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Figure 1: A comparison between standard BPT and BPT improved with our connection resampling strategy (after 60 seconds
of rendering). In this setting, the draperies occlude most of the light vertices from the eye vertices, resulting in many null
contributions. Our resampling favors connections that are more likely to produce a high contribution.

Abstract
Bidirectional path tracing is known to perform poorly for the rendering of highly occluded scenes. Indeed, the
connection strategy between light and eye subpaths does not take into account the visibility factor, presenting no
contribution for many sampled paths. To improve the efficiency of bidirectional path tracing, we propose a new
method for adaptive resampling of connections between light and eye subpaths. Aiming for this objective, we build
discrete probability distributions of light subpaths based on a skeleton of the empty space of the scene. In order to
demonstrate the efficiency of our algorithm, we compare our method to both standard bidirectional path tracing
and a recent important caching method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Bidirectional path tracing (BPT) [VG94] is known to be
a robust rendering algorithm thanks to its ability to mix
various sampling strategies using multiple importance sam-
pling [VG95]. It has been recently combined with photon
mapping [HPJ12, GKDS12] to address its principal weak-
ness: the rendering of caustics. The most expensive opera-
tion performed by BPT is the connection between a large
number of pairs of vertices, requiring many visibility tests.
In highly occluded scenes, most tests fail and present no

contribution for the visibility tests cost. For such configu-
rations, a caching and resampling scheme similar to the one
proposed by Georgiev et al. [GKPS12] can significantly im-
prove the performance of BPT by favoring connections that
are likely to produce a high contribution to the final image.
These kinds of strategies generally use surface points as im-
portance caches. For robust resampling, a high cache density
is required, inducing a high overhead, both in terms of com-
putation and memory.

In this paper, we propose a new solution for resampling
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connections, based on a centered skeleton of the empty space
of the scene, represented by a sparse set of points. We use
this skeleton to quickly pre-compute discrete probability
distributions of light subpaths based on their contribution
around the different parts of the skeleton. These distribu-
tions are then used while tracing eye subpaths to resample
efficiently the connections with light subpaths. Note that, in
this paper, the term “distribution” always refer to a discrete
cumulative distribution function for resampling. Our method
can be implemented on top of any bidirectional path tracer,
potentially improving any other method based on BPT for
sampling paths [GKDS12,VG97,VKŠ∗14]. The source code
will be made freely available on the authors’ website after
publication. The main contributions of this paper are:

• A new unbiased strategy for vertex connection resam-
pling, based on a pre-computed skeleton of the empty
space of the scene.
• A comparison between our method, standard BPT and an

adaptation of the method from Georgiev et al. [GKPS12]
to BPT. While the latter algorithm performs better for the
same number of rendering iterations, our method gives
better results for the same rendering time due to a smaller
overhead.

2. Related work

Path tracing based methods. Many state-of-the-art render-
ing algorithms are based on Monte Carlo integration and
path tracing. Such methods use various sampling strategies
to select random paths and accumulate their contributions
for estimating each pixel intensity.

The path tracing algorithm [Kaj86] samples paths by start-
ing from the camera lens and extends a path at each intersec-
tion by shooting in a random direction. Bidirectional path
tracing (BPT) [VG94] builds a set of paths by sampling si-
multaneously an eye subpath starting from the camera and a
light subpath starting from the light sources. Complete paths
are obtained by connecting each vertex of the eye subpath
with each vertex of the light subpath. Multiple importance
sampling [VG95] (MIS) improves the robustness of BPT by
weighting the contribution of a path by considering all pos-
sible ways of sampling it. This strategy reduces the contri-
bution of paths carrying high energy but sampled with low
probability. Despite the use of MIS, BPT performs poorly in
presence of specular materials due to the limited number of
strategies able to sample a path containing specular reflec-
tions. The photon mapping [Jen01] (PM) algorithm, and its
variants [HOJ08, KD13] are able to render efficiently such
kind of effects. However, those algorithms are less effec-
tive for glossy materials. BPT and PM have been simulta-
neously combined by Georgiev et al. [GKDS12], with their
vertex connection and merging algorithm, and Hachisuka et
al. [HPJ12], with unified path sampling. These two meth-
ods are able to render efficiently scenes that contain rich

material combination and are equivalent in terms of imple-
mentation. Many-light rendering (MLR) methods [Kel97,
DKH∗13] sample a large number of light subpaths and
use their vertices as virtual point lights (VPL) to illumi-
nate points visible from the camera. These methods have
recently received attention for their simplicity and ability
to generate noise-free images. They work well in diffuse
environments but a large number of VPLs is generally re-
quired for glossy materials. Thus, scalable evaluation algo-
rithms [HPB07, WABG06] must be used to achieve reason-
able computation cost. Metropolis Light Transport [VG97]
is a Markov Chain Monte Carlo algorithm that mutates ex-
isting light transport paths to build new path samples. This
strategy takes advantage of correlations between pixel mea-
surements and focuses the estimation on paths that carry
high energy. The set of initial light transport paths is gen-
erally sampled using BPT, before mutations are performed
on them.

All of these methods are based on two key components
for building complete paths connecting light sources with
the camera: ray sampling, for extending an existing path, and
vertex connection, for connecting a light subpath with an eye
subpath.

Ray sampling. In presence of many occlusions, illumina-
tion becomes strongly indirect and the ray sampling strategy
must be adapted to importance sample the incident radiance
(resp. importance) function for eye (resp. light) subpaths.

Particle tracing is often used for this purpose.
Jensen [Jen95] used a pre-computed photon map to
approximate a probability density function (PDF) pro-
portional to incident radiance at any surface point. More
recently, Vorba et al. [VKŠ∗14] followed the same idea,
however they use parametric mixture model estimation
to learn PDFs from streams of particles. By doing so,
they avoid storing particles while still able to sample rays
according to incident radiance/importance.

Biri et al. [BC12] take advantage of a topological curvilin-
ear skeleton of the empty space of the scene to sample rays
more efficiently toward light sources. Their method uses a
shortest-path algorithm to compute importance points along
the skeleton which are used to sample rays around preferred
directions. Despite a noticeable reduction of noise in their
results, the underlying estimator is biased and hard to gen-
eralize to multiple light sources. Note that, in this work, we
use the same kind of skeleton, however we apply it to the
vertex connection component of path sampling.

Vertex connection. Connecting two vertices is an expen-
sive operation because it involves a visibility test. For scenes
with complex visibility, it can be very inefficient since many
such tests result in no contribution. Indeed, blindly connect-
ing random vertices does not importance sample the visi-
bility function and can introduce high variance in the esti-
mation. Resampling is a general method that applies Monte
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Carlo estimation to the sum of contributions already sam-
pled for Monte Carlo integration. It can be used to reduce
the number of connections that must be evaluated and to in-
crease the probability of connecting vertices that are likely
to produce a high contribution.

Talbot et al. [TCE05] investigate the use of resampling
for Monte Carlo rendering. Their method can be applied to
the connection problem in BPT and many-light methods by
building a discrete probability distribution over the light ver-
tices for each eye vertex. This distribution is built using the
contribution of each light vertex without the visibility factor.
This operation is expensive when the number of light ver-
tices is high. Moreover, ignoring visibility reduces the ro-
bustness of the method in highly occluded scenes since arbi-
trary high contributions can be reduced to zero when multi-
plied by the visibility factor.

Georgiev et al. [GKPS12] introduce the importance
caching (IC) method and apply the same idea to many-light
rendering. However, they build discrete resampling distri-
butions that include the visibility factor on a sparse set of
surface points called importance records. For each point to
illuminate, they gather nearest importance records using a
Kd-tree and resample VPLs according to the pre-computed
distributions for these records. By combining these distri-
butions with more conservative ones, they propose a robust
estimator that is able to deal with complex scenes. How-
ever, gathering nearest importance records is expensive and
increases the rendering time dramatically when applied to
BPT. Indeed, the number of eye vertices is higher for BPT
due to multiple reflections along eye subpaths, and thus in-
creases the number of nearest neighbor queries. Moreover,
more resampling distributions have to be pre-computed be-
fore each rendering iteration since importance records must
be spread on more surfaces than only those visible from the
camera. Finally, BPT importance samples efficiently the di-
rectional component of the BSDF through local eye subpath
sampling, which reduces the interest of introducing it in re-
sampling distributions.

As opposed to established methods, our algorithm caches
resampling distributions on a sparse set of points centered
in the empty space of the scene, obtained from a curvilinear
skeleton. This approach significantly reduces the number of
distributions that must be pre-computed for each rendering
iteration, while still exploiting visibility and geometric in-
formation for efficient resampling.

3. Background

In this section, we review the path integral formulation of
light transport and the BPT algorithm. We also present the
thinning algorithm to compute the skeleton used in our
method.

Path integral framework. The path integral frame-
work [Vea97] is well suited to express the BPT algorithm.

In this framework, the intensity I of a pixel is expressed by
the measurement integral over the space of paths:

I =
∫

x̄∈Ω

f (x̄)dµ(x̄) (1)

A path x̄ = x0...xk−1 is a sequence of vertices such
that x0 is on a light source and xk−1 is on the cam-
era lens. k ≥ 2 is the length of the path, i.e. its num-
ber of vertices. The contribution of a path is expressed
by the product f (x̄) = Le(x0,x1)T (x̄)We(xk−2,xk−1) where
Le(x0,x1) is the radiance emitted at x0, We(xk−2,xk−1)
is the sensor response at xk−1, and T (x̄) is the through-
put of the path. The throughput is itself a product
T (x̄) = ∏

k−2
i=0 G(xi,xi+1)∏

k−3
i=0 fs(xi,xi+1,xi+2) where

G(xi,xi+1) is the geometric factor between two sequential
vertices and fs(xi,xi+1,xi+2) is the BSDF evaluated at xi+1
for the incident direction −−−→xi+1xi and the outgoing direction
−−−−−→xi+1xi+2. Equation (1) cannot be computed analytically and
is generally estimated using a Monte Carlo method, which
approximates the integral by a weighted sum of contribu-
tions obtained from random path samples.

Bidirectional path tracing. The bidirectional path tracing
algorithm [VG94] samples paths by connecting eye sub-
paths, starting at the camera lens, with light subpaths, start-
ing at light sources.

More precisely, a sequence of correlated paths x̄s,t =
y0...ys−1zt−1...z1 is obtained by connecting all vertices of
a light subpath ȳS = y0...yS−1 of length S with all vertices
of an eye subpath z̄T = z0...zT−1 of length T . We refer to
the vertices of a light subpath (resp. eye subpath) as light
vertices (resp. eye vertices).

This sequence of paths is used to estimate the integral (1)
conjointly with multiple importance sampling [VG95]
(MIS), resulting in the following Monte Carlo estimator:

Î :=
T

∑
t=0

S

∑
s=0

s+t>1

ws,t(x̄s,t)
f (x̄s,t)

ps,t(x̄s,t)
=

T

∑
t=0

S

∑
s=0

s+t>1

C(x̄s,t) (2)

Each MIS weight ws,t(x̄s,t) associated to a path ensures that
its contribution is correctly weighted to take into account
each possible way of sampling the path. The balance heuris-
tic introduced by Veach et al. [VG95] provides near optimal
MIS weights. We use it in our implementation of BPT.

Scene thinning. Our method is based on a curvilinear skele-
ton of the empty space of the scene, computed by a thinning
algorithm. Such algorithms generally take a voxelization as
input. In our case the scene is first voxelized then comple-
mented to get a voxelization of the empty space. One can
choose any thinning algorithm available but we decided to
use the topological thinning algorithm described by Chaus-
sard et al. [CNBC13]. To obtain a centered skeleton, this al-
gorithm removes voxels from the voxelized object one layer
at a time, starting at the border and in parallel for each layer.
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Figure 2: Top-left: the skeleton of sponza. Top-right: the fil-
tered skeleton. Bottom: two maximal balls of the door scene
illustrated as spheres. We use them to compute the filtered
skeleton as described in Section 4.4.

The deletion of voxels is carefully designed so that the topol-
ogy of the original object is preserved at each step, to ensure
that the skeleton does not miss any hole or tunnel in the ob-
ject. By having a centered skeleton we get a better coverage
of the scene and the associated segmentation is sparser. Fur-
thermore, this algorithm can be implemented in parallel to
achieve better performance. The resulting curvilinear skele-
ton is represented by a discrete graph embedded in empty
space (see top-left image of Figure 2).

In conjunction with the skeleton, we pre-compute a 3D-
grid that maps each voxel to a node of the graph. This grid is
computed by propagating the index of each node in the vox-
elization of the empty space. It results in a grid containing
for each voxel the nearest node with respect to geodesic dis-
tance. We use this grid to map any 3D point to a node of the
skeleton in constant time. We refer to it as the node mapping
grid.

4. Skeleton based Vertex Connection Resampling for
BPT

4.1. Motivation and overview

As discussed in Section 2, connection between random ver-
tices performed by bidirectional path tracing is likely to be
inefficient because of occlusions, erasing the potential con-
tribution of many connections. A strategy to solve this prob-
lem is to initially sample more than one light subpath and to
resample only one of each length at each eye vertex based
on visibility information extracted from all light vertices.

For a sequence of N light subpaths (ȳi
S =

yi
1...y

i
S−1)i=1,...,N and a single eye subpath z̄T , the

bidirectional estimator (2) can be rewritten as:

Î :=
T

∑
t=0

S

∑
s=0

s+t>1

1
N

N

∑
i=1

C(x̄i
s,t) (3)

Connections are performed for s, t 6= 0, thus the inner sum
can be resampled to give the new estimator:

ÎR :=
T

∑
t=1

S

∑
s=1

1
N

C(X̄s,t)

pR
s,t(Ȳs,t)

(4)

Where X̄s,t is formed by connecting a resampled light sub-
path Ȳs,t with the eye subpath z̄t . The light subpath Ȳs,t is
obtained according to a discrete probability distribution pR

s,t
associated to the eye vertex zt−1.

Finding good resampling distributions is challenging be-
cause a tradeoff must be made between resampling quality
and computation speed. Contrary to previous resampling ap-
proaches, our distributions are not cached at surface points
but at skeleton nodes, which are points centered in the empty
space of the scene. We build our distributions from visibil-
ity between nodes and light vertices, but also distance and
partial contribution associated to each light vertex. Caching
this kind of information at points of empty space instead of
surface points is motivated by several arguments:

• Our skeleton sparsely covers the entire scene, therefore
few resampling distributions must be pre-computed com-
pared to the number of vertices involved in the estimation.

• The similarity between the visibility function of a node
and the visibility function of eye vertices mapped to the
node is enough for coarse but cheap resampling.

• Each resampling distribution is shared by a high number
of eye vertices, inducing more coherent resampling be-
tween these vertices.

• Thanks to our node mapping grid, we obtain in constant
time the distributions stored at the nearest node of each
eye vertex.

As shown in Section 5, our method improves the conver-
gence speed of bidirectional path tracing at a negligible cost.
Moreover, the algorithm is simple to implement on top of
any BPT implementation.

Our algorithm progressively renders the image by per-
forming the following steps at each iteration:

1. Sample N light subpaths, resulting in N×S light vertices
where S is the maximal length of a light subpath.

2. Build the resampling distributions of light vertices for
each node of the skeleton.

3. Sample an eye subpath for each pixel and estimate the
measurement integral by resampling light vertices ac-
cording to the resampling distributions.

The first step is identical to light subpath tracing per-
formed for bidirectional path tracing, but we store light ver-
tices for resampling them later. We detail the second and
third step in Section 4.2 and Section 4.3 respectively.
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Figure 3: An illustration of the node weighting function wn and the three resampling probability distributions
pX ,n, X ∈ {V,U,C} for a node n and four light vertices yi. For simplicity, we suppose here that L(yi) = 1, i = 1...4, thus
we have wn(yi) = 1

||Pn−yi||2 . Distances from the node to light vertices are shown on the scene illustration.

4.2. Skeleton node resampling distributions

Each node stores 3×S discrete cumulative distribution func-
tions (CDFs) of size N to perform robust and unbiased re-
sampling. Each CDF is restricted to light subpaths having
the same length, in order to connect each eye vertex to one
light subpath of each length. The three distributions for a
given length are combined using multiple importance sam-
pling at the next step. This approach is similar to importance
caching [GKPS12] in which they use four distributions at
each importance record.

Our first and second distributions both depend on a com-
mon weighting function. Let n be a node of the skeleton,
with position Pn. For each light vertex yi

s, we define the fol-
lowing weight:

wn(yi
s) :=

L(yi
s)

||Pn−yi
s||2

(5)

where L(yi
s) is the partial contribution of the subpath ȳi

s+1,
that is, the product of emitted radiance, geometric factors
and scattering factors divided by the probability density of
sampling the subpath.

Our weights are proportional to the inverse squared dis-
tance between the node and light vertices to favor those lo-
cated close to the node. This choice is driven by the fact
that such light vertices are also located close to eye vertices
mapped to the node. Since the geometric factor between
vertices also depends on the inverse squared distance, our
weights tend to favor light vertices that give a high geomet-
ric factor when connected with an eye vertex.

Our first distribution combines the weighting function (5)
with the visibility function of the node:

pV,n(yi
s) =

V (yi
s,Pn).wn(yi

s)

∑
N
j=1 V (y j

s ,Pn).wn(y j
s)

(6)

By favoring light vertices visible from the node, we ensure
a good resampling for all eye vertices that share many vis-
ible points with their associated node, which is the case for

most of them. However, this distribution is biased since it
gives zero probability to some light vertices that actually
contribute to eye vertices mapped to the node.

Our second distribution is similar to the first but does not
take into account visibility:

pU,n(yi
s) =

wn(yi
s)

∑
N
j=1 wn(y j

s)
(7)

This one is important for eye vertices mapped to a node that
does not approximate well their visibility function. It also
ensures that our estimator is unbiased.

Sampling a distant light vertex with distribution pU,n
would give it low probability and possibly introduce addi-
tional variance if the light vertex contributes to the illumina-
tion of some eye vertices mapped to the node. To avoid this,
we use a third resampling distribution, uniform among light
subpaths of the same length:

pC,n(y
i
s) =

1
N

(8)

Figure 3 illustrates both the weighting function and the
three resampling probability distributions on a simple exam-
ple scene.

4.3. Eye subpath sampling

For this last step we sample an eye subpath z̄T = z0...zT−1
through each pixel to estimate the measurement integral us-
ing our resampling distributions. We note nt the node asso-
ciated to the eye vertex zt . It is obtained by looking at the
voxel containing zt in the 3D-grid that map each voxel to a
skeleton node.

The estimator is then:

ÎSkel :=
T

∑
t=1

S

∑
s=1

1
N

wX ,nt−1(ȲX ,s,t)
C(X̄X ,s,t)

pX × pX ,nt−1(ȲX ,s,t)
(9)

where X is sampled from {V,U,C} with uniform probability
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pX = 1
3 and ȲX ,s,t is the light subpath resampled from the

discrete distribution pX ,nt−1 . Since we use multiple discrete
distributions per eye vertex, we must weight the samples us-
ing MIS, which is expressed by the factor wX ,nt−1(ȲX ,s,t)
weighting the contribution.

In our implementation, we use the max heuristic [VG95],
which assigns a weight of one to a light subpath only if it is
resampled with the distribution giving it the highest proba-
bility, and zero otherwise. We optimize our distributions by
pre-multiplying every light vertex probability by its weight
and we re-normalize the distributions according to the new
probabilities. Thus, we obtain a reduction of variance of the
estimator and weights do not need to be evaluated anymore
during eye subpath sampling.

4.4. Optimizations

Despite the sparsity of our skeleton nodes, their number de-
pends on the voxelization resolution used to compute the
skeleton. When a high resolution is chosen, the skeleton can
be composed of too many nodes in large empty areas. It has
a negative impact on our method since we pre-compute and
store resampling distributions for each node. To reduce this
dependency, we use two optimizations:

Reducing the skeleton size. We propose here a simple so-
lution for reducing the number of nodes of the skeleton based
on a geometric information for each node: the radius of the
maximal ball centered in the node and contained in empty
space. The thinning algorithm that we use provides this in-
formation. See bottom images of Figure 2 for an illustration
of maximal balls.

The filtering algorithm to simplify our skeleton works as
follow. Let (ni)i=1...N be the sequence of nodes, (Pi)i=1...N
their positions and (ri)i=1...N the radius of their maximal
balls. We first sort the nodes according to their radius (largest
first). Then for each node nk in this order, we remove the
nodes nl such that ||Pl−Pk||< rk (meaning that the node nl
is contained in the maximal ball of nk). As a result we get a
curvilinear skeleton with the same topology but with a den-
sity of nodes that depends on the local thickness of the empty
space (i.e. less nodes in large empty volumes). Top-right im-
age of Figure 2 demonstrates the result of our simplification.

Reducing the number of distributions. A given view con-
figuration does not require the usage of all nodes of the
skeleton. Indeed, many nodes can be located in a part of the
scene that is not reachable by eye subpaths. The importance
of a node ni can be described by the number Nmapped(ni)
of eye vertices mapped to it during the rendering simulation.
When this value is small compared to the mean N̄mapped over
all nodes, computing the distributions for the node ni is not
worth the pre-computation time. On our test scenes, more
than 50% of the nodes map to less than 1% of the eye ver-
tices.

Config. Number of nodes Per iteration
Door 74 9

Sponza 666 45
Sibenik 1420 85

Figure 4: Number of nodes used per rendering iteration for
αaccept = 1.

Based on this observation, we introduce the node ac-
ceptance parameter αaccept ∈ [0,1] that is used to ignore
nodes that are not mapped to enough eye vertices. The val-
ues

(
Nmapped(ni)

)
i=1...N

are accumulated at each iteration

and for each node. Before pre-computing the resampling
distributions for a given iteration, all nodes ni such that
Nmapped(ni) ≤ αaccept .N̄mapped are discarded for this iter-
ation. We fall back to a uniform resampling distribution
for eye vertices that are mapped to these nodes. This opti-
mization increases significantly pre-computation time while
keeping the same rendering quality. For our results, we sim-
ply set αaccept = 1, so every node mapping to fewer eye ver-
tices than the mean among all nodes is discarded for the iter-
ation. Table 4 records the number of nodes used per iteration
compared to the number of nodes of the filtered skeleton.

5. Results

All of our results were rendered on a PC with two CPUs Intel
Xeon E5-2650 hexa-core at 2.0 Ghz.

Rendering configurations. We compare our algo-
rithm (SkelBPT) against standard BPT and importance
caching [GKPS12] adapted to BPT (ICBPT) on three scenes
with different view points, lighting configurations and
materials. All algorithms sample complete paths having a
maximal length of 7 and trace one eye subpath per pixel per
iteration. We use the balance heuristic to compute multiple
importance sampling weights for BPT path weights. The
max heuristic is used for combining resampling strategies
for both our method and ICBPT. The images have a
resolution of 1024 x 512 pixels but were cropped to fit in
the article. We sample a number of light subpaths equal
to the number of pixels at each iteration but we perform
connection resampling only on a subset of N = 1024 light
subpaths randomly chosen in order to keep the overhead of
resampling reasonable (both for SkelBPT and ICBPT). We
do not apply resampling on paths sampled with the camera
projection strategy (t = 1) since this strategy requires
many light subpaths to be effective. Our implementation
of the balance heuristic takes into account the number of
paths sampled by each strategy. Our reference images were
computed using standard BPT.

ICBPT. We adapted importance caching [GKPS12] to BPT
in order to compare our algorithm to a recent similar method.
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At each iteration, we sample a sparse set of eye subpaths and
we use their vertices as importance records (IR) for resam-
pling. The number of IR is controlled by a density parameter
d ∈ [0,1] such that d× the number of pixels is the number of
eye subpaths traced to position importance records. We set
d = 0.001 for the presented results, resulting in 524 paths for
about 3000 importance records. We use a Kd-tree to store
and access to the nearest IRs at each eye vertex.

Skeleton computation time. Our method depends on the
pre-computation of our skeleton. The method we use has a
O(n) time complexity with n being the number of voxels of
the voxel grid. Table 5 records time required to compute the
skeleton of each presented scene. These measures include
both the voxelization time and thinning time. The voxeliza-
tion is performed on GPU and the thinning algorithm is par-
tially parallelized. The pre-processing time of our method is
negligible compared to targeted rendering times.

Comparisons. Figure 7 illustrates visual comparisons of
the results produced with our method against standard BPT
and ICBPT. Both SkelBPT and ICBPT increase rendering
quality after a fix number of rendering iterations, as demon-
strated by Figure 9. However, ICBPT has a higher cost than
our method and the quality gain is not enough to compensate
the slower rendering time. Indeed, pre-computing the high
number of resampling distributions of ICBPT and accessing
them through the Kd-tree is too expensive and the results are
worse than expected. Figure 8 shows the convergence curves
for the L1 error. We observe that our method gives a lower
error than BPT except for the sibenik scene for which the
curves overlap. Table 6 records the time required to reach a
given error and the speedup relative to BPT. The Door scene
features difficult visibility due to the narrow opening of the
door. In that case, many light vertices are located behind the
door and are connected by BPT with eye vertices of the main
room, resulting in many null contributions. Figure 10 illus-
trates the individual contribution of each of our resampling
distributions for this configuration. The scene is provided by
Miika Aittala, Samuli Laine, and Jaakko Lehtinen.

The Sponza scene is illuminated by a strong directional
light source and lighting is only indirect in this configura-
tion. Our strategy reduces significantly the noise generated
by standard BPT by choosing light vertices that are likely
to contribute to the final image. Despite significant noise re-
duction on the ground performed by ICBPT, variance is still

Scene Resolution Time (seconds) Memory
Door (73, 119, 29) 0.32 1 Mo

Sponza (119, 51, 73) 1.59 1.7 Mo
Sibenik (119, 91, 51) 0.98 2.1 Mo

Figure 5: Time required to compute the skeleton and mem-
ory overhead to store the node mapping grid.

Configurations L1 error Time (sec) Speedup

Door
BPT

0.01
3677.44 × 1

ICBPT 7095.64 × 0.51
SkelBPT 2341.36 × 1.57

Sponza
BPT

0.15
1910.39 × 1

ICBPT 4731.15 × 0.40
SkelBPT 675.98 × 2.82

Sibenik
BPT

0.025
1334.48 × 1

ICBPT 3114.65 × 0.42
SkelBPT 1298.69 × 1.02

Figure 6: Rendering time required to achieve a given error
value and speed up relative to BPT.

high as demonstrated by bright spots, especially on the ceil-
ing and draperies. Our reference image has been rendered for
85 hours and still exposes small bright spots on the ground.

The Sibenik scene has less occlusions than the previous
ones. The scene is lit by two small area light sources located
in corners of the scene. In that configuration, our strategy
produces similar results compared to BPT, but additionally
slightly reducing visible noise on some parts of the image.

6. Conclusion and future works

We presented a new method to improve the efficiency of
bidirectional path tracing by using a skeleton of the empty
parts of the scene. We demonstrated experimentally that tak-
ing advantage of this skeleton leads to a simple and efficient
resampling strategy for algorithms based on vertex connec-
tion. We discuss here some limitations and future works.

Combining our method with ICBPT. Importance caching
is extremely efficient when applied to many-light rendering.
Our first experiments were actually performed on MLR and
demonstrated that IC outperforms our method on this algo-
rithm. The reason for this is that MLR only connects points
visible from the camera to light vertices (VPLs). This set of
visible points can be covered with a limited number of im-
portance records for achieving precise resampling. For BPT,
it would be interesting to use IC at eye vertices visible from
the camera and our skeleton based resampling at remaining
eye vertices. The method would then benefit from a costly
but robust resampling for the directly visible eye vertex of
each path and a cheaper but coarse resampling for others.

GPU Implementation. Our method can take advantage of a
GPU implementation since our skeleton is static and sparse.
A shadow map can be pre-computed for each node and used
to compute our resampling distributions that require many
visibility tests. Using this strategy would be more efficient
than tracing shadow rays since the visibility test could thus
be performed in constant time.
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Figure 7: Visual comparison of BPT, SkelBPT and ICBPT for a rendering time of 300 seconds. The number of iterations
performed by each method is indicated as well as the L1 error (MAE). Our SkelBPT provides a good noise reduction over BPT
and outperforms ICBPT for each configuration.

Figure 8: L1-error curves for a rendering time of 300 seconds.
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