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We prove that aq-deformationDk(X; q) of the powers of the discriminant is equal, up to a normalization, to a
specialization of a Macdonald polynomial indexed by a staircase partition. We investigate the expansion ofDk(X; q)
on different basis of symmetric functions. In particular, we show that its expansion on the monomial basis can be
explicitly described in terms of standard tableaux and we generalize a result of King-Toumazet-Wybourne about the
expansion of theq-discriminant on the Schur basis.

1 Introduction
LetX = {x1, . . . , xn} be an alphabet. Theq-discriminant

D1(X; q) :=
∏

i 6=j

(qxi − xj),

is a polynomial encountered in different fields of mathematics. In particular, its specialization atq = 1 is
the discriminant which is an example of a symmetric function invariant under the transformationx → x+1
and which has been the subject of many works in invariant theory (by Cayley, Sylvester and MacMahon).

In condensed matter physics, it plays a crucial role in the context of the fractional quantum Hall ef-
fect. Laughlin [13] described it through a wavefunction whose expression involves an even power of the
Vandermonde determinant

Ψk
Laughlin(X) = ±D1(X; 1)kΨ0

Laughlin(X).

In this paper, we give the links between theq-discriminant and the Macdonald polynomials. More
precisely, our main result is that the “polarized powers” of theq-discriminant

Dk(X; q) :=
k∏

l=1

D1(X; q2l−1),

appear when one evaluates some specialization of “staircase” Macdonald polynomials.
The powers of the discriminant (q = 1) are encountered also in the context of generalizations of the

Selberg integral [10, 12, 25]. These integrals are closely related to the notion of Hankel hyperdeterminant
[19, 20] and Jack polynomials [8, 9]. The Selberg integral admitsq-analogue involving theq-discriminant
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(seee.g. [22] ex3 p374). It is interesting to remark that such integrals are related to Macdonald polyno-
mials [27].

More generally, the specializationstaqb = 1 rise deeper identities related to the generalization of the
Izergin and Korepin determinant due to Gaudin [18].

The paper is organized as follow. In Section2, we recall notations and properties related to symmetric
functions. Section3 is devoted to the main theorem of the paper. We prove that the polynomialDk(X; q)
is a staircase Macdonald polynomial for a specialization of the parametersq and t. As an application,
in Section4, we give a formula for the coefficients arising in the expansion of an even power of the
Vandermonde determinant in terms of monomial functions. Finally, in Section5, we generalize a theorem
of King et al. about the expansion of theq-discriminant in terms of Schur functions.

2 Background and notations
2.1 Symmetric functions
We consider theC[[q, t, q−1, t−1]]-algebraSym of symmetric functions over an alphabetX, i.e. the
functions which are invariant under permutations of commuting indeterminates called letters. There exists
various families of such functions. We shall need the generating series of complete function:

σz(X) :=
∑

i

Si(X)zi =
∏

x∈X

1
1− xz

.

This notation is compatible with the sumX+Y and the productXY :=
∑

x∈X,y∈Y xy in the following
sense

σz(X+ Y) = σz(X)σz(Y) =
∑

i

Si(X+ Y)zi

(seee.g. [17] 1.3 p 5), and

σt(XY) =
∑

i

Si(XY)ti =
∏

x∈X

∏

y∈Y

1
1− xyt

(seee.g.[17] 1.5 p13). In particular, ifX = Y one hasσz(2X) = σz(X)2. This definition can be extended
for any complex numberα by puttingσz(αX) = σz(X)α.

We will use the Schur basis whose elementsSλ are indexed by decreasing partitions and defined by

Sλ := det
(
Sλi−i+j

)
1≤i,j≤n

,

seee.g. [22] I.3.4 p41 and [17] 1.4.2 p8.

2.2 Macdonald Polynomials
The Macdonald polynomials(Pλ(X; q, t))λ form the unique basis of symmetric functions orthogonal for
the standardq, t deformation of the usual scalar product on symmetric functions (seee.g.[22] VI.4 p322),
verifying

Pλ(X; q, t) = mλ(X) +
∑

µ≤λ

uλµmµ(X). (1)
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wheremλ is a monomial function in the notation of [22] I.2.1 p8. Their generating function is (seee.g.
[22] VI.4.13 p324)

Kq,t(X,Y) := σ1

(
1− t

1− q
XY

)
=

∑

λ

Pλ(X; q, t)Qλ(Y; q, t),

whereQλ(X; q, t) = bλ(q, t)Pλ(Y; q, t) with

bλ(q, t) =
∏

(i,j)∈λ

1− qλi−j+1tλ
′
j−i

1− qλi−jtλ
′
j−i+1

,

seee.g. [22] VI.6.19 p339.
Alternatively, whenX = {x1, . . . , xn} is a finite alphabet, the Macdonald polynomials can be defined

as the eigenfunctions of the Sekiguchi-Debiard operatorM1 (seee.g [22] VI.3 p315 and VI.4 p325).
Indeed,

Pλ(X; q, t)M1 = [[λ]]q,tPλ(X; q, t), (2)

where, for anyv ∈ Nn, [[v]]q,t is defined as

[[v]]q,t := qv1tn−1 + qv2tn−2 + · · ·+ qvn . (3)

This operator may be defined in terms of divided differences

f(X)M1 = f(X− (1− q)x1)R(tx1;X− x1)∂1 . . . ∂n−1. (4)

where, for eachi = 1 . . . n− 1, ∂i, denoted on the right, is the operator (seee.g. [15])

f(x1, . . . , xn)∂i :=
f(x1, . . . , xi, xi+1, . . . , xn)− f(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.

3 Staircase Macdonald polynomials
Let us denote byρ := [n − 1, . . . , 1, 0] and setmρ := [m(n − 1), . . . , m, 0] for m ∈ N. We need the
following lemma.

Lemma 3.1 Under the specializationt → q
(1−2k)

2 , the Macdonald polynomialP2kρ(X; q, q
(1−2k)

2 ) be-
longs to an eigenspace ofM1 whose dimension is1 and its associated eigenvalue is

[[2kρ]]
q,q

1−2k
2

=
n∑

i=1

q(2k+1)(n−1)/2. (5)

Proof From Equation (3), the eigenvalue associated to a partitionλ is

[[λ]]
q,q

1−2k
2

=
n∑

i=1

q(1−2k)(n−i)/2+λi .
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Then, if [[λ]]
q,q

1−2k
2

= [[2kρ]]
q,q

1−2k
2

, it exists a permutationσ ∈ Sn such that, for each1 ≤ i ≤ n, one

has1
2 (2k + 1)(n− σ(i)) = 1

2 (1− 2k)(n− i) + λi. It follows that

λi − λi+1 =
1
2
(2k + 1)(σ(i + 1)− σ(i))− 1

2
(1− 2k). (6)

Sinceλ is a partition, one has necessarilyλi − λi+1 ≥ 0 and Equality (6) implies σ(i + 1) − σ(i) ≥
1−2k
1+2k > −1. This implies thatσ is the identity andλ = 2kρ. 2

For simplicity, we setp := q−
1
2 and we will consider a finite alphabetX = {x1, · · · , xn}. Our main

result is that the polarized powersDk(X, p) of the discriminant are staircase Macdonald polynomials for
the specialization considered here.

Theorem 3.2 One has
Dk(X; p) = (−p)

1
2 k2n(n−1)P2kρ(X; q, p2k−1). (7)

Proof Reordering factors inDk(qx1, x2, . . . , xn; p)R(p2k−1x1;X− x1), one obtains

Dk(qx1, x2, . . . , xn; p)R(p2k−1x1;X − x1) = Dk(X; p)R(p−(2k+1)x1;X − x1). (8)

Hence, applying Equation (8), the polynomialDk(X; p)M1 can be rewritten as

Dk(X; p)M1 = Dk(X; p)R(p−2k−1x1;X− x1)∂1 · · · ∂n−1.

Since the polynomialDk(X; p) is symmetric inX, it commutes with∂1, . . . , ∂n−1 and then

Dk(X; p)R(p−2k−1x1;X− x1)∂1 · · · ∂n−1 = R(p−2k−1x1;X− x1)∂1 · · · ∂n−1Dk(X; p).

The remaining factorR(p−2k−1x1;X− x1) is of total degreen− 1 and therefore is sent to a constant
under∂1 . . . ∂n−1. We use the following lemma to compute this constant.

Lemma 3.3 For any lettersa, b,

R(ax1; bx2, · · · , bxn)∂1 · · · ∂n−1 =
∑

i+j=n−1

aibj . (9)

Proof RewriteR(ax1; bx2, . . . , bxn) as

Sn−1(ax1 − b(X− x1)) = Sn−1((a + b)x1 − bX) =
∑

xi
1Si(a + b)Sn−1−i(−bX).

The image of this sum under∂1 . . . ∂n−1 is Sn−1(a + b)S0(−X) as wanted.2

Applying Lemma3.3, one obtains the value ofk,

k =
n∑

i=1

p(2k+1)(i−n) =
n∑

i=1

p(2k−1)(n−i)−4k(n−i). (10)

From Equality (5), one recognizes thatk = [|2kρ|]q,p2k−1 . This shows that

Dk(X; p) = βk,n(p)P2kρ(X; q, p2k−1), (11)
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whereβk,n(p) is a constant depending only onp, k andn. It remains to compute the coefficientβk,n(p).
Since we know that the dominant coefficient inP2kρ(X; q, p2k−1) is 1 by definition, it suffices to compute

the coefficient of the monomialx2k(n−1)
n · · ·x2k

2 in Dk(X, p). One finds

βk,n(p) = (−p)
1
2 k2n(n−1).

This ends the proof.2

Example 3.4 For k = 2 andn = 4, one obtains

P[12 840](x1 + x2 + x3 + x4; q, q3/2) = q12
∏

i 6=j

(
(qxi − xj)(q3xi − xj)

)

4 Expansion of Macdonald polynomials in terms of monomial func-
tions

Macdonald gives in [22] VI.7.10 p345 the following expansion of the polynomialsQλ in terms of mono-
mial functions:

Qλ =
∑

µ

(∑

T

φT (q, t)

)
mµ, (12)

where the inner sum is over the tableaux of shapeλ and evaluationµ and eachφT (q, t) is an explicit
rational function given in [22] VI.7.11 p346.

Theorem3.2and Equality (12) furnish an expansion ofDk(X; p) according to the monomial basis,

Dk(X; p) =
(−p)

1
2 k2n(n−1)

b2kρ(q, p2k+1)

∑

λ

(∑

T

φT (q, p2k−1)

)
mλ (13)

where the inner sum is over the tableaux of shape2kρ and evaluationλ.

Recall that Jack polynomials [8, 9] P
(α)
λ (X) are obtained fromPλ(X; q, t) settingq = tα and taking

the limit whent tends to1 (see [22] VI 10). One has

P
(α)
λ (X) = lim

t→1
Pλ(X; tα, t), (14)

and
Q

(α)
λ (X) = lim

t→1
Qλ(X; tα, t) = b

(α)
λ P

(α)
λ (15)

whereb
(α)
λ := limt→1 bλ(tα, t). Putting

φ
(α)
T := lim

t→1
φT (tα, t),

one get from Equation (13) an expansion of integral powers of the discriminant.
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Corollary 4.1 One has

D1(X; 1)k = Dk(X; 1) = (−1)
kn(n−1)

2 P
(αk)
2kρ (X)

= (−1)
kn(n−1)

2

(
b
(αk)
2kρ

)−1 ∑

λ

(∑

T

φ
(αk)
T

)
mλ,

(16)

whereαk = −2
2k−1 and the inner sum is over the tableaux of shape2kρ and evaluationλ.

Example 4.2 Consider an alphabetX = {x1, x2, x3} of size3. One has,

Q42(X; q, t) =
2 2
1 1 1 1

m42 +
2 3
1 1 1 1

m411 +
2 2
1 1 1 2

m33

+

�
2 3
1 1 1 2

+
2 2
1 1 1 3

�
m321

+

�
3 3
1 1 2 2

+
2 3
1 1 2 3

+
2 2
1 1 3 3

�
m222.

Each tableauT is interpreted as the functionΦT ,

Q42(X; q, t) =

�
1− t

1− q

�2 � 1− tq

1− q2

�2 �1− t2q2

1− tq3

��
1− t2q3

1− tq4

�
m42

+

�
1− t

1− q

�3 � 1− tq

1− q2

��
1− t2q3

1− tq4

��
1− t2q2

1− q3t

�
m411 + . . .

Settingq = t−2 and taking the limitt → 1, the algorithm described here allows to compute the
expansion of the Jack polynomials according to the monomial functions. After simplification, one obtains

Q
(−2)
42 (X) =

1
280

m4,2 − 1
140

m4,1,1 − 1
140

m3,3 +
1

140
m3,2,1 − 3

140
m2,2,2.

And finally,
D1(X; 1) = −m4,2 + 2 m4,1,1 + 2 m3,3 − 2 m3,2,1 + 6 m2,2,2.

Corollary4.1can be applied to expand Hankel hyperdeterminants. Hyperdeterminants are polynomials
defined by Cayley in the aim of generalizing the notion of determinant to higher dimensional arrays(i) [4,
5]. Given amth order tensorM = (Mi1...im)1≤i1,...,im≤n on an dimensional space, its hyperdeterminant
is

Det(M) =
1
n!

∑

σ1,...,σm∈Sn

sign(σ1 . . . σm)
m∏

i=1

Mσ1(i)...σm(i).

Note that this polynomial vanishes whenm is odd. Suppose thatm = 2k is an even integer. An
Hankel hyperdeterminant is an hyperdeterminant whose entries depend only on the sum of the indices
Mi1...i2k

= f(i1 + · · ·+ i2k). This kind of hyperdeterminant have been already considered by the authors

(i) Note that Cayley proposed several generalizations of determinants. The polynomial considered here is the simplest one in the
sense that it generalizes the expansion of determinant as an alternated sum. Reader can refer to [19, 20, 21, 23, 26] for more
informations on the subject.
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in collaboration with Thibon and Belbachir [19, 20, 2]. In particular, it is shown that the coefficients
Cλ(n, l) arising in the expression

Det (Mi1+···+i2k
) =

∑

λ

Cλ(n, k)
n∏

i=1

f(λi),

are equal (up to a multiplicative term equal to the number of permutations ofλ divided byn!) to those
arising in the expansion ofDk(X; 1) in terms of monomial functions.

Example 4.3 From the expansion of the Jack polynomialP
(−2/3)
84 , for an alphabet of size3,

P
(−2/3)
84 (x1 + x2 + x3) = m84 − 4m831 + 6m822 − 4m75 + 12m741 − 8m732 + 6m66 − 8m651

−22m642 + 48m633 + 48m552 − 36m543 + 90m44,

one deduces the expansion of the Hankel hyperdeterminant

Det (f(i1 + i2 + i3 + i4))0≤i1,i2,i3,i4≤3 = f(8)f(4)f(0)− 4f(8)f(3)f(1) + 3f(8)f(2)2

−4f(7)f(5)f(0) + 12f(7)f(4)f(1)− 8f(7)f(3)f(2)
+3f(6)2f(0)− 8f(6)f(5)f(1)− 22f(6)f(4)f(2)
+24f(6)f(3)2 + 24f(5)2f(2)− 36f(5)f(4)f(3)
+15f(4)3.

Furthermore, in [15] Lapointe et al. gave a determinantal expression of Jack polynomial in terms of
monomial functions. These computations leads naturally to a determinantal expression for Hankel hyper-
determinants.

Note that the formula for the Macdonald polynomialsH̃λ, given by Haglund, Haiman and Loehr [7],
provides an expansion ofDk(X; q) in terms of modified monomial functionsmλ(X(1 − t)) having a
combinatorial interpretation.

5 Expansion of the polarized powers of the q-discriminant in terms
of Schur functions

Di Francescoet al. [6] considered the problem of the expansion of the discriminant in terms of Schur
functions. They defined then-admissiblepartitions to be the partitions in the interval[(n − 1)n], [2(n −
1), . . . , 2, 0] (with respect to the dominance order). They conjectured that they are exactly those occurring
in the expansion of the discriminant. This conjecture is false as shown by Scharfet al. [24]. However,
Kind et al. [11] proved that it becomes true when replacing the discriminant by theq-discriminant.

In this section, we generalize this property toDk(X; q). We define(n,m)-admissiblepartitions to be
the partitions which appear in the expansion

mρ(X)m−1Sρ(X) =
∑

λ

bn,m
λ mλ(X) (17)

whereX is an alphabet of sizen. Whenm = 2k is even, the(n, 2k)-admissible partitions are those of
the interval[(k(n − 1))n], [2k(n − 1), . . . , 2k, 0]. We prove that a partition appear in the expansion of
Dk(X; q) in terms of Schur functions if and only if it is a(n, 2k)-partition.
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5.1 Computing admissible partitions

Let us denote byAn,m the set defined recursively by

An,1 := {λ = [λ1, . . . , λn]|ρ ≥ λ}
An,m := {((λ1 + σ(1)− 1, . . . , λn + σ(n)− 1))|σ ∈ Sn andλ ∈ An,m−1}. (18)

Lemma 5.1 Letλ be a partition. The following assertions are equivalent.

1. The partitionλ belongs toAn,m.

2. The partitionλ is (n, m)-admissible.

3. λ is partition of lengthn less or equal tomρ with respect to the dominance order.

Proof The equivalence between the assertions 1 and 2 is straightforward from Equations (17) and (18).
Furthermore, from Equation (18), the maximal partition ofAn,m is mρ. It remains to prove3 ⇒ 1. We
proceed by induction onm, if m = 1 then the result is trivial. Suppose thatm > 1. Let λ be a partition
of sizen less or equal tomρ with respect to the dominance order. Then((λ − ρ)) is a partition less
or equal to(m − 1)ρ. Indeed, putting((λ − ρ)) = (µ1, . . . , µn), for a permutationσ ∈ Sn, one has
µi = λσ(i) + n− σ(i). Hence, for eachi

µ1 + · · ·+ µi ≤ λσ(1) + · · ·+ λσ(i) + n− σ(1) + · · ·+ n− σ(i)
≤ λ1 + · · ·+ λi + n− 1 + · · ·+ n− i
≤ (m− 1)(n− 1

2 i(i + 1))

implies((λ− ρ)) ≤ (m− 1)ρ for the dominance order.
By induction,((λ − ρ)) belongs toAn,m−1. Furthermore, it exists a permutationσ such that((λ −

ρ)) + ρσ = λ. Hence, from Equation (18), λ ∈ An,m.2

5.2 Counting admissible partitions

One considers the free commutative monoidT generated by the symbolsT = {τ1, . . . , τn−1} acting on
the vectors of sizen by

τi[v1, . . . , vn] = [v1, . . . , vi−1, vi − 1, vi+1 + 1, vi+1, . . . , vn].

For a given vectorv ∈ Zn, T.v is the set of the vectorsw = [w1, . . . , wn] ∈ Zn of same weight (i.e.
v1 + · · · + vn = w1 + . . . wn) lower or equal tov for the dominance order. In particular, ifv = λ is
a partition thenT.λ contains all the partition of sizen lower or equal toλ. To each vectorv ∈ Zn, one
associates the monomialzv = zv1−v2

1 . . . z
vn−1−vn

n−1 . For a given weight, the monomialzv characterizes
completelyv, furthermorev is a (decreasing) partition if and only if its weight is non negative and the
degree of the monomialzv in each variablezi is non-negative.
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Example 5.2
z3
1

[4,1,1]

τ1 ↙ ↘ τ2

z1z2
[3,2,1]

z4
1 ,z−2

2
[4,0,2]

↙ ↘↙ ↘
z−1
1 z2

2
[2,3,1]

z2
1z−1

2
[3,1,2]

z4
1z−3

2
[3,−1,2]

↙ ↘↙ ↘↙ ↘
z−3
1 z3

2
[1,4,1]

1
[2,2,2]

z3
1z−3

2
[3,0,3]

x−5
1 z5

2
[3,−2,3]

. . .

(19)

Acting onv by τi is equivalent to multiplyzv by

ti =





zi−1zi+1

z2
i

if 1 < i < n− 1
z2
z2
1

if i = 1
zn−2

z2
n−1

if i = n− 1.

Since there is no algebraic relations between thet′is, each vector appears inT.v with multiplicity 0 or 1.
In other words, one has

σq(T ).zv =
∏

i

1
1− tq

.zv =
∑

w≤v

qαv,wzw. (20)

whereαv,w is the degree of the monomial acting onv to obtainw. Extracting the monomial which
encodes a partition is equivalent to extract the part of the series (20) constituted only with non-negative
exponents. This operation is performed by the MacMahon Omega operator (seee.g[1])

Ωx1,...,xp

∑

n1,...,np∈Z
αn1,...,npxn1

1 . . . . .xnp
p =

∑

n1,...,np∈N
αn1,...,npxn1

1 . . . . .xnp
p .

Example 5.3 One has

Ωz1,z2

z3
1

(1− z1
z2
2
q)(1− z2

z2
1
q)

= z3
1 + qz1z2 + q3

which implies that the set of the partitions of size3 lower or equal to[411] is {[411], [321], [222]}.
Hence,

Proposition 5.4 The sizen ≥ 2 of the alphabet being fixed, the generating series of the(n, k)-admissible
partitions is the rational function

An(q, t; z1, . . . , zn−1) = Ωz1,...,zn−1

(
(1− tz1 . . . zn−1)(1− z0z2

z2
1

q)(1− z1z3

z2
2

q) . . . (1− zn−2zn

z2
n−1

q)
)−1

,

wherez0 = zn = 1.

Example 5.5 Let us give the first value ofAn(q, t; z1, . . . , zn−1).
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1. First, one considers the special casen = 2,

A1(q, t; z1) = Ωz1

(
(1− tz1)(1− q

z2
1
)
)−1

=
(
(1− qt2) (1− z1 t)

)−1

= 1 + z1t + (q + z2
1)t2 + (qz1 + z3

1)t3 + (q2 + qz2
1 + z4

1)t4 + . . . .

This means that, fork = 1 the only admissible partition is[21], for k = 2, there is two admissibles
partitions[42] and[33], for k = 3 the admissibles partitions are[63] and[54] etc...

2. If n = 3, A3(q, t; z1, z2) = − 1−z1
3z2

3q2t4

(1−tz1 z2 )(1−qz2 3t2)(1−z1 3qt2)(1−q2t) .

3. If n = 4, A4(1, t; 1, 1) = t4+5 t3+7 t2+2 t+1
(1+t)2(1−t)4

.

4. If n = 5, A5(1, t; 1, 1) = 3 t6+21 t5+61 t4+68 t3+39 t2+7 t+1
(1−t)5(t+1)3

5.3 Characterization of the partitions arising in the expansion of Dk(X; q)

In this paragraph, one extends the result of King-Toumazet-Wybourne to the polynomialsDk(X; q).

Theorem 5.6 ExpandDk(X; q) in terms of Schur functions,

Dk(X; q) =
∑

λ

cλ(q)Sλ(X).

Then,cλ(q) 6= 0 if and only ifλ is a (n, 2k)-admissible partition.

Proof Let us prove first the only if part. From Theorem3.2, the polynomialDk(X; q) equals (up to
a multiplicative coefficient) a specialization of the MacdonaldP2kρ(X; q, t). But it is well known that
the partitions arising in the expansion ofP2kρ(X; q, t) in terms of Schur functions belong to the interval
[(k(n−1))n], 2kρ (seee.g.the determinantal expression of Macdonald polynomials given in [15]). From
Lemma5.1, this is equivalent to the fact thatλ is (n, 2k)-admissible.

Conversely, to prove that the admissibility ofλ implies the non nullity ofcλ(q), it suffices to prove it
for a specialization. We will setq = −1. In this case,

Dk(X; q) =
∏

i 6=j

(xi + xj)k = Sρ(X)2k.

We will prove a stronger result showing that the coefficientcn,m
λ in the expansion

Sρ(X)m =
∑

λ

cn,m
λ Sλ(X)

is non-zero if and only ifλ is (n, m)-admissible. We proceed by induction onm. Note that the initial
case (m = 2) have been proved by King-Toumazet-Wybourne in [11] Corollary 3.2 as a consequence of
an important result of Bereinstein-Zelevinsky [3].

One needs the two following lemmas

Lemma 5.7 If λ is a (n,m)-admissible partition (m > 1), then((λ − ρ)) is a (n,m − 1)-admissible
partition.
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Proof From Equality (17), each(n, m)-admissible partition can be obtained by adding a permutation of
ρ to a(n,m− 1)-admissible partition. This is equivalent to our statement.2

Lemma 5.8 Let µ ⊂ λ be a partition andν := ((λ1 − µ1, . . . , λn−1 − µn−1, λn − µn)). Then, the
Littlewood-Richardson coefficientcλ

µν = 〈Sλ, SµSν〉 equals1.

Proof The Littlewood-Richardson coefficientcλ
µν is equal to the number of tableaux of shapeν and eval-

uationλ−µ. Butλ−µ is a permutation ifν and Theorem 11.4.3 of [17] implies that such a tableau exists
and is unique. This ends the proof.2

End of the proof of Theorem 5.6 Let λ be a(n,m)-admissible partition. Sinceρ ⊂ λ, Lemma5.7
implies that the partitionµ = ((λ − ρ)) is (n,m − 1)-admissible. And by induction,Sµ appears with a
non-zero coefficient inSm−1

ρ . The positivity of the Littlewood Richardson coefficients implies that each
partitionν such thatcν

µ,ρ 6= 0 appears with a non-zero coefficient in the expansion ofSm
ρ . In particular,

from Lemma5.8, it is the case ofλ. This shows thatcn,m
λ 6= 0 if and only if λ is (n,m)-admissible and

proves the Theorem.2.
Note that other expansion of Macdonald functions can be found in literature (for example Hall-Littlewood
polynomials can be expanded in terms of plane partitions [16]), it should be interesting to investigate the
propertiesDk(X; q) which can be deduced from these expansions.
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