Mathématiques discrètes

DUT 1 Informatique 2019-2020

Fiche de TD 3

Ensembles — $2^{\rm e}$ approche

Exercice 1. ■ Diagrammes de Venn

Dessiner les diagrammes de Venn pour chacune des définitions des ensembles A, B et C suivantes:

- 5. $A := \{1, 2, 3\}, B := \{4\}, C := \{1, 2, 4\};$
- 1. $A := \{1, 2\}, B := \{2, 3\}, C := \{4\};$ 2. $A := \{1, 2\}, B := \{2, 3\}, C := \{2, 4\};$
- 6. $A := \mathbb{N}, B := \mathbb{Z}, C := \mathbb{O};$
- 3. $A := \{1, 2\}, B := \{2, 3\}, C := \{3, 4\};$ 7. $A := \emptyset, B := \{\emptyset\}, C := \{\{\emptyset\}\};$
- 4. $A := \{1, 2\}, B := \{1, 2, 3, 4\}, C := \{3, 4\};$ 8. $A := \{\emptyset\}, B := \{A\}, C := \{B, 7\}.$

Exercice 2. ■ Calcul ensembliste

On considère les sous-ensembles de $\mathbb N$ suivants :

$$A := \{1, 3, 7, 9, 12\}, \qquad B := \{2, 4, 7, 8, 12\}, \qquad C := \{3, 4, 7, 9\}, \qquad D := \{3, 5\}.$$

$$B:=\{2,4,7,8,12\}$$

$$C := \{3, 4, 7, 9\},\$$

$$D := \{3, 5\}.$$

Calculer les résultats des expressions suivantes et donner les cardinaux des ensembles obtenus.

1. $A \cap B$;

6. $A \setminus B$;

11. $(A \cup C) \cap (B \cup C)$;

2. $D \times C$;

7. $B \setminus A$;

12. $A \cap \mathcal{C}_{\mathbb{N}}(B)$;

3. $C \times D$:

8. $A \cap (B \cup C)$;

13. $(A \cap B) \cup (A \cap G_{\mathbb{N}}(B))$;

4. $D \times D$;

9. $(A \cap B) \cup C$;

14. $A \Delta B$;

5. $C \setminus A$;

- 10. $(A \cap B) \cup (A \cap C)$;
- 15. $\mathcal{P}(D)$.

Exercice 3. ■ **Double inclusion**

Soit A, B, C et D quatre ensembles tels que $A \subset D$ et $B \subset D$. Démontrer, par le théorème de la double inclusion, les égalités

- 1. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;
- 3. $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$;

2. $\mathcal{C}_D(A \cup B) = \mathcal{C}_D(A) \cap \mathcal{C}_D(B)$;

4. $(A \setminus B)^2 = A^2 \setminus ((A \times B) \cup (B \times A) \cup B^2)$.

Discuter si une démonstration par diagrammes de Venn (au lieu de la double inclusion) peut être possible et pour quels cas. En déduire l'intérêt de la démonstration par double inclusion.

Exercice 4. ■ Cardinaux

En supposant que A, B, C et D sont des ensembles tels que #A=3, #B=2, #C=1 et #D=0, déterminer les cardinaux des ensembles suivants :

1. A^4 ;

2. $A \times B \times C \times B$;

3. $A^3 \times B^4$;

4. $\mathcal{P}(A)$;

5. $\mathcal{P}(C)$;

6. $\mathcal{P}(A \times B)$

7. $A^{1024} \times D \times B^{65536}$;

8. $\mathcal{P}(D)$.

Exercice 5. ■ **Mises en relation**

Dans cet exercice, A, B et C désignent des sous-ensembles d'un ensemble E. Mettre en relation, avec \subset , \supset ou = et lorsque cela est possible, les paires d'ensembles suivantes et justifier :

1. {1,2,3} et {3,2,1};

2. {1,3,1} et {1,2};

3. {1,2,3} et {1,2,4};

4. $\{1\} \times \{2\}$ et $\{1,2\} \times \{1,2\}$;

5. $\{1,2\}^2$ et $\{1,2\}^3$;

6. $\{\emptyset\}$ et \emptyset ;

7. \mathbb{N} et \mathbb{Z} ;

8. \mathbb{Z} et \mathbb{Q}^+ ;

9. $(A \times B) \cup (A \times C)$ et $A \times (B \cup C)$;

10. $A \setminus (B \cup C)$ et $(A \setminus B) \setminus C$;

11. $A \cup (B \setminus C)$ et $(A \cup B) \setminus C$;

12. $\mathcal{C}_{E\times E}(A\times B)$ et $\mathcal{C}_{E}(A)\times \mathcal{C}_{E}(B)$.

Exercice 6. Parties d'ensembles

1. Donner quatre exemples d'éléments de $\mathcal{P}(\mathbb{N})$.

2. Calculer $\mathcal{P}(\{1,2\})$.

3. Calculer $\mathcal{P}(\{\mathbb{N}\})$.

4. Calculer $\mathcal{P}(\emptyset)$.

5. Calculer $\mathcal{P}(\mathcal{P}(\emptyset))$.

6. Calculer $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

Exercice 7. Ensembles cofinis

Soit E un ensemble infini. Un sous-ensemble A de E est dit cofini si le complémentaire $\mathcal{G}_E(A)$ est un ensemble fini.

1. Si $E = \mathbb{N}$, déterminer si le sous-ensemble $A := \{x \in E : 3x - 25 \ge 0\}$ est cofini.

2. Si $E = \mathbb{Z}$, déterminer si le sous-ensemble $A := \{x \in E : 3x - 25 \ge 0\}$ est cofini.

3. Lorsque $E=\mathbb{N}$, construire un exemple d'un sous-ensemble qui ne soit ni fini, ni cofini.

4. Montrez que si A et B sont deux sous-ensembles de E et que $A \subset B$, alors $\mathcal{C}_E(B) \subset \mathcal{C}_E(A)$.

5. Démontrer ou bien infirmer la phrase suivante :

« L'union de deux ensembles cofinis est un ensemble cofini. ».

6. Démontrer ou bien infirmer la phrase suivante :

« L'intersection de deux ensembles cofinis est un ensemble cofini. ».