On the star height of rational languages

A new presentation for two old results*
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Abstract

The star height of a rational language, introduced by Eggan in 1963, has proved
to be the most puzzling invariant defined for rational languages. Here, we give a new
proof of Eggan’s theorem on the relationship between the cycle rank of an automaton
and the star height of an expression that describes the language accepted by the
automaton. We then present a new method for McNaughton’s result on the star
height of pure-group language; it is based on the definition of a (finite) automaton
which can be canonically associated to every (rational) language and which we call
universal. In contrast with the minimal automaton, the universal automaton of a
pure-group language has the property that it contains a subautomaton of minimal
cycle rank that recognizes the language.

Résumé

La hauteur d’étoile d’un langage rationnel, invariant défin1 par Eggan en 1963, s’est
révélé étre un des aspects les plus difficiles de 1’étude de cette famille de langages. Dans
cet article, nous donnons une nouvelle preuve du théoréme d’Eggan sur le lien entre
le rang cyclique d’un automate et la hauteur d’étoile d’une expression qui dénote le
langage accepté par 'automate. Nous présentons ensuite une nouvelle méthode pour
établir le résultat de McNaughton sur la calculabilité de la hauteur d’étoile des langages
a groupes. Elle est fondée sur la considération de ce que nous appelons |’automate
universel d’un langage, automate canoniquement associé a tout langage, fini quand
le langage est rationnel. Contrairement a I’automate minimal, I’automate universel
d’un langage a groupe a la propriété qu’il contient un sous-automate de rang cyclique
minimum qui reconnait le langage.
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The star height of a rational language is the infimum of the star height of the rational
expressions that denote the language. The star height has been defined in 1963 by Eggan
(in [8]) who basically proved one thing and asked two questions.

Eggan showed that the star height of a rational expression is related to another quantity
that is defined on a finite automaton which produces the expression, a quantity which he
called rank and which we call here loop complexity. He proved that there are rational
languages of arbitrary large star height, provided that an arbitrary large number of letters
are available. And he stated the following two problems.

o Is the star height of a rational language computable?

e Does there exist, on a fixed finite alphabet, rational languages of arbitrary large star

height?

For a long time, the first one was considered as one of the most difficult problem in
the theory of automata and eventually solved (positively) by Hashiguchi in 1988 ([9]).

The second problem, much easier, was solved in 1966 by Dejean and Schiitzenberger,
positively as well ([7]). Soon afterwards, in 1967, McNaughton published a paper, entitled
“The loop complexity of pure-group languages” ([10]) where he gave a conceptual proof of
what Dejean and Schiitzenberger had established by means of combinatorial virtuosity (one
of the “jewels” in formal language theory [12]). He proved that the loop complexity, and
thus the star height, of a language whose syntactic monoid is a finite group is computable
and that this family contains languages of arbitrary large loop complexity (the languages
considered by Dejean and Schiitzenberger belong to that family).

The purpose of this communication is to give a new, and hopefully enlightening, pre-
sentation of Eggan’s and McNaughton’s results. We first give a new proof of Eggan’s the-
orem, by describing an explicit correspondence between the computation that yields the
loop complexity of an automaton and the computation of an expression that denotes the
language accepted by the automaton. We then present a new method for McNaughton’s
result on the star height of pure-group language; it is based on the definition of a (finite)
automaton which can be canonically associated to every (rational) language and which
we call universal. In contrast with the minimal automaton, the universal automaton of a
pure-group language has the property that it contains a subautomaton of minimal cycle

rank that recognizes the language.

We mostly use the classical terminology, notation and results for automata and lan-
guages. We give explicit notes when we depart from the standard ones.



1 Eggan’s Theorem

1.1 Star height and loop complexity

Rational expressions (over A*) are the well formed formulae built from the atomic formulae
that are 0, 1 and the elements of A and using the binary operators + and - and the unary

operator *.

The operator * is the one that “gives access to infinity”. Hence the idea of measuring
the complexity of an expression as the largest number of nested calls to that operator in
the expression. This number is called the star height of the expression, denoted by h[E]
and defined recursively by:

ifE=0,E=1orE=ac€ A, h[E] =0 , (1)
ifE=E +E'or E=FE-E", h[E] = max(h[E'], h[E"]) , (2)
if E = F~, h[E] =1+ h[F] . (3)

Examples 1 : i) h[(a+b)*]=1;hla*(ba*)*]=2.
ii) hla* 4+ a*b(ba*b)*ba* 4 a*b(ba*b)*a(b + a(ba*b)*a)*a(ba*b)*ba*] = 3,
h[(a + b(ba*b)*b)*] = 3 ; h[a*b(ab*a + ba*b)*ba*] = 2 . O

These examples show that two equivalent expressions may have different star heights.

The following definition is then natural.

Definition 1 The star height of a rational language L of A*, denoted by h[L], is the
minimum of the star height of the expressions that denote' the language L:

h[L] = min{h[E] | E € RatEA* |E| =L} .

The star height of an expression reflects also a structural property of an automaton
(more precisely, of the underlying graph of an automaton) which corresponds to that
expression. In order to state it, we define the notion of a ball?> of a graph: a ball in a

graph is a strongly connected component that contains at least one arc (cf. Figure 1).

'We write |E| for the language denoted by the expression E. Similarly, we write |A| for the language
accepted by the automaton A. RatEA™ is the set of rational expressions over the alphabet A.
2Like in a ball of wool.



Definition 2 The loop complexity® of a graph G is the integer lc(G) recursively de-
fined by:

le(G) =0 if G contains no ball (in particular, if G is empty);
Ic(G) = max{lc(P) | P ball of G} if G is not a ball itself;
lc(G) =14+ min{lc(G \ {s}) | s vertex of G} if G is a ball.

a a a a a a

Fi A I N .
b b b b b b
Figure 1: An automaton, its strongly connected components, and its balls.

As Eggan showed, star height and loop complexity are the two faces of the same object:

Theorem 1 [8]  The loop complexity of a trim automaton A is equal to the infimum of
the star height of the expressions (denoting |A|) that are obtained by the different possible
runs of the McNaughton-Yamada algorithm on A.

There is an infimum “hidden” in the definition of the loop complexity and the theorem
states that it is equal to another infimum. We shall relate more closely the two quantities,
star height and loop complexity, by defining them relative to an order of the states of
the automaton and showing that they are equal in that setting. The equality of the two

minima will follow then obviously.

1.2 The Brzozowski and McCluskey’s algorithm

McNaughton-Yamada’s algorithm is probably the best known algorithm for computing a
rational expression that denotes the language accepted by an automaton. For our pur-
pose however, it is convenient to use a variant of it, due to Brzozowski and McCluskey
([2]), which is completely equivalent®. This algorithm has been described in [13]. It uses

generalized automata and processes by deleting state after state.

Let us call generalized an automaton A = (Q, A, F,I,T) in which the labels of
the transitions are not lefters anymore but expressions, that is the elements of K are
triples (p,e,q) with p and ¢ in @ and e € RatEA*. The label of a computation is, as

*Fggan [8] calls it “cycle rank”. McNaughton [10] calls loop complexity of a language the minimum
cycle rank of an automaton that accepts the language. We have taken this terminology and made it parallel

to star height, for “rank” is a word of already many differnt meanings.
*This statement can be made precise and meaningful: an expression obtained by one algorithm can be

transformed into an expression computed by the other by using the axiom E* =1+ EE* (¢f. [11]).



usual, the product of the labels of the transitions that constitute this computation and the

language accepted by A is the union of the labels of the successful computations of A.

Starting from a (generalized) automaton A, the Brzozowski and McCluskey’s algorithm
— or BMC algorithm — consists in building a generalized automaton C which can be called
trivial: an initial state ¢, a final state ¢ (distinct from ¢) and a single transition from 7 to ¢
and labelled by a rational expression E which denotes the language accepted by A (cf.
Figure 2).

The first phase consists in building a kind of “normalized” automaton B by adding
to A= (Q, A, F,I1,T) two distinct states i and ¢, and a transition labelled by 14+ from i
to every initial state of A, and a transition labelled by 14« from every final state of A
to t. The state 7 is the unique initial state of B, the state t its unique final state: B is
equivalent to A. As A, and then B, are finite, one can assume — after some finite unions
on the labels of the transitions — that there is at most one transition from p to ¢ for every
pair (p, q) of states of B.

—0—f .o

Figure 2: The result of the BMC algorithm .

The second phase has as many steps as there are states in A. It consists in successively
removing states from B (but 7 and ¢) and to update the transitions in such a way that at
every step an equivalent automaton is computed whose labels are obtained from those of
the preceding one by union, product and star.

More precisely, let ¢ be an element of @Q); let py1, p2, ..., p; be the states of B which
are the origin of a transition whose end is ¢, and Ky, Ks, ..., K; the labels of these
transitions; let rq, r9, ..., rp be the states of B which are the end of a transition whose
origin is ¢, and Hy, Hy, ..., Hj the labels of these transitions — some of the r; may
coincide with some of the p,. Let L be the label of the transition whose origin and end

is q, if it exists; otherwise, L = 1 4x.

Let B’ be the automaton obtained from B by removing ¢ and all the transitions adjacent
to ¢, and by adding, for every pair of states (py,r;), 1 < h < land 1 < j < k, the
transition (pn, Ky L* Hj,r;) (cf. Figure 3).

The automata B and B’ are equivalent. By iterating this construction n times, (n =
lQ|)?, an automaton C is obtained that contains no states of the automaton A and which
is of the prescribed form.

®The cardinal of a set Q is denoted by ||Q||



K;L*H, K, L* Hy,

K;L* Hy
(a) Before the deletion of ¢ (b) After the deletion of g
Figure 3: A step of the BMC algorithm .

1.3 The Eggan—Brzozowski index

In order to prove Theorem 1, we define the £ B index of an automaton A, which is at the

same time a generalization and a refinement of the loop complexity.

If Ais a generalized automaton, we call £ B index of a transition e of A, denoted ig g (e),
the star height of the label of e:

inB(e) = h[le] .
IfA=(Q,A, E,1,T) is a “classical” automaton over A:

Ve € ing(e) =0 .

Then, we define the EB index of an automaton A, not absolutely but relative to a
total order w on the set ) of the states of A, that order which is implicit in the BMC
algorithm.

We use the following notation and convention. If w is an order on ), we denote by @
the largest element of () for w. If S is a subautomaton of A, we still denote w the trace of
the order w on the set R of the states of § and, in such a context, @ is the largest element

of R for w.

We call then E B index of A relative to w, and we note igg(A,w), the integer defined
by the following algorithm (called E B algorithm):

o If A is not a ball:

inB(A,w) = max({igg(e) | e does not belong to a ball of A}
U{ig(P,w) | P is ball of A}) (4)



o If Aisa ball:
iB(A,w) =1+ max({irg(e) | € is adjacent to @}, ipp(A \ @,w)) (5)

If Ais a “classical” automaton, (4) and (5) become respectively:
o If A is not a ball:
inB(A,w) = max({igp(P,w) | P is ball of A}) (6)
o If A is a ball:
iEB(A,w) =1+igp(A\ T, w) (7)

to which the base of the recurrence has to be added:

e If A does not contain any ball, or is empty:

iEB(A,w) =0 . (8)
From which it is directly derived:
Property 1 Ic(A) = min{igs(A,w) | w order on Q }. |

We denote by Egc(A,w) the rational expression obtained by running the BMC al-
gorithm on A with the order w, that is by deleting the states of A the smallest first. It
should be noted that it follows from these definitions that, once the order w is fixed, the
order of deletion of states in the B MC algorithm is the reverse order of the “deletion” of
states in the computation of the EB index. Theorem 1 is then the consequence of the
following.

Proposition 1 Let w be a total order on the set of states of an automaton A. The
E B index of A relative to w is equal to the star height of the rational expression obtained
by running the B MC algorithm on A with the order w, i.e.

inB(A,w) =h[Egc(A,w)] .

Proof. By induction on the number of states of A. By convention, the states ¢ and ¢
that have been added are larger than all the states of A in the order w and are not deleted
in the BMC algorithm .

The base of the induction is thus a generalized automaton with 3 states, like in the
Figure 4 a) or b).

In case a), B contains no ball and it holds:

in(B,w) = max(h[E], h[F],h[H]) = h[E + F - H] = h[Eg o (B,w)] .

- 7 -



In case b), the unique state of B which is neither initial nor final is a ball whose E B index

is 14+ h[G], and it holds:

inB(B,w) = max(h[E], h[F], h[H], (1 + h[G])) = h[E+ F - G* - H] = h[Eg ¢ (B,w)] -

|
F Fog
| p =
H H
(b)
Figure 4: Base of the induction

Let now B be an automaton of the prescribed form and with n 4+ 2 states, ¢ the
smallest state in the order w, and B’ the automaton after the first step of the BMC
algorithm applied to B — that is, after deletion of q. Since the adjacency relations (for
the other states than ¢) are the same in B and in B’, and as ¢ is the smallest element in
the order w, the EB algorithm runs in the same way in B and in B’, i.e. the succession of
balls build in both cases is identical, up to the processing of ¢ in B excluded. It remains
to show that the computed values are identical as well.

Let P be the smallest ball of B that strictly contains ¢ — and if such a ball does not
exist, let P = B — and let P’ be “the image” of P in B’. Two cases are possible. If ¢ is not
the origin (and the end) of a loop — case a) —, the transitions of P’ are either identical
to those of P or labelled by products F - H, where F and H are labels of transitions of P.
It then comes:

iR (P’,w) = max(max{irg(e) | e does not belong to a ball of P'},
max{igp(Q,w) | Q is a ball of P'})
= max(max{igg(e) | e does not belong to a ball of P},
max{igp(Q,w) | Q is a ball of P})
=igB(P,w) . 9)

If ¢ is the origin (and the end) of a loop labelled by G — case b) —, i.e. ¢ is a
ball of B by itself, the transitions of P’ are either identical to those of P or labelled by



products F - G* - H. It then comes, since igg({¢},w) = 1+ h[G]:

ing(P’,w) = max(max{igg(e) | e does not belong to a ball of P'},
max{ipp(Q,w) | Q is a ball of P'})
= max(max{irg(e) | e does not belong to a ball of P},
(14 h[G]), max{irg(Q,w) | Q is a ball of P'})
= max(max{irg(e) | e does not belong to a ball of P},

ieB({¢},«),
max{igg(Q,w) | Q ball of P, different from {q}})

— iEB(P7w) : (9)’
If P =B (and P’' = B'), the equalities (9) and (9)’ become
iEp(B,w) =igs(B,w) (10)

which yields the induction and then the proposition. Otherwise, and without any induction
on the number of nested balls that contain ¢, (10) is obtained from (9) by noting that the
transitions of B’ are either identical to those of B or correspond to transitions that are
adjacent to g¢.

In case a), the labels of these transitions are products of the labels of transitions
of B, their index is obtained by taking a maximum and (10) follows from the rela-
tion max(a, b, ¢) = max(a, max(b, c)).

In case b), the labels of these transitions are, as above, of the form F - G* - H, of
index max(h[F], h[H], 1 + h[G]). The corresponding transition in B has label F (or H); it
is processed by the EB algorithm when the index of the transition of label H (or F) and
the one of the ball {q}, whose index is 1 4 h[G], are already computed. The result, that

is (10), follows then, for the same reason as above. |

1.4 No rush to conclusion

After Theorem 1 that shows that the correspondance between automata and expressions
can be carried on to a correspondance between loop complexity and star height, one could
have thought that to the minimal automaton would correspond an expression of minimal
star height. There is no such thing of course (or the star height of a language would not
be mysterious anymore). The following example describes one of the simplest language
whose minimal automaton is not of minimal loop complexity.

Example 2 : Let I and F3 be the languages of A* = {a, b}" consisting of words whose
number of a’s is congruent to the number of b’s plus 1 modulo 2 and 3 respectively and



let Fg be their union:

B={f]fla—1flh=1 mod 2}, Fs={f[|fla—|fls=1 mod 3}
and Fs={f||fla=|flk=1,3,40r 5 mod 6} .

The minimal automaton of Fg is the “double ring” of length 6, whose loop complexity is 3.
The minimal automata of F; and F3 have loop complexity 1 and 2, hence the star height
of Fy is at most 2 (cf. Figure 5). o

Figure 5: An automaton of minimal loop complexity (right) which is not the minimal
automaton (left) for Fg.

2 Conway’s universal automaton

The new interpretation of McNaughton’s theorem we are aiming at makes use of a con-

struction which is basically due to Conway.

Let A= (Q,M,F,I,T) be an automaton over a monoid M. For any state ¢ of A let
us call “past of ¢ (in A) 7 the set of labels of computations that go from an initial state

of A to ¢, let us denote it by Past4(q); i.e.

Pasty(q) ={me M |Jiel z%q}

In a dual way, we call “future of ¢ (in A)” the set of labels of computations that go from ¢
to a final state of A, and we denote it by Futa(q); i.e.

Futs(q) ={meM|3teT q%t}

For every ¢ in @) it then obviously holds:

[Pasta(q)] [Futa(q)] € | A . (+)

Moreover, if one denotes by Trans4(p, q) the set of labels of computations that go from p
to ¢, it then holds:

[Past(p)] [Transa(p, )] [Futa(q)] € |A] - ()

- 10 -



It can also be observed that a state p of A is initial (resp. final) if and only if 14+ belongs
to Past4(p) (resp. to Fut4(p)).

Hence every automaton, and in every automaton, every state induces a set of factor-
izations — this will be how equations such as (*) or (%) will be called — of the subset
accepted by the automaton. It is an idea essentially due to J. Conway [5, chap. 6], and
that proved to be extremely fruitful, to take the converse point of view, that is to build

an automaton from the factorizations of a subset (in any monoid).
More specifically, let K be any subset of a monoid M and let us call factorization of K
a pair (L, R) of subsets of M such that
LRCK

and (L, R) is mazimal for that property in M x M. We denote by Qg the set of factor-
izations of K. For every p,q in Qk the factor F, , of K is the maximal subset of M such
that
L,F,,R;, CK .

It is easy to verify that if a: M — N is a surjective morphism that recognizes K, i.e.
Kao™ = K, and if (L, R) is a factorization and F a factor of K then:

i) L=Laa™! | R=Raa™! and F = Faa™! ;

ii) (La, Ra) is factorization and Fa is factor of Ko ;

or, in other words, factorizations and factors are syntactic objects with respect to K. As

a consequence, (Jx is finite if and only if K is recognizable.

In [5], J. Conway defines the F), ,, organized as a Qg X@Q x-matrix, as the factor matriz
of the language K, subset of A*. A further step consists in building an automaton, which
we call the universal automaton of K, denoted by Uk, and based on the factorizations
and the factors of K:

Uk = (Qr, A, Ex, I, T )

where Ix ={peQr|lax€e Ly}, Tk={¢e QK |1la € Ry}
and Er = {(p,a,q) EQKXAXQK |a € Fp,q} )
and, obviously, [Ux| = K . What makes Ux universal is expressed in the following result.

Theorem 2 IfA=(Q,A,E 1, T) is an automaton that accepts K, then there exists
an automaton morphism from A into Ur: ¢: A — Ug, and Ux is minimal for this
property. Moreover, if A is minimal” then ¢ is injective.

6Maximal in the order induced by the inclusion in M.
"With respect to K: no state of A can be deleted without making |.4| smaller, no two states of A can
be merged without making |.4| larger.
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In particular, Uk contains as a subautomaton every minimal automaton (deterministic,

or non deterministic) that accepts K.

Example 3 : Let K; = A*ab A* be the language of words that contain at least one

factor a b. Easy computations show that Ky has 3 factorizations:
u= (A", A%abA"), v=(A%a A", Ab A™), and w=(A%abA" AY),

which yield the universal automaton represented at Figure 6. a

at+b

Figure 6: The universal automaton of K; = A*a b A*

Example 4 : Let F3 be the language of A* = {a,b}"
consisting of words whose number of a’s is not congruent
to the number of b’s modulo 3:

Es={f[|fla # [fls mod 3} .

The 3 factorizations of Fs are best seen on its syntac-
ti id Z/37Z ted ite. Th i |
ic monoid Z/ ‘as represente 0pp0§1 e e unlversz:L The factorizations of Fs.
automaton of F5 is then represented, in two ways, at Fi-

gure 7. |
The construction of the universal automaton by means of factorization has been more

or less given in [6] and [1] (where it is refered also to [3]) without reference to the work of

Conway. Theorem 2 was stated in [4].

3 McNaughton’s Theorem

With the previous definitions, McNaughton’s Theorem on pure-group language becomes:

Theorem 3 The universal automaton of a pure-group language K contains as a sub-

automaton an automaton of minimal loop complexity that recognizes K.
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)2

b)

Figure 7: The universal automaton of Fs. On subfigure (a), the transitions labelled
by a are represented by solid arrows, the transitions labelled by b by dashed ones. The
subfigure (b) is a simplification of the previous one, in preparation of Figure 8 that would
be unreadable without these conventions. The arrows labelled by b are removed for they
are opposite to the ones labelled by a inside the two levels. The solid and dashed arrows
between the two levels are replaced by dotted arrows that can be considered as labelled
by 14+ and that play the role of two previous ones: for instance, the dotted arrow between 0
and {2,0} represents the solid arrow between 0 and {0,1} and the dashed one beween 0
and {1, 2} in subfigure (a).

As the universal automaton of a rational language is finite, it is possible to enumerate
its subautomata, to keep only those which recognize the language, and to distinguish
among them those of minimal loop complexity. Hence:

Corollary 2 [10] The star height of a rational pure-group language is computable. m

On the other hand, the same theorem yields directly what had been established by
Dejean and Schiitzenberger by means of subtle and sophisticated combinatorial arguments:

Corollary 3 [7]  Let W, be the language of {a,b}" consisting of words whose number
of a’s is congruent to the number of b’s modulo 2¢. Then the star height of W, is q.

Proof. The syntactic monoid of W, is the group Z/2Z and the image of W, in this
group is the identity. It is an immediate computation that the universal automaton of the
identity of a group is the group itself and that (the Cayley graph of) Z/2Z has a loop
complexity equal to q. [

The proof of Theorem 3 follows indeed the original proof by McNaughton. For any
automaton B that accepts a language K — and in particular for one of minimal loop
complexity — there exists a morphism from B into Ux . If an (automaton) morphism were
preserving loop complexity or, at least, were not increasing it, the theorem would follow
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immediately and not only for group languages but for any language. But it is not the

case, by far. With that idea in mind, one has to consider morphisms of a special kind.

Example 2 (continued):  The universal automaton of Fs = {f | |fl.—|fls =1,3,40r 5
mod 6} is represented at Figure 8. Two of its balls form the automaton shown above and
that accepts Fg with minimal loop complexity. a

Figure 8: The universal automaton of Fg.
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3.1 Conformal morphisms

Definition 3 A morphism ¢: B — A is said to be conformal® if any computation in A

is the image of (at least) one computation in B.

A morphism is not necessarily conformal, as shown by the example of Figure 9.

Figure 9: A non conformal morphism (the horizontal is the morphism).

The notion of conformal morphism allows to put into relation the loop complexity of

an automaton and the one of its image by a morphism.

Theorem 4 [10] If p: B — A is a conformal morphism, then the loop complezity of B
is greater than or equal to the one of A: Ic(B) > Ic(A). ]

We first state and prove a lemma.

Lemma 4 Let ¢: B — A be a conformal morphism. For every ball P of A, there
exists a ball Q of B such that the restriction of ¢ to Q is a conformal morphism from Q
onto P.

Proof. This lemma (as the theorem) is indeed a statement on graphs and not on au-
tomata, that is we can forget the labels on the transitions. But the proof will be simpler
if we make use of the notion of automata, that is of labelled graphs — not with the orig-
inal labels, but with labels that are convenient for the proof. Every transition of A is
considered as having a distinct label and every state of A is considered as both initial and

final.

The words of the language accepted by A (resp. by a subautomaton P of A) charac-
terize the pathes in the graph A (resp. in the graph P). The transitions of B are labelled
in such a way that ¢ is a morphism and every state of B is both initial and final.

Let P be a ball of A and R = Pe~!. Let n = ||R|| and m = ||P|| be the numbers of
states of R and of P respectively. Let w be a circuit (then a word) that contains all the
pathes of P of length smaller than 2"t™. The circuit w™ is a path in P which is lifted
into a path in R (as ¢ is conformal). By the pigeon hole principle, there exists a k such
that a factor w* is the label of a circuit in R; let Q be the ball in R, and then in B,

#McNaughton call them “pathwise” [10] but his definition of morphism is slightly different from ours.

,15,



which contains this circuit. By construction, Q accepts all the words of length smaller
than 2°T™ of the language accepted by P, Q is thus equivalent?® to P, then all the pathes
of P are lifted in Q: the restriction of ¢ from Q onto P is conformal. ]

Proof of Theorem 4. By contradiction. Among all automata for which the proposition
does not hold, let B be an automaton with minimal loop complexity d, and let ¢ be the
loop complexity of A: ¢ > d.

If d = 0, the length of the pathes in B is bounded and it is impossible for ¢ to be
conformal, then d > 0.

By definition, there exists a ball P in A of loop complexity ¢ and, by Lemma 4, a
ball @ of B whose image by ¢ is P. This ball is of loop complexity at most d but it is as
well, by minimality of d, of loop complexity at least d. There exists then a state g of Q
such that

O\ {g)) =d—1 .

Let p=qp, P' =P\ {p} and Q' = Q \ {pp~'}; it holds Ic(Q') < Ic(Q \ {q}) =d -1
and Ie(P) 2 c—1>d—-1.

Any path of P’ is a path of P which does not go through p; such a path is the image

of a path of Q which does not go through any of the states in pyp~!

, that is, the image
of a path of Q": ¢ is a conformal morphism from Q' onto P’, a contradiction with the

minimality of d. [

3.2 Proof of Theorem 3

In the sequel, K C A* is a pure-group language, a: A* — ( is the syntactic morphism,
P=Kaand Ax = (G, A,8,1g, P) is the minimal automaton of K. For w in A* and ¢
in G, we note ¢ - w for g (wa), the multiplication being taken in G.

Even in the case of a pure-group language K, the morphism ¢ from an automaton 5
(that accepts K') into the universal automaton Uy is not necessarily conformal. The proof
of the theorem boils down to show that nevertheless ¢ is conformal on those balls of B
that are crucial for the loop complexity. This goes via two properties of the balls of the
universal automaton Ug of a pure-group language K that we establish first.

Lemma 5 The balls of Ui are deterministic and complete.

O It follows from the definition of the universal automaton that if

(L1, Ry) L> (Lg, Ry)

K

® As two automata with n and m states respectively are equivalent if they coincide on all words of length

2n+m

smaller than . This is the argument which makes the use of automata instead of graphs powerful.
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is a transition of Ux, then L; (aa) R C P and then both Li-a C Ly and (aa) Ry C Ry
hold.

Let (L1, Ry1) and (Lg, R3) be two states of Ux in a same ball. There exist u and v in A*
such that Ly - u C Ly and Ly -v C Li. As (G is a group, the action of every element is
injective. Then |[|Lq|| < ||L2|| < [|L1]], hence ||L1]| = ||Le|| and Ly + w = L. Which means
that Ly is uniquely determined by L; and u: the ball is deterministic.

On the other hand, if (L, R) is a factorization of P, (L (u«), (ue) ™' R) is a factorization
of P as well, for every u in A* and there exists a transition labelled by u from the first
one onto the second one. For every u, there exists v such that (vuv)a = 1g, and then
a transition labelled by v from (L (ua), (ue)~'R) onto (L, R). Then, (L (ua), (ue)™'R)
belongs to the same ball as (L, R) and this ball is complete. O

Lemma 6 For every integer k, there exists a word wy in A*, whose image in G is 1g,
and such that any computation of lenght k in any ball C of Uy is a sub-computation of
any computation in C labelled by wy.

O Every word whose image in G is 1g, is the label of a circuit in every ball of Uk and
for every state as starting point. For every ball, and every state of this ball, one can build
a circuit that contains all computations of length k in that ball. Let z be the product of
the labels of all these circuits. One can choose for wi a power 2" of z such that its image
in G is 1q. |

Proof of Theorem 3. Let B be an automaton of minimal loop complexity that
accepts K and n the number of states of B. Let ¢ be a morphism from B onto Uy .

Let g in P, thus a final state of A, and let u,, be a word of A* that is mapped onto g
by a. For every integer k, the word (wg)"u, is in K and then is accepted by B. The
block star lemma, applied to factors wy, yields a state py of B which is the starting point
of a circuit that is labelled by a certain power (wgc) In other words, a computation with
label (wy)™u, can be factorized as follow:

i 1
Tk 7 Pk ? Pk > Sk

Let Dy be the ball of B that contains pg, and thus this circuit. A infinite sequence of
balls Dy is obtained in that way, in which at least one ball D appears infinitely often.

Let C be the ball of Ui which contains the image of D by ¢. For every path ¢ of C,
there exist an integer k larger than the length of ¢, an integer [ and a state p of D such
that there exist a circuit of D of origin p and labelled by (wy)’. This same word (wy) is
the label of a circuit in C that goes through all computations of length smaller than or

equal to k; in particular, it contains ¢ itself. Hence c is the image of a computation in D.
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The ball C is then the image of D by ¢ and the restriction of ¢ to D is conformal. By
Theorem 4, Ie(D) > lc(C) holds.

Let (L, R) be the factorization that is the image of p by ¢ — where p is the state
defined above. As (wg)" is in Pasts(p), 1g is in Pasty,. ((L, R)) and then 15 is in I,

"u, is in Futg(p) and g is

that is, (L, R) is an initial state of Ux. In the same way, (wy)
in R. Every word u of A* such that ua = ¢ is the label of a computation in C that starts
from (L, R) (initial state) and that ends at the state (L g,¢g~'R), which is a final state
of Uy since 1 € g7'R; hence u is accepted by C. The ball C is a subautomaton of Ux

that accepts a language which contains ga~! and which is contained in K.

The same construction can be repeated for every ¢ in PP and a set £ of balls of Uy
is obtained which accepts the whole language K. Every ball in £ has a loop complexity
that is smaller than or equal to the loop complexity of at least one ball of B. The loop
complexity of £ is at most equal to the loop complexity of B which was supposed to be
minimal. ]
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