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Abstract

We study the impact of merging routines in merge-based sorting algorithms. More precisely, we focus

on the galloping routine that TimSort uses to merge monotonic sub-arrays, hereafter called runs, and on the

impact on the number of element comparisons performed if one uses this routine instead of a naïve merging

routine.

This routine was introduced in order to make TimSort more efficient on arrays with few distinct values.

Alas, we prove that, although it makes TimSort sort array with two values in linear time, it does not prevent

TimSort from requiring up to Θ(n log(n)) element comparisons to sort arrays of length n with three distinct

values. However, we also prove that slightly modifying TimSort’s galloping routine results in requiring

onlyO(n+n log(σ)) element comparisons in the worst case, when sorting arrays of length n with σ distinct

values.

We do so by focusing on the notion of dual runs, which was introduced in the 1990s, and on the associated

dual run-length entropy. This notion is both related to the number of distinct values and to the number of

runs in an array, which came with its own run-length entropy that was used to explain TimSort’s otherwise

“supernatural” efficiency. We also introduce new notions of fast- and middle-growth for natural merge sorts

(i.e., algorithms based on merging runs), which are found in several sorting algorithms similar to TimSort.

We prove that algorithms with the fast- or middle-growth property, provided that they use our variant of

TimSort’s galloping routine for merging runs, are as efficient as possible at sorting arrays with low run-induced

or dual-run-induced complexities.

1 Introduction

In 2002, Tim Peters, a software engineer, created a new sorting algorithm, which was called TimSort [24] and was

built on ideas from McIlroy [21]. This algorithm immediately demonstrated its efficiency for sorting actual data,

and was adopted as the standard sorting algorithm in core libraries of widespread programming languages such as

Python and Java. Hence, the prominence of such a custom-made algorithm over previously preferred worst-case

optimal algorithms contributed to the regain of interest in the study of sorting algorithms.

Among the best-identified reasons behind the success of TimSort lies the fact that this algorithm is well

adapted to the architecture of computers (e.g., for dealing with cache issues) and to realistic distributions of

data. In particular, the very conception of TimSort makes it particularly well-suited to sorting data whose

run decompositions [3, 10] (see Figure 1) are simple. Such decompositions were already used in 1973 by

Knuth’s NaturalMergeSort [18, Section 5.2.4], which adapted the traditional MergeSort algorithm as follows:

NaturalMergeSort is based on splitting arrays into monotonic (non-decreasing or decreasing) sub-arrays
1
, also

called runs, and on merging these runs together. All algorithms sharing this feature of NaturalMergeSort are also

called natural merge sorts.

In addition to being a natural merge sort, TimSort includes many optimisations, which were carefully

engineered, through extensive testing, to offer the best complexity performances. As a result, the general structure

1
Early works such as [18] considered increasing sub-arrays only.
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S = ( 12, 7, 6, 5︸ ︷︷ ︸
first run

, 5, 7, 14, 36︸ ︷︷ ︸
second run

, 3, 3, 5, 21, 21︸ ︷︷ ︸
third run

, 20, 8, 5, 1︸ ︷︷ ︸
fourth run

)

Figure 1: A sequence and its run decomposition computed by a greedy algorithm: for each run, the first two

elements determine if the run is non-decreasing or decreasing, and the run continues with the maximum number

of consecutive elements that preserve its monotonicity.

of TimSort can be split into three main components: (i) a variant of an insertion sort, used to deal with small

runs, e.g., runs of length less than 32, (ii) a simple policy for choosing which large runs to merge, (iii) a routine for

merging these runs, based on a so-called galloping strategy.

The second component has been subject to an intense scrutiny these last few years, thereby giving birth

to a great variety of TimSort-like algorithms, such as α-StackSort [2], α-MergeSort [8], ShiversSort [27] (which

predated TimSort), adaptive ShiversSort [16], PeekSort and PowerSort [23], ork-way PowerSort [13], which extends

PowerSort by merging runs in batches ofk instead of two-by-two. On the contrary, the first and third components,

which seem more complicated and whose effect might be harder to quantify, have often been used as black boxes

when studying TimSort or designing variants thereof.

In what follows, we focus on the third component and prove that it can be made very efficient: although

TimSort may require up to Θ(n log(n)) comparisons to sort arrays of length n with three distinct values, slight

modifications to the galloping routine make TimSort require onlyO(n + n log(σ)) comparisons to sort arrays

of length n with σ distinct values. This is reminiscent of the celebrated complexity result [1] stating that TimSort

requiresO(n+ n log(ρ)) comparisons to sort arrays of length n that can be decomposed as a concatenation of ρ
monotonic sub-arrays.

Complexity measures. Consider an arrayA of lengthn, containing data from a linearly pre-ordered set (S,≼)
that we want to sort in a stable manner: we want to transform A into the array B whose entries are given by

the relation B[π(i)] = A[i], where π is the permutation of {1, 2, . . . , n} such that π(i) ⩽ π(j) if and only

if A[i] ≺ A[j] or (A[i] ≼ A[j] ≼ A[i] and i ⩽ j). In a comparison model, all the queries about A that we form

amount to checking, for a given pair (i, j) of integers, whether π(i) ⩽ π(j); hence, two arrays A and A′
that lead

to the same permutation π (we say that they are lexicographically equivalent) must yield the same element moves

or swaps, and they should be considered equivalent with each other. Consequently, below, we identify A with the

permutation π, and the values A[1], A[2], . . . , A[n] with the integers from 1 to n.

A natural parameter that captures the complexity of an array is its length. Every comparison-based sorting

algorithm requires n log2(n) + O(n) element comparisons in the worst case, a complexity bound achieved by

MergeSort. Yet, not all arrays of length n are as difficult to sort as each other: in the extreme case A is already the

identity permutation, it suffices to check that A is sorted. This suggests using finer-grained complexity classes, as

follows.

A usual measure of presortedness relies on subdividing A into distinct monotonic runs, i.e., partitioning the

set {1, 2, . . . , n} into intervals R1, R2, . . . , Rρ on which the function x 7→ A[x] is monotonic, and in studying

the lengths of these runs. Although this partition is a priori not unique, there exists a simple greedy algorithm that

provides us with a partition for which ρ is minimal: it suffices to construct the intervals R1, R2, . . . , Rρ from left

to right, each time choosing Ri to be as long as possible.

Thus, one may consider only arrays whose run decomposition consists of ρ monotonic runs. On such arrays,

the best worst-case time complexity one may hope for is O(n + n log(ρ)) [20]. We may also consider more

restricted classes of input arrays, focusing only on those arrays that consist of ρ runs of lengths r1, . . . , rρ. In

that case, every comparison-based sorting algorithm requires at least nH+O(n) element comparisons, whereH
is defined as H = H(r1/n, . . . , rρ/n) and H(x1, . . . , xρ) = −

∑ρ
i=1 xi log2(xi) is the general entropy

function [3, 16, 21]. The numberH is called the run-length entropy of the array.

A dual approach, proposed by McIlroy [21], yields a different parametrisation. After identifying A with

the permutation it is lexicographically equivalent to, we partition the set {1, 2, . . . , n} into the monotonic

runs S1, S2, . . . , Sσ of the inverse permutation A−1
. These intervals Si are already known under the name of

riffle shuffles [21]; they form a special case of monotone sequences described in [19], with the additional condition of
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Figure 2: The array A is lexicographically equivalent to the permutation π. Its dual runs, represented with gray

and white horizontal stripes, have respective lengths 5, 3, 4, 2, 2 and 2. The mapping A 7→ π identifies them with

the dual runs ofπ, i.e., with the runs of the permutationπ−1
. Note that, although they are on the same horizontal

line in the diagrammatic representation of A, the points with coordinates (2, 5) and (4, 5) belong to distinct dual

runs.

being non-overlapping. In order to underline their connection with runs, we say that these intervals are the dual

runs of A, and their lengths are denoted by si. The process of transforming an array into a permutation and then

extracting its dual runs is illustrated in Figure 2.

The lower bounds of [3, 16, 21] immediately translate into matching lower bounds: every comparison-

based sorting algorithm requires at least nH∗ + O(n) element comparisons, where H∗
is defined

asH∗ = H(s1/n, . . . , sσ/n). The numberH∗
is called the dual run-length entropy of the array.

In particular, if an array has σ values, it cannot have more than σ dual runs. Note, however, that it may have

significantly fewer than σ dual runs, as shown by the examples of the monotonic permutations, which have n
values but only one dual run. In addition, in general, there is no non-trivial connection between the runs of a

permutation and its dual runs. For instance, a permutation with a given number of runs may have arbitrarily

many (or few) dual runs, and conversely.

Related work. The success of TimSort has nurtured the interest in the quest for sorting algorithms that would

be both excellent all-around and adapted to arrays with few runs. However, its ad hoc conception made its

complexity analysis harder than what one might have hoped, and it is only in 2015, a decade after TimSort had

been largely deployed, that Auger et al. [2] proved that TimSort required O(n log(n)) comparisons for sorting

arrays of length n, which is worst-case optimal in the model of sorting by comparisons.

Since the early 2000s, several natural merge sorts were proposed, all of which were meant to offer easy-to-prove

complexity guarantees when sorting arrays of length n, with ρ runs and run-length entropyH: ShiversSort and α-
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StackSort, which run in timeO(n log(n)); α-MergeSort, which, like TimSort, runs in timeO(n+nH); adaptive

ShiversSort, PeekSort and (k-way) PowerSort, which require onlynH+O(n) comparisons and element moves. In

fact, the latter complexity guaranteed was already implicit in the seminal works of Hu and Tucker [15] and Garsia

and Wachs [12] about optimal alphabetic Huffman codes, in the 1970s.

Except TimSort, these algorithms are, in fact, described only as policies for deciding which runs to merge, the

actual routine used for merging runs being left implicit: since choosing a naïve merging routine does not harm the

worst-case time complexities considered above, all authors identified the cost of merging two runs of lengths m
andnwith the summ+n, and the complexity of the algorithm with the sum of the costs of the merges performed.

One notable exception is that of Munro and Wild [23]. They compared the running times of TimSort and of

TimSort’s variant obtained by using a naïve merging routine instead of TimSort’s galloping routine. However, and

although they mentioned the challenge of finding distributions on arrays that might benefit from galloping, they

did not address this challenge, and focused only on arrays with a low entropyH. As a result, they unsurprisingly

observed that the galloping routine was slower than the naïve one.

A parallel line of research has been focused on galloping and its impact on merge-based algorithms in general.

As early as 1976, Munro and Spira [22] proposed a complexity measure H◦
related to the dual run-length

entropy H∗
, with the property that H∗ ⩽ H◦ ⩽ log2(σ) for arrays with σ values. They also proposed an

algorithm for sorting arrays of length n with σ values by using O(n + nH◦) comparisons. McIlroy [21] then

extended their work by using the complexity measureH∗
instead ofH◦

, and proposing a variant of Munro and

Spira’s algorithm that would use O(n + nH∗) comparisons. Similarly, Barbay et al. [4] invented the algorithm

QuickSynergySort, which aimed at minimising the number of comparisons, achieving a O(n + nH∗) upper

bound and further refining the parameters it used, by taking into account the interleaving between runs and dual

runs.

In particular, Carlsson et al. [9] proved in 1993 that using a galloping routine, which they called AdaptMerge

and is equivalent to the 0-galloping routine introduced below, allowed every natural merge sort to require

onlyO(n log(ρ)) element comparisons. This upper bound was refined by Schou and Wang [26], who proved that

onlyO(n+ nH) element comparisons were actually required. They also proposed the new algorithm PersiSort,

which uses onlyO(n+nH) comparisons without computing run lengths or attempting to identify well-adapted

run merge strategies. Yet, all of these algorithms require ω(n+ nH) element moves in the worst case.

Furthermore, as a side effect of being rather complicated and lacking a proper analysis, except that of [23] that

hinted at its inefficiency, TimSort’s galloping routine has been omitted in various mainstream implementations

of natural merge sorts, in which it was replaced by its naïve variant. This is the case, for instance, in library

TimSort implementations of the programming languages Swift [11] and Rust [25]. On the contrary, TimSort

implementations in other languages, such as Java [7], Octave [29] or the V8 JavaScript engine [30], and PowerSort

implementation in Python [28] include the galloping routine.

Outline. In this article, we study the impact of integrating galloping routines in natural merge sort algorithms.

In Section 2, we present the galloping routine of TimSort and two of its variants: the t-galloping routine,

which was already introduced in [14, 21], and the polylogarithmic routine, obtained by using the t-galloping routine

with t = Θ(log2(a+ b)2)whenever we merge runs of lengths a and b. The latter routine is an improvement over

the logarithmic routine of [14], because it will satisfy Proposition 49, which means, in a nutshell, that integrating

the polylogarithmic routine instead of a naïve merging routine in a reasonable merge sort algorithm is risk-free: it

requires at mostO(n) additional element comparisons, and no additional element move.

In Section 3, we present three classes of natural merge sort algorithms, already proposed in [14]: algorithms

with the fast-growth, middle-growth and tight middle-growth properties, the middle-growth property being strictly

weaker than both other properties. Having these properties means that, up to a constant factor, merging runs

should increase their sizes exponentially fast (this is the fast-growth property), possibly when restricting oneself

to start with a run present in the initial array (middle-growth) or demanding that the growth rate should be

maximal, i.e., 2 (tight middle-growth). This interpretation of these properties and the implications between them

are represented in Figure 3.

We also prove (Theorem 7) that integrating the t-galloping routine into algorithms with the middle-growth

property makes them require only O(n + nH∗) element comparisons; this improves the similar statement
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Figure 3: Growth properties: each algorithm with the fast-growth or tight middle-growth property also has

the middle-growth property; other implications are invalid. When merging h times a run R0 gives a run Rh,

inequalities of the form γh|R0| ⩽ γδ|Rh| (for constants γ > 1 and δ ∈ R) must be valid (i) for all runs R0,

when one has the fast-growth property; (ii) for all initial runs R0, when one has the middle-growth property;

(iii) for all initial runs R0 and γ = 2, when one has the tight middle-growth property.

of [14, Theorem 8], where we used a different notion of dual run-length property, based on splitting the inverse

permutation A−1
into increasing runs only, instead of monotonic runs.

In Section 4, we prove that all the algorithms TimSort, α-MergeSort, PowerSort, PeekSort and, adaptive

ShiversSort have the fast-growth property (Theorem 8); that NaturalMergeSort, ShiversSort and α-StackSort have

the middle-growth property (Theorem 9); and that NaturalMergeSort, ShiversSort and PowerSort have the tight

middle-growth property (Theorem 10). This allows recovering complexity results that were proved separately for

each of these algorithms.

In Section 5, we prove that TimSort’s original galloping routine is flawed, and fails to enjoy the complexity

bounds provided in Theorem 7 or the risk-freeness property of Proposition 49: using this routine on arrays

with σ = 3 distinct values may still require Ω(n log(n)) element comparisons, and using it instead of the naïve

routine may require Ω(n log(n)) additional element comparisons. This legitimates using our variants instead of

this original routine.

Finally, in Section 6, we prove that integrating the t-galloping routine (Theorems 46 — already proved in [14]

— 53 and 59) in algorithms with the tight middle-growth property, or in Adaptive ShiversSort or PeekSort, yields

no more than

(1 + 1/(t+ 3))nH∗ + log2(t+ 1)n+O(n)

element comparisons, whereas integrating the polylogarithmic routine (Theorems 51, 53 and 60) yields no more

than

nH∗ + 2 log2(H∗ + 1)n+O(n)

element comparisons.

These results provide us with the a more complete view on the complexity of using various algorithms for

sorting arrays of length n, with ρ runs and σ different values, run-length complexity H and dual run-length

complexityH∗
, which is summarised in Table 1. For each algorithm, we indicate the worst-case merge cost, which

is approximately equal to the number of element moves, and to the number of element comparisons if a naïve

merging routine is used; we also indicate the worst-case number of element comparisons if a polylogarithmic

galloping routine is used. Furthermore, our results often suffice to obtain O variants of already-known results;

in those cases, we indicate both the best known bounds and those that our results yield. All results indicated in

Table 1 are given up to aO(n) error term.
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Algorithm Merge cost Element comparisons

NaturalMergeSort [18]
n log2(ρ) [18]

n(H∗ + 2 log2(H∗ + 1)) Thms 10 & 51
n log2(n) Thms 6 & 10

TimSort [24]
1.5nH [1, 8] O(nH∗) Thms 7 & 8O(nH) Thms 5 & 8

α-StackSort [2] O(n log(n))
[2] O(nH∗) Thms 7 & 9

Thms 6 & 9

α-MergeSort [8]
nH/cα when ϕ < α < 2 [8] O(nH∗) Thms 7 & 8O(nH) Thms 5 & 8

ShiversSort [27] n log2(n)
[27]

n(H∗ + 2 log2(H∗ + 1)) Thms 10 & 51
Thms 6 & 10

adaptive ShiversSort [16]
nH [16]

n(H∗ + 2 log2(H∗ + 1)) Thm 53O(nH) Thms 5 & 8

PeekSort [23]
nH [23]

n(H∗ + 2 log2(H∗ + 1)) Thm 60O(nH) Thms 5 & 8

PowerSort [23]

nH [23]

n(H∗ + 2 log2(H∗ + 1)) Thms 10 & 51O(nH) Thms 5 & 8

n log2(n) Thms 6 & 10

Table 1: Upper bounds on the merge costs and number of comparisons required by various natural merge sorts

when using the polylogarithmic galloping routine. Here, we set cα = log2(α+ 1)− α log2(α)/(α+ 1).

2 The galloping routine for merging runs

Here, we describe the galloping routine that TimSort uses to merge adjacent non-decreasing runs. This routine

is a blend between a naïve merging algorithm, which requires a + b − 1 comparisons to merge runs A and B of

lengths a and b, and a binary-search-based algorithm, which requiresO(log(a+ b)) comparisons in the best case,

andO(a+ b) comparisons in the worst case. It depends on a parameter t, and works as follows.

When merging runs A and B into one large run C , we first need to find the least integers k and ℓ such

that B[0] < A[k] ⩽ B[ℓ]: the k + ℓ first elements of C are

A[0], A[1], . . . , A[k − 1], B[0], B[1], . . . , B[ℓ− 1],

and the remaining elements of C are obtained by merging the sub-array of A that spans positions k to a and the

sub-array ofB that spans positions ℓ to b. Computingk and ℓ efficiently is therefore a crucial step towards reducing

the number of comparisons required by the merging routine (and, thus, by the sorting algorithm).

This computation is a special case of the following problem: if one wishes to find a secret integer m ⩾ 1 by

choosing integers x ⩾ 1 and testing whether x ⩾ m, what is, as a function of m, the least number of tests

that one must perform? Bentley and Yao [6] answer this question by providing simple strategies, which they

number B0,B1, . . . :

B0: choose x = 1, then x = 2, and so on, until choosing x = m, thereby finding m in m queries.

B1: first use B0 to find ⌈log2(m)⌉ + 1 in ⌈log2(m)⌉ + 1 queries, i.e., choose x = 2k until x ⩾ m, then

compute the bits of m (from the most significant bit of m to the least significant one) in ⌈log2(m)⌉ − 1
additional queries. For instance, if m = 5, this results in successively choosing x = 1, 2, 4, 8, 6 and 5;

if m = 8, this results in successively choosing x = 1, 2, 4, 8, 6 and 7. Bentley and Yao call this strategy a

galloping (or exponential search) technique.

Bk+1: like B1, except that one finds ⌈log2(m)⌉+ 1 by using Bk instead of B0.

Strategy B0 uses m queries, B1 uses 2⌈log2(m)⌉ queries (except for m = 1, where it uses one query), and

each strategy Bk with k ⩾ 2 uses log2(m) + o(log(m)) queries. Thus, if m is known to be arbitrarily large,

6



m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B1 1 2 4 4 6 6 6 6 8 8 8 8 8 8 8 8 10

Table 2: Comparisons requested by strategies B0 and B1 to find a secret integer m ⩾ 1.

one should favour some strategy Bk (with k ⩾ 1) over the naïve strategy B0. However, when merging runs taken

from a permutation chosen uniformly at random over the n! permutations of {1, 2, . . . , n}, the integer m is

frequently small, which makes B0 suddenly more attractive. In particular, the overhead of using B1 instead of B0

is a prohibitive +20% or +33% when m = 5 or m = 3, as illustrated in the black cells of Table 2.

McIlroy [21] addresses this issue by choosing a parameter t and using a blend between the strategiesB0 andB1,

which consists in two successive steps C1 and C2:

C1: first follow B0 for up to t steps, thereby choosing x = 1, x = 2, . . . , x = t (if m ⩽ t− 1, one stops after

choosing x = m).

C2: if m ⩾ t + 1, switch to B1 (or, more precisely, to a version of B1 translated by t, since the

precondition m ⩾ 1 is now m ⩾ t+ 1).

Once such a parameter t is fixed, McIlroy’s mixed strategy allows retrieving m in costt(m) queries,

where costt(m) = m if m ⩽ t+ 2, and costt(m) = t+ 2⌈log2(m− t)⌉ if m ⩾ t+ 3.

In practice, however, the integer we are evaluating is not only positive, but even subject to the double

inequality 1 ⩽ k ⩽ a or 1 ⩽ ℓ ⩽ b; above, we overlooked those upper bounds. Taking them into

account allows us to marginally improve strategy B1 and McIlroy’s resulting mixed strategy, at the expense of

providing us with a more complicated cost function; in TimSort’s implementation, this improvement is used only

when k ⩾ max{t, a/2} or ℓ ⩾ max{t, b/2}.

Therefore, and in order to keep things simple, we will replace the precise cost functions we might have obtained

by the following simpler upper bound. By contrast, whenever constructing examples aimed at providing lower

bounds, we will make sure that the cases k ⩾ max{t, a/2} and ℓ ⩾ max{t, b/2} never occur.

Lemma 1. For all t ⩾ 0 and m ⩾ 1, we have costt(m) ⩽ cost∗t(m), where

cost∗t(m) = min{(1 + 1/(t+ 3))m, t+ 2 + 2 log2(m+ 1)}.

Proof. Since the desired inequality is immediate when m ⩽ t + 2, we assume that m ⩾ t + 3. In that

case, we already have costt(m) ⩽ t + 2(log2(m − t) + 1) ⩽ t + 2 + 2 log2(m + 1), and we prove now

that costt(m) ⩽ m+ 1.

Letu = m−t and letf : x 7→ x−1−2 log2(x). We first check by hand that (m+1)−costt(m) = 0, 1, 0, 1
when u = 3, 4, 5, 6. Then, observing that f is positive and increasing on the interval [7,+∞).

proves that (m + 1) − costt(m) ⩾ f(u) > 0 when u ⩾ 7. It follows, as expected,

that costt(m) ⩽ m+ 1 ⩽ (1 + 1/(t+ 3))m.

The above discussion immediately provides us with a cost model for the number of comparisons performed

when merging two runs.

Proposition 2. Let π be a permutation with dual runs S1, S2, . . . , Sσ , and let A and B be two monotonic runs of

lengths a and b obtained while sortingπ with a natural merge sort. For each integer i ⩽ σ, let a→i (respectively, b→i)

be the number of elements in A (respectively, in B) whose value belongs to Si. Using a merging routine based on

McIlroy’s mixed strategy for a fixed parameter t, we need at most

1 +

σ∑
i=1

cost∗t(a→i) + cost∗t(b→i)

element comparisons to merge the runs A and B into an increasing run.
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Proof. Let C be the increasing run that results from merging A and B. A preliminary step consists in checking

whether each ofA andB is increasing or decreasing, in which case they are reversed. This only requires comparing

the first two elements of A and B.

IfS1 is an increasing run ofπ−1
, the runC starts with those a→1 elements fromAwhose value belongs toS1,

and then those b→1 elements from B whose value belongs to S1; otherwise, C starts with those b→1 elements

fromB whose value belongs toS1, and only then those a→1 elements fromAwhose value belongs toS1. In both

cases, C then consists of a→2 + b→2 elements whose value belongs to S2 (starting with elements of A if S2 is an

increasing run of π−1
, and of B otherwise), and so on.

Hence, the elements of A are grouped in blocks of length a→i, some of which will form consecutive blocks of

elements of C , thereby being “glued” together. Similarly, the elements of B are grouped in blocks of length b→i,

some being glued together. The runC will then consist in an alternation of (possibly, glued) blocks fromA andB,

and the galloping routine consists in discovering whether the first block comes from A or from B (which takes

one query) and then successively computing the lengths of these blocks, except the last one (because once a run

has been completely integrated into C , the remaining elements of the other run will necessarily form one unique

block).

Since cost∗t is sub-additive, i.e., since cost∗t(m) + cost∗t(m
′) ⩾ cost∗t(m+m′) for all m ⩾ 0 and m′ ⩾ 0,

discovering the length of a glued block of length a→i + a→i+1 + · · ·+ a→j requires no more than

cost∗t(a→i + a→i+1 + · · ·+ a→j) ⩽ cost∗t(a→i) + cost∗t(a→i+1) + · · ·+ cost∗t(a→j)

element comparisons. Using this upper bound to count comparisons of elements taken from all blocks (glued or

not) that belong to either A or B completes the proof.

We simply call t-galloping routine the merging routine based on McIlroy’s mixed strategy for a fixed

parameter t; when the value of t is irrelevant, we omit mentioning it. Then, the quantity

1 +
σ∑

i=1

cost∗t(ai) + cost∗t(bi)

is called the (t-)galloping cost of merging A and B. This cost never exceeds 1 + 1/(t + 3) times the sum a + b,

which we call naïve cost of merging A and B. Below, we study the impact of using the galloping routine instead of

the naïve one, which amounts to replacing naïve merge costs by their galloping variants.

Note that using this new galloping cost measure is relevant only if element comparisons are significantly more

expensive than element (or pointer) moves. For example, even if we were lucky enough to observe that each element

in B is smaller than each element in A, we would perform onlyO(log(a+ b)) element comparisons, but as many

as Θ(a+ b) element moves.

Updating the parameter t. We assumed above that the parameter t did not vary while the runs A and B were

being merged with each other. This is not how t behaves in TimSort’s implementation of the galloping routine.

Instead, the parameter t is initially set to a constant (t = 7 in Java), and may change during the algorithm,

by proceeding roughly as follows. In step C2, after using the strategy B1, and depending on the value of m that

we found, one may realise that using B0 might have been less expensive than using B1. In that case, the value of t
increases by 1, and otherwise (i.e., if using B1 was indeed a smart move), it decreases by 1 (with a minimum of 0).

As we will see, however, TimSort’s actual implementation includes many additional low-level “optimisations”

compared to this simplified version, a few of which result in worse worst-case complexity bounds.

In this paper, we will study and compare three policies for choosing the value of t:

1. setting t to a fixed constant, e.g., t = 0 or t = 7;

2. following TimSort’s update policy;

3. setting t = τ⌈log2(a+ b)⌉2 whenever we merge runs of lengths a and b, for some constant τ ;
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Since the first policy, which consists in not updating t at all, is the simplest one, it will be our choice by default.

In Section 3, we focus only on generic properties of this “no-update” policy; in Section 4, we prove that these

properties are useful in combination with many natural merge sorts. Then, in Section 5, we focus on TimSort’s

actual update policy for the parameter t, thereby identifying two weaknesses of this policy: using it may cause

a non-negligible overhead, and may yet be rather inefficient. Finally, in Section 6, we mostly focus on the third

policy presented above, which consists in choosing t as a function of the lengths of those runs we want to merge;

in particular, we shall prove that this policy enjoys the positive aspects of both previous update policies, while

avoiding their drawbacks.

3 Fast-growth and (tight) middle-growth properties

In this section, we focus on two novel properties of stable natural merge sorts, which we call fast-growth and middle-

growth, and on a variant of the latter property, which we call tight middle-growth. These properties capture all

TimSort-like natural merge sorts invented in the last decade, and explain why these sorting algorithms require

onlyO(n+ nH) element moves andO(n+ nmin{H,H∗}) element comparisons. We will prove in Section 4

that many algorithms have these properties.

When applying a stable natural merge sort on an arrayA, the elements ofA are clustered into monotonic sub-

arrays called runs, and the algorithm consists in repeatedly merging consecutive runs into one larger run until the

array itself contains only one run. Consequently, each element may undergo several successive merge operations.

Merge trees [3, 16, 23] are a convenient way to represent the succession of runs that ever occur while A is being

sorted.

Definition 3. The merge tree induced by a stable natural merge sort algorithm on an array A is the binary rooted

tree T defined as follows. The nodes of T are all the runs that were present in the initial array A or that resulted

from merging two runs. The runs of the initial array are the leaves ofT , and when two consecutive runsR1 andR2

are merged with each other into a new runR, the runR1 spanning positions immediately to the left of those ofR2,

they form the left and the right children of the node R, respectively.

Such trees ease the task of referring to several runs that might not have occurred simultaneously. In particular,

we will often refer to the ith
ancestor or a run R, which is just R itself if i = 0, or the parent, in the tree T , of

the (i− 1)th
ancestor of R if i ⩾ 1. That ancestor will be denoted by R(i)

.

Before further manipulating these runs, let us first present some notation about runs and their lengths, which

we will frequently use. Each run will commonly be denoted by a upper-case letter, possibly with some index or

adornment, and its length will be denoted by the same small-case letter and the same index or adornment. For

instance, runs named R, Ri, R
(j)

, Q′
and S will have respective lengths r, ri, r

(j)
, q′ and s. Finally, we say that a

run R is a left run if it is the left child of its parent, and that it is a right run if it is a right child. The root of a merge

tree is neither left nor right.

Definition 4. We say that a stable natural merge sort algorithm A has the fast-growth property if it satisfies the

following statement:

There exist an integer ℓ ⩾ 1 and a real number α > 1 such that, for every merge tree T induced

byA and every run R at depth ℓ or more in T , we have r(ℓ) ⩾ αr.

We also say thatA has the middle-growth property if it satisfies the following statement:

There exists a real numberβ > 1 such that, for every merge treeT induced byA, every integerh ⩾ 0
and every run R of height h in T , we have r ⩾ βh

.

Finally, we say thatA has the tight middle-growth property if it satisfies the following statement:

There exists an integer γ ⩾ 0 such that, for every merge tree T induced byA, every integer h ⩾ 0
and every run R of height h in T , we have r ⩾ 2h−γ

.

Since every node of height h ⩾ 1 in a merge tree is a run of length at least 2, each algorithm with the fast-

growth property or with the tight middle-growth property also has the middle-growth property: indeed, it suffices
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to choose β = min{2, α}1/ℓ in the first case, and β = 21/(γ+1)
in the second one. As a result, the first and third

properties are stronger than the second one, and indeed they have stronger consequences.

Theorem 5. Let A be a stable natural merge sort algorithm with the fast-growth property. If A uses either the

galloping or the naïve routine for merging runs, it requires O(n + nH) element comparisons and moves to sort

arrays of length n and run-length entropyH.

Proof. Let ℓ ⩾ 1 and α > 1 be the integer and the real number mentioned in the definition of the statement “A
has the fast-growth property”. Let A be an array of length n with ρ runs of lengths r1, r2, . . . , rρ, let T be the

merge tree induced byA on A, and let di be the depth of the run Ri in the tree T .

The algorithmA usesO(n) element comparisons and element moves to delimit the runs it will then merge

and to make them non-decreasing. Then, both the galloping and the naïve merging routine require O(a + b)
element comparisons and moves to merge two runs A and B of lengths a and b. Therefore, it suffices to prove

that
∑

R∈T r = O(n+ nH).

Consider some leaf Ri of the tree T , and let k = ⌊di/ℓ⌋. The run R
(kℓ)
i has length r

(kℓ)
i ⩾ αkri, and

thus n ⩾ r
(kℓ)
i ⩾ αkri. Hence, di + 1 ⩽ ℓ(k + 1) ⩽ ℓ (logα(n/ri) + 1), and we conclude that

∑
R∈T

r =

ρ∑
i=1

(di + 1)ri ⩽ ℓ

ρ∑
i=1

(ri logα(n/ri) + ri) = ℓ(nH/ log2(α) + n) = O(n+ nH).

Similar, weaker results also hold for algorithms with the (tight) middle-growth property.

Theorem 6. LetA be a stable natural merge sort algorithm with the middle-growth property. IfA uses either the

galloping or the naïve routine for merging runs, it requiresO(n log(n)) element comparisons and moves to sort arrays

of length n. If, furthermore,A has the tight middle-growth property, it requires at most n log2(n) +O(n) element

comparisons and moves to sort arrays of length n.

Proof. Let us borrow the notations from the previous proof, and let β > 1 be the real number mentioned in

the definition of the statement “A has the middle-growth property”. Like in the proof of Theorem 5, it suffices

to show that
∑

R∈T r = O(n log(n)). The di
th

ancestor of a run Ri is the root of T , and thus n ⩾ βdi .

Hence, di ⩽ logβ(n), which proves that

∑
R∈T

r =

ρ∑
i=1

(di + 1)ri ⩽
ρ∑

i=1

(logβ(n) + 1)ri = (logβ(n) + 1)n = O(n log(n)).

Similarly, if A has the tight middle-growth property, let γ be the integer mentioned in the definition of the

statement “A has the tight middle-growth property”. This time,n ⩾ 2di−γ
, which proves that di ⩽ log2(n)+γ

and that

∑
R∈T

r =

ρ∑
i=1

(di + 1)ri ⩽
ρ∑

i=1

(log2(n) + γ + 1)ri = (log2(n) + γ + 1)n = n log2(n) +O(n).

Theorems 5 and 6 provide us with a simple framework for recovering well-known results on the complexity

of many algorithms. By contrast, Theorem 7 consists in new complexity guarantees on the number of element

comparisons performed by algorithms with the middle-growth property, provided that they use the galloping

routine.

Theorem 7. LetA be a stable natural merge sort algorithm with the middle-growth property. IfA uses the galloping

routine for merging runs, it requiresO(n+nH∗) element comparisons to sort arrays of lengthn and dual run-length

entropyH∗
.

Proof. Let β > 1 be the real number mentioned in the definition of the statement “A has the middle-growth

property”. Let A be an array of length n with σ dual runs S1, S2, . . . , Sσ , and let T be the merge tree induced

byA on A.
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The algorithm A uses O(n) element comparisons to delimit the runs it will then merge and to make them

non-decreasing. We prove now that merging these runs requires onlyO(n+nH∗) comparisons. For every run R
inT and every integer i ⩽ σ, let r→i be the number of elements ofR that belong to the dual runSi. Proposition 2

states that merging two runsR andR′
requires at most 1+

∑σ
i=1 cost

∗
t(r→i)+cost∗t(r

′
→i) element comparisons.

Since less than n such merge operations are performed, and since n =
∑σ

i=1 si and nH∗ =
∑σ

i=1 si log(n/si),

it remains to show that ∑
R∈T

cost∗t(r→i) = O(si + si log(n/si))

for all i ⩽ σ. Then, since cost∗t(m) ⩽ (t+1)cost∗0(m) for all parameter values t ⩾ 0 and all m ⩾ 0, we assume

without loss of generality that t = 0.

Consider now some integer h ⩾ 0, and let C0(h) =
∑

R∈Rh
cost∗0(r→i), whereRh denotes the set of runs

at height h in T . Since no run inRh descends from another one, we already have C0(h) ⩽ 2
∑

R∈Rh
r→i ⩽ 2si

and
∑

R∈Rh
r ⩽ n. Moreover, by definition ofβ, each runR ∈ Rh is of length r ⩾ βh

, and thus |Rh| ⩽ n/βh
.

Let also f : x 7→ 2 + 2 log2(x + 1), g : x 7→ x f(si/x) and λ = ⌈logβ(n/si)⌉. Both f and g are positive

and concave on the interval (0,+∞), thereby also being increasing. It follows that, for all h ⩾ 0,

C0(λ+ h) ⩽
∑

R∈Rλ+h

f(r→i) ⩽ |Rλ+h| f
(∑

R∈Rλ+h
r→i/|Rλ+h|

)
⩽ g

(
|Rλ+h|

)
⩽ g

(
n/βλ+h

)
⩽ g

(
siβ

−h
)
=

(
2 + 2 log2(β

h + 1)
)
siβ

−h

⩽
(
2 + 2 log2(2β

h)
)
siβ

−h =
(
4 + 2h log2(β)

)
siβ

−h.

Inequalities on the first line hold by definition of cost∗0, because f is concave, and because f is increasing;

inequalities on the second line hold because g is increasing and because |Rh| ⩽ n/βh
.

We conclude that∑
R∈T

cost∗0(r→i) =
∑
h⩾0

C0(h) =
λ−1∑
h=0

C0(h) +
∑
h⩾0

C0(λ+ h)

⩽ 2λsi + 4si
∑
h⩾0

β−h + 2 log2(β)si
∑
h⩾0

hβ−h

⩽ O
(
si(1 + log(n/si)

)
+O

(
si
)
+O

(
si
)
= O

(
si + si log(n/si)

)
.

4 Algorithms with the fast- and (tight) middle-growth properties

In this section, we briefly present the algorithms mentioned in Section 1 and prove that each of them enjoys the

fast-growth property and/or the (tight) middle-growth property. Before treating these algorithms one by one, we

first sum up our results.

Theorem 8. The algorithms TimSort, α-MergeSort, PowerSort, PeekSort and adaptive ShiversSort have the fast-

growth property.

An immediate consequence of Theorems 5 and 7 is that these algorithms sort arrays of lengthn and run-length

entropy H in time O(n + nH), which was already well-known; and that, if used with the galloping merging

routine, they only need O(n + nH∗) comparisons to sort arrays of length n and dual run-length entropy H∗
,

which is a new result.

Theorem 9. The algorithms NaturalMergeSort, ShiversSort and α-StackSort have the middle-growth property.

Theorem 7 proves that, if these three algorithms are used with the galloping merging routine, they only

needO(n + nH∗) comparisons to sort arrays of length n and dual run-length entropyH∗
. By contrast, observe

that they can be implemented by using a stack, following TimSort’s own implementation, but where only the two

top runs of the stack could be merged. It is proved in [16] that such algorithms may requireω(n+nH) comparisons

to sort arrays of length n and run-length entropyH. Hence, Theorem 5 shows that these three algorithms do not

have the fast-growth property.
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Theorem 10. The algorithms NaturalMergeSort, ShiversSort and PowerSort have the tight middle-growth property.

Theorem 6 proves that these algorithms sort arrays of length n in time n log2(n) +O(n), which was already

well-known. In Section 6, we will further improve our upper bounds on the number of comparisons that these

algorithms require when sorting arrays of length n and dual run-length entropyH∗
.

Note that the algorithms α-StackSort, α-MergeSort and TimSort may require more than n log2(n) + O(n)
comparisons to sort arrays of length n, which proves that they do not have the tight middle-growth property. In

Section 6, we will prove that adaptive ShiversSort and PeekSort also fail to have the this property, although they

enjoy still complexity upper bounds similar to those of algorithms with the tight middle-growth property.

4.1 Algorithms with the fast-growth property

4.1.1 PowerSort

The algorithm PowerSort is best defined by introducing the notion of power of a run endpoint or of a run, and

then characterising the merge trees that PowerSort induces.

Definition 11. LetA be an array of lengthn, whose run decomposition consists of runsR1, R2, . . . , Rρ, ordered

from left to right. For all integers i ⩽ ρ, let ei = r1 + . . .+ ri. We also abusively set e−1 = −∞ and eρ+1 = n.

When 0 ⩽ i ⩽ ρ, let I(i) denote the half-open interval (ei−1 + ei, ei + ei+1]. The power of ei, denoted

by pi, is then defined as the least integer p such that I(i) contains an element of the set {kn/2p−1 : k ∈ Z}. Thus,

we (abusively) have p0 = −∞ and pρ = 0, because I(0) = (−∞, r1] and I(ρ) = (2n− rρ, 2n].
Finally, letRi...j be a run obtained by merging consecutive runsRi, Ri+1, . . . , Rj . The power of the runRi...j

is defined as max{pi−1, pj}.

This definition is borrowed from [23, Definition 3], except that we added sentinel powers p0 = −∞
and pρ = 0, and work directly with lengths ei instead of probabilities ei/n.

Lemma 12. Each non-empty sub-interval I of the set {0, . . . , ρ} contains exactly one integer i such that pi ⩽ pj for

all j ∈ I .

Proof. Assume that the integer i is not unique. Since e0 is the only endpoint with power−∞, we know that0 /∈ I .

Then, let a and b be elements of I such that a < b and pa = pb ⩽ pj for all j ∈ I , and let p = pa = pb.

By definition of pa and pb, there exist odd integers k and ℓ such that kn/2p−1 ∈ I(a) and ℓn/2p−1 ∈ I(b).

Since ℓ ⩾ k+1, the fraction (k+1)n/2p−1
belongs to some interval I(j) such that a ⩽ j ⩽ b. But since k+1 is

even, we know that pj < p, which is absurd. This invalidates our initial assumption and completes the proof.

Corollary 13. Let R1, . . . , Rρ be the run decomposition of an array A. There is exactly one tree T that is induced

on A and in which every inner node has a smaller power than its children. Furthermore, for every run Ri...j in T ,

we have max{pi−1, pj} < min{pi, pi+1, . . . , pj−1}.

Proof. Given a merge tree T , let us prove that the following statements are equivalent:

S1: each inner node of T has a smaller power than its children;

S2: each run Ri...j that belongs to T has a power that is smaller than all of pi, . . . , pj−1;

S3: if a run Ri...j is an inner node of T , its children are the two runs Ri...k and Rk+1...j such

that pk = min{pi, . . . , pj−1}.

First, if S1 holds, we prove S3 by induction on the height h of the run Ri...j . Indeed, if the restriction of S3
to runs of height less than h holds, let Ri...k and Rk+1...j be the children of a run Ri...j of height h. If i < k, the

run Ri...k has two children Ri...ℓ and Rℓ+1...k such that pℓ = min{pi, . . . , pk−1}, and the powers of these runs,

i.e., max{pi−1, pℓ} and max{pℓ, pk}, are greater than the power of Ri...k, i.e., max{pi−1, pk}, which proves

that pℓ > pk. It follows that pk = min{pi, . . . , pk}, and one proves similarly that pk = min{pk, . . . , pj−1},

thereby showing that S3 also holds for runs of height h.
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Then, if S3 holds, we prove S2 by induction on the depth d of the run Ri...j . Indeed, if the restriction of S2
to runs of depth less than d holds, let Ri...k and Rk+1...j be the children of a run Ri...j of depth d. Lemma 12

and S3 prove that pk is the unique smallest element of {pi, . . . , pj−1}, and the induction hypothesis proves

that max{pi−1, pj} < pk. It follows that both powers max{pi−1, pk} and max{pk, pj} are smaller than all

of pi, . . . , pk−1, pk+1, . . . , pj−1, thereby showing that S2 also holds for runs of depth d.

Finally, if S2 holds, let Ri...j be an inner node of T , with children Ri...k and Rk+1...j . Property S2 ensures

thatmax{pi−1, pj} < pk, and thus thatmax{pi−1, pj} is smaller than bothmax{pi−1, pk} andmax{pk, pj},

i.e., that Ri...j has a smaller power that its children, thereby proving S1.

In particular, once the array A and its run decomposition R1, . . . , Rρ are fixed, S3 provides us with a

deterministic top-down construction of the unique merge tree T induced on A and that satisfies S1: the root

of T must be the run R1...ρ and, provided that some run Ri...j belongs to T , where i < j, Lemma 12 proves that

the integer k mentioned in S3 is unique, which means that S3 unambiguously describes the children of Ri...j in

the tree T .

This proves the first claim of Corollary 13, and the second claim of Corollary 13 follows from the equivalence

between the statements S1 and S2.

This leads to the following characterisation of the algorithm PowerSort, which is proved in [23, Lemma 4],

and which Corollary 13 allows us to consider as an alternative definition of PowerSort.

Definition 14. In every merge tree that PowerSort induces, inner nodes have a smaller power than their children.

Lemma 15. Let T be a merge tree induced by PowerSort, let R be a run of T with power p, and let R(2)
be its

grandparent. We have 2p−2r < n < 2pr(2).

Proof. LetRi...j be the runR. Without loss of generality, we assume that p = pj , the case p = pi−1 being entirely

similar. Corollary 13 states that all of pi, . . . , pj−1 are larger than p, and therefore that p ⩽ min{pi, . . . , pj}.

Thus, the union of intervals I(i) ∪ . . . ∪ I(j) = (ei−1 + ei, ej + ej+1] does not contain any element of the

set S = {kn/2p−2 : k ∈ Z}. Consequently, the bounds ei−1 + ei and ej + ej+1 are contained between two

consecutive elements of S , i.e., there exists an integer ℓ such that

ℓn/2p−2 ⩽ ei−1 + ei ⩽ ej + ej+1 < (ℓ+ 1)n/2p−2.

We conclude that

r = ej − ei−1 ⩽ (ej + ej+1)− (ei−1 + ei) < n/2p−2.

We prove now that n ⩽ 2pr(2). To that end, we assume that both R and R(1)
are left children, the other

possible cases being entirely similar. There exist integers u and v such that R(1) = Ri...u and R(2) = Ri...v .

Hence, max{pi−1, pu} < max{pi−1, pj} = p, which shows that pu < pj = p. Thus, both intervals I(j)
and I(u), which are subintervals of (2ei−1, 2ev], contain elements of the set S ′ = {kn/2p−1 : k ∈ Z}. This

means that there exist two integers k and ℓ such that 2ei−1 < kn/2p−1 < ℓn/2p−1 ⩽ 2ev , from which we

conclude that

r(2) = ev − ei−1 > (ℓ− k)n/2p ⩾ n/2p.

Theorem 16. The algorithm PowerSort has the fast-growth property.

Proof. Let T be a merge tree induced by PowerSort. Then, let R be a run in T , and let p and p(3) be the respective

powers of the runs R and R(3)
. Definition 14 ensures that p ⩾ p(3) + 3, and therefore Lemma 15 proves that

2p
(3)+1r ⩽ 2p−2r < n < 2p

(3)
r(5).

This means that r(5) ⩾ 2r, and therefore that PowerSort has the fast-growth property.
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R(i) S

R(j) T

R(j+1)

ev ew ex ey ez

Figure 4: Runs R(i)
, R(j)

, R(j+1)
, their siblings S and T , and endpoints ev ⩽ ew < ex < ey < ez .

4.1.2 PeekSort

Like its sibling PowerSort, the algorithm PeekSort is best defined by characterizing the merge trees it induces.

Definition 17. Let T be the merge tree induced by PeekSort on an array A. The children of each internal

node Ri...j of T are the runs Ri...k and Rk+1...j for which the quantity

d(k) = |2ek − ej − ei−1|

is minimal. In case of equality between two real numbers d(k), the integer k is chosen to be as small as possible.

Proposition 18. The algorithm PeekSort has the fast-growth property.

Proof. Let T be a merge tree induced by PeekSort, and let R be a run in T . We prove that r(3) ⩾ 2r. Indeed, let

us assume that a majority of the runs R = R(0)
, R(1)

and R(2)
are left runs. The situation is entirely similar if a

majority of these runs are right runs.

Let i < j be the two smallest integers such that R(i)
and R(j)

are left runs, and let S and T be their right

siblings, as illustrated in Figure 4. We can write these runs as R(i) = Rw+1...x, S = Rx+1...y , R(j) = Rv+1...y

and T = Ry+1...z for some integers v ⩽ w < x < y < z.

Definition 17 states that

|r(j) − t| = |2ey − ez − ev| ⩽ |2ey−1 − ez − ev| = |r(j) − t− 2ry|.

Thus, r(j) − t− 2ry is negative, i.e., t > r(j) − 2ry , and

r(3) ⩾ r(j+1) = r(j) + t > 2r(j) − 2ry = 2(ey−1 − ev) ⩾ 2(ex − ew) = 2r(i) ⩾ 2r.

4.1.3 Adaptive ShiversSort

The algorithm adaptive ShiversSort is presented in Algorithm 1. It is based on an ad hoc tool, which we call level of

a run : the level of a runR of length r is defined as the number ℓ = ⌊log2(r)⌋. Following our naming conventions,

let ℓ(i) and ℓi denote the respective levels of the runs R(i)
and Ri.

Observe that appending a fictitious run of length 2n to the array A and stopping our sequence of merges just

before merging that fictitious run does not modify the sequence of merges performed by the algorithm, but allows

us to assume that every merge was performed in line 4. Therefore, we work below under that assumption.

Our proof is based on the following result, which was stated and proved in [16, Lemma 7].

Lemma 19. Let S = (R1, R2, . . . , Rh) be a stack obtained while executing adaptive ShiversSort. We have

(i) ℓi ⩾ ℓi+1 + 1 whenever 1 ⩽ i ⩽ h− 3 and (ii) ℓh−3 ⩾ ℓh−1 + 1 if h ⩾ 4.

Then, Lemmas 20 and 21 focus on inequalities involving the levels of a given run R belonging to a merge tree

induced by adaptive ShiversSort, and of its ancestors. In each case, the stack just before the run R is merged is

denoted by S = (R1, R2, . . . , Rh).

Lemma 20. If R(1)
is a right run, ℓ(2) ⩾ ℓ+ 1.
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Input : Array A to sort

Result : The array A is sorted into a single run. That run remains on the stack.

Note : The height of the stack S is denoted by h; its ith
deepest run by Ri; the length of Ri by ri. Finally, we

set ℓi = ⌊log2(ri)⌋. When two consecutive runs of S are merged, they are replaced, in S , with the run

resulting from the merge.

1 S ← an empty stack

2 while true:

3 if h ⩾ 3 and ℓh−2 ⩽ max{ℓh−1, ℓh}:
4 merge the runs Rh−2 and Rh−1

5 else if the end of the array has not yet been reached:

6 find a new monotonic run R, make it non-decreasing, and push it onto S
7 else:

8 break

9 while h ⩾ 2:

10 merge the runs Rh−1 and Rh

Algorithm 1: adaptive ShiversSort

Proof. The run R coincides with either Rh−2 or Rh−1, and R(1)
is the parent of the runs Rh−2 and Rh−1.

Hence, the run Rh−3 descends from the left sibling of R(1)
and from R(2)

. Thus, inequalities (i) and (ii) prove

that ℓ(2) ⩾ ℓh−3 ⩾ max{ℓh−2, ℓh−1}+ 1 ⩾ ℓ+ 1.

Lemma 21. If R is a left run, ℓ(2) ⩾ ℓ+ 1.

Proof. Since R is a left run, it coincides with Rh−2, and ℓh−2 ⩽ max{ℓh−1, ℓh}. Then, if R(1)
is a right run,

Lemma 20 already proves that ℓ(2) ⩾ ℓ + 1. Otherwise, R(1)
is a left run, and the run Rh descends from R(2)

,

thereby proving that

r(2) ⩾ r +max{rh−1, rh} ⩾ 2ℓ + 2max{ℓh−1,ℓh} ⩾ 2ℓ+1,

and thus that ℓ(2) ⩾ ℓ+ 1 too.

Proposition 22. The algorithm adaptive ShiversSort has the fast-growth property.

Proof. Let T be a merge tree induced by adaptive ShiversSort, and let R be a run in T . Lemma 20 shows

that ℓ(3) ⩾ ℓ(2) ⩾ ℓ + 1 if R(1)
is a right run, and Lemma 21 shows that ℓ(3) ⩾ ℓ(1) + 1 ⩾ ℓ + 1 if R(1)

is a left run. Thus, the inequality ℓ(3) ⩾ ℓ + 1 is valid in both cases, and we show similarly that ℓ(6) ⩾ ℓ(3) + 1.

It follows that r(6) ⩾ 2ℓ
(6)

⩾ 2ℓ+2 ⩾ 2r.

4.1.4 TimSort

The algorithm TimSort is presented in Algorithm 2.

We say that a run R is a #1-, a #2-, a #3 or a #4-run if is merged in line 4, 6, 8 or 10, respectively. Like in

Section 4.1.3, appending a fictitious run of length 2n that we will avoid merging allows us to assume that every run

is merged in line 4, 6, 8 or 10, i.e., is a #1-, a #2-, a #3 or a #4-run.

Our proof is then based on the following result, which extends [1, Lemma 5] by adding the inequality (v).

Lemma 23. Let S = (R1, R2, . . . , Rh) be a stack obtained while executing TimSort. We have

(i) ri > ri+1 + ri+2 whenever 1 ⩽ i ⩽ h− 4,

(ii) 3rh−2 > rh−1 if h ⩾ 3,

(iii) rh−3 > rh−2 if h ⩾ 4,

(iv) rh−3 + rh−2 > rh−1 if h ⩾ 4, and

(v) max{rh−3/2, 4rh} > rh−1 if h ⩾ 4.
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Input : Array A to sort

Result : The array A is sorted into a single run. That run remains on the stack.

Note : The height of the stack S is denoted by h; its ith
deepest run by Ri; the length of Ri by ri. When two

consecutive runs of S are merged, they are replaced, in S , with the run resulting from the merge.

1 S ← an empty stack

2 while true:

3 if h ⩾ 3 and rh−2 < rh:

4 merge the runs Rh−2 and Rh−1 ▷ case #1

5 else if h ⩾ 2 and rh−1 ⩽ rh:

6 merge the runs Rh−1 and Rh ▷ case #2

7 else if h ⩾ 3 and rh−2 ⩽ rh−1 + rh:

8 merge the runs Rh−1 and Rh ▷ case #3

9 else if h ⩾ 4 and rh−3 ⩽ rh−2 + rh−1:

10 merge the runs Rh−1 and Rh ▷ case #4

11 else if the end of the array has not yet been reached:

12 find a new monotonic run R, make it non-decreasing, and push it onto S
13 else:

14 break

15 while h ⩾ 2:

16 merge the runs Rh−1 and Rh

Algorithm 2: TimSort

Proof. Lemma 5 from [1] already proves the inequalities (i) to (iv). Therefore, we prove, by a direct induction on

the number of (push or merge) operations performed before obtaining the stack S , that S also satisfies (v).

When the algorithm starts, we have h ⩽ 3, and therefore there is nothing to prove in that case. Then, when a

stackS = (R1, R2, . . . , Rh) obeying the inequalities (i) to (v) is transformed into a stackS = (R1, R2, . . . , Rh)

▷ by inserting a run, cases #2 and #3 just failed to occur and h = h+ 1, so that

rh−3 = rh−2 > rh−1 + rh > 2rh = 2rh−1;

▷ by merging the runs Rh−1 and Rh, we have h = h− 1 and

rh−3 = rh−4 > rh−3 + rh−2 > 2rh−2 = 2rh−1;

▷ by merging the runs Rh−2 and Rh−1, case #1 just occurred and h = h− 1, so that

4rh = 4rh > 4rh−2 > rh−2 + rh−1 = rh−1.

In each case, S satisfies (v), which completes the induction and the proof.

Then, Lemmas 24 and 25 focus on inequalities involving the lengths of a given run R belonging to a merge

tree induced by TimSort and of its ancestors. In each case, the stack just before the run R is merged is denoted

by S = (R1, R2, . . . , Rh).

Lemma 24. If R(1)
is a right run, r(2) ⩾ 4r/3.

Proof. Let S be the left sibling of the run R(1)
, and let i be the integer such that R = Ri. If i = h−2, (iii) shows

that ri−1 > ri. If i = h − 1, (ii) shows that ri−1 > ri/3. In both cases, the run Ri−1 descends from R(2)
, and

thus r(2) ⩾ r + ri−1 ⩾ 4r/3.

Finally, if i = h, the run R is a #2-, #3- or #4-right run, which means both that rh−2 ⩾ r and that Rh−2

descends from S. It follows that r(2) ⩾ r + rh−2 ⩾ 2r.

Lemma 25. If R is a left run, r(2) ⩾ 5r/4.
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Proof. We treat four cases independently, depending on whether R is a #1-, a #2-, a #3- or a #4-left run. In each

case, we assume that the run R(1)
is a left run, since Lemma 24 already proves that r(2) ⩾ 4r/3 when R(1)

is a

right run.

▷ If R is a #1-left run, the run R = Rh−2 is merged with Rh−1 and rh−2 < rh. Since R(1)
is a left run, Rh

descends from R(2)
, and thus r(2) ⩾ r + rh ⩾ 2r.

▷ If R is a #2-left run, the run R = Rh−1 is merged with Rh and rh−1 ⩽ rh. It follows, in that case,

that r(2) ⩾ r(1) = r + rh ⩾ 2r.

▷ If R is a #3-left run, the run R = Rh−1 is merged with Rh, and rh−2 ⩽ rh−1 + rh = r(1). Due to

this inequality, our next journey through the loop of lines 2 to 14 must trigger another merge. Since R(1)

is a left run, that merge must be a #1-merge, which means that rh−3 < r(1). Consequently, (v) proves

that r(1) ⩾ max{rh−3, rh−1 + rh} ⩾ 5rh−1/4 = 5r/4.

▷ We prove thatR cannot be a #4-left run. Indeed, ifR is a #4-left run, the runR = Rh−1 is merged withRh,

and we both have rh−2 > r(1) and rh−3 ⩽ rh−2 + rh−1 ⩽ rh−2 + r(1). Due to the latter inequality, our

next journey through the loop of lines 2 to 14 must trigger another merge. Since r(1) < rh−2 < rh−3, that

new merge cannot be a #1-merge, and thus R(1)
is a right run, contradicting our initial assumption.

Proposition 26. The algorithm TimSort has the fast-growth property.

Proof. Let T be a merge tree induced by TimSort, and let R be a run in T . Lemma 24 shows

that r(3) ⩾ r(2) ⩾ 4r/3 if R(1)
is a right run, and Lemma 25 shows that r(3) ⩾ 5r(1)/4 ⩾ 5r/4 if R(1)

is

a left run. Hence, in both cases, r(3) ⩾ 5r/4.

4.1.5 α-MergeSort

The algorithm α-MergeSort is parametrised by a real number α > 1 and is presented in Algorithm 3.

Input : Array A to sort, parameter α > 1
Result : The array A is sorted into a single run. That run remains on the stack.

Note : The height of the stack S is denoted by h; its ith
deepest run by Ri; the length of Ri by ri. When two

consecutive runs of S are merged, they are replaced, in S , with the run resulting from the merge.

1 S ← an empty stack

2 while true:

3 if h ⩾ 3 and rh−2 < rh:

4 merge the runs Rh−2 and Rh−1 ▷ case #1

5 else if h ⩾ 2 and rh−1 < αrh:

6 merge the runs Rh−1 and Rh ▷ case #2

7 else if h ⩾ 3 and rh−2 < αrh−1:

8 merge the runs Rh−1 and Rh ▷ case #3

9 else if the end of the array has not yet been reached:

10 find a new monotonic run R, make it non-decreasing, and push it onto S
11 else:

12 break

13 while h ⩾ 2:

14 merge the runs Rh−1 and Rh

Algorithm 3: α-MergeSort

Like in Section 4.1.4, we say that a run R is a #1-, a #2- or a #3-run if is merged in line 4, 6 or 8. In addition, still

like in Sections 4.1.3 and 4.1.4, we safely assume that each run is a #1-, a #2- or a #3-run.

Our proof is then based on the following result, which is based on the tools used by Buss and Knop to prove [8,

Theorem 5.3].

Lemma 27. Let S = (R1, R2, . . . , Rh) be a stack obtained while executing α-MergeSort. We have
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(i) ri ⩾ αri+1 whenever 1 ⩽ i ⩽ h− 3,

(ii) rh−2 ⩾ (α− 1)rh−1 if h ⩾ 3, and

(iii) max{rh−2/α, αrh/(α− 1)} ⩾ rh−1 if h ⩾ 3.

Proof. We prove, by a direct induction on the number of (push or merge) operations performed before obtaining

the stack S , that S satisfies (i), (ii) and (iii).

When the algorithm starts, we have h ⩽ 2, and therefore there is nothing to prove in that case. Then, when a

stack S = (R1, R2, . . . , Rh) obeying (i), (ii) and (iii) is transformed into a stack S = (R1, R2, . . . , Rh)

▷ by inserting a run, h = h + 1 and cases #1 and #2 just failed to occur, which means

that rh−3 = rh−2 ⩾ αrh−1 = αrh−2 and rh−2 = rh−1 ⩾ αrh = αrh−1; in addition,

ri = ri ⩾ αri+1 = αri+1 whenever 1 ⩽ i ⩽ h− 3;

▷ by merging the runs Rh−1 and Rh, we have h = h − 1 and ri = ri ⩾ αri+1 = αri+1 for all

i ⩽ h− 2 = h− 3;

▷ by merging the runs Rh−2 and Rh−1, case #1 just occurred and h = h − 1, so

that ri = ri ⩾ αri+1 = αri+1 for all i ⩽ h − 3 = h − 4, and rh > rh−2, which means

that

min{rh−2, αrh} = min{rh−3, αrh} ⩾ αrh−2 ⩾ (α− 1)(rh−2 + rh−1) = (α− 1)rh−1.

In each case, S satisfies (i), (ii) and (iii), which completes the induction and the proof.

Lemmas 28 and 29 focus on inequalities involving the lengths of a given run R belonging to a merge tree

induced by α-MergeSort, and of its ancestors. In each case, the stack just before the run R is merged is denoted

by S = (R1, R2, . . . , Rh). In what follows, we also set α⋆ = min{α, 1 + 1/α, 1 + (α− 1)/α}.

Lemma 28. If R(1)
is a right run, r(2) ⩾ α⋆r.

Proof. Let i be the integer such that R = Ri. If i = h − 2, (i) shows that ri−1 ⩾ αri. If i = h − 1, (ii) shows

that ri−1 ⩾ (α−1)ri. In both cases,Ri−1 descends fromR(2)
, and thus r(2) ⩾ r+ri−1 ⩾ αr. Finally, if i = h,

the runR is a #2 or #3-right run, which means that rh−2 ⩾ r and thatRh−2 descends from the left sibling of r(1).

It follows that r(2) ⩾ r + rh−2 ⩾ 2r ⩾ (1 + 1/α)r.

Lemma 29. If R is a left run, r(2) ⩾ α⋆r.

Proof. We treat three cases independently, depending on whether R is a #1-, a #2 or a #3-left run. In each case, we

assume that R(1)
is a left run, since Lemma 28 already proves that r(2) ⩾ α⋆r when R(1)

is a right run.

▷ If R is a #1-left run, the run R = Rh−2 is merged with Rh−1 and rh−2 < rh. Since R(1)
is a left run, Rh

descends from R(2)
, and thus r(2) ⩾ r + rh ⩾ 2r ⩾ (1 + 1/α)r.

▷ If R is a #2-left run, the run R = Rh−1 is merged with Rh and r < αrh. It follows, in that case,

that r(2) ⩾ r(1) = r + rh ⩾ (1 + 1/α)r.

▷ If R is a #3-left run, the run R = Rh−1 is merged with Rh and rh−2 < αrh−1. Hence, (iii) proves

that (α− 1)r ⩽ αrh, so that r(2) ⩾ r(1) = r + rh ⩾ (1 + (α− 1)/α)r.

Proposition 30. The algorithm α-MergeSort has the fast-growth property.

Proof. Let T be a merge tree induced by α-MergeSort, and let R be a run in T . Lemma 28 shows

that r(3) ⩾ r(2) ⩾ α∗r if R(1)
is a right run, and Lemma 29 shows that r(3) ⩾ α∗r(1) ⩾ α∗r if R(1)

is a

left run.
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4.2 Algorithms with the tight middle-growth property

4.2.1 PowerSort

Proposition 31. The algorithm PowerSort has the tight middle-growth property.

Proof. Let T be a merge tree induced by PowerSort and let R be a run in T at depth at least h. We will prove

that r(h) ⩾ 2h−4
.

If h ⩽ 4, the desired inequality is immediate. Then, if h ⩾ 5, let n be the length of the array on which T
is induced, and let p and p(h−2)

be the respective powers of the runs R and R(h−2)
. Definition 14 and Lemma 15

prove that 2p
(h−2)+h−4 ⩽ 2p−2 ⩽ 2p−2r < n < 2p

(h−2)
r(h).

4.2.2 NaturalMergeSort

The algorithm NaturalMergeSort consists in a plain binary merge sort, whose unit pieces of data to be merged are

runs instead of being single elements. Thus, we identify NaturalMergeSort with the fundamental property that

describes those merge trees it induces.

Definition 32. Let T be a merge tree induced by NaturalMergeSort, and letR andR be two runs that are siblings

of each other in T . Denoting by n and n the respective numbers of leaves of T that descend from R and from R,

we have |n− n| ⩽ 1.

Proposition 33. The algorithm NaturalMergeSort has the tight middle-growth property.

Proof. Let T be a merge tree induced by NaturalMergeSort, let R be a run in T , and let h be its height. We will

prove by induction on h that, if h ⩾ 1, the run R is an ancestor of at least 2h−1 + 1 leaves of T , thereby showing

that r ⩾ 2h−1
.

First, this is the case if h = 1. Then, if h ⩾ 2, let R1 and R2 be the two children of R. One of them, say R1,

has height h − 1. Let n, n1 and n2 be the numbers of leaves that descend from R, R1 and R2, respectively. The

induction hypothesis shows that

n = n1 + n2 ⩾ 2n1 − 1 ⩾ 2× (2h−2 + 1)− 1 = 2h−1 + 1,

which completes the proof.

4.2.3 ShiversSort

The algorithm ShiversSort is presented in Algorithm 4. Like adaptive ShiversSort, it relies on the notion of level

of a run.

Input : Array A to sort

Result : The array A is sorted into a single run. That run remains on the stack.

Note : The height of the stack S is denoted by h; its ith
deepest run by Ri; the length of Ri by ri. Finally, we

set ℓi = ⌊log2(ri)⌋. When two consecutive runs of S are merged, they are replaced, in S , with the run

resulting from the merge.

1 S ← an empty stack

2 while true:

3 if h ⩾ 1 and ℓh−1 ⩽ ℓh:

4 merge the runs Rh−1 and Rh

5 else if the end of the array has not yet been reached:

6 find a new monotonic run R, make it non-decreasing, and push it onto S
7 else:

8 break

9 while h ⩾ 2:

10 merge the runs Rh−1 and Rh

Algorithm 4: ShiversSort

Our proof is based on the following result, which appears in the proof of [8, Theorem 4.2].
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Lemma 34. Let S = (R1, R2, . . . , Rh) be a stack obtained while executing ShiversSort. We have ℓi ⩾ ℓi+1 + 1
whenever 1 ⩽ i ⩽ h− 2.

Lemmas 35 and 36 focus on inequalities involving the levels of a given runR belonging to a merge tree induced

by adaptive ShiversSort, and of its ancestors. In each case, the stack just before the run R is merged is denoted

by S = (R1, R2, . . . , Rh).

However, and unlike Sections 4.1.3 to 4.1.5, we cannot simulate the merge operations that occur in line 10 as if

they had occurred in line 4. Instead, we say that a run R is rightful if R and its ancestors are all right runs (i.e., if R
belongs to the rightmost branch of the merge tree), and that R is standard otherwise.

Lemma 35. Let R be a run in T , and let k ⩾ 1 be an integer. If each of the k runs R(0), . . . , R(k−1)
is a right

run, ℓ(k) ⩾ k − 1.

Proof. For all i ⩽ k, let u(i) be the least integer such that Ru(i) descends from R(i)
. Since the k

runs R(0), . . . , R(k−1)
are right runs, u(k) < u(k − 1) < . . . < u(1) ⩽ h− 1. Thus, Lemma 34 proves that

ℓ(k) ⩾ ℓu(k) ⩾ ℓu(1) + (k − 1) ⩾ k − 1.

Lemma 36. LetR be a run inT , and letk ⩾ 1 be an integer. IfR is a left run and thek−1 runsR(1), . . . , R(k−1)

are right runs, we have ℓ(k) ⩾ ℓ+ k − 1 if R(1)
is a rightful run, and ℓ(k) ⩾ ℓ+ k if R(1)

is a standard run.

Proof. First, assume that k = 1. If R(1)
is rightful, the desired inequality is immediate. If R(1)

is standard,

however, the left run R = Rh−1 was merged with the run Rh because ℓ ⩽ ℓh. In that case, it follows

that r(1) = r + rh ⩾ 2ℓ + 2ℓh ⩾ 2ℓ + 2ℓ = 2ℓ+1
, i.e., that ℓ(1) ⩾ ℓ+ 1.

Assume now that k ⩾ 2. Note that R(k)
is rightful if and only if R(1)

is also rightful. Then, for all i ⩽ k,

let u(i) be the least integer such that the run Ru(i) descends from R(i)
. Since R(1), . . . , R(k−1)

are right

runs, u(k) < u(k − 1) < . . . < u(1) = h− 1.

In particular, let R′
be the left sibling of R(k−1)

: this is an ancestor of Ru(k), and the left child of R(k)
.

Consequently, Lemma 34 and applying our study of the case k = 1 to the run R′
conjointly prove that

▷ ℓ(k) ⩾ ℓ′ ⩾ ℓu(k) ⩾ ℓu(1) + k − 1 = ℓ+ k − 1 if R(1)
and R(k)

are rightful;

▷ ℓ(k) ⩾ ℓ′ + 1 ⩾ ℓu(k) + 1 ⩾ ℓu(1) + k = ℓ+ k if R(1)
and R(k)

are standard.

Proposition 37. The algorithm ShiversSort has the tight middle-growth property.

Proof. Let T be a merge tree induced by ShiversSort and let R be a run in T at depth at least h.

Let a1 < a2 < . . . < ak be the non-negative integers smaller than h for which R(ai) is a left run. We also

set ak+1 = h. Lemma 35 proves that ℓ(a1) ⩾ a1 − 1. Then, for all i < k, the run R(ai+1)
is standard, since

it descends from the left run R(ak), and thus Lemma 36 proves that ℓ(ai+1) ⩾ ℓ(ai) + ai+1 − ai. Lemma 36

also proves that ℓ(ak+1) ⩾ ℓ(ak) + ak+1 − ak − 1. It follows that ℓ(h) = ℓ(ak+1) ⩾ h − 2, and therefore

that r(h) ⩾ 2ℓ
(h)

⩾ 2h−2
.

4.3 Algorithms with the middle-growth property

4.3.1 α-StackSort

The algorithm α-StackSort, which predated and inspired its variant α-MergeSort, is presented in Algorithm 5.

Our proof is based on the following result, which appears in [2, Lemma 2].

Lemma 38. Let S = (R1, R2, . . . , Rh) be a stack obtained while executing α-StackSort. We have ri > αri+1

whenever 1 ⩽ i ⩽ h− 2.

Lemmas 39 and 40 focus on inequalities involving the lengths of a given run R belonging to a merge tree

induced by α-StackSort, and of its ancestors. In each case, the stack just before the run R is merged is denoted

byS = (R1, R2, . . . , Rh). Furthermore, like in Section 4.2.3, we say that a runR is rightful ifR and its ancestors

are all right runs, and that R is standard otherwise.
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Input : Array A to sort, parameter α > 1
Result : The array A is sorted into a single run. That run remains on the stack.

Note : The height of the stack S is denoted by h; its ith
deepest run by Ri; the length of Ri by ri. When two

consecutive runs of S are merged, they are replaced, in S , with the run resulting from the merge.

1 S ← an empty stack

2 while true:

3 if h ⩾ 2 and rh−1 ⩽ αrh:

4 merge the runs Rh−1 and Rh

5 else if the end of the array has not yet been reached:

6 find a new monotonic run R, make it non-decreasing, and push it onto S
7 else:

8 break

9 while h ⩾ 2:

10 merge the runs Rh−1 and Rh

Algorithm 5: α-StackSort

Lemma 39. Let R be a run in T , and let k and m be two integers. If k of the m + 1 runs R(0), R(1), . . . , R(m)

are right runs, r(m+1) ⩾ αk−1
.

Proof. Let a1 < a2 < . . . < ak be the k smallest integers such that R(a1), R(a2), . . . , R(ak) are right runs.

For all i ⩽ k − 1, let S⟨i⟩
be the left sibling of R(ai), and let u(i) be the least integer such that Ru(i) descends

from S⟨i⟩
. Since Ru(i) descends from R(ai+1), we know that u(i+ 1) < u(i), so that u(k) ⩽ u(1)− (k − 1).

Observing that u(1) ⩽ h− 1 and using Lemma 38 then proves that r(m+1) ⩾ ru(k) ⩾ αk−1ru(1) ⩾ αk−1
.

Lemma 40. Let R be a run in T . If R is a left run and if R(1)
is a standard run, r(1) ⩾ (1 + 1/α)r.

Proof. The left child of R(1)
coincides with R = Rh−1 and, since R(1)

is a standard run, rh−1 ⩽ αrh. It follows

immediately that r(1) = rh−1 + rh ⩾ (1 + 1/α)r.

Proposition 41. The algorithm α-StackSort has the middle-growth property.

Proof. Let T be a merge tree induced by ShiversSort, let R be a run in T at depth at least h, and

let β = min{α, 1 + 1/α}1/4. We will prove that r(h) ⩾ βh
.

Indeed, let k = ⌈h/2⌉. We distinguish two cases, which are not mutually exclusive if h is even.

▷ If at least k of the h runs R,R(1), R(2), . . . , R(h−1)
are right runs, Lemma 39 shows that

r(h) ⩾ αk−1 ⩾ β4(k−1).

▷ If at least k of theh runsR,R(1), R(2), . . . , R(h−1)
are left runs, let a1 < a2 < . . . < ak be the k smallest

integers such that R(a1), R(a2), . . . , R(ak) are left runs. When j < k, the run R(aj+1)
is standard, since

it descends from the left run R(ak). Therefore, due to Lemma 40, an immediate induction on j shows

that r(aj+1) ⩾ (1 + 1/α)j for all j ⩽ k − 1. It follows that

r(h) ⩾ r(ak−1+1) ⩾ (1 + 1/α)k−1 ⩾ β4(k−1).

Consequently, r(h) ⩾ β4(k−1) ⩾ β2h−4 ⩾ βh
when h ⩾ 4, whereas r(h) ⩾ 1 = βh

when h = 0
and r(h) ⩾ 2 ⩾ 1 + 1/α ⩾ βh

when 1 ⩽ h ⩽ 3.
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5 TimSort’s update policy

In this Section, we study TimSort’s merging routine as it was implemented in [7, 28, 29, 30]. This routine aims

at merging consecutive non-decreasing runs A and B. Although similar to the description we gave in Section 2,

this implementation does not explicitly rely on t-galloping, but only on 0-galloping, and it includes complicated

side-cases or puzzling low-level design choices that we neglected on purpose when proposing a simpler notion

of t-galloping.

For instance, one may be surprised to observe that the number of consecutive elements coming fromA (orB)

needed to trigger the galloping mode depends on whether elements from a previous dual run were discovered via

galloping or naïvely. Another peculiar decision is that, when the galloping mode is triggered by a long streak of

elements coming from B, galloping is first used to count subsequent elements coming from A; fortunately, it is

then also used to count elements coming fromB, which approximately amounts to using 1-galloping instead of 0-

galloping. Finally, instances of the galloping mode are launched in pairs, and the algorithm infers that galloping

was efficient as soon as one of these two instances was efficient; this makes the update rule easy to fool.

Algorithm 6 consists in a pseudo-code transcription of this merging routine, where we focus only on the

number of comparisons performed. Thus, we disregard both the order in which comparisons are performed and

element moves. For the sake of simplicity,
2

we also deliberately simplified the behaviour of TimSort’s routine, by

overlooking some side cases, listed in Section 5.1 below.

Algorithm 6 explicitly relies on the values of the (global) parameter t and on a (global) variableStatus, implicit

in the implementations of TimSort [7, 28, 29, 30]. In practice, the parameter t is often initially set to t = 7,

although other initial values might be chosen; it is subsequently updated by each instance of the merging routine,

and is not reset to t = 7 between two such instances. In what follows, let tinit denote the initial value of t.

The two main reasons behind introducing this merging routine are as follows: (i) without incurring a super-

linear overhead to do so, one wants to (ii) merge arrays with a bounded number of values in linear time. Below, we

provide counter-examples to both these assertions.

5.1 Caveat

Providing counter-examples to the goals (i) and (ii) requires paying attention to some low-level details we might

wish to skip. The first one is that, as indicated in Section 1, when decomposing an array into runs, TimSort makes

sure that these runs are long enough, and extends them if they are too short. In practice, given a size ms that is

considered large enough in a given implementation, both our counter-examples consist only of runs of length at

least ms. Such a size may vary between two implementations (from 32 in Java to 64 in Python), which is why we

kept it as a parameter.

The second one is that Algorithm 6 represents a simplified version of TimSort’s actual merging routine. Here

are the differences between Algorithm 6 and that routine:

1. The first element of A in S2 and the last element of B in Sσ−1 have already been identified in line 1. Thus,

TimSort’s routine tries to save one comparison per merge by not rediscovering these elements naïvely during

the last calls to MergeStep in lines 8 or 13. Nothing is changed if these elements are discovered through

galloping.

2. In line 24, TimSort’s routine actually uses 1-galloping instead of 0-galloping, because it loses one step trying

to discover a streak of 0 elements from A.

3. As mentioned in Section 2, TimSort’s galloping routine may actually go faster than forecast when

discovering a streak of x elements from a run in which less than 2x elements remain to be discovered.

In practice, the first difference is harmless for our study: it concerns only a constant number of comparisons per

run merge, i.e.,O(n) comparisons in total when sorting an array of lengthn. The second difference is also harmless,

because it just makes TimSort’s routine more expensive than what we will claim below. The third difference is

tackled in two different ways: in Section 5.2, we simply avoid falling in that case, and in Section 5.3, we will brutally

2
Counting precisely comparisons performed by TimSort’s merging routine required 166 Java code lines [17].
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Input : Non-decreasing runs A and B to merge, of lengths a and b
Result : The runs A and B are merged into a single run C .

Note : Let S1, S2, . . . , Sσ be the non-decreasing dual runs of the sub-array spanned by A and B. The run A
(resp., B) contains ai (resp., bi) elements whose value belongs to Si.

1 use 0-galloping to discover a1 and bσ
2 Status← naïve
3 if a− a1 ⩽ b− bσ : LRMerge ▷C is discovered from left to right

4 else: RLMerge ▷C is discovered from right to left

5 Function LRMerge:

6 Naïve(0, b1, t, t+ 1)
7 for i = 2, 3, . . . , σ − 2: MergeStep(ai, bi)
8 if σ ⩾ 3 and aσ ⩾ 2: MergeStep(aσ−1, bσ−1)
9 else if σ ⩾ 3: MergeStep(aσ−1, 0)

10 Function RLMerge:

11 Naïve(aσ, bσ−1, t+ 1, t+ 1)
12 for i = 2, 3, . . . , σ − 2: MergeStep(aσ+1−i, bσ−i)
13 if σ ⩾ 3 and a2 ⩾ 2: MergeStep(a2, 0)

14 Function MergeStep(a, b):
15 if Status = fail: t← max{2, t+ 1}
16 else if Status = success: t← t− 1
17 if Status = naïve: Naïve(a, b, t, t)
18 else if Status = fail: Naïve(a, b, t+ 1, t)
19 else if Status = start: Gallop(a+ 1, b)
20 else: Gallop(a, b)

21 Function Naïve(a, b, t1, t2):
22 use t1-galloping to discover a
23 if a ⩾ t1: use 0-galloping to discover b
24 else: use t2-galloping to discover b
25 if a ⩾ t1 + 7 or (a ⩾ t1 and b ⩾ 8) or b ⩾ t2 + 8: Status← success
26 else if a ⩾ t1 or b ⩾ t2 + 1: Status← fail
27 else if b = t2: Status← start
28 cancel the last comparison

29 else: Status← naïve

30 Function Gallop(a, b):
31 use 0-galloping to discover a and b
32 if a ⩾ 8 or b ⩾ 8: Status← success
33 else: Status← fail

Algorithm 6: TimSort’s merging routine. This routine is best modelled by using a variable Status that may

take four values: naïve if launching a t-gallop (i.e., starting naïvely) is requested; success if the last gallop was

successful (i.e., saved comparisons); fail if the last gallop was unsuccessful (i.e., wasted comparisons); start if

a 0-gallop is to be launched. A few side cases, having little influence on the number of comparisons but not on

the dynamics of t, are overlooked here and discussed in Section 5.1.
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take 0 as an under-estimation of the merge cost of a galloping phase — an under-estimation that remains valid

regardless of how the galloping is performed.

Finally, and although we are referring to TimSort’s merging routine, we would also like to prove that this

routine suffers the same shortcomings with many relevant algorithms. Thus, we made sure that all algorithms

would induce the same merge tree on our counterexample, thereby having the same behaviour.

5.2 Super-linear overhead

One desirable safeguard, when using TimSort’s routine instead of a naïve merging routine, is that the overhead

incurred by this change should be small. In other words, the user should never be heavily penalised for using

TimSort’s routine.

More precisely, when using an algorithmA to sort an arrayAof lengthn, letUA be the number of comparisons

performed byA if it relies on a naïve merging routine, and let VA be the number of comparisons performed byA
if it uses TimSort’s routine. Given that the worst-case complexity of a reasonable sorting algorithm isO(n log(n)),

one may reasonably expect inequalities of the form VA ⩽ UA + o(n log(n)). Below, we prove that such

inequalities are invalid, meaning that using TimSort’s routine may cost a positive fraction of the total merge cost

of the algorithm, even in cases where this merge cost is already quite bad.

Proposition 42. Let A be one of the algorithms studied in Section 4. Let UA be the number of comparisons

performed byA to sort an array A when using a naïve merging routine, and let VA be the number of comparisons

performed byA when using TimSort’s routine. There exists an array A, whose length n may be arbitrarily large, for

which VA − UA ∈ Ω(n log(n)).

Proof. What dictates the dynamics of Algorithm 6, when merging runs A and B into a new run C , is not the

precise values of those elements of A and B, but only the lengths of the consecutive streaks of elements of C
coming either from A or from B. Thus, we only need to control these lengths.

Based on this remark, we use two building bricks. The first brick, represented in Figure 5 (top), aims at

changing t, initially equal to tinit, to let it reach the value t = 5; it is used once, as the first merge performed

in TimSort. The second brick, represented in Figure 5 (bottom), aims at maximising the number of comparisons

performed, without changing the value of t: if the merge started with t = 5, it shall end with t = 5.

Our first brick is built by merging two runs R and R′
with a given length ℓ ⩾ 8tinit + 19, as indicated in

Figure 5 (top). When R and R′
are being merged, both lengths r1 and r′σ are zero, and the function LRMerge

is called. First encountering tinit + 8 consecutive elements from R triggers a call to Gallop; this function is

successfully called tinit times, which brings down t to 0. Then, the nine following elements from R (and nine

elements from R′
) result in unsuccessfully calling Gallop several times, which gradually raises up t to 5. The

padding area has no influence on t; its only purpose is to ensure that R and R′
have the desired length ℓ.

Our second brick is built by merging two runs S and S′
with a given length 11m, as indicated in

Figure 5 (bottom). Provided that the parameter t has been set to 5, encountering 8 consecutive elements coming

from S triggers a call to Gallop. This call is successful, because it helps us to discover 8 consecutive elements

from S′
, and it is immediately followed by an unsuccessful call to Gallop, which only helps us to discover streaks

of length 3. After these two calls, t is still equal to 5, which allows us to repeat such sequences of calls. Hence,

Algorithm 6 uses 23 comparisons to discover each block 8 + 3 + 8 + 3 elements — one more comparison

than needed. Thus, Algorithm 6 uses a total of 23m − 3 element comparisons to merge two runs S and S′
of

length 11m, which is more than the 22m− 1 comparisons that a naïve routine would use.

Finally, our array A is built as follows. First, we choose a base length ℓ ⩾ max{8tinit + 19,ms} divisible

by 11, and we set k = ⌊log2(ℓ)⌋. The array will be a permutation of {1, 2, . . . , 2kℓ}, initially subdivided in 2k

runs of length ℓ. This ensures that the merge tree induced on A by each of the algorithms mentioned in Section 2

is perfectly balanced: each run at height h in the tree has length 2hℓ, and A has length n = 2kℓ.

Once this merge tree is fixed, we give a value between 1 and 2hℓ to each element of A, by using the following

top-down procedure. When a run S of length 2h+1ℓ results from merging two runs S and S′
of length 2hℓ, we

assign values of S to either S or S′
according to our second base brick: the first value of S comes from S′

, the

second one from S, the third one from S′
, the next 8 values come from S, and so on. The only exception to this
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Figure 5: Base bricks of our construction. The diagrams should be read as follows. The runR consists in 1 element

from R′
, then tinit+8 elements from R, 8 elements from R′

, 7 elements from R, 8 elements from R′
, 7 elements

from R, . . . , and finally 1 element from R. The runs R and R′
both have a length ℓ ⩾ 8tinit + 19, and include

a padding area of length ℓ − (8tinit + 18). Similarly, S consists in 1 element from S′
, then 1 element from S, 1

element from S′
, 8 elements from S, 8 elements from S′

, 3 elements from S, . . . , and finally 2 elements from S.

Both runs S and S′
have length 11m.

rule is the first merge: here, we assign according to our first base brick the values of the run R to the two runs R
and R′

it results from.

Doing so ensures that using TimSort’s merging routine will perform at least 0 comparison for its first merge,

and 23× 2hℓ/11− 3 comparisons for each subsequent merge between runs at height h. There are 2k−1− 1 such

merges for h = 0, and 2k−h−1
such merges for each height h such that 1 ⩽ h ⩽ k − 1. Hence, a total of

VA ⩾ (2k−1 − 1)

(
23ℓ

11
− 3

)
+

k−1∑
h=1

2k−h−1

(
23× 2hℓ

11
− 3

)
=

23kn

22
− 23ℓ

11
− 3× 2k + 6

comparisons are performed. By contrast, using a naïve merging strategy would lead to performing

only UA = kn− 2k + 1 comparisons.

Finally, the inequalities ℓ2 ⩾ 2kℓ = n ⩾ 22k ⩾ 4ℓ2 prove that both ℓ and 2k are Θ(
√
n),

whereas k ∼ log2(n)/2. Hence, UA ∼ n log2(n)/2 and VA ⩾ 23n log2(n)/44 + o(n log(n)).

5.3 Sorting arrays with three values in super-linear time

TimSort’s merging routine was invented precisely with the goal of decreasing the number of comparisons

performed when sorting arrays with few values. In particular, sorting arrays of length n with a constant number

of values should require onlyO(n) comparisons. Like in Section 5.2, we prove below that this is not the case.

Proposition 43. LetA be one of the algorithms studied in Section 4. IfA uses TimSort’s routine for merging runs,

it may require up to Ω(n log(n)) element comparisons to sort arrays of length n with σ = 3 distinct values.

Proof. Like for Proposition 42, we explicitly build the array A by using building blocks that we assemble

according to the description of Figure 6. Below, we fix an arbitrarily large parameter p, and we

setLp = (4ms+1)(2p+p−1+tinit)+12. We also setR(x) = 2⌊log2(x)⌋ for allx ⩾ 1, and tk = k+s2(k)+tinit
for all k ⩾ 1, where s2(k) is the sum of the binary digits of k.

The arrayA that we build is divided in2p blocksX(k)of length2Lp. Each blockX(k) is subdivided into three

parts X1(k), X2(k) and X3(k), whose lengths x1(k), x2(k) and x3(k) obey the relations x1(k) = msR(tk)
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X(0) X(1) X(2) · · · X(2p − 1)

General array structure

2p blocks

U U U · · · U 00 · · · 0 11 · · · 1 22 · · · 2 00 · · · 0 11 · · · 1

R(tk) runs padding paddingtk+6 elements tk+12 elements tk+6 elements

Lp elements Lp elements

Block X(k)

Part X1(k) Part X2(k) Part X3(k)

0 11 · · · 1 2

padding

ms elements

Run U

Figure 6: Bad array for TimSort’s galloping update policy, containing only values 0, 1 and 2.

and x1(k) + x2(k) = x3(k) = Lp. The part X1(k) itself is subdivided into R(tk) runs U of length ms; each of

the parts X2(k) and X3(k) consists of just one run.

By construction, tk ⩽ 2p − 1 + s2(2
p − 1) + tinit = 2p + (p − 1) + tinit whenever 0 ⩽ k ⩽ 2p − 1,

and x+ 1 ⩽ R(x) ⩽ 2x for all integers x ⩾ 1. It follows that

x2(k)− x1(k) = Lp − 2msR(tk) ⩾ (4ms+ 1)tk + 12− 4ms tk = tk + 12 ⩾ 0.

Hence, the algorithm A proceeds in three phases, interleaved with each other: (i) it sorts each part X1(k)
by recursively merging the runs U of which X1(k) consists, following a perfectly balanced binary merge tree

withR(tk) leaves — letX1(k) abusively denote the resulting run; (ii) it mergesX1(k)withX2(k), and merges the

resulting run (say, X1+2(k)) with X3(k); (iii) it merges the sorted blocks X(k) with each other, again following

a perfectly balanced binary merge tree with 2p leaves. Moreover, merges are performed according to a post-order

traversal of the merge tree.

For instance, the merge tree obtained when p = 2 and tinit = 7 is presented in Figure 7; its inner nodes are

labelled chronologically: the node labelled k results from the kth
merge thatA performs.

Once the order in which A performs merges is known, Algorithm 6 allows us to track the dynamics

of the parameter t. For the ease of the explanation, let X(2h, ℓ) denote the run obtained by merging the

blocks X(2hℓ),X(2hℓ+ 1), . . . ,X(2h(ℓ+ 1)− 1). The key invariant of our construction is two-fold:

1. the parameter t is equal to the integer tk = k+ s2(k)+ tinit just beforeA starts sorting a block X(k), and

it is equal to tk + 2 just after X(k) has been sorted;

2. the parameter t is equal to the integeruh,ℓ = t2hℓ+2h+1+2 just beforeA starts merging two runsX(2h, ℓ)
and X(2h, ℓ+ 1), and it is equal to uh,ℓ − 1 just after these runs have been merged.
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Figure 7: Merge tree induced by the algorithmA on the array A. The four balanced gray sub-trees result in sorting

the parts X1(k); the balanced hatched sub-tree results in sorting A itself once each block X(k) is sorted. Each

inner node is labelled k if it results from the kth
merge thatA performs.
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Figure 8: Runs merged while sorting X(k). Each run is represented by a 3-row array: the integer in the lowest

(resp., highest) cell is the number of elements with value 0 (resp., 2) of the run. Elements with value 1 serve as

padding runs: counting them exactly is irrelevant. From left to right, we see the merges between (i) two runs that

each result from merging 2h runs U; (ii) the sorted part X1(k) with X2(k); (iii) X1+2(k) and X3(k).

To prove this invariant, we first show that, if t = tk when A starts sorting X(k), Algorithm 6 will keep

calling the function LRMerge in line 3. Then, the only time at which t may be changed is just after discovering b0
by using t-galloping: t decreases if b0 ⩾ t+9, it increases if t+8 ⩾ b0 ⩾ t+2, and does not vary if t+1 ⩾ b0.

Now, let us consider each merge performed to sort X(k); the composition of the intermediate runs obtained

while doing so is shown in Figure 8. First, while merging sorted clusters of 2h contiguous runs U, we

have a − a2 = b − b2 = (ms − 1)2h and b0 = 2h ⩽ R(tk)/2 ⩽ tk = t. Then, when merging X1(k)
with X2(k), we have a− a0 ⩽ a = x1(k) ⩽ x2(k)− (tk + 12) = b− b2 and t+ 8 ⩾ b0 = t+ 6 ⩾ t+ 2,

which leads to increasing t. Finally, when mergingX1+2(k)withX3(k), we havea−a0 = Lp−a0 ⩽ Lp = b−b2
and t+8 ⩾ b0 = t+5 ⩾ t+2, which leads to increasing t once more. It follows, as promised, that t = tk +2
just afterA has sorted X(k).

The second step towards proving the invariant consists in showing that, if t = uh,ℓ whenA starts merging

two runs X(2h, ℓ) and X(2h, ℓ + 1), it decreases t once. In other words, we shall prove that either Algorithm 6

calls the function LRMerge in line 3 and b0 ⩾ uh,ℓ + 9, or it calls RLMerge in line 4 and a2 ⩾ uh,ℓ + 9. In

practice, we will simply prove that min{b0, a2} ⩾ uh,ℓ+9.

Indeed, observe that ℓ is even, and thus that t2hℓ+i = t2hℓ + i + s2(i) whenever 0 ⩽ i < 2h+1
. Thus,

when 2hℓ ⩽ k < 2h(ℓ + 2), the run X(k) contains R(tk) + 2tk + 12 ⩾ 3tk + 13 ⩾ 2t2hℓ + 13
elements with value 0 and R(tk) + tk + 12 ⩾ 2tk + 13 ⩾ 2t2hℓ + 13 elements with value 2. It follows

that min{a2, b0} ⩾ 2h(t2hℓ + 13) ⩾ (t2hℓ + 11) + 2h × 2 = uh,ℓ + 9.

We prove now our invariant by induction on the number of merges performed by the algorithm A: we

distinguish five types of merges:

▷ When sorting the block X(0), the algorithm starts with a parameter t = tinit.

▷ When sorting a block X(k), where k is odd, it has just finished merging the block X(k − 1), leaving us

with a parameter t = tk−1 + 2 = tk.

▷ When sorting a block X(2hk), where k is odd and h ⩾ 1, it has just finished merging the

runs X(2h−1, 2k − 2) and X(2h−1, 2k − 1), leaving us with a parameter

t = uh−1,2k−2 − 1 = t2h(k−1) + 2h + 1 = 2h(k − 1) + s2(k − 1) + 2h + 1 = t2hk.

▷ When merging two runsX(2h, k) andX(2h, k+1), where k is even andh = 0, it has just finished sorting

the block X(k + 1), leaving us with a parameter t = tk+1 + 2 = tk + 4 = u0,k.

▷ When merging two runsX(2h, k) andX(2h, k+1), wherek is even andh ⩾ 1, it has just finished merging

the runs X(2h−1, 2k + 2) and X(2h−1, 2k + 3), leaving us with a parameter

t = uh−1,2k+2 − 1 = t2h(k+1) + 2h + 1 = 2h(k + 1) + s2(k + 1) + 2h + 1 = uh,k.

Equipped with this invariant, we can finally compute a lower bound on the number of comparisons thatA
performs. More precisely, we will count only comparisons performed naïvely while sorting parts X1(k). When
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sorting such a part, we recursively merge sorted clusters of 2h runsU. To do so, we call the LRMerge function, and

naïvely discover b0 = 2h elements with value 0 in the right run we are merging; this is half of all the element with

value 0 in our two clusters. Thus, each of the R(tk) elements of X1(k) with value 0 is merged log2(R(tk)) times

with another cluster of runs U, and is naïvely discovered log2(R(tk))/2 times on average, costing one additional

comparison each time. This makes a total of R(tk) log2(R(tk))/2 such comparisons to sort X1(k), and at least

Cp =
2p−1∑

k=2p−1

R(tk) log2(R(tk))/2 ⩾
2p−1∑

k=2p−1

R(k + 1) log2(R(k + 1))/2

⩾ 2p−1R(2p−1 + 1) log2(R(2
p−1 + 1))/2 = 22p−2p

comparisons to sort the array A itself. Observing that A is of length n = 2p+1Lp ∼ (4ms + 1)22p+1
proves

that n log2(n) ∼ (4ms+ 1)22p+2p ∈ O(Cp), which completes the proof.

In spite of this negative result, we can still prove that TimSort’s routine and update strategy is harmless when

sorting arrays with only two values, thereby making our above construction somehow as simple as possible.

Proposition 44. Let A be a stable natural merge sort algorithm with the middle-growth property. If A
uses TimSort’s actual routine (including the heuristics for updating the parameter t), it requires O(n) element

comparisons to sort arrays of length n with two values.

Proof. When merging two runs containing only σ = 2 values, Algorithm 6 just uses twice 0-galloping and

once (t+1)-galloping, and stops without updating t. Thus, up to wasting a maximum of t+1 comparisons per

merge,A keeps using 0-galloping, and Theorem 7 proves that doing so requires onlyO(n) comparisons in total

to sort arrays of length n with 2 values.

6 Refined complexity bounds

One weakness of Theorem 7 is that it cannot help us to distinguish the complexity upper bounds of those

algorithms that have the middle-growth property, although the constants hidden in the O symbol could be

dramatically different. Below, we study these constants, and focus on upper bounds of the type cnH∗ + O(n)
or cn(1 + o(1))H∗ +O(n).

Since sorting arrays of length n requires at least log2(n!) = n log2(n) + O(n) comparisons in general, and

sinceH∗ ⩽ log2(n) for all arrays, we already know that c ⩾ 1 for any such constant c. Below, we focus on finding

matching upper bounds in two regimes: first using a fixed parameter t, thereby obtaining a constant c > 1, and

then letting tdepend on the lengths of those runs that are being merged, in which case we reach the constant c = 1.

Inspired by the success of Theorem 6, which states that algorithms with the tight middle-growth property sort

arrays of length n by using only cn log2(n)+O(n) element comparisons with c = 1, we focus primarily on that

property, while not forgetting other algorithms that also enjoyed nH + O(n) or n log2(n) + O(n) complexity

upper bounds despite not having the tight middle-growth property.

6.1 Fixed parameter

Lemma 45. Let T be a merge tree induced by a stable algorithm on some array A of length n with σ dual

runs S1, S2, . . . , Sσ . Consider a fixed parameter t ⩾ 0, a real number u > 1, and some index i ⩽ σ. Then,

for all h ⩾ 0, let Th be a set of pairwise incomparable nodes of T (i.e., no node of Th descends from another one) such

that each run R in Th is of length r ⩾ uh(t+ 1)n/si. We have∑
R∈T⩾0

cost∗t(r→i) ⩽
9u

u− 1
si,

where T⩾0 denotes the union of the sets Th.
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Proof. For each integer h ⩾ 0, let C(h) =
∑

R∈Th cost
∗
t(r→i). Let also f : x 7→ t + 2 + 2 log2(x + 1)

and g : x 7→ x f(si/x) . Both functions f and g are concave and increasing on (0,+∞).

Then, let v = t + 1. Since Th consists of pairwise incompatible runs, we have
∑

R∈Th r→i ⩽ si
and uhvn|Th|/si ⩽

∑
R∈Th ⩽ n, i.e., |Th| ⩽ si/(u

hv). It follows that

C(h) ⩽
∑
R∈Th

f(r→i) ⩽ |Th|f
( ∑
R∈Th

r→i/|Th|
)
⩽ g(|Th|)

⩽ g
( si
uhv

)
=

si
uhv

f(uhv)

⩽
si
uhv

(t+ 2 + 2 log2(2
v+1uh)) =

si
uhv

(3v + 3 + 2h log2(u))

⩽
si
uh

(6 + 2h log2(u)).

Denoting the latter expression by C+(h) and observing that log2(u) ⩽ 3(u − 1)/2 for all u > 1, we conclude

that ∑
R∈T⩾0

cost∗t(r→i) =
∑
h⩾0

C(h) ⩽
∑
h⩾0

C+(h) =
usi
u− 1

(
6 + 2

log2(u)

u− 1

)
⩽

9u

u− 1
si.

Theorem 46. Let A be a stable natural merge sort algorithm with the tight middle-growth property. For each

parameter t ⩾ 0, ifA uses the t-galloping routine for merging runs, it requires at most

(1 + 1/(t+ 3))nH∗ + log2(t+ 1)n+O(n)

element comparisons to sort arrays of length n and dual run-length entropyH∗
.

Proof. Let us follow a variant of the proof of Theorem 7. Let γ be the integer mentioned in the definition of

the statement “A has the tight middle-growth property”, let T be the merge tree induced byA on an array A of

length n, and let s1, s2, . . . , sσ be the lengths of the dual runs of A. Like in the proof of Theorem 7, we just need

to prove that ∑
R∈T

cost∗t(r→i) ⩽ (1 + 1/(t+ 3)) log2(n/si)si + log2(t+ 1)si +O(si)

for all i ⩽ σ.

LetRh be the set of runs at height h in T . By construction, no run inRh descends from another one, which,

like in Lemma 45, proves that
∑

R∈Rh
r→i ⩽ si. Thus, if we set

Ct(h) =
∑

R∈Rh

cost∗t(r→i),

it follows that

Ct(h) ⩽ (1 + 1/(t+ 3))
∑

R∈Rh

r→i ⩽ (1 + 1/(t+ 3))si

for all h ⩾ 0.

Now, let µ = ⌈log2((t + 1)n/si)⌉ + γ, and let Th = Rh+µ. By construction, each run R belonging to

the set Th = Rh+µ is of length r ⩾ 2h+µ−γ ⩾ 2h(t + 1)n/si. Thus, applying Lemma 45 to u = 2 indicates

that
∑

h⩾µ Ct(h) ⩽ 18si = O(si), and we conclude as desired that∑
h⩾0

Ct(h) ⩽ (1 + 1/(t+ 3))µsi +O(si) = (1 + 1/(t+ 3)) log2(n/si)si + log2(t+ 1)si +O(si).
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6.2 Polylogarithmic parameter

Letting the parameter t vary, we minimise the upper bound provided by Theorem 46 by choosing t = Θ(H∗+1),

in which case this upper bound simply becomes nH∗ + log2(H∗ + 1)n + O(n). However, computing

or approximating H∗
before starting the actual sorting process would be both rather unreasonable and not

necessarily worth the effort; indeed, Theorem 51 would make this preliminary step useless unless it requires less

than log2(H∗ + 1)n element comparisons, which seems extremely difficult. Instead, we update the parameter t
as follows, which will provide us with a slightly larger upper bound.

Definition 47. We call polylogarithmic galloping routine the merging routine that, when merging adjacent

runs of lengths a and b, performs the same comparisons and element moves as the t-galloping routine

for t = ⌈log2(a+ b)⌉2.

We first prove that the overhead of using galloping with this update strategy instead of using a naïve merging

routine is at most linear.

Lemma 48. LetA be a stable algorithm with the middle-growth property. Let T be a merge tree induced byA on

some array A of length n with σ dual runs S1, S2, . . . , Sσ , and let T ∗
be the set of internal nodes of T . IfA uses the

polylogarithmic routine for merging runs, it requires no more than

∑
R∈T ∗

σ∑
i=1

cost∗log(r, r→i) +O(n)

comparisons to sortA, where we set cost∗log(r,m) = min{m, 6 log2(r + 1)2 + 6}.

Proof. Using a parameter t = ⌈log2(r)⌉2 to merge runs R′
and R′′

into one run R requires at most

1 +
σ∑

i=1

cost∗⌈log2(r)⌉2(r
′
→i) + cost∗⌈log2(r)⌉2(r

′′
→i)

element comparisons. Given that

cost∗⌈log2(r)⌉2(r
′
→i) ⩽ min{(1 + 1/ log2(r)

2)r′→i, log2(r)
2 + 3 + 2 log2(r

′
→i + 1)}

⩽ min{r′→i, 3 log2(r + 1)2 + 3}+ r′→i/ log2(r)
2

and that r′→i + r′′→i = r→i, this makes a total of at most

1 +
r

log2(r)
2
+

σ∑
i=1

cost∗log(r, r→i)

element comparisons.

Now, let β > 1 be the real number mentioned in the definition of the statement “A has the middle-growth

property”, and letRh be the set of runs at height h in T ∗
. The lengths of runs inRh sum up to n or less, and thus∑

R∈T ∗

r

log2(r)
2
=

∑
h⩾1

∑
R∈Rh

r

log2(r)
2
⩽

∑
h⩾1

∑
R∈Rh

r

h2 log2(β)
2
⩽

∑
h⩾1

n

h2 log2(β)
2
= O(n).

We conclude by remembering that A makes n − 1 comparisons to identify runs prior to merging them and

performs ρ− 1 ⩽ n− 1 merges.

Proposition 49. LetA be a stable natural merge sort algorithm with the middle-growth property. Let UA be the

number of comparisons performed by A to sort an array A when using a naïve merging routine, and let VA be

the number of comparisons performed by A when using the polylogarithmic galloping routine. For all arrays A of

length n, we have VA ⩽ UA +O(n).
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Proof. Lemma 48 proves that

VA =
∑
R∈T ∗

σ∑
i=1

cost∗log(r, r→i) +O(n) ⩽
∑
R∈T ∗

σ∑
i=1

r→i +O(n) =
∑
R∈T ∗

r +O(n)

= UA +O(n).

In addition, the polylogarithmic galloping also turns out to be extremely efficient for algorithms with the

(tight) middle-growth property.

Lemma 50. Let T be a merge tree induced by a stable algorithm on some array A of length n with σ dual

runs S1, S2, . . . , Sσ . Consider a real number u ∈ (1, 2 ] and some index i ⩽ σ. Then, for all h ⩾ 0, let Th
be a set of pairwise incomparable nodes of T such that each run R in Th is of length r ⩾ uh log2(2n/si)

2n/si. We

have ∑
R∈T⩾0

cost∗log(r, r→i) ⩽
6(10u2 − 13u+ 5)u

(u− 1)3
si,

where T⩾0 denotes the union of the sets Th.

Proof. For each integer h ⩾ 0, let C(h) =
∑

R∈Th cost
∗
log(r, r→i). Let f : x 7→ 1 + log2(x + 1)2

and g : x 7→ x f(n/x); the function f is concave and increasing on [2,+∞), and g is increasing on (0,+∞).

Then, let z = n/si and v = log2(2z)
2

. Since Th consists of pairwise incompatible runs, we

have uhvz|Th| ⩽
∑

R∈Th r ⩽ n, i.e., |Th| ⩽ si/(u
hv). It follows that

C(h)/6 ⩽
∑
R∈Th

f(r) ⩽ |Th|f
( ∑
R∈Th

r/|Th|
)
⩽ g(|Th|)

⩽ g(si/(u
hv)) = f(uhvz)si/(u

hv)

⩽ (1 + log2(2
h+3z3)2)si/(u

hv)

⩽ (1 + (h+ 3 log2(2z))
2)si/(u

hv)

⩽ (h2 + 6h+ 10)si/u
h.

where the inequality between the second and third lines simply comes from the fact that

1 + uhvz ⩽ 1 + 4uhz3 ⩽ 8uhz3 ⩽ 2h+3z3,

and the inequality between the last two lines comes from the fact that

1 + (h+ 3 log2(2z))
2 ⩽ log2(2z)

2 + (h log2(2z) + 3 log2(2z))
2 = (h2 + 6h+ 10)v.

Setting C+(h) = (h2 + 6h+ 10)si/u
h

, we conclude that

∑
R∈T⩾0

cost∗log(r, r→i) ⩽
∑
h⩾0

C(h) ⩽ 6
∑
h⩾0

C+(h) = 6
(10u2 − 13u+ 5)u

(u− 1)3
si.

Theorem 51. Let A be a stable natural merge sort algorithm with the middle-growth property. If A uses the

polylogarithmic galloping routine for merging runs, it requires O(n + nH∗) element comparisons to sort arrays

of length n and dual run-length entropyH∗
. If, furthermore,A has the tight middle-growth property, it requires at

most nH∗ + 2 log2(H∗ + 1)n+O(n) element comparisons to sort such arrays.

Proof. Let us refine and adapt the proofs of Theorems 7 and 46. Let T be the merge tree induced by A on an

array A of length n with σ dual runs of lengths s1, s2, . . . , sσ . For all integers h ⩾ 0, letRh be the set of runs

at height h in T , and let T ∗
be the set of internal nodes of T . Let β ∈ (1, 2] and γ ⩾ 0 be a real number and

an integer such that r ⩾ βh−γ
for all runs R of height h in T ; if A has the tight middle-growth property, we

choose β = 2.
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Thanks to Lemma 48, we shall just prove that∑
R∈T ∗

cost∗log(r, r→i) ⩽ logβ(n/si)si + 2 logβ(log2(n/si) + 1)si +O(si)

for all i ⩽ σ. Indeed, the algorithmAwill then perform no more than

∑
R∈T ∗

σ∑
i=1

cost∗log(r, r→i) +O(n) ⩽
σ∑

i=1

logβ(n/si)si + 2 logβ(log2(n/si) + 1)si +O(n)

⩽ logβ(2)nH∗ + 2 logβ(H∗ + 1)n+O(n)

comparisons, the latter inequality being due to the concavity of the function x 7→ logβ(x+ 1).

Then, letRh be the set of runs at height h in T , and let

Clog(h) =
∑

R∈Rh

cost∗log(r, r→i).

Once again, Clog(h) ⩽
∑

R∈Rh
r→i ⩽

∑
R∈Rh

r→i = si for all h ⩾ 0, because Rh consists of pairwise

incomparable runs R.

Now, let ν = ⌈logβ(log2(2n/si)2n/si)⌉+ γ. By construction, each run R in Th = Rh+ν is of length

r ⩾ βh+ν−γ ⩾ βh log2(2n/si)
2n/si.

Thus, applying Lemma 50 to u = β indicates that
∑

h⩾ν Ct(h) = O(si), and we conclude that∑
h⩾0

Ct(h) ⩽ νsi +O(si) = logβ(n/si)si + 2 logβ(log2(n/si) + 1)si +O(si).

Finally, in practice, we could improve the nH∗ + 2 log2(H∗ + 1)n + O(n) upper bound by adapting our

update policy. For instance, choosing t = ⌈log2(a + b)⌉ × ⌈log2(log2(a + b))⌉2 would slightly damage the

constant hidden in the O(n) side of the inequality VA ⩽ UA + O(n), but would also reduce the number of

comparisons required byA to

nH∗ + log2(H∗ + 1)n+O(log(log(H∗ + 1) + 1)n).

However, such improvements may soon become negligible in comparison with the overhead of having to compute

the value of t.

6.3 Refined upper bounds for adaptive ShiversSort

Proposition 52. The algorithm adaptive ShiversSort does not have the tight middle-growth property.

Proof. Let Ak be an array whose run decomposition consists in runs of lengths 1, 2, 1, 4, 1, 8, 1,

16, 1, . . . , 1, 2k, 1 for some integer k ⩾ 0. When sorting the array Ak, the algorithm adaptive ShiversSort

keeps merging the two leftmost runs at its disposal. The resulting tree, represented in Figure 9, has height h = 2k
and its root is a run of length r = 2k+1 + k − 1 = o(2h).

Theorem 53. Theorems 46 and 51 remain valid if we consider the algorithm adaptive ShiversSort instead of an

algorithm with the tight middle-growth property.

Proof. Our proof is similar to the proofs of Theorems 46 and 51. Let T be the merge tree induced by adaptive

ShiversSort on an array A of length n and dual runs S1, S2, . . . , Sσ . Following the terminology of [16], we say

that a run R in T is non-expanding if it has the same level as its parent R(1)
, i.e., if ℓ = ℓ(1). It is shown, in the

proof of [16, Proposition 4], that the lengths of the non-expanding runs sum up to an integer smaller than 3n.

Hence, we partition T as follows.
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Figure 9: Merge tree induced by adaptive ShiversSort on A4. Each run is labelled by its length.

We place all the non-expanding runs into one set R⊥. Then, for each ℓ ⩾ 0, we define Rℓ as the set of

expanding runs in T ∗
with level ℓ, where T ∗

is the set of all internal nodes of T . By construction, each run R
inRℓ has a length r ⩾ 2ℓ, and the elements ofRℓ are pairwise incomparable.

Now, we first observe that∑
R∈R⊥

σ∑
i=1

cost∗t(r→i) ⩽
∑

R∈R⊥

σ∑
i=1

2r→i =
∑

R∈R⊥

2r ⩽ 6n and

∑
R∈R⊥

σ∑
i=1

cost∗log(r, r→i) ⩽
∑

R∈R⊥

σ∑
i=1

r→i =
∑

R∈R⊥

r ⩽ 3n.

Consequently, like in the proofs of Theorems 46 and 51, we just need to show for all i ⩽ σ that∑
ℓ⩾0

Ct(ℓ) ⩽ (1 + 1/(t+ 3)) log2(n/si)si + log2(t+ 1)si +O(si) and

∑
ℓ⩾0

Clog(ℓ) ⩽ log2(n/si)si + 2 log2(log2(n/si) + 1)si +O(si),

where Ct(ℓ) =
∑

R∈Rℓ
cost∗t(r→i) and Clog(ℓ) =

∑
R∈Rℓ

cost∗log(r, r→i).

Note, however, that

Ct(ℓ) ⩽ (1 + 1/(t+ 3))
∑
R∈Rℓ

r→i ⩽ (1 + 1/(t+ 3))si and

Clog(ℓ) ⩽
∑
R∈Rℓ

r→i ⩽ si

for all ℓ ⩾ 0. Then, if we set µ = ⌈log2((t + 1)n/si)⌉ and ν = ⌈log2(log2(2n/si)2n/si)⌉, we observe

that r ⩾ 2µ+h ⩾ 2h(t + 1)n/si for all r ∈ Rµ+h, and that r ⩾ 2ν+h ⩾ 2h log2(2n/si)
2n/si for

all r ∈ Rν+h. Hence, applying Lemmas 45 and 50 proves, as desired, that

µ−1∑
ℓ=0

Ct(ℓ) +
∑
ℓ⩾0

Ct(ℓ+ µ) ⩽ (1 + 1/(t+ 3))µsi +O(si)

⩽ (1 + 1/(t+ 3)) log2(n/si)si + log2(t+ 1)si +O(si) and

ν−1∑
ℓ=0

Clog(ℓ) +
∑
ℓ⩾0

Clog(ℓ+ ν) ⩽ νsi +O(si)

⩽ log2(n/si)si + 2 log2(log2(n/si) + 1)si +O(si).
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6.4 Refined upper bounds for PeekSort

Proposition 54. The algorithm PeekSort does not have the tight middle-growth property.

Proof. Let Bk be an array whose run decomposition consists in runs of lengths 1, 1, 3, 3, 9, 9, . . . , 3k, 3k for

some integer k ⩾ 0. Its length is the integer bk = 3k+1 − 1 and, when k ⩾ 1, it consists in a copy of Bk−1 and

then two runs of lengths 3k. Thus, when sorting Bk, PeekSort shall recursively sort Bk−1, then merge it with its

neighbouring run of length 3k, and merge the resulting run with the rightmost run of length 3k. The resulting

tree, represented in Figure 10, has height h = 2k+1 and its root is a run of length bk = 3k+1 − 1 = o(2h).

The method of casting aside runs with a limited total length, which we used while adapting the proofs

Theorems 46 and 51 to adaptive ShiversSort, does not work with the algorithm PeekSort. Instead, we rely on the

approach employed by Bayer [5] to prove the nH+2n upper bound on the number of element comparisons and

moves when PeekSort uses the naïve merging routine. This approach is based on the following result, which relies

on the notions of split runs and growth rate of a run.

In what follows, let us recall some notations: given an array A of length n whose run decomposition consists

of runs R1, R2, . . . , Rρ, we set ei = r1 + . . . + ri for all integers i ⩽ ρ, and the run that results from merging

consecutive runs Ri, Ri+1, . . . , Rj is denoted by Ri...j .

Definition 55. Let T be a merge tree, and let R and R′
be the children of a run R. The split run of R

is defined as the rightmost leaf descending from R if r ⩾ r′, and as the leftmost leaf descending from R′

otherwise. The length of that split run is then called the split length of R, and is denoted by sl(R). Finally, the

quantity log2(r)−max{log2(r), log2(r′)} is called growth rate of the run R, and is denoted by gr(R).

Lemma 56. Let T be a merge tree induced by PeekSort. We have gr(R)r + 2sl(R) ⩾ r for each internal node R
of T .

Proof. Let R = Ri...k and R′ = Rk+1...j be the children of the run R. We assume, without loss of generality,

that r ⩾ r′. The case r < r′ is entirely symmetric. Definition 17 then states that

|r − r′| = |2ek − ej − ei−1| ⩽ |2ek−1 − ej − ei−1| = |r − r′ − 2rk|,

which means that r − r′ − 2rk is negative and that r − r′ ⩽ 2rk + r′ − r.

Then, observe that the function f : t 7→ 4t−3− log2(t) is non-negative on the interval [1/2,+∞). Finally,

let z = r/r, so that z ⩾ 1/2, gr(R) = − log2(z) and r′ = (1− z)r:

gr(R)r + 2sl(R) = 2rk − log2(z)r ⩾ 2(r − r′)− log2(z)r = (f(z) + 1)r ⩾ r.

Lemma 57. Let T be a merge tree induced by PeekSort on an array of lengthn, and let T ∗
be the set of internal nodes

of T . We have
∑

R∈T ∗ sl(R) ⩽ 2n.

1 1 3 3 9 9 27 27

2

5

8

17

26

53

80

Figure 10: Merge tree induced by PeekSort on B3. Each run is labelled by its length.
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Proof. LetR be the set of leaves of T . Each run R ∈ R is a split run of at most two nodes of T : these are the

parents of the least ancestor of R that is a left run (this least ancestor can be R itself) and of the least ancestor of R
that is a right run. It follows that ∑

R∈T ∗

sl(R) ⩽ 2
∑
R∈R

r = 2n.

Lemma 58. Let T be a merge tree induced by PeekSort on an array with σ dual runs S1, S2, . . . , Sσ . For all i ⩽ σ
and all setsX of inner nodes of T , we have∑

R∈X
gr(R)r→i ⩽ log2(x)si,

where x is the largest length of a run R ∈ X .

Proof. LetRbe the set of leaves ofT . Without loss of generality, we assume thatX contains each nodeRofT with

length r ⩽ x. Now, for all runsR ∈ R, letR↑
be the set of those strict ancestors ofR that belong toX . Since every

child of a node inX is either a leaf or a node inX , the set R↑
consists of those runs R(k)

such that 1 ⩽ k ⩽ |R↑|.
It follows that

∑
R∈X

gr(R)r→i =
∑
R∈R

∑
R∈R↑

gr(R)r→i =
∑
R∈R

|R↑|∑
k=1

gr(R(k))r→i

⩽
∑
R∈R

|R↑|∑
k=1

log2(r
(k)/r(k−1))r→i =

∑
R∈R

log2(r
(|R↑|)/r)r→i

⩽
∑
R∈R

log2(x)r→i = log2(x)si.

Theorem 59. Theorem 46 remains valid if we consider the algorithm PeekSort instead of an algorithm with the

tight middle-growth property.

Proof. Let T be the merge tree induced by PeekSort on an array A of length n and dual runs S1, S2, . . . , Sσ , and

let T ∗
be the set of internal nodes of T . The algorithm PeekSort requires no more than

C =
∑
R∈T ∗

σ∑
i=1

cost∗t(r→i) +O(n)

comparisons and, for a given run R ∈ T ∗
, we have

σ∑
i=1

cost∗t(r→i)− 4sl(R) ⩽
σ∑

i=1

cost∗t(r→i)− 2(1 + 1/(t+ 3))sl(R)

⩽
σ∑

i=1

min{(1 + 1/(t+ 3))r→i, t+ 2 + 2 log2(r→i + 1)}+

(1 + 1/(t+ 3))(gr(R)− 1)r→i

⩽
σ∑

i=1

cost∗∗t (gr(R), r→i),

where we set cost∗∗t (γ,m) = min{(1 + 1/(t+ 3))γm, t+ 2 + 2 log2(m+ 1)}.
Since PeekSort has the fast-growth property, there exist a real number α > 1 and an integer δ ⩾ 0 such

that r(k) ⩾ αk−δr for all runs R of depth at least k in T . Now, given an index i ⩽ σ, letX be the set of runs R
of length r < αδ(t + 1)n/si, and let Y be the sub-tree of T consisting of runs of length r ⩾ αδ(t + 1)n/si.
For all h ⩾ 0, let Yh denote the set of runs of height h in the tree Y ; by construction, Yh contains only runs of

length r ⩾ αh(t+ 1)n/si.
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Consequently, Lemma 58 states that∑
R∈X

cost∗∗t (gr(R), r→i) ⩽ (1 + 1/(t+ 3))
∑
R∈X

gr(R)r→i ⩽ (1 + 1/(t+ 3)) log2(α
δ(t+ 1)n/si)si,

whereas Lemma 45 states that∑
R∈Y

cost∗∗t (gr(R), r→i) ⩽
∑
R∈Y

cost∗t(r→i) ⩽ 9αsi/(α− 1).

It follows that

C ⩽
∑
R∈T ∗

4sl(R) +

σ∑
i=1

cost∗∗t (gr(R), r→i) +O(n)

⩽
σ∑

i=1

(
(1 + 1/(t+ 3)) log2(α

δ(t+ 1)n/si)si +O(si)
)
+O(n)

⩽ (1 + 1/(t+ 3))nH∗ + n log2(t+ 1) +O(n).

Theorem 60. Theorem 51 remains valid if we consider the algorithm PeekSort instead of an algorithm with the tight

middle-growth property.

Proof. Let us reuse the notations and the main lines of the proof of Theorem 59. With these notations, PeekSort

requires no more than

C =
∑
R∈T ∗

σ∑
i=1

cost∗log(r, r→i) +O(n)

element comparisons and, for a given run R ∈ T ∗
, we have

σ∑
i=1

cost∗log(r, r→i)− 2sl(R) ⩽
σ∑

i=1

min{r→i, 6 log2(r + 1)2 + 6}+ (1− gr(R))r→i

⩽
σ∑

i=1

cost∗∗log(r, gr(R)r→i),

where we set cost∗∗log(r,m) = min{m, 6 log2(r + 1)2 + 6}.

Letα > 1 and δ ⩾ 0 be a real number and an integer such that r(k) ⩾ αk−δr for all runsR of depth at least k
in T . Then, given an integer i ⩽ σ, letX be the set of runs R of length r < αδ log2(2n/si)

2n/si, and let Y be

the sub-tree of T consisting of runs of length r ⩾ αδ log2(2n/si)
2n/si. For all h ⩾ 0, let Yh denote the set of

runs of height h in the treeY ; by construction,Yh contains only runs of length r ⩾ αh log2(2n/si)
2n/si.

Consequently, Lemma 58 states that∑
R∈X

cost∗∗log(r, gr(R)r→i) ⩽
∑
R∈X

gr(R)r→i ⩽ log2(α
δ log2(2n/si)

2n/si)si,

whereas Lemma 50 states that∑
R∈Y

cost∗∗log(r, gr(R)r→i) ⩽
∑
R∈Y

cost∗log(r, r→i) = O(si).

It follows that

C ⩽
∑
R∈T ∗

2sl(R) +

σ∑
i=1

cost∗∗log(r, gr(R)r→i) +O(n)

⩽
σ∑

i=1

(
log2(α

δ log2(2n/si)
2n/si)si +O(si)

)
+O(n)

⩽ nH∗ + 2n log2(H∗ + 1) +O(n).
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