Linear-Time Computation of Local Periods

Jean-Pierre Duval ?

8LIFAR, Faculté des Sciences et Techniques, Université de Rouen, 76821
Mont-Saint-Aignan Cedezx, France

Roman Kolpakov P!

b Complexity Theory and Algorithmics Group, Department of Computer Science,
The University of Liverpool, Chadwick Building, Peach Street, Liverpool L69 7ZF,
UK

Gregory Kucherov ©

CINRIA/LORIA, 615 rue du Jardin Botanique, B.P. 101, 54602
Villers-lés-Nancy, France

Thierry Lecroq ¢

dABISS, Faculté des Sciences et Techniques, Université de Rouen, 76821
Mont-Saint-Aignan Cedex, France

Arnaud Lefebvre ©

CUMR 6037/ABISS, Faculté des Sciences et Techniques, Université de Rouen,
76821 Mont-Saint-Aignan Cedex, France

Abstract

We present a linear-time algorithm for computing all local periods of a given word.
This subsumes (but is substantially more powerful than) the computation of the
(global) period of the word and on the other hand, the computation of a critical
factorization, implied by the Critical Factorization Theorem.

Key words: word, period, local period, algorithm, complexity, string matching

Email addresses: Jean-Pierre.Duval@univ-rouen.fr (Jean-Pierre Duval),
R.Kolpakov@csc.liv.ac.uk (Roman Kolpakov), Gregory.Kucherov@loria.fr
(Gregory Kucherov), Thierry.Lecroq@univ-rouen.fr (Thierry Lecroq),
Arnaud.Lefebvre@univ-rouen.fr (Arnaud Lefebvre).

1 On leave from the French-Russian Institute for Informatics and Applied Mathe-

Preprint submitted to Theoretical Computer Science 16 June 2004

1 Introduction

Periodicities in words have been classically studied in word combinatorics
and are at the core of many fundamental results [Lot83,CK97,Lot02]. Be-
sides, notions and techniques related to periodic structures in words find
their applications in different areas: data compression [Sto88], molecular bi-
ology [Gus97], as well as for designing more efficient string search algorithms
[GS83,CP91,CR95].

In this paper, we concentrate, from the algorithmic perspective, on the im-
portant notion of local periods, that characterize a local periodic structure at
each location of the word [Duv98 DMRO1]. In informal terms, the local period
at a given position is the size of the smallest square centered at this position.
The reader can refer to [FS98,GS04] for recent studies on squares also called
tandem repeats in the context of computational biology. An importance of
local periods is evidenced by the fundamental Critical Factorization Theorem
[Lot83,CK97,Lot02] that asserts that there exists a position in the word (and
a corresponding factorization), for which the local period is equal to the global
period of the word. The Critical Factorization Theorem has many important

consequences and has been recently subject of new research developments
[MRS95].

Designing efficient algorithms for computing different periodic structures in
words has been for a long time an active area of research. It is well-known that
the (global) period of a word can be computed in linear time, using the Knuth-
Morris-Pratt string matching method [KMP77,CR94] (see also [CG00]). On
the other hand, in [CP91] it has been shown that a critical factorization of a
word w can be constructed in linear time, by computing the maximal suffix
of w for the lexicographical order and the maximal suffix for the reverse lexi-
cographical order. In the same work, the factorization has then been used to
design a new string matching algorithm. As another example, the Critical Fac-
torization Theorem was used in [JJB96] to design an efficient approximation
algorithm for the shortest superstring problem.

In this paper, we show how to compute all local periods in a word of length n
in time O(n) assuming an alphabet of constant size. This is substantially more
powerful than linear-time computations of a critical factorization and of the
global period: indeed, once all local periods have been computed, the global
period is simply the maximum of all local periods, and each such maximal
value corresponds to a distinct critical factorization.

Note that a great deal of work has been done on finding periodicities occurring
in a word (see [KK99] for a survey). However, none of them allows to compute

matics, Moscow University, Russia.

all local periods in linear time. The reason is that most of those algorithms are
intrinsically super-linear, which can be explained by the fact that they tend,
explicitly or implicitly, to enumerate all squares in the word, the number of
which can be super-linear. The closest result is the one of [Kos94] which claims
a linear-time algorithm for finding, for each position ¢ of the word, the smallest
square starting at 7. The approach is based on a sophisticated analysis of the
suffix tree. The absence of a complete proof prevents the comprehension of
the algorithm in full details; however, to the best of our understanding, this
approach cannot be applied to finding local periods.

Here we design a linear-time algorithm for finding all local periods, based
on several different string matching techniques. Some of those techniques (s-
factorization, Main-Lorentz extension functions) have already been success-
fully used for several repetition finding problems [Cro83], [ML84], [Mai89],
[KK99], [KK00] and [KKO1]. In particular, in [KK99], it has been shown that
all mazimal repetitions can be found in linear time, providing an exhaustive
information about the periodic structure of the word. However, here again, a
direct application of this approach to finding local periods leads to a super-
linear algorithm. We then propose a non-trivial modification of this approach,
that allows to find a subclass of local periods in linear time.

2 Local periods: preliminaries

Consider a word w = aj...a,, over a finite alphabet. |w| denotes the length
of w, and w® stands for the reverse of w, that is apa,_;...a;. w[i..j], for
1 < 1,5 < n, denotes the subword a;...a; provided that ¢ < j, and the empty
word otherwise. A position ¢ in w is an integer number between 0 and n,
associated with the factorization w = wwv, where |u| = i.

A square s is a word of the form ¢t (i.e. a word of even length with two equal
halves). t is called the root of s, and |¢| is called its period.

Definition 1 Let w = uv, and |u| = i. We say that a non-empty square tt is
centered at position i of w (or matches w at central position i) iff the following
conditions hold:

(1) tis a suffix of u, or u is a suffix of t,
(ii) t is a prefix of v, or v is a prefix of t.

In the case when £ is a suffix of v and ¢ is a prefix of v, we have a square
occurring inside w. We call it an internal square (see Figure 1). If v is a
proper prefix of ¢ (respectively, u is a proper suffix of), the square is called
right external (respectively, left external) (see Figures 2 and 3).

Fig. 1. Internal square

u | v |

| t | t |

Fig. 2. Right external square

l U | v |

| t | t |

Fig. 3. Right and left external square

Definition 2 The smallest non-empty square centered at a position i of w s
called the minimal local square (hereafter simply minimal, for shortness). The
local period at position i of w, denoted LP,(i), is the period of the minimal
square centered at this position.

Note that for each position i of w, LP,(7) is well-defined, and 1 < LP, (i) <
jw].

Any word w of length n has the (global) period per(w), which is the minimal
integer p such that w[i] = w[i + p] whenever 1 < i i+ p < |w|. Equivalently,
per(w) is the smallest positive integer p such that words w[l..n — p| and
w[p+1..n] are equal. The critical factorization theorem is a fundamental result
relating local and global periods [CV78 Duv79,Lot83,CK97,Lot02]:

Theorem 1 (Critical Factorization Theorem) For each word w there ex-
ists a position i (and the corresponding factorization w = wv, |u| =14, 0 < i <
|w|) such that LP, (i) = per(w). Moreover, such a position ezists among any
per(w) consecutive positions of w.

Apart from its combinatorial consequences, an interesting feature of the criti-
cal factorization is that it can be computed very efficiently, in a time linear in
the word length [CP91]. This can be done, for example, using the suffix tree
construction [CR94]. On the other hand, it is well-known that the (global)
period of a word can be computed in linear time, using, for example, the
Knuth-Morris-Pratt technique [CR94] (see also [CG00]).

In this paper, we show how to compute all local periods in a word in linear
time. This computation is much more powerful than that of a critical factor-
ization or the global period: once all local periods are computed, the global
period is equal to the maximum among them, and each such maximal local
period corresponds to a critical factorization of the word.

The method we propose consists of two parts. We first show, in Section 3,
how to compute all internal minimal squares. Then, in Section 4 we show how
to compute left and right external minimal squares, in particular for those
positions for which no internal square has been found. Both computations
will be shown to be linear-time, and therefore computing all local periods can
be done within linear time too.

3 Computing internal minimal squares

Finding internal minimal squares amounts to computing, for each position of
the word, the smallest square centered at this position and occurring entirely
inside the word, provided that such a square exists. Thus, throughout this
section we will be considering only squares occurring inside the word and
therefore, for the sake of brevity, omit the adjective “internal”.

The problem of finding squares and, more generally, finding repetitions occur-
ring in a given word has been studied for a long time in the string matching
area, we refer to [KK99] for a survey. A natural idea is then to apply one of
those methods in order to compute all squares and then select, for each central
position, the smallest one. A direct application of this approach, however, can-
not result in a linear-time algorithm, for the reason that the overall number of
squares in a word can be as big as ©(nlogn) (see [Cro81]). Therefore, manipu-
lating the set of all squares explicitly is prohibitive for our purpose. In [KK99],
mazimal repetitions have been studied, which are maximally extended runs of
consecutive squares. Importantly, the set of maximal repetitions encodes the
whole set of squares, while being only of linear size.

Our approach here is to use the technique of computing maximal repetitions
in order to retrieve squares which are minimal for some position. To present
the algorithm in full details, we first need to describe the techniques used in
[Mai89,KK99] for computing maximal repetitions.

3.1 s-factorization, Main-Lorentz extension functions, and computing repe-
titions

In this section we recall basic ideas, methods and tools underlying our ap-
proach.

The s-factorization [Cro83] is a special decomposition of the word. It is closely
related to the Lempel-Ziv factorization (implicitly) defined by the well-known
Lempel-Ziv compression method. The idea of defining the s-factorization is to

proceed from left to right and to find, at each step, the longest factor which has
another copy on the left. Alternatively, the Lempel-Ziv factorization considers
the shortest factor which does not appear to the left (i.e. extends by one letter
the longest factor previously defined). We refer to [Gus97] for a discussion on
these two variants of factorization. A salient property of both factorizations
is that they can be computed in linear time [RPE81] in the case of constant
alphabet.

In their original definition, both of these factorizations allow an overlap be-
tween a factor and its left copy. However, we can restrict this and require
the copy to be non-overlapping with the factor. This yields a factorisation
with non-overlapping copies (see [KKO01]). Computing the s-factorization (or
Lempel-Ziv factorization) with non-overlapping copies can still be done in
linear time.

In this work we will use the s-factorization with non-overlapping copies:

Definition 3 The s-factorization of w with non-overlapping copies is the fac-
torization w = fifao... fm, where f;’s are defined inductively as follows:

(i) fr =wll],

(ii) assume we have computed fifo... fi 1 (1 > 2), and let w[j] be the letter
immediately following fife... fic1 (i.e. 5= \|fifa... fic1|+1). If w]j] does
not occur in fifo... fi_1, then f; = w(j|, otherwise f; is the longest sub-
word starting at position j, which has another occurrence in fifs... fi_1.

Note however that the choice of the factorization definition is guided by the
simplicity of algorithm design and presentation clarity, and is not unique.

Our second tool is Main-Lorentz extension functions [ML84]. In its basic form,
the underlying problem is the following. Assume we are given two words
wi, ws and we want to compute, for each position ¢ of wy, the longest pre-
fix of w; which occurs at position ¢ in wy. This computation can be done in
time O(|wy| + |ws|) [ML84]. Note that w; and wy can be the same word, and
that if we reverse w; and wy, we come up with the symmetric computation of
longest suffixes of wy[1..7] which are suffixes of w;.

We now recall how Main-Lorentz extension functions are used for finding rep-
etitions. The key idea is illustrated by the following problem. Assume we have
two words w; = wy[l..m]| and wy = ws[l..n] and consider their concatenation
w = wiwsy. Assume we want to find all squares of w which cross the boundary
between w; and ws,, i.e. squares which start at some position < m and end at
some position > m in w (start and end positions of a square are the positions
of respectively its first and last letter). First, we divide all such squares into
two categories — those centered at a position < m and those centered at a
position > m — and by symmetry, we concentrate on the squares centered at

1 m 1 p n
w wy | [wy |

suf (p) pref(p+1)
| | |
suf(p) pref(p+1)
| | |

m — suf (p) +p

| | |
| ol

m + pref (p + 1)

Fig. 4. If suf (p)+ pref (p+1) > p then there is a run of squares centered at positions
from m — suf(p) +p to m + pref(p + 1).

a position > m only. We then compute the following extension functions:

e pref(i), 2 <i < n+1 defined by pref (i) = max{j | we[l..j] = weli..i+j—1]}
for 2 <i < n, and pref(n+1) =0,

e suf(i), 1 <i < mn defined by suf (i) = max{j | wi[m — j+ 1.m| = wm +
i—j+ l.m+i)}.

Then there exists a square with period p iff

suf (p) + pref(p+1) > p (1)

[Mai89]. This gives a key of the algorithm: we first compute values pref (p)
and suf(p) for all possible p, which takes time O(m + n). Then we simply
check for each p inequality (1) — each time it is verified, we witness new
squares of period p. More precisely, whenever the inequality is verified we
have identified, in general, a series (run) of squares centered at each position
from the interval [m — suf (p) + p..m + pref (p + 1)] (see Figure 4). This run
is a mazimal repetition in w (see [KK99]). Formally, this maximal repetition
may contain squares centered at positions < m (if suf (p) > p), and squares
starting at positions > m (if pref(p + 1) > p — 1). Therefore, if we want only
squares centered at positions > m and starting at positions < m (as it will
be our case in the next Section), we have to restrict the interval of centers
to [max{m — suf (p) + p, m}.. min{m + pref (p+ 1), m + p}|. Clearly, verifying
inequality (1) takes a constant time and the whole computation can be done
in time O(n).

To find, in linear time, all squares in a word (and not only those which cross a
given position), we have to combine the factorization and extension function
techniques. In general terms, the idea is the following: we compute the s-

factorization and process factors one-by-one from left to right. For each factor
fr, we consider separately those squares which occur completely inside f,., and
those ending in f, and crossing the boundary with f,. ;. The squares of the
first type are computed using the fact that f. has a copy on the left — we
can then retrieve those squares from this copy in time O(|f,|). The squares of
the second type are computed using the extension function technique sketched
above, together with an additional lemma asserting that those squares cannot
extend to the left of f, by more than |f.| + 2|f._1| letters [Mai89]. Therefore,
finding all these squares, in form of runs, takes time O(|f,_1| + |f+|). The
whole word can then be processed in time O(n). The reader is referred to
[Mai89,KK99] for full details.

This general approach, initiated in [Cro83,Mai89] has been applied success-
fully to various repetition finding problems [KK99,KK00,KKO01]. In this work
we show that it can be also applied to obtain a linear-time algorithm for com-
puting internal local periods. This gives yet another illustration of the power
of the approach.

3.2 Finding internal minimal squares

We are now ready to present a linear-time algorithm for computing all internal
minimal squares in a given word w.

First, we compute, in linear time, the s-factorization of w with non-overlapping
copies and we keep, for each factor f,., a reference to its non-overlapping left
copy. The algorithm processes all factors from left to right and computes, for
each factor f,., all minimal squares ending in this factor. For each minimal
square found, centered at position i, the corresponding value LP, (i) is set.
After the whole word has been processed, positions i for which values LP,(7)
have not been assigned are those positions for which no internal square cen-
tered at ¢ exists. For those positions, minimal squares are external, and they
will be computed at the second stage, presented in Section 4.

Let f, = w[m + 1..m + /] be the current factor, and let w[p + 1..p + ¢] be
its left copy (note that p + ¢ < m). If for some position m + i, 1 < i < £,
the minimal square centered at m + i occurs entirely inside the factor, that
is LP,(m + i) < min{i,¢ — i}, then LP,(m + i) = LP,(p + 7). Note that
LP,(p+1i) has been computed before, as the minimal square centered at p+
ends before the beginning of f,. Based on this, we retrieve, in time O(|f,|), all
values LP,,(m+ i) which correspond to squares occurring entirely inside f,. It
remains to find those values LP, (m + i) which correspond to minimal squares
that end in f, and extend to the left beyond the border between f, and f,_;.

To do this, we use the technique of computing squares described in the previous

section. The idea is to compute all candidate squares and test which of them
are minimal. However, this should be done carefully: as mentioned earlier,
this can break down the linear time bound, because of a possible super-linear
number of all squares. The main trick is to keep squares in runs and to show
that there is only a linear number of individual squares which need to be
tested for minimality.

As in [Mai89], we divide all squares under consideration into those which are
centered inside f, and those centered to the left of f.. The two cases are
symmetrical and therefore we concentrate on those squares centered inside
fr thus at positions m..m + ¢ — 1. In addition, we are interested in squares
starting at positions less than or equal to m and ending inside f,. We compute
all such squares in the increasing order of periods. For each p = 1.4 — 1 we
compute the run of all squares of period p centered at positions belonging to
the interval [m..m + ¢ — 1], starting at a position less than or equal to m, and
ending inside f,, as explained in Section 3.1. Assume we have computed a run
of such squares of period p, and assume that ¢ < p is the maximal period
for which squares have been previously found. If p > 2¢, then we check each
square of the run whether it is minimal or not by checking the value LP, (7). If
this square is not minimal, then its center : has been already assigned a value
LP,(i). Indeed, if a smaller square centered at i exists, it has necessarily been
already computed by the algorithm (recall that squares are computed in the
increasing order of periods), and therefore a positive value LP, (i) has been
set before. If no value LP, (i) has yet been assigned, then we have found the
minimal square centered at . Since there are at most p considered squares of
period p (their centers belong to the interval [m..m + p — 1]), checking all of
them takes at most 2(p — ¢) individual checks (as ¢ < p/2 and p — q > p/2).

Now assume p < 2¢. Consider a square s, = w[j — ¢+ 1..j 4+ ¢| of period ¢ and
center j, which has been previously found by the algorithm (square of period
q in Figure 5). We now prove that we need to check for minimality only those
squares s, of period p which have their center k£ verifying one of the following
inequalities:

|k —j|<p—gq, or (2)
k>j+q (3)

In words, k is located either within distance p — ¢ from 7, or beyond the end
of square s,.

Lemma 1 Let s, = wlk—p+1..k+p| be the minimal square centered at some
position k. Let s, = w[j — q+ 1..j +q] be another square with ¢ < p. Then one
of inequalities (2),(3) holds.

Proof By contradiction, assume that neither of them holds. Consider the case

j—q k—p k—g m J k Jj+aq k+p

I l l

[[
]]

Fig. 5. Case where neither of inequalities (2),(3) holds (subcase k > j). m is the
border between the factor f, and the factor f._;.

k > j, case k < j is symmetric. The situation with £ > 7 is shown in Figure 5.

Now observe that word w[j+1..k] has a copy w[j —¢+1..k —q] (shown in dark
gray in Figure 5) and that its length is (k—j). Furthermore, since k—j > p—q
(as inequality (2) does not hold), this copy overlaps by p — ¢ letters with the
left root of s,,. Consider this overlap w[k —p+1..k —¢| (light gray in Figure 5).
It has a copy w[k + 1..k + (p — ¢)] and another copy w[k — (p — q) + 1..k] (see
Figure 5). We thus have a smaller square centered at k, which proves that
square s, cannot be minimal. O

Therefore, we need to check for minimality only those squares s, which verify,
with respect to s, one of inequalities (2),(3). Note that there are at most
2(p — q) squares s, verifying (2), and at most p — ¢ squares s, verifying (3),
the latter because s, must start before the current factor, i.e. & < m + p.
We conclude that there are at most 3(p — ¢) squares of period p to check for
minimality, among all squares found for period p. Summing up the number of
all individual checks results in a telescopic sum, and we obtain that processing
all squares centered in the current factor can be done in time O(|f,]).

A similar argument applies to the squares centered on the left of f,.. Note that
after processing f,., all minimal squares ending in f, have been computed.

To summarize, we need to check for minimality only O(|f,_1| + |f-|) squares,
among those crossing the border between f,. and f. 1, each check taking a con-
stant time. We also need O(|f,|) time to compute minimal squares occurring
inside f,. Processing f, takes then time O(|f,—1|+|f|) overall, and processing
the whole word takes time O(n).

Theorem 2 In a word of length n, all internal minimal squares can be com-
puted in time O(n).

10

Fig. 6. If there is a right-external square of period p centered at position 4 then
suf(n —p) >n —i (case where i > n — p).

4 Computing external minimal squares

The algorithm of the previous section allows to compute all internal minimal
squares of a word. Here we show how to compute ezrternal minimal squares
for those positions which do not have internal squares centered at them.

Consider a word wll..n]. We first consider squares which are right-external
but not left-external. Those squares are centered at positions in the right half
of the word. The case of squares which are left-external but not right-external
is symmetrical.

For each position i in the right half of w, we compute a value RS(i) equal to
the minimal period of a right-external and not left-external square centered
at i, provided such a square exists. We show that all values RS(i) can be
computed in linear time using longest extension functions that we already
used in Section 3.2 for computing minimal internal squares.

Here we need the following longest extension function: For each position ¢ of
w, define suf (i) = max{j | wln — j+ 1..n] = w[i — j + 1..7]}. This is the same
function suf as the one defined in Section 3.1 except that it is defined on one
word w instead of two words. Similar to Section 3.1, all values suf (i) can be
computed in linear time.

Consider now a right-external square of period p centered at some position
i € [[n/2]..n — 1], where n —i < p <. Observe that w[i —p+ 1l.n — p| =
w(i + 1..n]. This implies that suf (n —p) > n —i (see Figure 6). Conversely, if
for some p € [1..n — 1], suf(n — p) > 0, then there exists a family of squares
of period p centered at positions i € [n — suf (n —p)..n — 1] (see Figure 7). For
1 > n — p, the square is right-external, otherwise it is internal.

This implies the following algorithm for computing minimal right-external
squares. Compute suf for all positions of w. For each j € [1..n], set suf'(j) =
suf (j) if suf(j) < n —j, and suf'(j) = n — j — 1 otherwise. For each center
position i € [[n/2]..n — 1], we need to compute the minimal p such that

11

Fig. 7. If suf (n—p) > 0 then there is a run of square of period p centered at positions
from n — suf(n —p) ton — 1.

suf'(n —p) > n—i.

Consider all pairs (j, suf'(j)) for j € [l.n]. If for some pair (j, suf'(j)),
there exists a pair (j', suf'(j')) such that suf’(j') > suf'(j) and j' > j, then
(7, suf'(j)) carries no useful information for computing minimal right-external
squares (see Figure 8). We then delete all such pairs (4, suf’(j)) from consid-
eration by looping through all j from n to 1 and deleting those for which the
value suf’(j) is smaller than or equal to max; - ;j{suf’(j')}. We then sort the
remaining pairs (j, suf'(j)) in the decreasing order of suf’(j). Using bucket
sort, this can be done in O(n) time and space.

We now set the values RS(7) as follows. For the first element (jo, suf'(jo)) of the
list, we set RS(i) = 0 for all i € [[n/2]..n—suf'(jo)—1]. We then scan through
the ordered list of pairs and for each element (7, suf’(j)), look at the next
element (j', suf’(j')), suf'(j) > suf'(j"). For alli € [n—suf'(j)..n—suf'(j")—1],
set RS(i) = n — j. We then have the following

Lemma 2 For eachi € [[n/2]..n—1], RS(i) is the smallest period of a right-
external square centered at i if such a square exists, and RS(i) = 0 otherwise.

We now turn to squares that are both right-external and left-external. Con-
sider such a square of period p, centered at some position 7. Observe that
w[l..n—p] = w[p+1..n]. Therefore, there exists a border of w of size n—p < n/2.
The border of maximal size corresponds to right-external and left-external
squares of minimal period. On the other hand, this period is equal to the
(global) period per(w) of w. Therefore, all minimal squares which are both
right-external and left-external have the period equal to per(w). On the other
hand, it is well known that per(w) can be easily computed in linear time
[MP70,KMP77].

To conclude, all external minimal squares can be computed in time O(n), for
those positions which do not have internal squares centered in them. We then
obtain an O(n) algorithm for computing all minimal squares: first, using the
algorithm of Section 3 we compute all internal minimal squares and then, using
Lemma 2 and the above remark, we compute the minimal external squares for

12

w l l |
suf'(5") suf'(5')
|] []
suf'(5) suf'(5)

| | | | |

Fig. 8. If j < j' and suf’(j) < suf'(j') then (4, suf'(j)) is useless for computing
minimal right-external squares.

those positions for which no internal square has been found at the first stage.
This proves the main result.

Theorem 3 In a word of length n, all local periods LP,(i) can be computed
in time O(n).

5 Conclusions

We presented an algorithm that computes all local periods in a word in time
linear in the length of the word. This computation provides an exhaustive
information about the local periodic structure of the word. According to the
Critical Factorization Theorem, the (global) period of the word is simply the
maximum among all local periods. Therefore, as a case application, our algo-
rithm allows to find all possible critical factorizations of the word.

The main difficulty was to extract all shortest local squares without having to
process all individual squares occurring in the word, which would break down
the linear time bound. This made impossible an off-the-shelf use of existing
repetition-finding algorithms, and necessitated a non-trivial modification of
existing methods.

An interesting research direction would be to study the combinatorics of pos-
sible sets of local periods, in a similar way as it was done for the structure of
all (global) periods [GO81,RR01]. The results presented in this paper might
provide an initial insight for such a study.

Acknowledgments GK, TL and AL have been supported by the french
Action Spécifique “Algorithmes et Séquences” of CNRS. JPD, TL and AL
have been supported by the NATO grant PST.CLG.977017. Part of this work
has been done during the stay of RK at LORIA in summer 2002, supported
by INRIA.

13

References

[CV78]

[CK97]

[Cro81]

[Cro83]

[CP91]

[CR94]

[CR95]

[CGOO]

[Duv79]

[Duv9s]

Y. Cesari and M. Vincent. Une caractérisation des mots périodiques.
Comptes Rendus de I’Académie des Sciences Paris, 286(A):1175-1177,
1978.

C. Choffrut and J. Karhumaki. Combinatorics of words. In G. Rozenberg
and A. Salomaa, editors, Handbook on Formal Languages, volume I, pages
329-438, Springer Verlag, Berlin-Heidelberg-New York, 1997.

M. Crochemore. An optimal algorithm for computing the repetitions in a
word. Information Processing Letters, 12(5):244-250, 1981.

M. Crochemore. Recherche linéaire d’'un carré dans un mot. Comptes
Rendus de I’Académie des Sciences Paris Série I Mathématiques, 296:781—
784, 1983.

M. Crochemore and D. Perrin. Two-way string matching. Journal of the
ACM, 38(3):651-675, 1991.

M. Crochemore and W. Rytter. Text algorithms. Oxford University Press,
1994.

M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient
string searching. Algorithmica, 13(5):405-425, 1995.

A. Czumaj and L. Gasieniec. On the complexity of determining the
period of a string. In R. Giancarlo and D. Sankoff, editors, Proceedings of
the 11th Annual Symposium on Combinatorial Pattern Matching (CPM),
Montréal, Canada, number 1848 in Lecture Notes in Computer Science,
pages 412-422, Springer-Verlag, Berlin, 2000.

J.-P. Duval. Périodes et Répétitions des Mots du Monoide Libre.
Theoretical Computer Science, 9:17-26, 1979.

J.-P. Duval. Périodes locales et propagation de périodes dans un mot.
Theoretical Computer Science, 204(1-2):87-98, 1998.

[DMRO1] J.-P. Duval, F. Mignosi and A. Restivo. Recurrence and periodicity

[FS98]

[GS83]

[GO81]

[Gus97]

in infinite words from local periods. Theoretical Computer Science,
262(1):269-284, 2001.

A.S. Fraenkel, and J. Simpson. How many squares can a string contain ?
Journal of Combinatorial Theory, Series A, 82:112-120, 1998.

Z. Galil and J. Seiferas. Time-space optimal string matching. Journal of
Computer and System Sciences, 26(3):280-294, 1983.

L.J. Guibas and A.M. Odlyzko. Periods in strings. Journal of
Combinatorial Theory, Series A, 30:19-42, 1981.

D. Gustield. Algorithms on Strings, Trees, and Sequences. Computer
Science and Computational Biology. Cambridge University Press, 1997.

14

[GS04]

[JIB96]

D. Gusfield, and J. Stoye. Linear-time algorithms for finding and
representing all tandem repeats in a string. Journal of Computer and
System Sciences, to appear.

T. Jiang, Z. Jiang and D. Breslauer. Rotation of periodic strings and short
superstrings. In N. Ziviani, R. Baeza-Yates and K. Guimaraes, editors,
Proceedings of the 3rd South American Workshop on String Processing
(WSP), Recife, Brazil, pages 115-125, Carleton University Press, 1996.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in

[KK99]

[KKO00]

[KKO1]

[Kos94]

[Lot83]

[Lot02]

[Mai89]

[MP70]

[ML84]

[MRS95]

strings. SIAM Journal of Computing, 6(2):323-350, 1977.

R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word
in linear time. In Proceedings of the 1999 Symposium on Foundations of
Computer Science (FOCS), New York, pages 596-604, IEEE Computer
Society, October 17-19 1999.

R. Kolpakov and G. Kucherov. Finding repeats with fixed gap. In
Proceedings of the 7th International Symposium on String Processing and
Information Retrieval (SPIRE), A Coruna, Spain, pages 162-168, IEEE
Computer Society, Septembre 2000.

R. Kolpakov and G. Kucherov. Finding Approximate Repetitions under
Hamming Distance. In F. Meyer auf der Heide, editor, Proceedings of
the 9th European Symposium on Algorithms (ESA), Aarhus, Denmark,
volume 2161 of Lecture Notes in Computer Science, pages 170-181,
Springer-Verlag, Berlin, August 2001.

S. R. Kosaraju. Computation of squares in string. In M. Crochemore
and D. Gusfield, editors, Proceedings of the 5th Annual Symposium on
Combinatorial Pattern Matching (CPM), Asilomar, California, number
807 in Lecture Notes in Computer Science, pages 146150, Springer Verlag,
Berlin, 1994.

M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of
Mathematics and Its Applications. Addison Wesley, 1983.

M. Lothaire. Algebraic Combinatorics on Words. Cambridge University
Press, 2002.

M. G. Main. Detecting leftmost maximal periodicities. Discrete Applied
Mathematics, 25(1-2):145-153, 1989.

J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm.
Report, University of California, Berkeley, Number 40, 1970.

M.G. Main and R.J. Lorentz. An O(nlogn) algorithm for finding all
repetitions in a string. Journal of Algorithms, 5(3):422-432, 1984.

F. Mignosi, A. Restivo and S. Salemi. A periodicity theorem on words and
applications. In J. Wiedermann and P. Hajek, editors, Proceedings of the
20th International Symposium on Mathematical Foundations of Computer

15

[RRO1]

[RPES1]

[Sto88]

Science (MFCS), Prague, Czech Republic, volume 969 of Lecture Notes
in Computer Science, pages 337-348, Springer Verlag, Berlin, 1995.

E. Rivals and S. Rahmann. Combinatorics of periods in strings. In
J. van Leuween, P. Orejas and P.G. Spirakis, editors, Proceedings of the
28th International Colloguium on Automata, Languages and Programming
(ICALP), Heraklion, Crete, Greece, volume 2076 of Lecture Notes in
Computer Science, pages 615-626, Springer Verlag, Berlin, 2001.

M. Rodeh, V.R. Pratt and S. Even. Linear algorithm for data compression
via string matching. Journal of the ACM, 28(1):16-24, 1981.

J.A. Storer. Data Compression: Methods and Theory. Computer Science
Press, Rockville, MD, 1988.

16

