Mathématiques discrètes

DUT Informatique 1
— Examen 1 —

Année 2018-2019 — jeudi 8 novembre 2018

Nom:
Prénom :
Exercice 1. (Contre-exemples)
Soient A , B et C trois ensembles. En construisant des contre-exemples, infirmer les propriétés suivantes. Justifier soigneusement.
1. $(A \times B) \cup (B \times A) = (A \cup B) \times (B \cup A)$.
$2. \ \ \{\emptyset\} \subset A.$
3. Quand A est fini, $\#\mathcal{P}(A) \geqslant \#A^2$.
4. Quand A et B sont des sous-ensembles de C , $\mathcal{C}_C(A \cup B) = \mathcal{C}_C(A) \cup \mathcal{C}_C(B)$.

e 2. (Doubles ou simple	s inclusions)	
ient A , B et C trois ensem	ubles. On considère les ensembles $X:=\langle A\setminus$	$B) \setminus C \text{ et } Y := A \setminus A$
	es de Venn de X et de Y en faisant figurer l	
:	: :	
:	: :	
:	: :	
:	: :	
:	: :	
:		
:		
:	: :	
		•••••
		•••••
) Démontrer ou infirmer		

2.	Soient A et B des ensembles. Démontrer, en utilisant le théorème de la double inclusion, l'égalité
	$\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B).$

Exercice 3. (Si alors sinon)

Pour	toutes	formules	F.	G et	Н	sans	quantificateur,	on	note	$\lceil F.$	G.H	la	formul	le
LOUL	toates	iorinaics	<i>L,</i>	0 01		ourio	qualitificate al,	OII	11010	1 - 1	\cup	IG	TOLITIG	

$$(F \to G) \land ((\neg F) \to H).$$

1.	. Donner la table de vérité de la formule $[F,G,H]$, dans laquelle F,G et H son des formules atomiques.	it considérées comme
	:	:
3.	3. Démontrer que, pour toutes formules sans quantificateur F , G et H , les $[\neg F, H, G]$ sont équivalentes.	
		••••••

	rire la contraposée de $[F,G,H] \rightarrow [F,H,G]$ puis exprimer une formule qui lui est équivalente ns laquelle les connecteurs de négation ne portent que sur des formules atomiques.
• • •	
•••	
Soier	e 4. (Finesse) at \mathcal{R}_1 et \mathcal{R}_2 deux relations binaires entre deux ensembles E et F . Nous disons que \mathcal{R}_1 est $plus_1$ \mathcal{R}_2 si pour tout $(x,y) \in E \times F$, $x \mathcal{R}_1 y$ implique $x \mathcal{R}_2 y$.
1. Dé	emontrer que \mathcal{R}_1 est plus fine que \mathcal{R}_2 si et seulement si $\mathcal{R}_1 \subset \mathcal{R}_2$.
•••	
•••	
	it pour tout $k \in \mathbb{N}$ la relation binaire \mathcal{R}_k sur \mathbb{Z} dans laquelle $x \mathcal{R}_k y$ si $x + y \geqslant k$. Démontrer que ur tous $k \in \mathbb{N}$ et $\ell \in \mathbb{N}$ tels que $k \leqslant \ell$, \mathcal{R}_ℓ est plus fine que \mathcal{R}_k .

3.	Construire un exemple de relations binaires \mathbb{Q}_1 et \mathbb{Q}_2 sur un ensemble E (à définir) tel que \mathbb{Q}_1 est plus fine que \mathbb{Q}_2 , \mathbb{Q}_1 est transitive et \mathbb{Q}_2 ne l'est pas.
4.	Soit ${\bf T}$ l'ensemble de toutes les relations binaires sur $E:=\{0,1\}$. Calculer le cardinal de ${\bf T}$.
5.	Démontrer que la relation « être plus fine que » sur T est antisymétrique.
	Compléments
• • •	
•••	
• •	
•••	
•••	
••	
• • •	
• • •	
•••	