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Aim of the talk:

Explain the context of the paper in the IJAC special issue.

General idea:

Find interesting bases in combinatorial Hopf algebras
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Combinatorial Hopf algebras

Algebras based on combinatorial objects (integer or set
partitions, compositions, permutations, tableaux, trees,
matroids or whatever)
Product by summing over “compositions” of two structures,
coproduct by summing over “decompositons”
Heuristic notion (no formal definition)
Integer partitions: Sym, symmetric functions. Nontrivial
product and coproduct for Schur functions
(Littlewood-Richardson)
For us: CHA are generalizations of the algebra of
symmetric functions.
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1, 1, 2, 4, 10, 26, 76, ...
1, 1, 2, 5, 14, 42, 132, ...

1, 1, 2, 5, 15, 52, 203, ...

1, 1, 2, 6, 24, 120, 720, ...

1, 1, 3, 11, 45, 197, 903, ...

1, 1, 3, 13, 75, 541, 4683, ...

1, 1, 3, 16, 125, 1296, 16807 ...

Binary trees

Integer partitions

1, 1, 2, 3, 5, 7, 11, ...

Integer compositions

1, 1 2, 4, 8, 16, 32, 64, ....

Standard tableaux

Permutations

Set compositions

Parking functions

Plane trees

Set partitions
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Symmetric functions I

The algebra of symmetric functions is useful because it
contains interesting elements: Schur, Hall-Littlewood, zonal,
Jack, Macdonald ...

Schur: character tables of symmetric groups, characters of
GL(n,C), zonal spherical functions of (GL(n,C),U(n)),
KP-hierarchy, Fock space, lots of combinatorial
applications
Hall-Littlewood (one parameter): Hall algebra, character
tables of GL(n,Fq), geometry and toplogy of flag varieties,
characters of affine Lie algebras, zonal spherical functions
for p-adic groups, statistical mechanics
Zonal polynomials: for orthogonal and symplectic groups
Macdonald (two parameters): unification of the previous
ones. Solutions of quantum relativistic models, diagonal
harmonics, etc.
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Symmetric functions II

Question: Are there such things in combinatorial Hopf
algebras? At least in QSym (pieces of symmetric functions) or
Sym (projecting onto symmetric functions) ...

Actually, two different questions:
1 Find analogs, i.e., elements with similar definitions,

properties, applications ...
2 Find lifts of refinements, e.g., noncommutative symmetric

functions having Schur, HL or whatever classical
symmetric functions as commutative image, or find bases
of QSym on which the classical symmetric functions have
a natural decomposition (sum over compositions with the
same uderlying partition)
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Background on symmetric functions I

“functions”: polynomials in an infinite set of indeterminates

X = {xi |i ≥ 1}

λt (X ) or E(t ; X ) =
∏
i≥1

(1 + txi) =
∑
n≥0

en(X )tn

σt (X ) or H(t ; X ) =
∏
i≥1

(1− txi)
−1 =

∑
n≥0

hn(X )tn

en = elementary symmetric functions
hn = complete (homogeneous) symmetric functions
Algebraically independent: Sym(X ) = K [h1,h2, . . . ]

With n variables: K [e1,e2, . . . ,en]
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Background on symmetric functions II

Bialgebra structure:

∆f = f (X + Y )

X + Y : disjoint union; u(X )v(Y ) ' u ⊗ v
Graded connected bialgebra: Hopf algebra
Self-dual. Scalar product s.t.

〈f · g , h〉 = 〈f ⊗ g , ∆h〉

Linear bases: integer partitions

λ = (λ1 ≥ λ2 ≥ . . . ≥ λr > 0)

Multiplicative bases:

eλ = eλ1eλ2 · · · eλr and hλ
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Background on symmetric functions III

Obvious basis: monomial symmetric functions

mλ = Σxλ =
∑

distinct permutations

xµ

Hall’s scalar product realizes self-duality

〈hλ , mµ〉 = δλµ

h and m are adjoint bases, and

σ1(XY ) =
∏
i,j≥1

(1− xiyj)
−1 =

∑
λ

mλ(X )hλ(Y )

(Cauchy type identity)
Any pair of bases s.t. σ1(XY ) =

∑
λ uλ(X )vλ(Y ) are

mutually adjoint
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Background on symmetric functions IV
Original Cauchy identity for Schur functions

σ1(XY ) =
∑
λ

sλ(X )sλ(Y )

where sλ = det(hλi +j−i)

Schur functions encode irreducible characters of
symmetric groups:

χλµ = 〈sλ , pµ〉 (Frobenius)

pn: power-sums

pn(X ) =
∑
i≥1

xn
i , σt (X ) = exp

∑
m≥1

pm(X )
tm

m



J.-Y. Thibon



Hecke algebra I

Permutations σ ∈ Sn act on K[x1, . . . , xn] by automorphisms:
σ(xi) = xσ(i). Let si = (i , i + 1) and

πi(f ) =
xi f − si(xi f )

xi − xi+1

(isobaric divided differences) and

Ti = (1− t)πi + tsi (t = q−1)

Then,

TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi (|i − j | > 1)

T 2
i = (1− t)Ti + t

Iwahori-Hecke algebra (of type An−1).
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Hecke algebra II

For a reduced decomposition σ = si1 · · · sir , let Tσ = Ti1 · · ·Tir
and set

Ωn(t) =
∑
σ∈Sn

t`(ωσ)Tσ

Then, for t = 1, Hn(1) = K Sn, and

mλ = cλΩn(1)xλ (cλ a scalar)

while for t = 0,
sλ = Ωn(0)xλ

and (by definition), the Hall-Littlewood functions are

Pλ = cλ(t)Ωn(t)xλ
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Quasi-symmetric functions I

Represent a monomial u = x5
2 x7

4 x5x2
8 by its support

Au = {x2, x4, x5, x8}

and its exponent sequence

Iu = (5,7,1,2)

(a composition of its degree n = 15).
The quasi-symmetrizing action of a permutation σ is [Hivert]

σ(u) = v with Av = σ(Au) and Iv = Iu

For example, s4(u) = u and s5(u) = x5
2 x7

4 x6x2
8
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Quasi-symmetric functions II

This is indeed an action of Sn (not by automophisms) and its
invariants is the algebra of quasi-symmetric polynomials
[Gessel].
Precisely, one can still define πi and T i so as to get an action of
Hn(q), and with Ωn(t) as above, for a composition I = (i1, . . . , ir )

MI = cI Ωn(1)x I (quasi-monomial functions)

FI = ΩI(0)x I (the fundamental basis)

and so, Hivert defined naturally

PI = cI(t) ΩI(t)x
I

This was the first example of a Hall-Littlewood-like basis in a
combinatorial Hopf algebra.
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Noncommutative Symmetric Functions I

Indeed, for infinite and totally ordered X , QSym(X ) becomes a
Hopf algebra (coproduct by ordinal sum X + Y ).
Its dual is Sym (noncommutative symmetric functions), as can
be seen from the noncommutative Cauchy product

K(X ,A) :=
→∏
i≥1

→∏
j≥1

(1−xiaj)
−1 =

∑
I

MI(X )SI(A) =
∑

I

FI(X )RI(A)

where SI = Si1 · · ·Sir ,

Sn =
∑

i1≤...≤in

ai1 · · · ain

(complete functions), and RI are the ribbon Schur functions
(sum of words with descent composition I).
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Noncommutative Symmetric Functions II

The duality is [Malvenuto-Reutenauer]

〈MI ,SJ〉 = δIJ = 〈FI ,RJ〉

and the dual basis HI of PI is a t-analogue of the product SI ,
like the classical

Q′µ =
∑
λ

Kλµ(t)sλ

(Kostka-Foulkes polynomials, cf. [Lascoux-Schützenberger]).
However, here, the coefficients KIJ(t) in

HJ =
∑

I

KIJ(t)RI

are just powers of t (KF-monomials!).
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Macdonald-like functions I

There is a simple closed formula for KIJ(t). Thus, we may be
able to define simple Macdonald-like functions.
Precisely, we want noncommutative analogues of the

H̃µ(X ; q, t) =
∑
λ

K̃λµ(q, t)sλ(X ) = tn(µ)Jµ

(
X

1− t−1 ; q, t−1
)

(bigraded Frobenius characteristics of certain realizations of the
regular representations of the symmetric group [Haiman]).
Noncommutative analogues

H̃J(A; q, t) =
∑

I

k̃IJ(q, t)RI(A) (1)
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Macdonald-like functions II
The RI are the characteristics of the indecomposable projective
modules of the 0-Hecke algebra Hn(0), each of them occuring
with multiplicity one in the decomposition of the regular
representation: the k̃IJ(q, t) have to be monomials qi t j .
The H̃J(A; q, t) must reduce to HL functions for q = 0, and we
expect that the (q, t)-Kostka monomials should possess the
symmetries

k̃IJ̄∼(q, t) = k̃IJ(t ,q) , (2)

k̃IJ(q, t)k̃Ī∼J(q, t) = q(n+1−l(J)
2 )t(

l(I)
2 ) , (3)

and that k̃(n),J(q, t) is always equal to 1.
These constraints determine the first matrices:
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Macdonald-like functions III

K2 =

(
2 1 q

11 1 t

)

K3 =


3 1 q2 q q3

21 1 t q tq
12 1 q t tq
111 1 t2 t t3



K4 =



4 1 q3 q2 q5 q q4 q3 q6

31 1 t q2 tq2 q tq q3 tq3

22 1 q2 t tq2 q q3 tq tq3

211 1 t2 t t3 q t2q tq t3q
13 1 q2 q q3 t tq2 tq tq3

121 1 t2 q t2q t t3 tq t3q
112 1 q t2 t2q t tq t3 t3q
1111 1 t3 t2 t5 t t4 t3 t6
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Macdonald-like functions IV

This is sufficient to guess the general formula, and an important
property can be proved:

det Kn(q, t) =
n−1∏
m=1

m∏
k=1

(
tm+1−k − qk

)2n−1−m(m−1
k−1)

.

There is such a factorization for the original Macdonald matrix,
and there will be one for all our future generalizations.
We can in fact define multiparameter noncommutative
Macdonald-like functions [Hivert-Lascoux-T. 2001]

H̃J(A; Q,T ) = Kn(A; Z (J))

Z (J) = {z0 = 1, z1 = ṽ(J,1), z2 = ṽ(J,2), . . . , zn−1 = ṽ(J,n−1)}
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Macdonald-like functions V

For Z = {z0 = 1, z1, z2, . . .}

Kn(A; Z ) =
∑
|I|=n

 ∏
d∈Des(I)

zd

RI .

ṽ(J, k) =

{
t1+d(J,k) if k ∈ Des(J) ,

qk−d(J,k) if k 6∈ Des(J) .

and
d(I, k) = #{k ′ < k , k ′ ∈ Des(I)}

A few days after this paper was posted, another one by N.
Bergeron and M. Zabrocki, defining a similar but different family
of Macdonald-like functions appeared on the arXiv. It was not a
specialization of our multiparameter family.
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Symn as a Grassmann algebra I

Both families can be unified by introducing more parameters
[Lascoux-Novelli-T. 2012]. The construction is simplified by the
following formalism.
For n > 0, Symn has dimension 2n−1, same as a Grassmann
algebra on n − 1 generators η1, . . . , ηn−1

ηiηj = −ηjηi

If I is a composition of n with descent set D = {d1, . . . ,dk},

RI ←→ ηD := ηd1ηd2 . . . ηdk . (4)

For example, R213 ↔ η2η3. Then,

SI ←→ (1 + ηd1)(1 + ηd2) . . . (1 + ηdk )
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Symn as a Grassmann algebra II
Grassmann integral∫

dη f := f 12...n−1, where f =
∑

k

∑
i1<···<ik

f i1...ikηi1 . . . ηik .

Anti-involution η∗i = (−1)iηi . Bilinear form on Symn

(f ,g) =

∫
dη f ∗g

Then,
(RI ,RJ) = (−1)`(I)−1δI,J̄∼

(Bergeron-Zabrocki “scalar product”).
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Symn as a Grassmann algebra III

For Z = (z1, . . . , zn−1), let

Kn(Z ) = (1 + z1η1)(1 + z2η2) . . . (1 + zn−1ηn−1) . (5)

Then,

(Kn(X ),Kn(Y )) =
n−1∏
i=1

(yi − xi) . (6)

We are interested in bases of Symn of the form

H̃I = Kn(ZI) =
∑

J

k̃IJRJ

The HLT and BZ bases have this form.
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Symn as a Grassmann algebra IV
For both of them, the determinant of the Kostka matrix
K = (k̃IJ) is a product of linear factors. This is because these
matrices have the form (

A xA
B yB

)
where A and B have a similar structure, and so on recursively:∣∣∣∣A xA

B yB

∣∣∣∣ = (y − x)m det A · det B .

We can now introduce many more parameters.
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Symn as a Grassmann algebra V
Let y = {yu} for u boolean word of length ≤ n − 1.
For n = 3: y0, y1, y00, y01, y10, y11.
Encode a composition I with descent set D by
u = (u1, . . . ,un−1) such that ui = 1 if i ∈ D and ui = 0
otherwise.
Let um...p be the sequence umum+1 . . . up

PI := (1 + yu1η1)(1 + yu1...2η2) . . . (1 + yu1...n−1ηn−1)

or, equivalently,

PI := Kn(YI) with YI = [yu1 , yu1...2 , . . . , yu] =: (yk (I)) .

At this level of generality, the Kostka matrix, the product
formula, and the dual basis can be computed explicitly.
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Symn as a Grassmann algebra VI

There are some interesting specializations. First, a family with
two infinite matrix parameters Q,T :
Label the cells of I with their matrix coordinates:

Diagr (4,1,2,1) =

(1,1) (1,2) (1,3) (1,4)

(2,4)

(3,4) (3,5)

(4,5)

Associate a variable zij with each cell except (1,1): zij := qi,j−1
if (i , j) has a cell on its left, and zij := ti−1,j if (i , j) has a cell on
its top. The alphabet Z (I) = (zj(I)) is the sequence of the zij in
their natural order.
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Symn as a Grassmann algebra VII
For J � n

k̃IJ(Q,T ) =
∏

d∈Des(J)

zd (I) .

With I = (4,1,2,1) and J = (2,1,1,2,2), we have
Des(J) = {2,3,4,6} and k̃IJ = q12q13t14q34.
Let Q = (qij) and T = (tij) (i , j ≥ 1) be two infinite matrices.
H̃I(A; Q,T ) is defined as

H̃I(A; Q,T ) = Kn(A; Z (I)) =
∑
J�n

k̃IJ(Q,T )RJ(A) .

Note that H̃I depends only on the qij and tij with i + j ≤ n.
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Symn as a Grassmann algebra VIII

Let (qi), (ti), i ≥ 1 be two sequences of indeterminates.
Let ν be the anti-involution of Sym defined by ν(Sn) = Sn.

(i) For qij = qi+j−1, tij = tn+1−i−j , H̃I(Q,T ) becomes a
multiparameter version of ν(H̃BZ

I ), to which it reduces under the
further specialization qi = qi and ti = t i .

(ii) For qij = qj , tij = ti , H̃I(Q,T ) reduces to H̃HLT
I .

The multivariate HL-BZ-polynomials have been recently
interpreted by Jia Huang (arXiv:1306.1931) as graded
Frobenius characteristics of the action of Hn(0) on certain
submodules of the Stanley-Reisner ring of the Boolean algebra.

J.-Y. Thibon



Noncommutative monomial functions I

In the Hopf algebra paradigm, monomial functions live on the
quasi-symmetric side. But if one is willing to forget about the
coproducts, noncommutative monomial functions can be
defined [Tevlin]. Let

Ψn =
n−1∑
k=0

(−1)kR1k ,n−k

be the power-sums of the first kind (Dynkin elements) and

rΨI ≡ rΨ(i1,...,ir ) = (−1)r−1

∣∣∣∣∣∣∣∣∣∣∣∣

Ψir 1 0 . . . 0 0
Ψin−1+ir Ψin−1 2 . . . 0 0

...
...

...
...

...
...

Ψi2+...+ir . . . . . . . . . Ψi2 n − 1
Ψi1+...+ir . . . . . . . . . Ψi1+i2 Ψi1

∣∣∣∣∣∣∣∣∣∣∣∣
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Noncommutative monomial functions II

(a quasi-determinant). In particular,

Ψ(n) = Ψn, and Ψ1r = Λr .

Equivalently,

rΨi1,...,ir = Ψi1Ψi2,...,ir −Ψi1+i2Ψi3,...,ir + . . .

+ (−1)s−1Ψi1+···+is Ψis+1,...,ir + · · ·+ (−1)r Ψi1+···+ir .

One can define an analog of Gessel’s fundamental basis FI by

LI =
∑
J�I

ΨJ .

RI =
∑

J

GIJLJ =
∑

J

KIJΨJ . (7)
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Noncommutative monomial functions III

The KIJ and the GIJ are nonnegative integers with interesting
combinatorial interpretations [Hivert-Novelli-Tevlin-T.]
Define the G-descent set of a permutation σ ∈ Sn as

GDes(σ) := {i ∈ [2,n]|σj = i =⇒ σj+1 < σj}.

The G-composition GC(σ) is the composition whose descent
set is {d − 1|d ∈ GDes(σ)}.
Then,

RI =
∑
J�n

GIJLJ ,

where GIJ is the number of permutations σ satisfying
C(σ−1) = I and GC(σ) = J.
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HL-functions from noncommutative monomials I

The above KIJ and GIJ admit nontrivial q-analogues, which can
be obtained from the combinatorial Hopf algebras FQSym
(permutations) and WQSym) (packed words).
A packed word (over the integers) is a word u whose support is
an interval [1, k ].
An inversion ui = b > uj = a (where i < j and a < b) is special
if uj is the rightmost occurence of a in u. Let sinv(u) denote the
number of special inversions in u.
The W-composition WC of u is the composition whose descent
set is given by the positions of the last occurrences of each
letter in u.
Let W (I, J) be the set of packed words w such that

WC(w) = I and C(w) � J (8)

J.-Y. Thibon



HL-functions from noncommutative monomials II

and
CJ

I (q) =
∑

w∈W (I,J)

qsinv(w). (9)

Then
SJ(q) :=

∑
I

CJ
I (q)ΨI

is a q-analogue of the product SJ (like the classical Q′µ) defined
in [Novelli-T.-Williams]. Its expansion on a simple q-analogue
LI(q) of LI provides a q-enumeration of permutation tableaux.
One can also define a basis RI(q) and q-analogues of the GIJ .
The q-deformed ribbons are given by

RJ(q) =
∑

I

DJ
I (q)ΨI
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HL-functions from noncommutative monomials III
where

DJ
I (q) =

∑
w∈W ′(I,J)

qsinv(w). (10)

W ′(I, J) being the set of packed words w such that

WC(w) = I and C(w) = J (11)

Next, Tevlin defined noncommutative analogues of the P-HL
functions by a t-deformation of the quasi-determinant for the
ΨI , and defined Kostka-like polynomials by

RJ(A) =
∑

I

KIJ(t)PI(t ; A) (12)

Then,
KIJ(t) = D̃J

I (t) = tmaj(I)DJ
I (t−1) (13)
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Grand unification I

[HLT] and [BZ] have been unified in [LNT], but [NTW] and [T]
seem to belong to different worlds.
Actually, [NTW] and [T] are related by the noncommutative
version of the classical (1− t)-transform on symmetric functions

pn((1− t)X ) = (1− tn)pn(X )

It admits a multiparameter analogue, and the resulting
multiparameter P-functions admit a simple description within
the Grassmann formalism of [LNT].
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Grand unification II

The noncommutative (1− t)-transform acts on ribbons by

RI ((1− t)A)) = (−1)`(I)
∑

|J|=|I|,r=`(J)

(−1)r (1−t jr )t
P

k∈A(I,J) jk SJ(A)

where
A(I, J) = {s < `(J)|j1 + · · ·+ js 6∈ Des(I)}.

Let t = (ti)i≥1, and define

RI(t; A) = (−1)`(I)
∑

|J|=|I|,r=`(J)

(−1)r

(1− tjr )
∏

k∈A(I,J)

tjk

SJ(A)

R3 = (1− t3)S3 − (1− t1)t2S21 − (1− t2)t1S12 + (1− t1)t2
1 S111 ,

R21 = −(1− t3)S3 + (1− t1)S21 + (1− t2)t1S12 − (1− t1)t1S111 .
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Grand unification III
Define also

S I(t; A) =
∑
J≤I

RJ(t; A)

The S-basis is multiplicative:

S I(t)SJ(t) = S IJ(t) .

Thus, RI is the image of RI by the automorphism

θt : Sn(A) 7−→ Sn(t; A) .

The inverse of θt is

θ−1
t : Sn 7→ Kn(t; A) =

∑
I�n

∏
d∈Des(I) td

(1− t1)(1− t2) · · · (1− tn)
RI(A)

(the multiparameter Klyachko element).
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Grand unification IV
Recall the Grassmann algebra formalism. We need a small
modification of the definition of Kn:
Let U = (u1, . . . ,un−1) and V = (v1, . . . , vn−1) be two
sequences of parameters. Set

Kn(U,V ) = (u1 + v1η1) · · · (un−1 + vn−1ηn−1)

=
∑
I�n

∏
d∈Des(I)

vd
∏

e 6∈Des(I)

ue RI

We build a pair of sequences (UI ,VI) = ((uI
j ), (v

I
j ))n−1

j=1 from the
diagram of I.
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Grand unification V
First, write (1,q1), . . . , (1,qk ) in this order, starting from the top
left cell, in all cells which are non-descents of I. Then, write
(t1,1), . . . , (tl ,1), in this order, in all cells which are descents of
I, starting from the bottom right cell

(U4121,V4121) =

(1,q1)(1,q2)(1,q3) (t3,1)

(t2,1)

(1,q4) (t1,1)

×

(14)
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Grand unification VI
Let J ′I (q, t,A) = Kn(UI ,VI). Define Macdonald-like functions by

JI(q, t; A) = θt(J ′I (q, t; A)) . (15)

If we regard the J -functions as analogues of the Macdonald
J-functions, we can define natural analogues of the classical P
and Q-functions by

`(I)∏
i=1

(1− ti)PI(t; A) = QI(t; A) = JI(0, t; A)

Note that Qn(t; A) = Rn(t; A).
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Grand unification VII

The P-functions satisfy the recurrence

1− tr
1− t1

PI = Pi1Pi2,...,ir − Pi1+i2Pi3,...,ir + · · ·+ (−1)r−1Pi1+···+ir .

Equivalently, we have the quasideterminantal expression

PI(t; A) = (−1)r−1 1− t1
1− tr

∣∣∣∣∣∣∣∣∣∣∣

Pir 1− t1 0 . . . 0 0
Pir−1+ir Pir−1 1− t2 . . . 0 0

...
...

...
...

...
...

Pi2+...+ir . . . . . . . . . Pi2 1− tr−1

Pi1+...+ir . . . . . . . . . Pi1+i2 Pi1

∣∣∣∣∣∣∣∣∣∣∣
which reduces to Tevlin’s definition for ti = t i . Their product
formula and expansions on various bases can be computed
explicitly.
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The real motivation

Multiparameter Macdonald polynomials? Up to n = 5 ... [HLT]
Heuristics: a conjecture on R-matrices, multiparameter HL for
rectangular shapes, hook shapes, symmetries, determinant ...

(4) (31) (22) (211) (1111)
(4) 1 q1 + q2 + q3 q2 + q1 q3 q1 q2 + q2 q3 + q1 q3 q1 q2 q3

(31) 1 t1 + q1 + q2 q2 + q1 t1 q1 t1 + q2 t1 + q1 q2 q1 t1 q2

(22) 1 q1 + q1 t1 + t1 q1
2 + t12 q1 t12 + q1 t1 + q1

2t1 q1
2t12

(211) 1 q1 + t1 + t2 q1 t1 + t2 t1 t2 + q1 t1 + q1 t2 q1 t1 t2
(1111) 1 t1 + t2 + t3 t2 + t1 t3 t1 t2 + t2 t3 + t1 t3 t1 t2 t3

det = (t2 − q2)(t1 − q2)(t2 − q1)(t1 − q1)3(t3 − q1)(t1 − q3)
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(5) (41) (32) (311)
1 q1 + q2 + q3 + q4 q2 + q3 + q1q3 + q1q4 + q2q4 q1q2 + q1q3 + q2q3 + q1q4 + q2q4 + q3q4
1 t1 + q1 + q2 + q3 q1t1 + q2 + q2t1 + q3 + q1q3 q1t1 + q2t1 + q1q2 + t1q3 + q1q3 + q2q3
1 t1 + q1 + q1t1 + q2 q1t1 + q2 + q1

2t1 + t1
2 + q1q2 q1t1 + q1t1

2 + q1
2t1 + q2t1 + q1q2 + q1t1q2

1 q1 + q2 + t1 + t2 q2 + q1t1 + q2t1 + q1t2 + t2 q1q2 + q1t1 + q2t1 + q1t2 + q2t2 + t1t2
1 q1 + t1 + q1t1 + t2 q1t1 + t2 + q1t1

2 + q1
2 + t1t2 q1t1 + q1

2t1 + q1t1
2 + q1t2 + t1t2 + q1t1t2

1 q1 + t1 + t2 + t3 q1t1 + t2 + q1t2 + t3 + t1t3 q1t1 + q1t2 + t1t2 + t3q1 + t1t3 + t2t3
1 t1 + t2 + t3 + t4 t2 + t3 + t1t3 + t1t4 + t2t4 t1t2 + t1t3 + t2t3 + t1t4 + t2t4 + t3t4

(221) (2111) (11111)
q1q3 + q2q3 + q2q4 + q1q2q4 + q1q3q4 q1q2q3 + q1q2q4 + q1q3q4 + q2q3q4 q1q2q3q4
q2t1 + q1t1q2 + q1q3 + q1q3t1 + q2q3 q1q2q3 + t1q2q3 + q1q3t1 + q1t1q2 t1q1q2q3

q1
2q2 + q1t1q2 + q1t1

2 + q2t1 + q1
2t1

2 q1
2q2t1 + q1q2t1

2 + q1t1q2 + q1
2t1

2 q1
2t1

2q2
q1t1t2 + q2t2 + q1t2 + q2t1 + q1t1q2 t1t2q2 + q1t1t2 + q1q2t2 + q1t1q2 q1q2t1t2

t1
2t2 + q1t1t2 + q1

2t1 + q1t2 + q1
2t1

2 q1t1
2t2 + t2q1

2t1 + q1t1t2 + q1
2t1

2 q1
2t1

2t2
q1t2 + q1t1t2 + t1t3 + t1t3q1 + t2t3 t1t2t3 + q1t2t3 + t1t3q1 + q1t1t2 q1t1t2t3
t1t3 + t2t3 + t2t4 + t1t2t4 + t1t3t4 t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4 t1t2t3t4

det = (t2 − q3)(t1 − q3)(t2 − q2)(t1 − q2
2
) (t3 − q2)(t2 − q1)2(t3 − q1)(t1 − q1)4(t4 − q1)(t1 − q4)

J.-Y. Thibon
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