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Abstract: We present an algorithm to decide whether a (max,+)-rational series over
one letter is sequential. We discuss the relation between sequentiality and unambiguity

of rational series.
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1. INTRODUCTION

Determinization of automata with multiplicity is
a well-known problem solved for many semir-
ings. The classical theory of automata corresponds
to the Boolean semiring and we know that ev-
ery automaton can be determinized. Transducers
correspond to automata with multiplicity in the
semiring of subsets of a free monoid; if the re-

lation is functional, we can decide sequentiality
(Choffrut, 1977).

The problem in the case of (max, +) or (min, +)-
semirings is open, except if the input alphabet is
a singleton :

Theroem. Let K be a (max, + )-semiring. Deter-
minizability of a unary K-automaton is decidable.

We present in a first part two properties of se-
quential series with values in a (max, +)-semiring.
As in the case of functions with values in a free
monoid (Raney, 1958), we show that a function
is sequential if, and only if, the number of its
translated series is finite.

The second property is uniform divergence, which
is often called bounded variations. This is a clas-
sical characterization of sequential functions with
values in a monoid of words. This can not be ex-
tended to (max, +)-automata. In fact, contrary to
transducers, there are (max,+)-automata which
realize functions which can not be realized unam-

biguously. This is what makes the problem harder
than for transducers.

In the second part, we prove that the sequentiality
of a function from a* in a (max, +)-semiring can
be decided on the automaton which realizes it.

The third part is devoted to algorithms which use
results of the second part for the decidability of
sequentiality and the determinization.

2. NOTATIONS AND DEFINITIONS

Let G be an additive subgroup of R and K = G,
GNRy or GNR_. In the last two cases, we say
that K is respectively positive or negative.

Let K, be the commutative and idempotent
semiring (KU {-co}, max, +).

We use the additive notations for the sum (which
is actually the multiplication law of the semiring).

Any function or series ¢ : X — K, the support
of ¢, denoted by Supp(y) is the set of elements
z € X such that z¢ # -o00.

Definition 1. A K-automaton A is a sextuple
(Q, A, Ky, E, I, T), where £ : Q X A x Q — Kn,
I:Q =Ky andT:Q — K, are functions.

For any e = (p,a,q) € Q x A X Q, e is a tran-
sition if e € Supp(F). The elements of Supp(I)



and Supp(T) are respectively called initial and
terminal states.

The value of a path is the product of values of its
transitions which is, with sum notations,

Ep= Y E.,.

1€[1;k]

A computation is a path C which begins in an
ini‘gal state ¢ and ends in a final state t. Its value
iskc=I+FEc+T;.

For any subset X of @), any u € A*, X - u is
the set of states of @) that can be reached from
a state of X by a path labeled by u; X xu is the

maximum value of all these paths and X +u the
maximum value of corresponding computations.
The maximum of an empty set is -0o.

Definition 2. A series a in Ky ((A*)) is rational if
there exists a K-automaton A such that, for every

u € A*, (a,u) = @ We say that A realizes
the series a. A series is sequential if there exists a
deterministic K-automaton that realizes it.

3. TWO PROPERTIES OF SEQUENTIAL
SERIES

3.1 Translated Series of a Series

The series & is defined such that (&,u) is the
“biggest common part” of elements of (o, A*).
This definition is inspired by the case of functions
into a free monoid (Raney, 1958).

Definition 3. We define the series & in Ky (A*))
according to the sign of K. For every u in A*,
let D = v~ 'Supp(a).

o If K> 0, (@, u) = min{(uv,a) | v € D}.
o If K <0, (@, u) = max{{uv,a) | v € D}.

e Else, (&, u) = (o, uv), where v is the smallest
element of D according to the radix order® .

For every u € A*, The left translated series of «
by w is defined by :

Yo, {a/u,v) = {a,uv) — (ooz,u) (1)

Remark. Supp(a/u) = u~!Supp(a).

These translated series give, as for transducers, a
criterium of sequentiability:

Theorem 4. A series a in Ky ((A*)) is sequential
if, and only if, the set of its translated series,
{a/u| u € A*} is finite.

b a <y iff (Jz| < y]) or (Jz] = |y| and & <jex ¥)

T he proof of the theorem makes use of the
following lemma;

Lemma 5. Let u,u’ € A*. If u='Supp(a) =
u''Supp(a) and, for all v € u 'Supp(a),
Oy, (V) = {a,uv) — (a,u’'v) does not depend on
v, then &, = (&, u) — (&,u') and a/u = a/u’.

e If the set of translated series is finite, let () =
{afu | u € A*} and A, = (Q, A, K E,I,T) be
the following automaton :

Ia/lA* :<8‘7 ]-A*): Supp(-[) = {Ot/].A*},
Ta/u :(a/u, 1A*)=

E(a/ua,0/(ua)) =(,ua) — (o, u)
(&, ua) — (@, u) € K by definition of &. We can
check that this automaton is deterministic and
that it realizes a.
e If « is sequential, there exists a deterministic
automaton A = (Q, A, K, E, I, T) realizing a.
Let 4 be its initial state. For all u,v € A*,

(,uv)y =L +ixu+ (1 -u) v+ T (2)
Then, for all u,v' in A*, if -4 = 4 -4, from
Lemma 5, a/u = a/u'. There is a surjection from

states of A into the set of translated series of «
which is, therefore, finite. 0O

Remark. As for transducers, this proof shows that
if there exists a deterministic automaton, there
exists a minimal and canonical one.

3.2 Topological Property and Sequentiality

For (u,v) € A*, we define u A v as the longuest
prefix common to u and v. dj, is the prefix distance
defined by dp(u,v) = |u| + |v| — 2|u A v).

Definition 6. A series a in Ky, {A*) is uniformly
diverging? if

Vk € N,IN, Yu,v € Supp(a),

dy(u,) < =] (@ 0) — (o, 0)] < N.

3)

Proposition 7. If a is a sequential series, it is
uniformly diverging.

A ctually {a/u | u € A*} is finite. For all k, we
define

N;, = ma max a/u,v)|}.
b= I sy it (@O

Then, for all u,v € A* such that d,(u,v) < k, it
is easy to see that

(e, u) — (@, v)| < 2N (4)

2 We follow (Béal, Carton, Prieur and Sakarovitch, 2000),
while the usual terminology is “series with bounded
variation” (Choffrut, 1977; Mohri, 1997).



a/l,b/Og a/O,b/lg

Fig. 1. An ambiguous rational series

Then « is uniformly diverging. O

Contrary to the case of transducers (Choffrut,
1977), the property 3 is not characteristic.

Proposition 8. A rational and uniformly diverging
series can be a non-sequential series.

Example 9. Let o be the series realized by the
automaton of figure 9. For all u € A*,

_ [ ula if fula > fuly
(o u) = { |u|p otherwise.

On the one hand, this series is 1-Lipschitzian, thus
uniformly diverging, On the other hand, for all n,

(&,a™) = (a,a™) = n,and, for all m,

(@farom) = {

The set of translated series of « is infinite and «
is not sequential.

0 ifm<n
m —n otherwise.

This fact emphasizes the difference between the
theory of sequentiality of rational functions in a
monoid and the sequentiality of rational series in
a semiring.

4. DECIDABILITY OF SEQUENTIALITY
FOR A UNARY ALPHABET

Let A= (Q,{a},K E,I,T) be a trim automaton
realizing a rational series a.. Let n be the number
of states of A and M = max{|E,|,e € Supp(E)}.

Definition 10. For any simple cycle C of length [,
we define the weight of C by ¢ = E¢/I.

Notations. Let g, be the maximum weight of
simple cycles of A and let R be the set of states
that belong to these cycles. Let Lr(A) be the set
of words that label a path going through at least
one state of R. Lz(A) is the intersection of the
complement of Lg(A) with the support of a. Let

8 = min{om — 0lo # om}-

Example 11. Let A; be the automaton of figure 2.
n = 5 and M = 3. Simple cycles are [g, ¢] and
[s,t,s], with respective weight 1 and 3/2. Thus
R ={s,t}, om =3/2 and 6§ = 1/2.

The support of «; realized by A4; is aZa*,
Lr(Ar) = a®(a®)*, hence Lz(A1) = a®(a®)*.

Fig. 2. The N-automaton that realizes A;.

From these sets we can decide the sequentiality of
the realized series; that is our main theorem :

Theorem 12. A rational series a realized by an
automaton A is sequential if, and only if, Lz(A)
is finite.

The both sides of this theorem will be proved in
this section (Propositions 14 and 17).

Proposition 13. Let a be a rational series realized
by an automaton A.

i) For all k, (a,a*) < omk + M(n +2).

ii) There exists (r, s) such that, for all k,

(o, a™ %) > 0, (rk + 8) — M (4n + 2).

i) is easily proved by induction on k. To prove
ii), we chose a cycle of maximum weight and show
then the inequality. O

These inequalities allow to prove the following
proposition:

Proposition 1j. Let a be a rational series realized
by an automaton A. If a is sequential, then L3(A)
is finite.

If « is sequential, it is uniformly diverging,
therefore there exists 5 such that

i—jl<r=[a,d) = (a,d)[<n. (5)
If L7(A) is infinite, there exists [ arbitrary large
such that a' € Lz(A). Let k be such that [ €
[r(k — 1) + s,rk + s]. A maximum path realizing
al goes through cycles with weight smaller than
om — 6, hence {a,a!) < M(n+2) + (om — 6)I. It
then holds:

TRty _(a,al)) > 16— M(5n+4).  (6)

For I > (M(5n + 4) + n)/6, this inequality in
contradiction with sequentiality. O

(a,a

To prove the converse proposition, the key lemma
is the following.

Lemma 15. For all f accepted by A for which
there exists a computation going through R, there



exists a computation labeled by f with less than
n? transitions out of cycles of maximum weight.

T he proof makes use of the following application
of the pigeon hole principle:

Lemma 16. For all n € N, for all £ > n, for any
set (x;)ieq1;5) Of elements of Z /nZ, there exists a
non-empty set J C [1; k] such that >, ; z; = 0.

By contradiction, let f be the shortest word such
that for any computation there is more than n?
transitions out of cycles of maximum weight and
such that there is a computation going through a
state p € R. By minimality, this computation has
no cycle of maximum weight. Let [ be the length
of a cycle of maximum weight around p.

|f| > n?%, thus this computation goes through
at least n simple cycles; | < n, by the previous
lemma, we can choose k of these cycles such that
their total length is multiple of I. We can replace
them by cycles of maximum weight, which is in
contradiction with minimality of f. O

If Lr(A) is finite, for word in Supp(«) that is long
enough, there is a computation with a bounded
number of transitions out of cycle of maximum
weight. We shall show that, for a “long” word,
this kind of computation has a maximum value.

Proposition 17. Let a be a rational series realized
by an automaton A. If L3(.A) is finite, then « is
sequential.

L et No = maxsec_(|f]). Let B be the lem of
lengths of simple cycles of maximum weight. Let
N = max(Ny,n? + 2M (n? + 2)/6)).

By lemma 15, for all £ > N,

(o, a*) > o (k —n?) — M(n® +2). (7)

Let r be the smallest integer greater than IV such
that there exists a® € Supp(a) and a compu-
tation with a maximum value with r transitions
out of cycles of maximum weight. Nevertheless,
this computation has cycles, thus the value of «
is smaller than g,,(k — n?) — M(n? + 2), which
is in contradiction with inequality 7. Thus, for all
words longer than N, for all computations with
maximum value, there is less than NV transitions
out of cycles of maximum weight.

We will show now that, for any k& > N + Bn,
(@,a"*P) = (a,a*) + Bom.

If a* belongs to Supp(a), there exists a compu-
tation realizing (o, a”). It goes through a state
p € R. Turning around p by a cycle of maximum
weight, we can obtain a computation labeled by
a**B and with value equal to (a,a*) + Bo,, <
(a,aF*B).

Conversely, if a**? € Supp(a), a computation
realizing (o, a**+2) has cycles of maximum weight
of lengths l1,...,lk, (k < n), let A\; the num-
ber of cycle of length I;. As the length out of
cycles of maximum weight is smaller than N,
Zi Ail; > Bn; therefore, there exists 4 such that
Ail; > Bj; l; divide B, thus there exists A < A;
such that \jl; = B. Going X times less through
cycles of length I;, a* is accepted and the value of
computation is {a,a**?) — Bo,, < {(a,a*).

Hence the equality. For all r > 0, (a,a**Ba") =
(a,a*a")y + Bop, then a/a* = a/a*+B. O

Actually, for rational series over a unary alphabet,
the uniform divergence is characteristic of sequen-
tial series.

Proposition 18. Let a in Ky {a*)) be a rational
series. « is sequential if, and only if, « is uniformly
diverging.

L et a be a rational and uniformly diverging
series realized by an automaton A. Let n, M, L,
om and 0 be defined as below. For all u € L4,
ua < M(n+2)+ (om — 6)|u|. By proposition 14,
there exists k such that for all u € L5, Jv € A*
such that dp(u,v) < k and va = o |v]| — M (4n +
2). « is uniformly diverging, thus there exists n
(depending only of k) such that :

n > |va — uq|

> omk — M(5n +4) + lu| ®)

Hence, the length of u is bounded. Therefore L4
is finite and « is sequential. O

5. UNAMBIGUITY OF RATIONAL SERIES
OVER ONE LETTER

We first use a result which is a particular case of
a theorem in (Gaubert, 1994).

Proposition 19. Let o be a rational series of
K {@*). There exist sequential series ay, ..., ax
such that, for every n € N, (@, a™) = max{(a;,a™) |
i <k}

Proposition 20. Any rational series a : a* — K is
unambiguous.

L et ai,...,a be sequential series such that, for
every n € N, (a,a™) = max{{w;,a™) | i < k}. Let
01,--- ,0r be the respective weights of the cycles
these series, and pi,...,pr be there respective
periods. If g; = p;, the series max(a;,q;) is
sequential by the characterization of the previous
section. Hence, we can suppose g1 < ... < Q-
Therefore, if ¢ is smaller than j, there exists



Fig. 3. An unambiguous automaton realizing a;

N;; such that for every n > Njj, (a;,a™t?i) =
<ai7an) + Di0i, (aj7an+pj> = (aj,a") + Pjo; a‘nda
if a” € Supp(a;) NSupp(a;), (i, a") < (a;,a™).
Let N = max;<;{N;;} and p = lcm{p;}. Every «;
can be realized by a deterministic K-automaton
with N + p states and a cycle of length p. A
state of the ith automaton is terminal if and
only if the image by «; of words ending at this
place is the image by a. The automaton is then
unambiguous. O

Ezxample 21. Let ay be the series of example 11.
The automaton of figure 8 is an unambiguous
automaton that realizes a;.

We can see that, contrary to the case of functional
transducers, the equivalent unambiguous automa-
ton does not depend only on the structure of the
K-automaton but also on its coefficients.

6. EFFECTIVE ALGORITHMS
6.1 Decidability of Sequentiality

From propositions of the previous part, the se-
quentiality depends on the finitude of L3(A).
Thus, once the set r is identified, we only deal
with classical automata. We compute a (boolean)
automaton that realize Lg(A), then L3z(A).

Let A= (Q, A, E, I, T) be the underlying automa-
ton of A. We build A" = (Q x {0;1}, A, F,J,U),
with

{»0)|peliu{(p,1)|pe RNI},
{(p,1)[peT},

{((p.1),0,(¢,9)) | i € {0;1}, (p,a,q) € E}
{((p,0),a,(¢,1)) | ¢ € R, (p,a,q) € E}

J
U
F

C

Then, the complementary of £Lz(A) is computed,
and the intersection with the support of a. «a is

Fig. 5. The automaton that realizes L5(A1).

sequential if and only if this automaton, trim, is
acyclic.

Remark. This construction depends only on the
structure of the underlying automaton.

Ezample 22. Let A; be the automaton of example
11. Figures 4 and 5 show the two steps of the
decision algorithm (every edge is labeled by a).
L5(A1) is infinite (the trim automaton is not
acyclic), hence a; is not sequential.

6.2 Determinization

Let A = (Q,A,E,I,T) be a trim automaton
realizing the series a which has been tested as
sequential. We shall build a deterministic automa-
ton realizing a.

We consider now I and T as vectors of K!*% and
K®*! respectively. u is a matrix of size Q x Q
defined by MHp,q = E(p,a,q)- 3

The series 1 in K% {(a*)) is defined by (n,u) =
I.u4™. We suppose @ ordered. For all u in A*, let
D = Supp((n,u)), and

e IfK > 07 <7?’7u) = min{(ﬂ:“)p | p € D}
o f K <0, (i),u) = max{(n,u), | p € D}.
e Else, (%,u) = (n, u)p, p = min(Q N D).

3 (I,u,T) is the linear representation that corresponds to
A: {a,a™) = L.u™.T.



The translated series is then n/u = n — M, u).
Unfortunately, the set of these translated series
can be infinite. We shall modify the series n/u to
avoid this. We compute R, the set of states that
belong to cycles of maximum weight. ) is divided
into two parts :

e Elements of R or descendants from these,
e Other elements which form a set G.

Let N be the value computed in the decidability
algorithm. If p € G, for all £ > N, no computation
realizing (a,a*) goes through p after the N-th
letter. Else, it would be in contradiction with
the proof of the proposition 18. The series 7 is
modified in order to take care of these useles
states. For all kK > N, if p € G, we set (n,at), =
-00.

We can show that the set {n/u | v € A*} is then
finite.

We define Age; = (S, A, K, F, J,U) with

S={n/ulueAl},
F: (n/u,a,n/(ua)) = (n/u,a) — (n/ua,1a-),
Jin/lae = (0,14:), U:njuws (n/u).T.

It is easy to prove that this deterministic automa-
ton realizes a.

7. NON-UNARY ALPHABETS

The decision of the sequentiality of rational se-
ries over a non-unary alphabet seems to be much
harder. Gaubert has proved that it gives the de-
cision for the limitedness problem (personal com-
munication based on results in (Gaubert, 1996)).
On another hand, the decision of the ambiguity
gives the decision of the sequentiality; this is a
generalization due to (Mohri, 1997) of the method
for transducers.
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