example is the unique decipherability

problem. For partially commutative alphabets with three letters, the problem has still an

efficient (polynomial time) solution. However, for partially commutative alphabets with four

letters there does not exist any algorithm for this problem at all. In other terms, the problem is

undecidable.

We prove shortly that for three-letter alphabets the unique decipherability problem is still

algorithmically tractable. This can be seen as follows. The unique decipherability problem is

easily reducible to the disjointness problem of two languages L1, L2 accepted by finite automata

A1, A2. Consider the following two commutativity relations on the alphabet {a, b, c} presented

graphically by

R1: a b—c,

R2: a—c—b.  

Let Cl(L) be the closure of language L with respect to the relation ≈.

Cl(L) = {x : x ≈ y for some y in L}.

Take the following morphism h defined by h(a) = a, h(b) = b, h(c) = ε. The only action of the

morphism is to erase all letters c in its input text. Now, it can be proved easily, in the case of

relations R1 and R2, that, knowing automata A1, A2, we can construct a non-deterministic

pushdown automaton A accepting the language

L = h(Cl(L1) ∩ Cl(L2)).

So, the languages L1, L2 are disjoint iff L = Ø. Finally, the emptiness problem for non-

deterministic pushdown automata is solvable in polynomial time.

We describe briefly the construction of automaton A for the commutativity relation R2.

The pushdown store of A acts as a counter (guessed number of occurrences of symbol c). We

can view A as a composition of A1 and A2. Whenever A reads the symbol a or b, then A1 and

A2 go to next states, and their next states form a pair which is a next state of A. At any time, A

can non-deterministically assume in an ε-move the input symbol c for one of the machines A1,

A2 (without advancing its input head); then, the simulated machine makes a move as if the

reading symbol were c. If the machine A1 is chosen, the counter is incremented by one; on the

contrary, if A2 is chosen, the counter is decremented by one. The machine A accepts, if there is

a computation which ends in accepting states (for both A1 and A2), and if the final value of the

counter is zero. Using the description of A1, A2 the construction of A can be done efficiently.

The case of the relation is R1 is similar. Other possible relations for three-letter alphabets

are easy to deal with. It is interesting to note that if we take a relation R on four letters similar to
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R2 then the problem becomes more complex. Let the commutativity relation R be defined by:

a—b—c—d. The decidability (or undecidability) of the unique decipherability problem with

relation R is still an open problem. But, if we add to the relation R the pair a—d, then, it is

known that the unique decipherability problem becomes undecidable.

15.7. Hirschberg-Larmore algorithm for breaking paragraphs into lines

In this section, we describe an application of text manipulation to text editing. It is the

problem of breaking a paragraph into lines optimally. The algorithm may be seen as another

application of the notion of the failure function, introduced in Chapter 3 for KMP string-

matching algorithm.

The problem of breaking a paragraph is defined as follows. We are given a paragraph (a

sequence) of n words (in the usual sense) x1, …, xn, and bounds lmin, lmax on lengths of lines.

The i-th word of the paragraph has length wi. A line is an interval [i…j] of consecutive words

xk's (i ≤ k ≤ j). The length of line [i…j], denoted by line(i, j), is the total length of its words, that

is, wi + wi+1 + … + wj. Bounds lmin and lmax are related to smallest and largest length of lines

respectively. The optimal length of a line is lmax. Moreover, the length of the line [i…j] is said

to be legal iff lmin ≤ line(i, j) ≤ lmax. Let us denote the corresponding predicate by legal(i, j).

For a legal line, its penalty is defined as penalty(i, j) = C.(lmax-line(i, j)), for some

constant C. The problem of breaking a paragraph consists in finding a sequence of integers i1
(=1), i2, i3, …, ik (=n) such that both lines [i1, i2], [i2+1, i3], …, [ik-1+1, ik] have legal lengths,

and the total penalty (sum of penalties of lines) is minimum. Integers i1, i2, i3, …, ik are called

the breaking-points of the paragraph.

We assume that there is no penalty (or zero penalty) for the first line, if its length does not

exceed lmax. It is as if we treated the paragraph from the end. In the usual definition of the

problem the last line is not penalized for being too short. Reversing the order of words in

paragraphs leads to an algorithm that is even more similar to KMP algorithm, since indices are

processed from left to right.

Let break[i] be the rightmost breaking-point preceding i in an optimal breaking of the

subparagraph [1…i]. When break[i] is computed for all values of i (from 1 to n), the problem

is solved: the sequence of breaking-point can be recovered by iterating break from n.

We first design a brute-force breaking algorithm that uses quadratic time. The informal

scheme of such a naive algorithm is given below. It uses the table f : f[i] is the total penalty of

breaking into lines the subparagraph [1…i]. The scheme assumes that f[i] is initialized to 0 for

all integers i such that line[1, i] ≤ lmax, and f[i] is initialized to infinity for all other values of i.
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for i := 1 to n do begin

j := an integer which minimizes f[j]+penalty(j+1, i);

break[i] := j;

f[i] := f[j]+penalty(j+1, i);

end;

The value of j is computed by scanning the interval [first[i], …, last[i]], where first[i] is

the smallest integer k for which legal(k, i) holds, and where, similarly, last[i] is the largest such

k less than i. The interval [first[i], …, last[i]] is called the legal interval of i. All values first[i],

last[i], line(1, i) can be precomputed. So, the above scheme yields an O(n2) time algorithm.

The next theorem shows that this can be improved considerably.

Theorem 15.14

The problem of breaking optimally a paragraph can be solved in O(n) time.

Proof

Define the function g[j] = f[j] + C.line(j, n). The crucial point is the following property:

a value of j which minimizes f[j]+penalty(j+1, i) also minimizes g[j] in the legal interval

for j.

It can be checked by simple arithmetics that the difference between expressions depends only

on i. Another important property is the monotonicity of breaking-points:

i' < i implies break[i'] ≤ break[i].

Hence, the value of j is to be found in the interval [max(first[i], break[i-1]), last[i]]. Define

Next[j] to be the first position k ≤ i to the right of j such that g[k] ≤ g[j]. When looking for the

minimal value of g[j] in a legal interval we can initialize j to the beginning of the interval, and

compute successive positions by iterating Next

j1 = Next[j], j2 = Next[j1], …,

until the value is undefined, or it goes outside the interval. In this way, Next works as the failure

table of KMP algorithm. This produces the following algorithm.
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Algorithm HL; { breaking a paragraph of n words into lines }

begin

precompute values first[i], last[i], line(1, i) for all i ≤ n;

let k be the maximal index such that line[1, k] ≤ lmax;

initialize f[i] to 0, break[i] to 0 for all i ≤ k,

and compute corresponding values g[i] and Next[i] for j ≤ k;

j := 0;

for i := k+1 to n do begin

{ invariant:  break[i] < i, first[i] < last[i] < i  }

{ legal interval is [first[i],…,last[i]] }

if j < first[i] then j := first[i];

while Next[j] defined and Next[j] ≤ last[i] do

{ j is not rightmost minimal } j := Next[j];

break[i] := j; f[i] := f[j]+penalty(j+1, i);

g[i] := f[i]+C.line(1, i);

Update_table_next;

end;

return table break, which gives optimal breaking;

end. 

The algorithm works in linear time by a similar argument as that used in the analysis of the

KMP algorithm, if the total cost of updating the table Next is linear. Let j1, j2, …, jr be the

increasing sequence of indices j for which Next[j] is not defined at a given stage of the

algorithm. Then the values of g[j] are strictly increasing for this sequence. We keep the

sequence j1, j2, …, jr on a stack S, the last element at the top. The next procedure is applied.

procedure Update_table_next;

begin

repeat

pop the top indices j of the stack S;

Next[j] := i;

until g[j] < g[i];

push i onto S;

end;

The total complexity of computing table Next is linear, since each position is popped from S at

most once. This completes the proof of the theorem. ‡
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We refer the reader to [HL 87a] for more details on the algorithm, and for extensions to more

sophisticated penalty functions. For example, we can assume that optimal lengths of lines are

properly inside the interval [lmin, lmax], and that penalty of a line is a linear function of the

distance from optimal length. The penalty can also be a nonlinear function. The linear time

complexity works as far as the penalty function is concave.

Bibliographic notes

String-matching by hashing has been first considered by Harrison [Ha 71]. A complete

analysis is presented by Karp and Rabin in [KR 87]. The same idea (using hashing) is applied

for finding repetitions in [Ra 85]. An adaptation of Karp-Rabin algorithm to two-dimensional

pattern matching has been designed by Feng and Takaoka [FT 89].

The contents of Section 15.2 is adapted from the tree-pattern matching algorithm of

Dubiner, Galil, and Magen [DGM 90].

The approximation of the SCS problem by Gallant may be found in [Ga 82]. An efficient

implementation has been designed by Tarhio and Ukkonen [TU 88]. Stronger methods are

developed in [Tu 89], providing an O(nlogn)-time algorithm, but requiring quite complicated

data structures.

The book of Lothaire [Lo 83] contains motivations for factorization problems from the

point of view of combinatorics on texts. The Lyndon factorization algorithm of Section 15.4 in

from Duval [Du 83]. An algorithm for the canonization of circular strings (computing the

smallest conjugate) based on KMP string-matching algorithm is given by Booth in [Bo 80].

The fastest known algorithm is by Shiloach [Sh 81]. The relation between Lyndon factorization

and smallest conjugate of a word in considered by Apostolico and Crochemore in [AC 91].

The algorithm for testing unique decipherability of a code is usually attributed to Sardinas

and Paterson (see [Lo 83]). By using specific data structures, Apostolico and Giancarlo have

improved on the space complexity of the algorithm [AG 84]. The literature on unique

decipherability problem is quite rich (see for instance [BP 85]). The problem is complete in the

class of non-deterministic logn-space computations (see [Ry 86]).

An interesting exposition on algorithmic problems related to partially commutative

alphabets is by Perrin in [Pe 85]. The algorithmic properties of the unique decipherability

problem for partially commutative alphabets were considered by Chrobak and Rytter in [CR

87b]. For the emptiness problem for non-deterministic pushdown automata in polynomial time

the reader can refer to [HU 79]. String-matching over partially commutative alphabets is solved

by Hashiguchi and Yamada in [HY 92].

The application of failure functions to the problem of breaking a paragraph into lines is

from Hirschberg and Larmore [HL 87a].
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