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Staircase Macdonald polynomials and the
g-Discriminant

Adrien Boussicault and Jean-Gabriel Lugue

Universié Paris-Est, Marne-la-Valle, Institut dElectronique et d’Informatique Gaspard-Monge 77454 Marne-la-
Vallée Cedex 2.

We prove that a-deformation®(X; ¢) of the powers of the discriminant is equal, up to a normalization, to a
specialization of a Macdonald polynomial indexed by a staircase partition. We investigate the expa@si¢oX of)

on different basis of symmetric functions. In particular, we show that its expansion on the monomial basis can be
explicitly described in terms of standard tableaux and we generalize a result of King-Toumazet-Wybourne about the
expansion of the-discriminant on the Schur basis.

1 Introduction
LetX = {z1,...,z,} be an alphabet. Thediscriminant

D1(X;9) == [ [ (g2 — x;),
i#j

is a polynomial encountered in different fields of mathematics. In particular, its specializagiea ais

the discriminant which is an example of a symmetric function invariant under the transformation+1

and which has been the subject of many works in invariant theory (by Cayley, Sylvester and MacMahon).
In condensed matter physics, it plays a crucial role in the context of the fractional quantum Hall ef-

fect. Laughlin[L3] described it through a wavefunction whose expression involves an even power of the

Vandermonde determinant

k
\ijaughlin (X) = igl(xv 1) \Ij%aughlin (X)

In this paper, we give the links between th@iscriminant and the Macdonald polynomials. More
precisely, our main result is that the “polarized powers” ofgkadiscriminant

k
Di(Xiq) == [[D:1(X:¢¥ ),
=1
appear when one evaluates some specialization of “staircase” Macdonald polynomials.
The powers of the discriminang (= 1) are encountered also in the context of generalizations of the
Selberg integral10,/12, [25]. These integrals are closely related to the notion of Hankel hyperdeterminant
[19,20] and Jack polynomialg]9]. The Selberg integral admitsanalogue involving the-discriminant
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(seee.g.[22] ex3 p374). It is interesting to remark that such integrals are related to Macdonald polyno-
mials 27].

More generally, the specializations;® = 1 rise deeper identities related to the generalization of the
Izergin and Korepin determinant due to Gaudif][

The paper is organized as follow. In Sect@we recall notations and properties related to symmetric
functions. Sectiof@is devoted to the main theorem of the paper. We prove that the polyn@mni&; ¢)
is a staircase Macdonald polynomial for a specialization of the paramgterdt. As an application,
in Section4, we give a formula for the coefficients arising in the expansion of an even power of the
Vandermonde determinant in terms of monomial functions. Finally, in Se6time generalize a theorem
of King et al. about the expansion of thediscriminant in terms of Schur functions.

2 Background and notations

2.1 Symmetric functions

We consider theC|[q,t,q~,t~1]]-algebraSym of symmetric functions over an alphah¥t i.e. the
functions which are invariant under permutations of commuting indeterminates called letters. There exists
various families of such functions. We shall need the generating series of complete function:

0.(X) == ZSi(X)zi =11 - _1:62

zeX

This notation is compatible with the suih+ Y and the producKY := ZxEX,yEY zy in the following
sense . .
o (X+Y) =0.(X)o.(Y) = Y S (X+Y)z!

(seee.qg.[17] 1.3 p 5), and

o (XY) = Z sixy)e = [T 1 1 _1xyt

zeXyeY

(seee.qg.[17] 1.5 p13). In particular, i = Y one hasr, (2X) = ¢, (X)?2. This definition can be extended

for any complex numbet by puttingo, (aX) = o, (X)“.
We will use the Schur basis whose elemes$i{sare indexed by decreasing partitions and defined by
Sy = det (S* )

1<i,5<n’
seee.q.[22] 1.3.4 p41 andl17] 1.4.2 p8.

2.2 Macdonald Polynomials

The Macdonald polynomial&P (X; ¢, t))» form the unique basis of symmetric functions orthogonal for
the standardg, t deformation of the usual scalar product on symmetric functionsggef22] V1.4 p322),
verifying

PA(X;q,1) = ma(X) + ) unumy(X). @
159\
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wherem,, is a monomial function in the notation 2] 1.2.1 p8. Their generating function is (seqy.
[22] V1.4.13 p324)

Kya6¥) i= o ({20Y ) = 32 PACKia. 00 (.1,
A

whereQx(X; ¢, t) = bx(q,t)PA(Y; ¢, t) with

b)\(q t) = I I -
! o hi—jN i1
(pen T~

seee.qg.[22] VI.6.19 p339.

Alternatively, whenX = {z1, ..., z,} is a finite alphabet, the Macdonald polynomials can be defined
as the eigenfunctions of the Sekiguchi-Debiard operg¥igr (seee.g[22] VI.3 p315 and V1.4 p325).
Indeed,

PA(X5q, )M = [[M]gPa(X5 ¢, ), )
where, for any € N, [[v]],,, is defined as
[V))g, = g" " + q"2¢" 2 4o 4 g 3)
This operator may be defined in terms of divided differences
FEX)My = f(X = (1 - @)z1)R(tr1; X —21)01 ... Op—1. (4)
where, foreach =1...n — 1, 9;, denoted on the right, is the operator (seg [15])

f(mla-“’xiaxi—o—la”'vl'n)7f(x17~-‘>xi+1axi>-~71'n)

Ti — Ti4+1

f(xlw-';zn)ai =

3 Staircase Macdonald polynomials

Let us denote by := [n — 1,...,1,0] and setnp := [m(n — 1),...,m,0] for m € N. We need the
following lemma.

(1—2k)

Lemma 3.1 Under the specialization — ¢~ = , the Macdonald polynomiaP%,,(X;q,q(lE%)) be-
longs to an eigenspace #k; whose dimension isand its associated eigenvalue is
[2kpl] s = gEFHDODE, (5)

9,9 2
i=1

Proof From Equation/3), the eigenvalue associated to a partitiois

n
[A] 1ok = Zq(l_%)(n—i)/%—)\i.

q,q 2
’ i=1
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4 2 9,9 2

Then, if[[A]]  1-2x = [[2kp]] 1-2x, it exists a permutation € &,, such that, for each < i < n, one
q
hasi(2k + 1)(n — o(i)) = 3(1 — 2k)(n — i) + ;. It follows that

A= A1 = %(2k+1)(a(i+1) — o) - %(1—%). ©)

Since )\ is a partition, one has necessarNy — \;11 > 0 and Equality[6) implieso (i + 1) — o(i) >

};—gl’j > —1. This implies that is the identity and\ = 2kp. O
For simplicity, we sep := ¢~ 2 and we will consider a finite alphabit = {z1, -+ ,zn}. OUr main

result is that the polarized powets, (X, p) of the discriminant are staircase Macdonald polynomials for
the specialization considered here.

Theorem 3.2 One has

Di(X;p) = (=p)2F 7D Py, (X; ¢, 2 1). @)
Proof Reordering factors i@y (¢z1, z2, . . ., 2,; p) R(p** ~'z1; X — 1), one obtains
Di(qr1, 22, .., 20 ) RE™ o X — 21) = DuXip)Rp VX - 24). (8)

Hence, applying Equatiof8), the polynomial®(X; p)Mt; can be rewritten as
D5 (X;p)My = Dp (X5 p) R(p™ 2 a1 X — 21)01 -+ Oy
Since the polynomiaD, (X p) is symmetric inX, it commutes witho, , ..., d,—1 and then
Du(X;p)R(p~ 2 213X — 21)01 -+ Ot = R(p™ 2 a1; X — 21)01 -+ - 01Dk (X p).

The remaining factoRR(p~2¢~12,; X — z,) is of total degree — 1 and therefore is sent to a constant
undero; ... 0,_1. We use the following lemma to compute this constant.

Lemma 3.3 For any lettersa, b,

R(axy;bxa, -+ ,bxp)dy - - Ope1 = Z a't’. 9)

Proof Rewrite R(ax1; bxa, . .., bx,) as
Sp-1(azy — b(X — 21)) = Sn_1((a+ bay — bX) = > 2} S;(a+b)Sn_1_i(—bX).
The image of this sum undé ... 9,,—1 is S,,—1(a + b)Sp(—X) as wantedD

Applying Lemmé&3.3, one obtains the value &f

n n
k = Zp(2k+1)(ifn) — Zp(Qkfl)(nfi)fﬁlk(nfi). (10)

i=1 i=1

From Equality B), one recognizes that= [|2kp|], ,2x-1. This shows that

Qk(va) = ﬂk,n(p)PQkp(X; q7p2k_1)7 (11)
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wheregy . (p) is a constant depending only pnk andn. It remains to compute the coefficiefit ,, (p).
Since we know that the dominant coefficientfg, , (X; q,p*¢~1) is 1 by definition, it suffices to compute

the coefficient of the monomial2" ™~ ... 2% in ®,,(X, p). One finds

Brn(p) = (—p)2F =1,
This ends the prodfl

Example 3.4 For k = 2 andn = 4, one obtains

P12 840 (X1 + z2 + 23 + 245 q7q3/2) =q" H ((qxz - wj)(q337i - acj))
i#]

4 Expansion of Macdonald polynomials in terms of monomial func-
tions

Macdonald gives in22] V1.7.10 p345 the following expansion of the polynomié)s in terms of mono-
mial functions:

Q=) (Z ng(q,t)) My (12)
© T

where the inner sum is over the tableaux of shapnd evaluation: and eachyr(q,t) is an explicit
rational function given in22] VI.7.11 p346.
Theoreni3.2and Equality/12) furnish an expansion @ (X; p) according to the monomial basis,

)%k2n(n—1)

Dr(X;p) = (b;fp(%Pka ; <§T: ¢T(Q7P2k_1)> m (13)

where the inner sum is over the tableaux of shizigeand evaluation.
Recall that Jack polynomial8[9] Pi“) (X) are obtained fronP, (X; ¢, t) settingg = t* and taking
the limit whent tends tol (seeR2] VI 10). One has

P (X) = lim Py(; 8%, ), (14)

and
3 (%) = lim Qa(X; ¢, ) = by P{® (15)

whereb(;”) = lim;_,q by (¢, t). Putting
¢g“a) = }E}} (bT(ta’ t)v

one get from Equatioril@) an expansion of integral powers of the discriminant.
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Corollary 4.1 One has
kn(n—1)

DI =D(X1) = (~1)TE PP (X)

= ) O)) Y (Z fz»(;‘“) m,
A T

whereqy, = 2;—_21 and the inner sum is over the tableaux of shape and evaluation.

(16)

Example 4.2 Consider an alphab& = {x;, x5, 23} of size3. One has,

2 ]2 2[3 2[2
Qa2(X5¢,1) = 577 1lllm42+1 T 111]m411+1 T 1[21m33
2[3 2[2
Yoozt aalirs] ™
3]3 2[3 2
a2z a 2 811 [3]8] ™

Each tablead’ is interpreted as the functicbhy,

1—t 2 1—tg 2 1-—1t2¢2 1—¢2¢3

X;q,t = m
Qa2(X54,1) 1—gq 1—q2 1—tg3 1—tgt 2
1—t 3 1—tg 1-—t2g3 1—¢2¢2
+ m + ...
1—gq 1—q? 1—tg* 1— g3t a

Settingg = ¢~2 and taking the limitt — 1, the algorithm described here allows to compute the
expansion of the Jack polynomials according to the monomial functions. After simplification, one obtains

1 1 1 1 3

3,3 1+

(-9 L1 R 1 3
Qiz " (X) = g5 a2 = o mat = 55 Mas + e Ma2 — M.

And finally,
@1(X; 1) = —my2+2my11+2m33—2mz21+6mo2o.

Corollary4.1can be applied to expand Hankel hyperdeterminants. Hyperdeterminants are polynomials
defined by Cayley in the aim of generalizing the notion of determinant to higher dimensionaf’ajfays
5]. Given amth order tensoM = (Mjfl---im)1<i1,“ on an dimensional space, its hyperdeterminant
is -

SHim <N

m

1 .
Det(M) = ﬁ Z S|gn(01 - O’m) H Mal(i)...om(i)'
=1

Note that this polynomial vanishes whem is odd. Suppose that: = 2k is an even integer. An
Hankel hyperdeterminant is an hyperdeterminant whose entries depend only on the sum of the indices
M, . in. = f(i1 + - - +12x). This kind of hyperdeterminant have been already considered by the authors

) Note that Cayley proposed several generalizations of determinants. The polynomial considered here is the simplest one in the
sense that it generalizes the expansion of determinant as an alternated sum. Reader canlB:z[2g, 21, 23, 126] for more
informations on the subject.



Staircase Macdonald polynomials and #®iscriminant 7

in collaboration with Thibon and Belbachii9, 20, 2]. In particular, it is shown that the coefficients
Cx(n,1) arising in the expression

Det( i1+ +sz ZCA n k H )

are equal (up to a multiplicative term equal to the number of permutationsdofided byn!) to those
arising in the expansion @, (X; 1) in terms of monomial functions.

Example 4.3 From the expansion of the Jack ponnomE%[w), for an alphabet of sizg,

P8(4_2/3)(CU1 + x4+ x3) = mga — dmgsy + 6msgaz — dmrs + 12mra; — 8mrsa + 6mge — 8Mmes:
—22mea2 + 48meaz + 48Mmis52 — 36ms4a3 + 90myy,

one deduces the expansion of the Hankel hyperdeterminant

) +3f(8 ) (2)?

FA Q) =8f(7)f(3)f(2)
5)f(1) = 22f(6)f(4)f(2)
2f(2) = 36f(5)f(4)f(3)

~—

Det (f(’l +i2+i3+i4))ogi1,i2,¢3,i453 = ( ) ( )f(O) ( )f(3
—4f(7)f(5)f(0 )+12f
+3£(6)2£(0) — 8f(6)f
+24£(6)f(3)* +24f(5

+15f(4)3.

Furthermore, in15] Lapointe et al. gave a determinantal expression of Jack polynomial in terms of
monomial functions. These computations leads naturally to a determinantal expression for Hankel hyper-
determinants.

Note that the formula for the Macdonald polynomials, given by Haglund, Haiman and Loel]]
provides an expansion @ (X;q) in terms of modified monomial functions(X(1 — ¢)) having a
combinatorial interpretation.

\_/

5 Expansion of the polarized powers of the ¢-discriminant in terms
of Schur functions

Di Francesceet al. [6] considered the problem of the expansion of the discriminant in terms of Schur
functions. They defined the-admissiblepartitions to be the partitions in the intenjéh — 1)"], [2(n —
1),...,2,0] (with respect to the dominance order). They conjectured that they are exactly those occurring
in the expansion of the discriminant. This conjecture is false as shown by Stharf{24]. However,
Kind et al. [11] proved that it becomes true when replacing the discriminant by-ttiscriminant.

In this section, we generalize this property®q (X; ¢). We defing(n, m)-admissiblepartitions to be
the partitions which appear in the expansion

m,(X)™ 1S, (X Z by m 17)

whereX is an alphabet of size. Whenm = 2k is even, thgn, 2k)-admissible partitions are those of
the interval[(k(n — 1))"], [2k(n — 1),...,2k,0]. We prove that a partition appear in the expansion of
D1 (X; ¢) in terms of Schur functions if and only if it is (&, 2k)-partition.
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5.1 Computing admissible partitions

Let us denote by, ,,, the set defined recursively by

Apy = {)\ = [)\17 ceey )‘an > )\} (18)
Apm ={(M+0)=1,..., 0, +0(n) —1))|c € &, andX € A, 1,1}

Lemma 5.1 Let X be a partition. The following assertions are equivalent.
1. The partition) belongs te4,, ,,.
2. The partition\ is (n, m)-admissible.
3. \is partition of lengthn less or equal tonp with respect to the dominance order.

Proof The equivalence between the assertions 1 and 2 is straightforward from Equaffpasd (18).
Furthermore, from Equatiori8), the maximal partition of4,, ,,, is mp. It remains to provg = 1. We
proceed by induction om, if m = 1 then the result is trivial. Suppose that> 1. Let A be a partition
of sizen less or equal tanp with respect to the dominance order. Thgn — p)) is a partition less
or equal to(m — 1)p. Indeed, putting (A — p)) = (p1,- .., un), for a permutatiorr € S,,, one has
i = Ao(iy +n — o(i). Hence, for each

Aoyt F Aoy +n—0(1) + - +n—0(i)
M4+ XN+n—1++n—i
(m—1)(n— %i(i + 1))

IAIAIN

implies((A — p)) < (m — 1)p for the dominance order.
By induction, ((A — p)) belongs toA,, ,,—1. Furthermore, it exists a permutationsuch that((A —
p)) + p° = X. Hence, from Equatioril@), A € A4,, ,,,.0

5.2 Counting admissible partitions

One considers the free commutative mon®idenerated by the symbdls = {r,...,7,_1} acting on
the vectors of size by

Ti[v1, o] = 01,0021, 0 — Lvigr + 1,041, .., 0]

For a given vecton € Z", .v is the set of the vectore = [wy,...,w,] € Z™ of same weighti(e.
vy + -+ v, = w; + ... w,) lower or equal taw for the dominance order. In particular,if= X is
a partition therit.\ contains all the partition of size lower or equal to\. To each vector € Z", one
associates the monomial = z{*~"2...2",'~ . For a given weight, the monomiat characterizes
completelyv, furthermorev is a (decreasing) partition if and only if its weight is non negative and the
degree of the monomial’ in each variable; is non-negative.
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Example 5.2
=
[4,11,1]
T/ N\ T2
4 -2
Z122 21722
[3,2,1] [4,0,2]
L 2 o (19)
[2,3,1] [3,1,2] [3,—1,2]
/ N o N\
—-3.3 3_-3 —5_5
zq "2y 1 2] Zq Ty 2o
[1,4,1] 2,2,2] (3,0,3] [3,—2,3]

Acting onv by 7; is equivalent to multiply:? by

ZimiZial jfl<i<n-—1
Z;

ti = i—% ifi=1
Zp2 ifi=mn-—1.

Zn—1

Since there is no algebraic relations betweentfgeach vector appears ®v with multiplicity 0 or 1.

In other words, one has
1

0q4(T).2° = m.z” = Z qrez". (20)

w<v

wherew, ., iS the degree of the monomial acting orto obtainw. Extracting the monomial which
encodes a partition is equivalent to extract the part of the s@®s@nstituted only with non-negative
exponents. This operation is performed by the MacMahon Omega operaterd§&g

Example 5.3 One has
21
(1-Zq)(1-2q)

which implies that the set of the partitions of siz&wer or equal td411] is {[411], [321], [222]}.

Qs 20 = Zf + qz122 + q3

Hence,

Proposition 5.4 The sizex > 2 of the alphabet being fixed, the generating series ofithé&)-admissible
partitions is the rational function

1
20%2 2123 Zp—2%

W (gt 215 ooy 2n-1) = Qay o s ((1 —tz.z)(l— ) (1 — —57q) ... (1 — =5 "q)) )
21 22 Zn—1

wherezg = 2z, = 1.

Example 5.5 Let us give the first value of,,(q, t; z1, ..., 2n—1).
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1. First, one considers the special case 2,
-1 1
(g t:2) = Qo ((1 ) (1— i)) = (1= qt®) (1= 2 1)
= 14+z2t+(q+22)2+ (g + )3+ (? +q2? + 2Dt + ...

This means that, fat = 1 the only admissible partition i21], for k = 2, there is two admissibles
partitions[42] and[33], for k = 3 the admissibles partitions aj@3] and[54] etc...

. _ 1— 235,824
2. Ifn =3, 9[3(Qat7 21,%2) = — Itz zQ)(lfquétQZ?(lq—zl3qt2)(17q2t) .

3. fn=4,A1,41,1) = W#

. 315421461 t*468t3+39t>+7t+1
4. 1fn=>5As(1,41,1) = 34+ +(1_t)+5(t+1)+3 i

5.3 Characterization of the partitions arising in the expansion of ©,(X; q)
In this paragraph, one extends the result of King-Toumazet-Wybourne to the polyn@pi@sq).

Theorem 5.6 Expand®(X; q) in terms of Schur functions,
Dr(X;q) = ZCA(Q)SA(X)'
A

Then,cx(¢) # 0 if and only if A is a (n, 2k)-admissible partition.

Proof Let us prove first the only if part. From Theore®2, the polynomial®(X;q) equals (up to
a multiplicative coefficient) a specialization of the Macdon&ld,,(X; ¢,t). But it is well known that
the partitions arising in the expansion Bf;,(X; ¢, t) in terms of Schur functions belong to the interval
[(k(n—1))"], 2kp (seee.g.the determinantal expression of Macdonald polynomials givebi}).[From
Lemma5.1, this is equivalent to the fact thatis (n, 2k)-admissible.

Conversely, to prove that the admissibility »implies the non nullity ok (g), it suffices to prove it
for a specialization. We will set = —1. In this case,

Di(Xiq) = [J (i +2))" = S,(X)-.
i

We will prove a stronger result showing that the coefficight” in the expansion
Sp(X)™ =D RSN (X)
A

is non-zero if and only if\ is (n, m)-admissible. We proceed by induction en Note that the initial
case {(n = 2) have been proved by King-Toumazet-Wybournelil] [Corollary 3.2 as a consequence of
an important result of Bereinstein-Zelevins(a}.[

One needs the two following lemmas

Lemma5.7 If \is a (n, m)-admissible partition«z > 1), then((A — p)) is a (n,m — 1)-admissible
partition.
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Proof From Equality [L7), each(n, m)-admissible partition can be obtained by adding a permutation of
ptoa(n,m — 1)-admissible partition. This is equivalent to our statement.

Lemma5.8 Letu C A be a partition andv := (A1 — g1, -+ An—1 — fn—1,An — Wn)). Then, the
Littlewood-Richardson coeﬁicienﬁy = (Sx, 5,S,) equalsl.

Proof The Littlewood-Richardson coefficieﬁy is equal to the number of tableaux of shapand eval-
uation\ — . But A — i is a permutation if and Theorem 11.4.3 c1F] implies that such a tableau exists
and is unique. This ends the prodf.

End of the proof of Theorem5.6 Let A be a(n,m)-admissible partition. Since C A, Lemmabs.7
implies that the partitiop. = ((A — p)) is (n, m — 1)-admissible. And by induction§,, appears with a
non-zero coefficient irS;"—l. The positivity of the Littlewood Richardson coefficients implies that each
partition such that;, , # 0 appears with a non-zero coefficient in the expansiofi;f In particular,
from Lemmé&5.§, it is the case of\. This shows that}"™ # 0 if and only if X is (n, m)-admissible and
proves the Theorem.
Note that other expansion of Macdonald functions can be found in literature (for example Hall-Littlewood
polynomials can be expanded in terms of plane partitid@} [it should be interesting to investigate the
propertiesD, (X; ¢) which can be deduced from these expansions.
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