
A 3D curvilinear skeletonization algorithm with
application to path tracing

John Chaussard1, Laurent Noël2, Venceslas Biri2, and Michel Couprie3?

1 Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS(UMR 7539),
F-93430, Villetaneuse, France

chaussard@math.univ-paris13.fr
2 Université Paris Est, LIGM, CNRS(UMR 8049)

Cité Descartes, 5 boulevard Descartes, 77454 Marne-la-Valle CEDEX 22, France
laurent.noel@esiee.fr, v.biri@esiee.fr

3 Université Paris Est, LIGM, A3SI-ESIEE, CNRS(UMR 8049)
2, boulevard Blaise Pascal, 93162 Noisy le Grand CEDEX, France

michel.couprie@esiee.fr

Abstract. We present a novel 3D curvilinear skeletonization algorithm
which produces filtered skeletons without needing any user input, thanks
to a new parallel algorithm based on the cubical complex framework.
These skeletons are used in a modified path tracing algorithm in order
to produce less noisy images in less time than the classical approach.

1 Introduction

Path tracing algorithms [8, 9] are able to render photorealistic images from a
scene description by simulating light propagation. The photorealistic aspect is
achieved by simulating diffusion of light: elements of the scene which are illu-
minated by a light source can cast part of the light they receive. Consequently,
parts of the scene which are not directly illuminated by any light source actually
receive light, thus giving a realistic effect of light diffusion to the resulting image.

A path tracing algorithm sends rays from the camera, and let them bounce
around the scene until they encounter a directly illuminated zone. When a ray
hits a point of any surface, it is reemitted in a random direction. Once it reaches
a directly illuminated area, all luminance gathered through its journey in the
scene is averaged in order to set one of the image pixels, a process repeated for
each pixel of the output image. To reduce the noise resulting from this stochastic
process, the algorithm actually sends many rays for each pixel of the image: the
more rays, the longer the algorithm will take to produce an image, but the more
realistic the result will look. A path tracing can be seen as a random walk process
through the scene.

In order to avoid infinite bouncing of rays in the scene, a limit is set for the
number of bounces a ray can do. If a ray does not reach any directly illuminated

? This work has been partially supported by the “ANR-2010-BLAN-0205 KIDICO”
project



Fig. 1. Note how rays are guided toward the illuminated area thanks to our skeleton
based algorithm (image b), compared to classical path tracing (image a). Images c and
d point out the noise reduction between the classic path tracing (c) and our method
(d).

area after a given number of bounces, its contribution is considered null. Such
lost ray is a waste of computation time, and minimizing this loss would speed
up the algorithm (see Fig 1.a).

Our proposition is to reduce both the time taken by a path tracing algo-
rithms and the noise in the output images by guiding rays towards the scene’s
light sources (see Fig 1.b), thus reducing the number of rays “lost” during the
computation. To do this, we perform some precomputation on the void space
of the scene (the medium where the rays of light propagate) in order to have,
later in the algorithm, a clue on the direction a ray should bounce in order to
meet an illuminated area. Unfortunately, such precomputation may take time
and become more expensive than the original algorithm.

To keep the precomputation fast, we perform it only on a subset of points
of the voids of the scene. Since this precomputation relies on paths and visibil-
ity tests, we want this set of points to be representative of both the topology
and the geometry of the original scene. For example, it should possess branches
propagating in the elongated parts of the scene. A filtered curvilinear skeleton
of the scene’s void meets all the required properties for our subset of points:
it is a thin subset of points, with the same topology and retaining the main
geometrical information of the scene. Note that in this application, the filtering
of the skeleton (elimination of spurious branches) need to be both efficient and
completely automatic, for one cannot ask a user to set parameters for each scene.

The purpose of this paper is twofold: we first introduce a new curvilinear
skeletonization algorithm (Sec. 3) in the cubical complex framework (Sec. 2),
producing filtered skeletons without needing any user input (Sec. 4). Then, we
expose a new method, based on such skeletons, to enhance the results (see Fig 1.c
and d) and the performance of the path tracing algorithm (Sec. 5).



2 The cubical complex framework

In the 3D voxel framework, objects are made of voxels. In the 3D cubical complex
framework, objects are made of cubes, squares, lines and vertices. Let Z be the set
of integers, we consider the family of sets F1

0 and F1
1, such that F1

0 = {{a} | a ∈ Z}
and F1

1 = {{a, a+ 1} | a ∈ Z}. Any subset f of Zn such that f is the Cartesian
product of m elements of F1

1 and (n −m) elements of F1
0 is called a face or an

m-face of Zn, m is the dimension of f , we write dim(f) = m. A 0-face is called
a vertex, a 1-face is an edge, a 2-face is a square, and a 3-face is a cube.

Given m ∈ {0, . . . , n}, we denote by Fnm the set composed of all m-faces in
Zn. We denote by Fn the set composed of all m-faces in Zn : Fn =

⋃
m∈[0;n]

Fnm.

Let f ∈ Fn. We set f̂ = {g ∈ Fn|g ⊆ f}, and f̂∗ = f̂ \ {f}. Any element of f̂

(resp. f̂∗) is a face of f (resp. a proper face of f). The closure of a set of faces

X is the set X̂ = ∪{f̂ |f ∈ X}.

Definition 1. A finite set X of faces in Fn is a complex if X = X̂, and we
write X � Fn.

Any subset Y of X which is also a complex is a subcomplex of X, and we
write Y � X.

A face f ∈ X is a facet of X if f is not a proper face of any face of X. The
dimension of X is dim(X) = max{dim(f) | f ∈ X}. If dim(X) = d, then we say
that X is a d-complex.

Traditionally, a binary image is a finite subset of Zn (called voxel image when
n = 3). To transpose such an image S to the cubical complex framework, we
associate to each element of S ⊆ Zn an n-face of Fn. Let x = (x1, ..., xn) ∈ S,
we define the n-face Ψ(x) = {x1, x1 + 1}× . . .×{xn, xn + 1}. We can extend the
map Ψ to sets: Ψ(S) = {Ψ(x)|x ∈ S}. Given a set S ⊂ Zn, we associate to it the

cubical complex Ψ̂(S).
The collapse operation is the basic operation for performing homotopic thin-

ning of a complex, and consists of removing free pairs of faces:

Definition 2. Let X � Fn, and let f, g be two faces of X. The face g is free
for X, and the pair (f, g) is a free pair for X if f is the only face of X which
strictly contains g.

It can be easily seen that if (f, g) is a free pair for a complex X, then f is a
facet of X and dim(g) = dim(f)− 1.

Definition 3. Let X � Fn, and let (f, g) be a free pair for X. The complex
X \ {f, g} is an elementary collapse of X.

Let Y � Fn. The complex X collapses onto Y if there exists a sequence
of complexes (X0, ..., X`) of Fn such that X = X0, Y = X` and for all i ∈
{1, . . . , `}, Xi is an elementary collapse of Xi−1. We also say, in this case, that
Y is a collapse of X.

Recent works in the cubical complex framework brought new parallel thinning
algorithms in the voxel framework ([2], [1]).



3 A parallel directional thinning based on cubical
complex

In the cubical complex framework, parallel removal of free pairs can be easily
achieved when following simple rules that we give now. First, we need to define
the direction and the orientation of a free face. Let (f, g) be a free pair for
X � Fn : we have dim(g) = dim(f) − 1, and it can be seen that g = f ∩ f ′,
where f ′ is the translate of f by one of the 2n vectors of Zn which have all their
coordinates equal to 0 except one, which is either equal to +1 or -1. Let v be this
vector, and c its non-null coordinate. We define Dir(f, g), called the direction of
the free pair (f, g), as the index of c in v. The orientation of the free pair (f, g)
is defined as Orient(f, g) = 1 if c = 1, and Orient(f, g) = 0 else.

Now, we give a property of collapse (previously proven in [4]) which brings a
necessary and sufficient condition for removing two free pairs of faces in parallel
from a complex, while preserving topology.

Proposition 4. Let X � Fn, and let (f, g) and (k, `) be two distinct free pairs
for X. The complex X collapses onto X \ {f, g, k, `} if and only if f 6= k.

From Prop. 4, the following corollary is immediate.

Corollary 5. Let X � Fn, and let (f1, g1) . . . (fm, gm) be m distinct free pairs
for X such that, for all a, b ∈ {1, . . . ,m} (with a 6= b), fa 6= fb. The complex X
collapses onto X \ {f1, g1 . . . fm, gm}.

Considering two distinct free pairs (f, g) and (i, j) for X � Fn such that
Dir(f, g) = Dir(i, j) and Orient(f, g) = Orient(i, j), we have f 6= i. From this
observation and Cor. 5, we deduce the following property.

Corollary 6. Let X � Fn, and let (f1, g1) . . . (fm, gm) be m distinct free pairs
for X having all the same direction and the same orientation. The complex X
collapses onto X \ {f1, g1 . . . fm, gm}.

Intuitively, we want our thinning algorithm to remove free faces of a complex
“layer by layer” and to avoid having unequal thinning of the input complex.
Therefore, we want each execution of the algorithm to remove free faces located
on the border of the input complex. We define Border(X) as the set all faces
belonging to a free pair for X. We now introduce Alg. 1, a directional parallel
thinning algorithm.

On a single execution of the main loop of Alg. 1, only faces located on the
border of the complex are removed (l. 7). Thanks to corollary 6, we can remove
faces with same direction and orientation in parallel (l. 8), while guaranteeing
topology preservation. Figure 2 depicts the first steps of the algorithm.

Different definitions of orientation and direction can be given, each corre-
sponding to a different order of free faces removal in the complex and leading to
different results. Algorithm 1 can be implemented to run in linear time complex-
ity (proportionally to the number of faces in the complex). Indeed, checking if a
face is free or not may be easily done in constant time and when a free pair (f, g)
is removed from the input complex, it is sufficient to scan the faces contained in
f in order to find new free faces.



Algorithm 1: ParDirCollapse(X,W, `)

Data: A cubical complex X � Fn, a subcomplex W � X which represents faces
of X which should not be removed, and ` ∈ N, the number of layers of
free faces which should be removed from X

Result: A cubical complex
1 while there exists free faces in X \W and ` > 0 do

2 L = ̂Border(X);
3 for t = 1→ n do
4 for s = 0→ 1 do
5 for d = n→ 1 do
6 E = {(f, g) free for X | g /∈W, Dir(f, g) = t, Orient(f, g) = s,

dim(f) = d};
7 G = {(f, g) ∈ E | f ∈ L and g ∈ L};
8 X = X \G;

9 l = l − 1;

10 return X;

Fig. 2. Four first iterations of Alg. 1 running on the left-most shape.

4 Aspect preservation during thinning

As previously said, our goal is to use the skeleton of the voids of a scene in order
to guide light rays from the camera of the scene towards the light. Moreover, this
skeleton needs to capture the main geometrical features of the original scene. For
example, if the input is a corridor (the void of the corridor), then the skeleton
should be a line following the main direction of the corridor.

Generally, two strategies are possible to achieve this goal: find, during the
skeletonization process, points whose neighbourhood configuration seems inter-
esting and keep them in the result [6] [7] [5], or choose, before skeletonization,
interesting points of the object which should remain untouched, based on a func-
tion on these points and a filtering parameter [2] [12].

Algorithm 1 does not necessarily preserve geometrical features of the input
object in the resulting skeleton (for example, the skeleton of a corridor could be
reduced to a single vertex). In the following, we introduce a new method in the
cubical complex framework, requiring no user input, for obtaining a curvilinear
skeleton yielding satisfactory geometrical properties. Our method is based on
the two previously listed strategies: it finds, during thinning, elements with a
specific neighbourhood configuration, and uses a function on these elements to
decide whether to preserve them, or not, in the result.



4.1 The lifespan of a face

In the following, we define additional functions in the cubical complex, related
to the thinning process (Alg. 1), which are essential for the filtering step of the
skeletonization. The first one we present is the death date of a face.

Definition 7. Let f ∈ X � Fn. The death date of f inX, denoted by DeathX(f),
is the smallest integer δ such that f /∈ ParDirCollapse(X, ∅, δ).

Intuitively, the death date of a face indicates how many layers of free faces
should be removed from a complex X, using Alg. 1, before removing completely
the face from X. We now define the birth date of a face:

Definition 8. Let f ∈ X � Fn. The birth date of f in X, denoted by BirthX(f),
is the smallest integer b such that either f is a facet of ParDirCollapse(X, ∅, b),
or f /∈ ParDirCollapse(X, ∅, b).

The birth date indicates how many layers of free faces must be removed from
X with Alg.1 before transforming f into a facet of X (we consider that a face
“lives” when it is a facet). Finally, we define the lifespan of a face :

Definition 9. Let f ∈ X � Fn. The lifespan of f in X is the integer

LifespanX(f) =

{
+∞ if DeathX(f) = +∞
DeathX(f)− BirthX(f) otherwise

These three values depend on the order of direction and orientation chosen
for Alg. 1.

The lifespan of a face f ofX indicates how many “rounds” this face “survives”
as a facet in X, when removing free pairs with Alg. 1, and is a good indicator of
how important a face can be in an object. Typically, the higher the lifespan is,
and the more representative of an object’s geometrical feature the face is. The
lifespan, sometimes called saliency, was used in [10] (with the name “medial
persistence”) in order to propose a thinning algorithm in cubical complexes
based on two parameters.

4.2 Distance map, opening function and decenterness map

In addition to the lifespan of a face, the proposed homotopic thinning method
uses information on distance between faces in order to decide if a face should be
kept safe from deletion. We define hereafter various notions based on distances
in the voxel framework.

We set d1(x, y) as the L1 distance between x and y (Manhattan distance).
Let S ⊂ Zn, we set Sc = Zn \ S, and for all x ∈ Zn, the map D1(S) : Zn → N is
such that D1(S)(x) = min

y∈Sc
d1(x, y).

The maximal 1-ball in S centered on x is the set MB1
S(x) = {y ∈ Zn|d1(x, y) <

D1(S)(x)}. We set, for all x ∈ S, the map Ω1(S) : Zn → N such that Ω1(S)(x) =



Fig. 3. Examples of opening and decenterness map - From left to right: a shape
S ⊂ Z2 (in gray), D1(S), Ω1(S) and DC1(S) (low values have dark colour).

max
x∈MB1

S(y)
D1(S)(y): this value indicates the radius of a largest maximal 1-ball con-

tained in S and containing x. If x ∈ Sc, we set Ω1(S)(x) = 0. The map Ω1(S)
is known as the opening function of S based on the 1-distance (also called the
granulometry function) [11]: it allows to compute efficiently results of morpho-
logical openings by balls of various radius, and gives information on the local
thickness of an object.

Given S ⊂ Zn, the value of Ω1(S)(x) of every x ∈ S can be naively computed
by performing successive morphological dilations of values of the map D1(S). A
linear algorithm for computing the map Ω1(S) (with regard to the size of the
input image) was proposed in [3], and will be explored further in details in a
future paper.

Finally, we define the decenterness map:

Definition 10. Given S ⊂ Zn, the decenterness map of S is the map DC1(S) =
Ω1(S)−D1(S).

An example of these maps is shown on Fig. 3.
In order to extend all these previous maps defined in Zn to the cubical

complex framework, we use the map Ψ−1, inverse of the bijective map Ψ : Zn →
Fnn defined in Sec. 2. It is used to project any n-face of Fn into Zn. This map
induces a map from P(Fnn) to P(Zn), that we also denote by Ψ−1.

Given Y ⊂ Fn, we set S = Ψ−1(Y ∩Fnn). We define the map Dcc
1 (Y ) : Fn → N

as follows: for all f ∈ Fn,

Dcc
1 (Y )(f) =

{
D1(S)(Ψ−1(f)) if f is an n-face

max
f∈(ĝ∗∩Fn

n)
Dcc

1 (Y )(g) otherwise

Informally, if f is a 3-face, then Dcc
1 (Y )(f) is the length of the shortest 1-path

between the voxel “corresponding” to f and the set of voxels corresponding to
Y . In the same way, we define Ωcc1 (Y ) and DCcc1 (Y ).

4.3 Parameter-free filtered thinning

As previously said, we add edges to the set W of Alg. 1 in order to retain, in the
resulting curvilinear skeleton, important edges from the original object. Given



Algorithm 2: CurvilinearSkeleton(X)

Data: A cubical complex X � F3

Result: A cubical complex Y � F3

1 W = {f ∈ X|LifespanX(f) > DCcc1 (X)(f) + BirthX(f)−Dcc
1 (X)(f) and

dim(f) = 1} ;
2 return ParDirCollapse(X,W,+∞);

a cubical complex X, if an edge of X has a high decenterness value for X, then
it is probably located too close to the border of X and does not represent an
interesting geometrical feature to preserve. On the other hand, if an edge has a
high lifespan for X, then it means it was not removed quickly, after becoming a
facet, by the thinning algorithm and might represent some precious geometrical
information on the original object. An idea would be to keep, during thinning,
all edges whose lifespan is superior to the decenterness value. Unfortunately, this
strategy produces skeletons with many spurious branches in surfacic areas of the
original object.

We can identify surfacic areas of a complex as zones where squares have a
high lifespan. Therefore, in order to avoid spurious branches in surfacic areas,
we need to make it harder for edges to be preserved in these zones. It can be
achieved by deciding that an edge will be kept safe from deletion by the thinning
algorithm if its lifespan is superior to the decenterness value plus the lifespan of
squares “around” this edge. This leads us to proposing Alg. 2.

In order to understand what was realised on line 1 of Alg. 2, we might point
out that the birth date of an edge corresponds to the highest death date of the
squares containing this edge. Moreover, the map Dcc

1 (X) gives, for all 3-faces
of X, their death date (as the thinning algorithm naturally follows this map to
eliminate cubes from a 3-complex). Therefore, for an edge f of X, Dcc

1 (X)(f)
informs us on the highest death date of cubes containing f , also equal to the
highest birth date of squares containing f . In conclusion, BirthX(f)−Dcc

1 (X)(f)
is an approximation of the lifespan of the squares containing f .

Although the output of Alg.2 may contain 2-faces, the algorithm is said to be
a curvilinear skeletonization algorithm because it only adds 1-faces (edges) in the
inhibitor set W (used for the visual aspect preservation step) (on line 1 of Alg. 2).
For the same reason, we say that the output of Alg. 2 is a curvilinear skeleton.
In the scenes studied in Sec. 5, the outputs of Alg. 2 were one dimensional
complexes.

4.4 Results

Algorithm 2 allows to obtain a filtered curvilinear skeleton from a three dimen-
sional complex. The results presented in Fig. 4 show that the skeletons contain
the main geometrical information from the input shapes, and no spurious branch.



Fig. 4. Results of algorithm 2 for two shapes: a hand (left) and a statue (right). In
each pair, the rightmost image represents the skeleton.

5 Application to path tracing

In this section, we explain how the curvilinear skeleton of the voids of the scene
can enhance the path tracing algorithm. We start with some basic elements
related to path tracing and then present our modified path tracing algorithm.

5.1 The path tracing

Let O be the origin of the camera in the scene. For each pixel P of the final

image, let x be the nearest intersection point of the ray (O,
−−→
OP = −Θ) with

an element of the scene. To obtain the luminosity, we must solve the rendering
equation [8] which is a recursive integral equation, the integrand containing the
radiance function that we must compute:

L(x→ Θ) = Le(x→ Θ) +
∫
Φ∈Ωx

fs(x,Θ ↔ Φ)L(r(x, Φ)→ −Φ)dωΦ

where L is the radiance (a radiometric quantity that represents luminosity) from
point x toward direction Θ and Le is the emitted radiance (non null only on light
sources). The point r(x, Φ) is the nearest visible point from x in the direction
Φ of the hemisphere Ωx. The fs function expresses how much luminosity is
exchanged, on point x, between an incoming ray Φ and the outgoing ray Θ.

The previous equation expresses an intuitive idea: the reflected radiance from
x towards the camera is the result of computing all incoming luminosity on x
scaled by a factor which depends on the material on x and the angle of the ray
going from the camera to x. The most common method used to estimate the
integral, denoted by Lr(x→ Θ), is the Monte-Carlo integration which provides
the following:

〈Lr(x→ Θ)〉 =
fs(x,Θ ↔ Φ)L(r(x, Φ)→ −Φ)

p(Φ)

The function p is a probability density function (pdf) that is used to sample
Φ. This estimator is unbiased, meaning that the expected value E[〈Lr(x→ Θ)〉]



is equal to Lr(x → Θ). The variance of the estimator expresses its quality and
depends on the chosen pdf p. The best choice is a pdf that matches the shape of
the function to integrate (ie. gives high density to samples that have high values
for the function and low density to samples that have low values). The strategy
of choosing an adapted pdf is called importance sampling [8] and is used in global
illumination to improve the convergence speed of the algorithms.

The algorithm computes L as follow: it chooses one random direction Φ based
on the pdf p and applies the estimator by calling L recursively to compute Lr
(shoots a new ray in the direction Φ, computes the new hit point with the scene,
and computes the new radiance at this point). Finally, it returns the sum of the
emitted radiance Le and the result for Lr. The recursion stops when either a
maximal number of bounces or a directly illuminated area have been reached.

This computation is done multiple times for each pixel. We average the re-
sults and get an estimation of the mean radiance passing through the pixel and
heading towards the camera. A bad pdf would lead in picking directions that do
not reach the light before the end of the recursion, and produce results with a
lot of noise in the final image. In the next part, we explain how to produce a pdf
based on the curvilinear skeleton.

5.2 Skeleton based importance sampling

As stated in the introduction, a curvilinear skeleton of the void (with some
preprocessing performed on it) gives us information on which directions the
light comes from. Given these directions, we can build a efficient pdf pskel and
guide our rays by sampling the hemispheres with pskel. The integrand of Lr is:

fs(x,Θ ↔ Φ)L(r(x, Φ)→ −Φ).

The most common strategy used to sample Ωx is to use the function fs
because it is an input of the algorithm. The term L, representing the distribution
of light in the scene, is unknown. Our method gives a way to sample L.

Construction of the importance points The skeleton of the voids of the
scene is computed using Alg. 2 (as shown on Fig. 5 on the right) and is converted
into a graph (the nodes are the 0-faces and the edges are the 1-faces). We then
compute a set of importance points, which will be used to sample Ωx in the path
tracing algorithm. To each node n of the skeleton, one importance point impn
is computed. Intuitively, the importance point associated to n is the direction
to follow in order to find a light source.

Let L be the light source of the scene and nL the nearest node of the skeleton
that is visible by L. For each node, we compute the shortest path to nL along
the skeleton. To do so, we use the Dijkstra algorithm and weight the edges of
the skeleton depending on a visibility criteria: the weight of an edge e is 1 if e
is visible from nL and 10 else. It results that illuminated paths will be shorter
than paths located in dark areas.



Fig. 5. On the left, we illustrate the importance point impn associated to a node n.
The dotted black line shows the closest node to n not included in Vn. On the right,
an example of the curvilinear skeleton (in red) obtained in the Sponza scene.

Let n be a node of the skeleton and Vn the set of visible nodes from n along
the shortest path toward nL. The importance point impn associated to n is the
barycenter of Vn. An example is shown on Fig. 5 on the left. The algorithm can
be extended to multiple light sources by taking into account, when computing
the importance point of a skeleton node, only the closest light source.

Sampling according to L Given a point x on the scene and a direction Θ,
we want to compute L(x → Θ) and then sample the hemisphere Ωx. We look
for the nearest skeleton node n to x and its importance point impn. We sample

the hemisphere with a power-cosine pdf centered on
−−−−→
x impn:

pskel(Φ) = s+1
2π ∗ cos

sα

with α the angle between
−−−−→
x impn and Φ, s being a parameter called skeleton

strength. The higher s is, the closer to
−−−−→
x impn we sample.

5.3 Results and discussion

Some results are presented on Fig. 6 and Fig. 1 where we can see that our method
produces less noisy images compared to the regular path tracing. We present, in
Fig 7, the time taken by each method to produce an image of same quality (the
quality is measured by the mean square error (MSE) with a reference image) in
different scenes: our method is the fastest one.

6 Conclusion

We presented in this article a new skeletonization algorithm that both preserves
geometrical features of objects and produces a pure curvilinear skeleton. These
two properties allow us to improve the path tracing algorithm in guiding the
rays towards the main illuminated area of the scene. Our algorithm is faster and
produce less noise than the classical path tracing method.



Fig. 6. Same scene rendered using the classical path tracing (image a) or our method
(image b). Images c and d are both details of respectively images a and b

Scene Corridor Sponza 1 Sponza 2 (Fig. 6)

MSE 100 145 / 57 301 / 156 881 / 826

MSE 40 434 / 260 924 / 628 2678 / 2570

Fig. 7. Time (s) to reach an MSE of 100 and 40 against reference images. In each cell,
the left number is for the standard path tracing, the right is for our method

References

1. Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences,
Série Mathématiques I(345), 363–367 (2007)

2. Bertrand, G., Couprie, M.: A new 3D parallel thinning scheme based on critical
kernels. In: Discrete Geometry for Computer Imagery. pp. 580–591. Springer (2006)

3. Chaussard, J.: Topological tools for discrete shape analysis. Ph.D. thesis, Université
Paris-Est (December 2010)

4. Chaussard, J., Couprie, M.: Surface thinning in 3d cubical complexes. In: Proceed-
ings of the 13th International Workshop on Combinatorial Image Analysis. pp.
135–148. IWCIA ’09, Springer-Verlag, Berlin, Heidelberg (2009)

5. Chaussard, J., Couprie, M., Talbot, H.: Robust skeletonization using the discrete
lambda-medial axis. Pattern Recognition Letters In Press, (2010)

6. Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and euclidean
skeleton in 2d and 3d. Image and Vision Computing 25(10), 1543–1556 (2007)

7. Hesselink, W.H., Roerdink, J.B.T.M.: Euclidean skeletons of digital image and
volume data in linear time by the integer medial axis transform. IEEE Transactions
on Pattern Analysis and Machine Intelligence 30(12), 2204–2217 (2008)

8. Kajiya, T.: The Rendering Equation. In: Computer Graphics (ACM SIGGRAPH
’86 Proceedings). vol. 20(4), pp. 143–150 (Aug 1986)

9. Lafortune, E.P., Willems, Y.D.: Bi-directional path tracing. In: Proceedings of
the 3rd international conference on computational graphics and visualization tech-
niques. pp. 145–153 (1993)

10. Liu, L., Chambers, E.W., Letscher, D., Ju, T.: A simple and robust thinning al-
gorithm on cell complexes. In: Computer Graphics Forum (Proceedings of Pacific
Graphics 2010) (2010)

11. Matheron, G.: Eléments pour une Théorie des Milieux Poreux (1967)
12. Palágyi, K.: A Subiteration-Based Surface-Thinning Algorithm with a Period of

Three. In: Pattern Recognition, Lecture Notes in Computer Science, vol. 4713, pp.
294–303. Springer Berlin / Heidelberg (2007)


