Noncommutative symmetric functions and combinatorial Hopf algebras

Jean-Yves Thibon

Université Paris-Est Marne-la-Vallée
Asymptotics in dynamics, geometry and PDEs, generalized Borel summation

- Aim of this talk: describe a class of algebras which are increasingly popular in Combinatorics, and tend to permeate other fields as well.
- In particular (some of) these algebras have at least superficial connections with some topics of this conference.
- They can be approached in many different ways.
- Here, they will be regarded as generalizations of the algebra of symmetric functions.
- Plan:
(1) Reminder about symmetric functions as a Hopf algebra
(2) Noncommutative symmetric functions (with some details)
(3) Random walk through more complicated examples

Symmetric functions and combinatorial Hopf algebras

Symmetric functions I

- "functions": polynomials in an infinite set of indeterminates

$$
\begin{aligned}
X & =\left\{x_{i} \mid i \geq 1\right\} \\
\lambda_{t}(X) \text { or } E(t ; X) & =\prod_{i \geq 1}\left(1+t x_{i}\right)=\sum_{n \geq 0} e_{n}(X) t^{n}
\end{aligned}
$$

- $e_{n}=$ elementary symmetric functions
- Algebraically independent: $\operatorname{Sym}(X)=\mathbb{K}\left[e_{1}, e_{2}, \ldots\right]$
- With n variables: stop at e_{n}

Symmetric functions and combinatorial Hopf algebras
Noncommutative Symmetric Functions
Permutations and Free Quasi-symmetric functions
Parking functions and other algebras

Symmetric functions II

- Bialgebra structure:

$$
\Delta f=f(X+Y)
$$

- $X+Y$: disjoint union; $u(X) v(Y) \simeq u \otimes v$
- One interpretation: e_{n} as a function on the multiplicative group

$$
\begin{gathered}
G=1+t \mathbb{K}[[t]]=\left\{a(t)=1+a_{1} t+a_{2} t^{2}+\cdots\right\} \\
e_{n}(a(t))=a_{n}
\end{gathered}
$$

- Then, $\Delta e_{n}(a(t) \otimes b(t))=e_{n}(a(t) b(t))$

Symmetric functions III

- Graded connected bialgebra: Hopf algebra
- Self-dual. Scalar product s.t.

$$
\langle f \cdot g, h\rangle=\langle f \otimes g, \Delta h\rangle
$$

- To define it, we need more interesting elements
- Complete homogeneous functions: h_{n} sum of all monomials of degree n

$$
\sigma_{t}(X) \text { or } H(t ; X)=\prod_{i \geq 1}\left(1-t x_{i}\right)^{-1}=\sum_{n \geq 0} h_{n}(X) t^{n}
$$

Symmetric functions and combinatorial Hopf algebras

Symmetric functions IV

- Linear bases: labeled by unordered sequences of positive integers (integer partions), usually displayed as nonincreasing sequences

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0\right)
$$

- Multiplicative bases:

$$
e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{r}} \text { and } h_{\lambda}
$$

- Obvious basis: monomial symmetric functions

$$
m_{\lambda}=\Sigma x^{\lambda}=\sum_{\text {distinct permutations }} x^{\mu}
$$

Symmetric functions and combinatorial Hopf algebras

Symmetric functions V

- Hall's scalar product realizes self-duality

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda \mu}
$$

- h and m are adjoint bases, and

$$
\sigma_{1}(X Y)=\prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)^{-1}=\sum_{\lambda} m_{\lambda}(X) h_{\lambda}(Y)
$$

(Cauchy type identity)

- Any pair of bases s.t. $\sigma_{1}(X Y)=\sum_{\lambda} u_{\lambda}(X) v_{\lambda}(Y)$ are mutually adjoint

Symmetric functions and combinatorial Hopf algebras
Noncommutative Symmetric Functions
Permutations and Free Quasi-symmetric functions
Parking functions and other algebras

Symmetric functions VI

- Original Cauchy identity for Schur functions

$$
\sigma_{1}(X Y)=\sum_{\lambda} s_{\lambda}(X) s_{\lambda}(Y)
$$

where $s_{\lambda}=\operatorname{det}\left(h_{\lambda_{i}+j-i}\right)$

- Schur functions encode irreducible characters of symmetric groups:

$$
\chi_{\mu}^{\lambda}=\left\langle s_{\lambda}, p_{\mu}\right\rangle \quad \text { (Frobenius) }
$$

- p_{n} : power-sums

$$
p_{n}(X)=\sum_{i \geq 1} x_{i}^{n}, \quad \sigma_{t}(X)=\exp \left[\sum_{m \geq 1} p_{m}(X) \frac{t^{m}}{m}\right]
$$

Symmetric functions and combinatorial Hopf algebras

Symmetric functions VII

- $\delta f=f(X Y)$ is another coproduct
- its dual is the internal product *
- it corresponds to the pointwise product of characters (tensor product of \mathfrak{S}_{n} representations
- Other interpretations of Schur functions: characters of $U(n)$, zonal spherical functions for the Gelfand pair $(G L(n, \mathbb{C}), U(n)$, basis vectors of Fock space representations of some affine Lie algebras
- q and (q, t) deformations related to finite linear groups, Hecke algebras, quantum groups ...
- coproduct from composition of series: Faa di Bruno algebra

Symmetric functions and combinatorial Hopf algebras

Combinatorial Hopf algebras I

- Sym is the prototype of a rather vast family of Hopf algebras
- based on "combinatorial objects" (for Sym: integer partitions)
- Schur-like bases with structure constants in \mathbb{N}
- coproduct $A+B$
- internal product *
- lots of morphisms between them
- connections with representation theory
- and with operads

Symmetric functions and combinatorial Hopf algebras

Combinatorial Hopf algebras II

- Examples of combinatorial objects: integer compositions, set partitions, set compositions, permutations, Young tableaux, parking functions, various kinds of trees ...
- Motivations:
- better understanding classical symmetric functions,
- combinatorial description of solutions of functional equations, renormalization
- operads
- The simplest one: Noncommutative Symmetric Functions

Symmetric functions and combinatorial Hopf algebras

Noncommutative Symmetric Functions I

- Very simple definition: replace the complete symmetric functions h_{n} by non-commuting indeterminates S_{n}, and keep the coproduct formula
- Realization: $A=\left\{a_{i} \mid i \geq 1\right\}$, totally ordered set of noncommuting variables

$$
\begin{aligned}
\sigma_{t}(A) & =\prod_{i \geq 1}^{\rightarrow}\left(1-t a_{i}\right)^{-1}=\sum_{n \geq 0} S_{n}(A) t^{n} \quad\left(\rightarrow h_{n}\right) \\
\lambda_{t}(A) & =\prod_{1 \leq i}^{\leftarrow}\left(1+t a_{i}\right)=\sum_{n \geq 0} \Lambda_{n}(A) t^{n} \quad\left(\rightarrow e_{n}\right)
\end{aligned}
$$

Noncommutative Symmetric Functions II

- Coproduct: $\Delta F=F(A+B)$ (ordinal sum, A commutes with B)
- Obvious interpretation: multiplicative group of formal power series over a noncommutative algebra
- More exotic interpretations: Sym $\left.=H_{*}\left(\Omega \Sigma \mathbb{C} P^{\infty}\right)\right) \ldots$
- Calling this algebra NCSF implies to look at it in a special way
- Find analogues of the classical families of symmetric functions ...
- ... and of the various interpretations of Sym

Symmetric functions and combinatorial Hopf algebras

Some connections with the topics of the conference

- Illustration of Mould calculus (moulds over positive integers)
- Alien derivations \leftrightarrow Lie idempotents in $\mathbb{C} \mathfrak{S}_{n}$
- Noncommutative formal diffeomorphisms (Noncommutative Lagrange inversion)
- Combinatorial Dyson-Schwinger equations
- Sym ${ }^{*}=$ QSym: Multiple Zeta Values are $M_{l}\left(1, \frac{1}{2}, \frac{1}{3} \ldots\right)$

Symmetric functions and combinatorial Hopf algebras

Descent algebras I

- A descent of $\sigma \in \mathfrak{S}_{n}$: an is.t. $\sigma(i)>\sigma(i+1)$

$$
\sigma=\underline{5} 2 \underline{4} 16 \underline{8} 37 \longrightarrow \begin{array}{|l|l|l|l|}
\hline 5 & & & \\
\hline 2 & 4 & & \\
& & 1 & 6 \\
& & 8 & \\
& & 3 & 7 \\
\hline
\end{array}
$$

- Descent set $\operatorname{Des}(\sigma)=\{1,3,6\}$
- Descent composition $C(\sigma)=I=(1,2,3,2)$
- $\operatorname{Des}(I)=\{1,3,6\}$

Descent algebras II

- Descent algebras (L. Solomon, 1976): the sums

$$
D_{I}=\sum_{C(\sigma)=I} \sigma
$$

span a subalgebra Σ_{n} of $\mathbb{Z} \mathfrak{S}_{n}$

- $\bigoplus_{n \geq 0} \Sigma_{n} \simeq$ Sym
- Linear basis of Sym: $S^{\prime}=S_{i_{1}} \cdots S_{i_{r}}$ (compositions I)
- Linear map $\alpha: \mathbf{S y m}_{n} \rightarrow \Sigma_{n}$

$$
\alpha\left(S^{\prime}\right)=\sum_{\operatorname{Des}(\sigma) \subseteq \operatorname{Des}(I)} \sigma
$$

- Internal product $*$ on Sym $_{n}$: α antiisomorphism
- goes to the internal product of Sym under commutative image

Compatibility between structures

- The Mackey formula for a product of induced characters, applied to parabolic subgroups of \mathfrak{S}_{n} translates into an identity for symmetric functions
- Solomon's motivation for the descent algebra was to lift this Mackey formula to the group algebra
- This implies an identity on noncommutative symmetric functions

$$
\left(f_{1} \ldots f_{r}\right) * g=\mu_{r}\left[\left(f_{1} \otimes \cdots \otimes f_{r}\right) * r \Delta^{r} g\right]
$$

μ_{r} is r-fold multiplication, Δ^{r} is the iterated coproduct with values in Sym ${ }^{\otimes r}$

Symmetric functions and combinatorial Hopf algebras
Noncommutative Symmetric Functions
Permutations and Free Quasi-symmetric functions Parking functions and other algebras

The Hopf algebra Sym

Noncommutative power sums I

- Commutative case: power-sums are the primitive elements, $\sigma_{t}(X)=\exp \left\{\sum_{k \geq 1} p_{k}(X) \frac{t^{k}}{k}\right\}$ equivalent to Newton's recursion

$$
n h_{n}=h_{n-1} p_{1}+h_{n-2} p_{2}+\cdots+h_{1} p_{n-1}+p_{n}
$$

- Both make sense in the noncommutative case but define different "power sums":
(1) $\sigma_{t}(A)=\exp \left\{\sum_{k \geq 1} \Phi_{k}(A) \frac{t^{k}}{k}\right\}$
(2) $n S_{n}=S_{n-1} \Psi_{1}+S_{n-2} \Psi_{2}+\cdots+S_{1} \Psi_{n-1}+\Psi_{n}$,
- $\Phi(t)=\log \sigma_{t}$ where σ_{t} is the solution of $\frac{d}{d t} \sigma_{t}=\sigma_{t} \psi(t)$
satisfying $\sigma_{0}=1$, and $\psi(t)=\sum_{k \geq 1} t^{k-1} \Psi_{k}$

Noncommutative power sums II

- Now we have some elements to play with ...
- The relation between S and Ψ is given by a mould

$$
m_{l}=\frac{1}{i_{1}\left(i_{1}+i_{2}\right) \cdots\left(i_{1}+i_{2}+\cdots i_{r}\right)} \quad S_{n}=\sum_{|| |=n} m_{l} \Psi^{\prime}
$$

easily obtained by solving $\frac{d}{d t} \sigma_{t}=\sigma_{t} \psi(t)$ with iterated integrals:

$$
\sigma(t)=1+\int_{0}^{t} d t_{1} \psi\left(t_{1}\right)+\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \psi\left(t_{2}\right) \psi\left(t_{1}\right)+\ldots
$$

Noncommutative power sums III

- Replacing A by $A+B$ in the differential equation

$$
\frac{d}{d t} \sigma_{t}(A+B)=\sigma_{t}(A+B) \psi(t ; A+B)
$$

shows immediately

$$
\psi(t ; A+B)=\psi(t ; A)+\psi(t ; B)
$$

i.e., the Ψ_{n} are primitive (or, the mould m_{l} is symmetral).

- This mould occurs in the formal linearization of vector fields (here in dimension 1)
- OK, but this is very basic. So what?

Lie idempotents I

- The point is: our elements Φ_{n}, Ψ_{n} are interpretable as elements of $\Sigma_{n} \subset \mathbb{C} \mathfrak{S}_{n}$, that is, as symmetrizers ...
- ... and quite famous ones:
- $\Psi_{n}=n \theta_{n}$ where θ_{n} is Dynkin's idempotent (1947)

$$
\left.\left.\theta_{n}=\frac{1}{n}[\ldots[1,2], 3], \ldots\right], n\right]=\frac{1}{n} \sum_{k=0}^{n-1} D_{\left(1^{k}, n-k\right)}
$$

- $\Phi_{n}=n \phi_{n}$ where ϕ_{n} is Solomon's idempotent (1968):

$$
\phi_{n}=\frac{1}{n} \sum_{\sigma \in \mathfrak{S}_{n}} \frac{(-1)^{d(\sigma)}}{\binom{n-1}{d(\sigma)}} \sigma \quad(d(\sigma)=|\operatorname{Des}(\sigma)|)
$$

Lie idempotents II

- And we shall also encounter Klyachko's idempotent (1974):

$$
\begin{gathered}
\kappa_{n}=\frac{1}{n} \sum_{\sigma \in \mathfrak{S}_{n}} \omega^{\operatorname{maj}(\sigma)} \sigma \\
\omega=e^{2 \mathrm{i} \pi / n}, \quad \operatorname{maj}(\sigma)=\sum_{j \in \operatorname{Des}(\sigma)} j
\end{gathered}
$$

- $\pi \in \mathbb{K} \mathfrak{S}_{n}$ is a Lie idempotent if it acts as a projector from the free associative algebra $\mathbb{K}_{n}\langle\boldsymbol{A}\rangle$ onto the free Lie algebra $L_{n}(A)$ generated by A

Lie idempotents III

- It seems that many important moulds have canonical representatives (in Sym for the 1-dimensional case, in other CHA's in general)
- Another example: the analog of a classical transformation of symmetric functions (related to Hall algebras, finite fields, Hecke algebras) is

$$
\sigma_{t}\left(\frac{A}{1-q}\right):=\prod_{k \geq 1}^{\leftarrow} \sigma_{t q^{k}}(A)
$$

Lie idempotents IV

- It is given by the mould

$$
S_{n}\left(\frac{A}{1-q}\right)=\sum_{|\||=n} \frac{q^{\operatorname{maj}(I)}}{\left(1-q^{i_{1}}\right)\left(1-q^{i_{1}+i_{2}}\right) \ldots\left(1-q^{i_{1}+\cdots+i_{r}}\right)} S^{\prime}(A)
$$

which occurs in the formal linearization of diffeomorphisms

- Expanding on the R-basis yields

$$
(q)_{n} S_{n}\left(\frac{A}{1-q}\right)=\sum_{|| |=n} q^{\operatorname{maj}(I)} R_{l}(A)
$$

- This has at least two interpretations:
(1) Commutative image is a Hall-Littlewood function (q-character of the symmetric group in coinvariants)
(2) $q=\omega=e^{2 i \pi / n}$ gives back Klyachko's idempotent

Symmetric functions and combinatorial Hopf algebras

Lie idempotents V

- One may wonder whether other examples in mould calculus correspond to interesting noncommutative symmetric functions
- The answer is yes, but the deepest connections appear to come from Alien Calculus

Symmetric functions and combinatorial Hopf algebras

The Hopf algebra Sym

Alien operators on $\operatorname{RESUR}\left(\mathbb{R}^{+} / / \mathbb{N}\right.$, int.) ।

- A sequence $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \in\{ \pm\}^{n-1}$ defines an operator D_{ε} on $\operatorname{RESUR}\left(\mathbb{R}^{+} / / \mathbb{N}\right.$, int.)
- $\operatorname{RESUR}\left(\mathbb{R}^{+} / / \mathbb{N}\right.$, int.) is a convolution algebra of functions holomorphic on]0, 1 [and analytically continuable along paths like this one:

Symmetric functions and combinatorial Hopf algebras

The Hopf algebra Sym

Alien operators on $\operatorname{RESUR}\left(\mathbb{R}^{+} / / \mathbb{N}\right.$, int.) II

- The composition of such operators is given by:

$$
D_{\mathrm{a} \bullet} D_{\mathrm{b} \bullet}=D_{\mathrm{b}+\mathrm{a} \bullet}-D_{\mathrm{b}-\mathrm{a} \bullet}
$$

- This is, up to a sign, the product formula for noncommutative ribbon Schur functions

$$
R_{l} \cdot R_{J}=R_{l \cdot J}+R_{l \supset J}
$$

- The sign can be taken into account, and there is a natural isomorphism of Hopf algebras

ALIEN \longrightarrow Sym

Alien operators on RESUR($\mathbb{R}^{+} / / \mathbb{N}$, int.) III

- It is given by

$$
D_{\varepsilon} \bullet \quad \leftrightarrow \quad \varepsilon_{1} \ldots \varepsilon_{n-1} R_{\varepsilon}
$$

- The ribbon Schur function R_{ε} is obtained by reading backwards the sequence $\varepsilon+$:

$$
\varepsilon+=+--+++-+\quad \rightarrow \quad R_{\varepsilon}=
$$

Alien operators on $\operatorname{RESUR}\left(\mathbb{R}^{+} / / \mathbb{N}\right.$, int.) IV

- Under this isomorphism,

$$
\begin{array}{clc}
\Delta_{n}^{+} & = & D_{+\ldots+} \leftrightarrow S_{n} \\
\Delta_{n}^{-} & = & -D_{-\ldots} \ldots \leftrightarrow(-1)^{n} \Lambda_{n} \\
\Delta_{n} & =\sum_{\varepsilon \in \mathcal{E}_{n-1}} \frac{p: q!}{(p+q+1)!} D_{\varepsilon} \bullet \leftrightarrow \frac{1}{n} \Phi_{n}
\end{array}
$$

- Given these identifications, is is not so surprising that ALIEN can be given Hopf algebra structure, for which Δ^{+} and Δ^{-}are grouplike, and Δ primitive
- However, the analytical definition (Ecalle 1981) is not at all trivial. Grouplike elements are the alien automorphisms, and primitives are the alien derivations.

The Hopf algebra Sym

Alien operators on $\operatorname{RESUR}\left(\mathbb{R}^{+} / / \mathbb{N}\right.$, int.) V

- Thus, alien derivations correspond to Lie idempotents in descent algebras
- Nontrivial examples are known on both sides
- For example, alien derivations from the Catalan family:

$$
\begin{gathered}
\operatorname{ca}_{n}=\frac{(2 n)!}{n!(n+1)!} \\
\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=(\pm)^{n_{1}}(\mp)^{n_{2}}(\pm)^{n_{3}} \ldots\left(\varepsilon_{n}\right)^{n_{s}} \quad\left(n_{1}+\ldots+n_{s}=n\right) \\
\mathrm{ca}^{\varepsilon}=\operatorname{ca}_{n_{1}} \operatorname{ca}_{n_{2}} \ldots \operatorname{ca}_{n_{s}} \\
\operatorname{Dam}_{n}=\sum_{l(\varepsilon \bullet)=n} \operatorname{ca}^{\varepsilon} D_{\varepsilon}
\end{gathered}
$$

Symmetric functions and combinatorial Hopf algebras

The Hopf algebra Sym
Descent algebras
Primitive elements and Lie idempotents
Lie idempotents and alien derivations

Alien operators on $\operatorname{RESUR}\left(\mathbb{R}^{+} / / \mathbb{N}\right.$, int.) VI

- The corresponding Lie idempotents were not known

$$
\operatorname{Dam}_{4}=5 R_{4}-5 R_{1111}-2 R_{13}+2 R_{211}-2 R_{31}+2 R_{112}-R_{22}+R_{121}
$$

- and up to now, no natural way to prove their primitivity in Sym
- On another hand, is there any application of the q-Solomon idempotent

$$
\varphi_{n}(q)=\frac{1}{n} \sum_{|| |=n} \frac{(-1)^{d(\sigma)}}{\left[\begin{array}{c}
n-1 \\
d(\sigma)
\end{array}\right]_{q}} q^{\operatorname{maj}(\sigma)-\binom{d(\sigma)+1}{2}} \sigma
$$

in alien calculus ?

Permutations and Free Quasi-Symmetric Functions

- To go further, we need larger algebras
- The simplest one is based on permutations
- It is large enough to contain algebras based on binary trees and on Young tableaux
- To accomodate other kinds of trees, one can imitate its construction, starting from special words generalizing permutations

Standardization of a Word

word of length n

$$
w=I_{1} I_{2} \ldots I_{n}
$$

$$
\text { for all } i<j \quad \text { set } \quad \sigma(i)>\sigma(j) \quad \text { iff } \quad a_{i}>a_{j}
$$

Example: $\operatorname{std}(a b c a d b c a a)=157296834$

a	b	c	a	d	b	c	a	a
a_{1}	b_{5}	c_{7}	a_{2}	d_{9}	b_{6}	c_{8}	a_{3}	a_{4}
1	5	7	2	9	6	8	3	4

Free Quasi-Symmetric Functions

Subspace of the free associative algebra $K\langle A\rangle$ spanned by

$$
\mathbf{G}_{\sigma}(A):=\sum_{\operatorname{std}(w)=\sigma} w .
$$

It is a subalgebra, with product rule for $\alpha \in \mathfrak{S}_{m}, \beta \in \mathfrak{S}_{n}$,

$$
\mathbf{G}_{\alpha} \mathbf{G}_{\beta}=\sum_{\substack{\gamma=u \cdot v \\ \operatorname{std}(u)=\alpha, \operatorname{std}(v)=\beta}} \mathbf{G}_{\gamma} .
$$

$\mathbf{G}_{21} \mathbf{G}_{213}=\mathbf{G}_{54213}+\mathbf{G}_{53214}+\mathbf{G}_{43215}+\mathbf{G}_{52314}+\mathbf{G}_{42315}+\mathbf{G}_{32415}$

$$
+\mathbf{G}_{51324}+\mathbf{G}_{41325}+\mathbf{G}_{31425}+\mathbf{G}_{21435}
$$

Decreasing tree of a permutation

$4375612 \rightarrow$

$$
=\mathcal{T}(437562)
$$

The Hopf algebra of planar binary trees

- Loday-Ronco algebra:

$$
\mathbf{P B T}=\bigoplus \mathbb{K} \mathbf{P}_{T}
$$

where

$$
\mathbf{P}_{T}=\sum_{\mathcal{T}(\sigma)=T} \mathbf{G}_{\sigma}
$$

- Several motivations can lead to this algebra. Originally: dendriform structure
- It also arises from a formal Dyson-Schwinger equation

Symmetric functions and combinatorial Hopf algebras

Tree expansion for $\quad x=a+B(x, x)$ I

For suitable bilinear maps B on an associative algebra, its is solved by iterated substitution

$$
\begin{gathered}
x=a+B(a, a)+B(B(a, a), a)+B(a, B(a, a))+\cdots \\
=a+a^{\prime} \backslash a+a^{\prime} B^{\prime} \backslash a+a^{\prime}{ }^{B} a^{\prime} a^{B}+\ldots \\
x=\sum_{T: \text { Complete Binary Tree }} B_{T}(a)
\end{gathered}
$$

Tree expansion for $\quad x=a+B(x, x)$ II

For example, $x(t)=\frac{1}{1-t}$ is the unique solution of

$$
\frac{d x}{d t}=x^{2}, \quad x(0)=1
$$

This is equivalent to the fixed point problem

$$
x=1+\int_{0}^{t} x^{2}(s) d s=1+B(x, x)
$$

where

$$
B(x, y):=\int_{0}^{t} x(s) y(s) d s
$$

Tree expansion for $\quad x=a+B(x, x)$ III

The terms in the tree expansion look like

Symmetric functions and combinatorial Hopf algebras
Permutations and Free Quasi-symmetric functions
Parking functions and other algebras

Tree expansion for $\quad x=a+B(x, x)$ IV

The general expression is:

$$
B_{T}(1)=t^{\#\left(T^{\prime}\right)} \prod_{\bullet \in T^{\prime}} \frac{1}{H L(\bullet)}
$$

- T^{\prime} : incomplete tree associated to T;
- $H L(\bullet)$: size of the subtree rooted at \bullet.

Symmetric functions and combinatorial Hopf algebras
Noncommutative Symmetric Functions
Permutations and Free Quasi-symmetric functions
Parking functions and other algebras

Tree expansion for $\quad x=a+B(x, x) \vee$

- The number of permutations whose decreasing tree has shape T is $n!B_{T}(1)$ [Knuth - AOCP 3]
- In FQSym,

$$
\mathbf{G}_{1}^{n}=\sum_{\sigma \in \mathfrak{S}_{n}} \mathbf{G}_{\sigma}
$$

- $\phi: \mathbf{G}_{\sigma} \longmapsto \frac{t^{n}}{n!}$ is a homomorphism. Hence,

$$
x(t)=\frac{1}{1-t}=\phi\left(\left(1-\mathbf{G}_{1}\right)^{-1}\right)
$$

- There is a derivation ∂ of FQSym such that $\mathbf{X}=\left(1-\mathbf{G}_{1}\right)^{-1}$ satisfies $\partial \mathbf{X}=\mathbf{X}^{2}$
- Moreover, there is a bilinear map B such that $\partial B(f, g)=f g$

Symmetric functions and combinatorial Hopf algebras
Noncommutative Symmetric Functions
Permutations and Free Quasi-symmetric functions
Parking functions and other algebras

Tree expansion for $\quad x=a+B(x, x) \mathrm{VI}$

- \mathbf{X} is the unique solution of $\mathbf{X}=1+B(\mathbf{X}, \mathbf{X})$
- $B_{T}(1)=\mathbf{P}_{T}$ (Loday-Ronco basis)
- This approach motivates the introduction of $\mathbf{P}_{T} \ldots$
- ... and leads to new combinatorial results by using more sophisticated specializations of the \mathbf{G}_{σ}
- In particular, one recovers the Björner-Wachs q-analogs from $x=1+B_{q}(x, x)$, with

$$
B_{q}(x, y)=\int_{0}^{t} x(s) \cdot y(q s) d_{q} s
$$

Special words and equivalence relations I

A whole class of combinatorial Hopf algebras whose operations are usually described in terms of some elaborated surgery on combinatorial objets are in fact just subalgebras of $\mathbb{K}\langle A\rangle$

- Sym: $R_{l}(A)$ is the sum of all words with the same descent set
- FQSym: $\mathbf{G}_{\sigma}(A)$ is the sum of all words with the same standardization
- PBT: $\mathbf{P}_{T}(A)$ is the sum of all words with the same binary search tree

Special words and equivalence relations II

To these examples, one can add:

- WQSym: $\mathbf{M}_{u}(A)$ is the sum of all words with the same packing
- It contains the free tridendriform algebra one one generator, based on sum of words with the same plane tree
- PQSym: based on parking functions (sum of all words with the same parkization)
In all cases, the product is the ordinary product of polynomials, and the coproduct is $A+B$.

Parking functions I

- A parking function of length n is a word over w over [1, n] such that in the sorted word w^{\uparrow}, the i th letter is $\leq i$.
- Example $w=52321$ OK since $w^{\uparrow}=12235$, but not 52521
- Parkization algorithm: sort w, shift the smallest letter if it is not 1, then if necessary, shift the second smallest letter of a minimal amount, and so on. Then put each letter back in its original place
- Example: $w=(5,7,3,3,13,1,10,10,4)$, $w^{\uparrow}=(1,3,3,4,5,7,10,10,13)$, $p(w)^{\uparrow}=(1,2,2,4,5,6,7,7,9)$, and finally $p(w)=(4,6,2,2,9,1,7,7,3)$.

Parking functions II

- $\mathrm{PF}_{n}=(n+1)^{n-1}$
- Parking functions are related to the combinatorics of Lagrange inversion
- Also, noncommutative Lagrange inversion, antipode of noncommutative formal diffeomorphisms
- PQSym, Hopf algebra of Parking Quasi-Symmetric functions:

$$
\mathbf{G}_{\mathbf{a}}=\sum_{p(w)=\mathbf{a}} w
$$

- Many interesting quotients and subalgebras (WQSym, FQSym, Schröder, Catalan, $3^{n-1} \ldots$)

Symmetric functions and combinatorial Hopf algebras
Noncommutative Symmetric Functions
Permutations and Free Quasi-symmetric functions
Parking functions and other algebras

The Catalan subalgebra I

- Natural: group the parking functions a according the the sorted word $\pi=\mathbf{a}^{\uparrow}$ (occurs in the definition and in the noncommutative Lagrange inversion formula)
- Then, the sums

$$
\mathbf{P}^{\pi}=\sum_{\mathbf{a}^{\dagger}=\pi} \mathbf{G}_{\mathbf{a}}
$$

span a Hopf subalgebra CQSym of PQSym

- dim CQSym $_{n}=c_{n}$ (Catalan numbers $1,1,2,5,14$)
- \mathbf{P}^{π} is a multiplicative basis: $\mathbf{P}^{11} \mathbf{P}^{1233}=\mathbf{P}^{113455}$ (shifted concatenation)
- Free over a Catalan set $\{1,11,111,112, \ldots\}$ (start with 1)
- And it is cocommutative

Symmetric functions and combinatorial Hopf algebras
Noncommutative Symmetric Functions
Permutations and Free Quasi-symmetric functions
Parking functions and other algebras

The Catalan subalgebra II

- So it must be isomorphic to the Grossman-Larson algebra of ordered trees.
- However, this is a very different definition (no trees!)
- It reveals an interesting property of the (commutative) dual: CQSym* contains QSym in a natural way

Symmetric functions and combinatorial Hopf algebras

The Catalan subalgebra III

- Recall $m_{\lambda}=\Sigma x^{\lambda}$ (monomial symmetric functions)

$$
m_{\lambda}=\sum_{l \downarrow=\lambda} M_{l} \quad M_{l}(X)=\sum_{j_{1}<j_{2}<\ldots<j_{r}} x_{j_{1}}^{i_{1}} x_{j_{2}}^{i_{2}} \cdots x_{j_{r}}^{i_{r}}
$$

- Let \mathcal{M}_{π} be the dual basis of \mathbf{P}^{π}. It can be realized by polynomials:

$$
\mathcal{M}_{\pi}=\sum_{p(w)=\pi} \underline{w}
$$

where \underline{w} means commutative image $\left(a_{i} \rightarrow x_{i}\right)$

Symmetric functions and combinatorial Hopf algebras

The Catalan subalgebra IV

- Example:

$$
\begin{gathered}
\mathcal{M}_{111}=\sum_{i} x_{i}^{3} \\
\mathcal{M}_{112}=\sum_{i} x_{i}^{2} x_{i+1} \\
\mathcal{M}_{113}=\sum_{i, j ; j \geq i+2} x_{i}^{2} x_{j} \\
\mathcal{M}_{122}=\sum_{i, j ; i<j} x_{i} x_{j}^{2} \\
\mathcal{M}_{123}=\sum_{i, j, k ; i<j<k} x_{i} x_{j} x_{k}
\end{gathered}
$$

The Catalan subalgebra V

- Then,

$$
M_{I}=\sum_{t(\pi)=I} \mathcal{M}_{\pi}
$$

where $t(\pi)$ is the composition obtained by counting the occurences of the different letters of π. For example,

$$
M_{3}=\mathcal{M}_{111}, \quad M_{21}=\mathcal{M}_{112}+\mathcal{M}_{113}, \quad M_{12}=\mathcal{M}_{122}
$$

- In most cases, one knows at least two CHA structures on a given family of combinatorial objects: a self-dual one, and a cocommutative one. Sometimes one can interpolate between them.

Conclusion

- Many combinatorial Hopf algebras can be realized with just ordinary polynomials (commutative or not)
- If necessary, with double variables $a_{i j}$ or $x_{i j}$
- No need for general Hopf algebra theory (just $A+B$)
- Morphisms are conveniently described by specializations of the variables (e.g., $a_{i} \rightarrow x_{i} \rightarrow q^{i}$)

