
Operads in algebra, combinatorics,
and computer science

Samuele Giraudo
LIGM, Université Gustave Ei�el

February and March, 2020

1 / 135

Outline

1. Introduction

2. Collections

3. Treelike structures

4. Operads

2 / 135

Chapter

1. Introduction

3 / 135

Section

1.1 Algebraic structures

4 / 135

Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:

monoids;

groups;

la�ices;

associative alg.;

Hopf bialg.;

Lie alg.;

pre-Lie alg.;

dendriform alg.;

duplicial alg.

Such types of algebras are specified by

1. a collection of operations;

2. a collection of relations between operations.

– Example –
The type of monoids can be specified by

1. the operations ? (binary) and 1 (nullary);

2. the relations (x1 ? x2) ? x3 = x1 ? (x2 ? x3) and x ? 1 = x = 1 ? x.

5 / 135

Operator structures

– Strategy to study these algebras –
Add a level of indirection and consider algebraic structures wherein

elements are operations.

There are a lot of kind of operator structures, each dealing with a
particular type of operators:

x

1 2 3 4

Operads

x

1 2 3 4

a

b a c c

Colored
operads

x

2 3 1

Symmetric
operads

x

1 2 3 4

1 2 3

Pros

x

1 3 1 2 2

Abstract
clones

6 / 135

Operator structures and compositions

These operators can be composed in di�erent ways.

Operads:

1 2 3

f ◦

[
1 2

g1 ,
1

g2 ,
1 2

g3

]
=

1 2 3 4 5

g1

f

g2 g3

Pros:

f

1 2

1 2

∗ g

1 2 3 4

1 2 3

= f

1 2

1 2

g

3 4 5 6

3 4 6

f

1 2

1 2 3

◦ g

1 2 3

1 2 3 4

=
f

1 2

g

1 2 3 4

Clones:

1 2 1

f �

 g1

1 3 2 3

,
1 3 2

g2

 =

1 3 1 3 2 32 3 1 3 2

g1g1

f

g2

7 / 135

Operator structures and application areas

Operads are suitable to study algebraic structures where operations satisfy
relations involving planar terms like

(x1 ? x2) • x3 = x1 • (x2 ? x3)− (x1 • x2) • x3.

Symmetric operads are suitable to study algebraic structures where
operations satisfy relations involving linear terms like

x1 ? x2 = x1 • x2 + x2 ? x1.

Pros are suitable to study algebraic structures where operations can have
several inputs and outputs and satisfy relations involving linear terms like

∆ ((x1 ? x2) ? x3) = ∆ (x1 ? (x3 ? x2)) + ∆ (x1 • (x2 ? x3)) .

Clones are suitable to study algebraic structures where operations can
satisfy any relation like

x1 ? x1 = x1 + (x2 • x1) ? x2.

8 / 135

Section

1.2 Computing over operations

9 / 135

Dendriform algebras

A dendriform algebra [Loday, 2001] is a space A endowed with two binary
linear operations

≺,�: A⊗A → A
satisfying the three relations

(x1 ≺ x2) ≺ x3 = x1 ≺ (x2 ≺ x3) + x1 ≺ (x2 � x3) ,

(x1 � x2) ≺ x3 = x1 � (x2 ≺ x3) ,

(x1 ≺ x2) � x3 + (x1 � x2) � x3 = x1 � (x2 � x3) .

– Example –
On K 〈{a, b}∗〉, let ≺ and � be the operations defined by

u ≺ v := u�← v, u � v := u�→ v,

Then, for instance,

ab ≺ ba = abab + baab + baab,

ab � ba = abba + abba + baba.

(K 〈{a, b}∗〉 ,≺,�) is a dendriform algebra [Loday, 2001].

10 / 135

Dendriform associative operations

A binary operation ? is associative if

?

?
=

?

?
.

By using the infix notation, this says that

(x1 ? x2) ? x3 = x1 ? (x2 ? x3) .

– Proposition –
In any dendriform algebra (A,≺,�), any associative operation is proportional to
the binary operation ≺ + �.

To prove this, let us consider a generic binary dendriform operation

t := λ1 ≺ + λ2 � ,

where λ1 and λ2 are any coe�icients of K.
11 / 135

Dendriform associative operations
This operation is associative i�

t

t
−

t

t
= λ

2
1 ≺

≺
+ λ1λ2 ≺

�
+ λ1λ2 �

≺
+ λ

2
2 �

�

− λ2
1

≺
≺
− λ1λ2

≺
�
− λ1λ2

�
≺
− λ2

2

�
�

= 0.

By the three dendriform relations, this is equivalent to

λ
2
1 ≺

≺
−λ2

1

≺
≺
−λ1λ2

≺
�

= 0, λ
2
1λ2 �

≺
+λ

2
2 �

�
−λ2

2

�
�

= 0.

λ1λ2 ≺
�
− λ1λ2

�
≺

= 0,

which is itself equivalent to λ21 = λ1λ2 = λ22. Therefore, λ1 = λ2.
12 / 135

Duplicial algebras

A duplicial algebra [Brouder, Frabe�i, 2003] is a space A endowed with two
binary linear operations

�,�: A⊗A → A

satisfying the three relations

(x1 � x2)� x3 = x1 � (x2 � x3) ,

(x1 � x2)� x3 = x1 � (x2 � x3) ,

(x1 � x2)� x3 = x1 � (x2 � x3) .

– Example –
On K 〈N∗〉, let� and� be the operations defined by

u� v := u
(
v ↑max(u)

)
, u� v := u

(
v ↑|u|

)
.

Then, for instance,

0211� 14 = 021136,

0211� 14 = 021158.

(K 〈N∗〉 ,�,�) is a duplicial algebra [Novelli, Thibon, 2013].
13 / 135

Duplicial operations and equivalence

Two operations t and t′ are equivalent (wri�en t ≡ t′) if they produce the
same, output when evaluated with the same inputs.

Let us describe as way to test if two duplicial operations are equivalent.

By duplicial relations, we have

�
� ≡ �

� , �
� ≡ �

� , �
� ≡ �

� .

We orient them as

�
� →� � , �

� → �
� , �

� →� � .

in order to obtain a rewrite relation⇒ on the set of all the duplicial
operations by performing local moves.

14 / 135

Testing equivalence of duplicial operations

We have for instance the sequence

� �

�

�

�

� ⇒

�

�

�

�

�

�

⇒
�

�

�

�

�

�

of rewritings.

– Proposition –
Two duplicial operations t and t′ are equivalent i� there is a duplicial operation s

such that t ∗⇒ s and t′
∗⇒ s.

To prove this, we have to establish the fact that⇒ is a terminating and
confluent rewrite rule.

15 / 135

Enumerating duplicial operations

The set of all normal forms of⇒ contains duplicial operations that are
pairwise nonequivalent.

– Proposition –
The set of normal forms of⇒ of operations with n > 0 inputs is in one-to-one
correspondence with the set of all binary trees with n internal nodes.

A possible bijection puts the following two trees in correspondence:

�

�
�

�

�
�
� ←→ .

Therefore, there are

cat(n) :=
1

n+ 1

(
2n

n

)
pairwise nonequivalent duplicial operations with n inputs.

16 / 135

Pre-Lie algebras

A pre-Lie algebra [Vinberg, 1963] [Gerstenhaber, 1963] is a space A endowed
with a binary operation

x: A⊗A → A

satisfying the relation

(x1 x x2) x x3−x1 x (x2 x x3) = (x1 x x3) x x2−x1 x (x3 x x2) .

– Example –
On K 〈{a, b}∗〉, let x be the operation defined by

ux v :=
∑

16i6|u|−1

u1 . . . ui v ui+1 . . . u|u|.

Then, for instance,

aabab x bb = abbabab + aabbbab + aabbbab + aababbb

= abbabab + 2 aabbbab + aababbb.

(K 〈{a, b}∗〉 ,x) is a pre-Lie algebra.

17 / 135

Description of pre-Lie operations

One can ask the same question as before concerning the description of
equivalence classes of pre-Lie operations.

– Theorem [Chapoton, Livernet, 2001] –
There is a one-to-one correspondence between the set of all pre-Lie operations
with n > 0 inputs the set of all standard rooted trees with n nodes.

To prove this, one can consider a symmetric operad PLie on rooted trees
and show that free algebras over PLie are free pre-Lie algebras.

Here is a composition of pre-Lie operations encoded by standard rooted
trees:

1

3

2

◦3 1

2

=
1

3

2 4

+
4

2

3

1
+

4

1

3

2
+ 3

1

4

2

,

and here is a pre-Lie product in the free pre-Lie algebra over one generator:

x = + + + 2 .

18 / 135

Section

1.3 Computing over combinatorial objects

19 / 135

Objects as operators

By regarding objects as operators, one obtains ways to compose them. For
instance,

1 2

34

5

◦2 1

2 =
1

1

2

34

5

=
1

2

3

45

6

is an abstract composition of an object of size 5 with an object of size 2 at
the 2-nd position.

Concrete examples on Motzkin paths:

◦4 = ,

on permutations:

•
••
••
◦3 •

•• = •

•
•
••

••
,

and on some labeled graphs:

−1

2 1 ◦2 −1

1

1

=
−1
−1
2

1

1

+ 2
−1

2

1

1

+
−1

1

2

1

1

.

20 / 135

Enumeration of Motzkin paths

A Motzkin path is a path in N2 starting from (0, 0) and ending at (n, 0),
made of steps (+1,+1), (+1,−1), and (+1, 0).

– Example –

With the aid of some elementary reasoning, one can prove that the
generating series G(t) of Motzkin paths, enumerating them w.r.t. their
number of points, satisfies

G(t) = t+ tG(t) + tG(t)2

and

G(t) = t+ t2 + 2t3 + 4t4 + 9t5 + 21t6 + 51t7 + 127t8 + 323t9 + · · · .

21 / 135

Composition of Motzkin paths and series of objects

A way to obtain this series consists in following both steps:

1. define a composition operation on the set of Motzkin paths;

2. express the infinite formal sum of all Motzkin paths.

If u and v are two Motzkin paths, the composition u ◦i v is obtained by
replacing the i-th point of u by v.

The infinite formal sum of all Motzkin paths is

f := + + + + + + + + · · · ,

and one can prove that it satisfies the functional equation

f = + ◦ [, f] + ◦ [, f , f] .

This is a consequence of a property of the operad Motz of Motzkin paths
(and more precisely, the fact that it is a Koszul operad).

22 / 135

Section

1.4 Mains application fields and purposes

23 / 135

Purposes of the lecture

We focus in this lecture on operads.

Operads are used to study algebraic structures. They are a tool to

compute over operations;

describe the combinatorial heart of a type of algebraic structure;

relate, by transformations, di�erent types of algebraic structures.

Conversely, operads can also be used as tools to

interpret combinatorial objects as operations;

describe how to form objects from elementary building blocks;

enumerate families of combinatorial objects;

generate families of combinatorial objects.

24 / 135

Main topics

We shall consider and study

collections, that are structured sets of combinatorial objects;

treelike structure of several types (planar rooted trees and syntax
trees);

rewrite systems on syntax trees and give ways to prove termination
and confluence;

nonsymmetric operads on combinatorial objects, constructions, and
study methods to prove presentations;

some applications and open questions.

25 / 135

Section

1.5 Exercises

26 / 135

About types of algebras

– Exercise –
Let A := {a0, a1, a2, . . . } be an infinite alphabet totally ordered by ai 6 aj i� i 6 j, and
let ≺ and � be the two binary operations defined on K

〈
A+
〉

by

u ≺ v :=

{
uv if max6(u) > max6(v)

0 otherwise,

u � v :=

{
uv if max6(u) < max6(v)

0 otherwise,

Prove that
(
K
〈
A+
〉
,≺,�

)
is a dendriform algebra.

– Exercise –
Prove that (K 〈{a, b}〉 ,�←,�→) is a dendriform algebra.

– Exercise –
Let (A,≺,�) be a dendriform algebra and set x as the binary operation defined by
xx y := x ≺ y − y � x. Prove that (A,x) is a pre-Lie algebra.

27 / 135

About types of algebras

– Exercise –
Let (A,x) be a pre-Lie algebra and set [−,−] as the binary operation defined by
[x, y] := xx y − y x x. Prove that (A, [−,−]) is a Lie algebra.

Recall that a Lie algebra is a spaceA endowed with a binary linear operation [−,−]

satisfying
[x, y] = −[y, x],

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

– Exercise –
Prove that each duplicial operation with n > 0 inputs can be encoded by a binary tree with n
internal nodes.

– Exercise –
Express all associative operations in a duplicial algebra.

28 / 135

Chapter

2. Collections

29 / 135

Section

2.1 Collections and enumeration

30 / 135

Collections

An index set is a nonempty set I .

An I-collection is a set C decomposing as a disjoint union

C =
⊔
i∈I

C(i)

where the C(i) are possibly infinite sets.

For any x ∈ C(i), x is an object of C and ind(x) := i is the index of x.

When all C(i) are finite, C is combinatorial.

Let C1 and C2 be two I-collections.

A map φ : C1 → C2 is an I-collection morphism if for all x ∈ C1,

ind(x) = ind(φ(x)).

If for all i ∈ I , C1(i) ⊆ C2(i), then C1 is a subcollection of C2.

31 / 135

Graded collections

A graded collection is an N-collection.

Let C be a graded collection. For any x ∈ C , the size |x| of x is its index
ind(x).

The map | − | : C → N is the size function of C .

We say that C is

connected if #C(0) = 1;

augmented if C(0) = ∅;

monatomic if C is augmented and #C(1) = 1;

the unit collection if C is connected and C = C(0);

the neutral collection if C is monatomic and C = C(1).

32 / 135

Generating series

When C is a combinatorial graded collection, the generating series of C is
the formal power series

GC(t) :=
∑
n>0

#C(n) tn.

This series satisfies
GC(t) =

∑
x∈C

t|x|.

The generating series of C encodes the integer sequence associated with
C , which is the sequence

(#C(0),#C(1),#C(2), . . .) .

33 / 135

Multigraded collections

Let k > 1. A k-multigraded collection is an Nk-collection.

A statistics on an I-collection C is a map s : C → N.

Given a k-multigraded collection C , we obtain for any j ∈ [k] the statistics
sj defined, for any x ∈ C by

sj(x) := nj

if ind(x) = (n1, . . . , nk).

When C is combinatorial, the generating series of C is the multivariate
formal power series

GC (t1, . . . , tk) :=
∑

(n1,...,nk)∈Nk
#C ((n1, . . . , nk)) tn1

1 . . . tnkk .

34 / 135

Colored collections

Let C be a finite set, called set of colors.

A C-colored collection is an IC-collection where

IC := {(a, u) : a ∈ C and u ∈ C∗} ,

where C∗ is the set of all finite words on C.

Let C be a C-colored collection, x ∈ C , and assume that ind(x) = (a, u).
Then

the output color out(x) of x is a;

the i-th input color ini(x) of x is the i-th le�er ui of u for any i ∈ [|u|];

the size |x| of x is the length as a word of in(u).

In particular, any C-colored collection C gives rise to a graded collection
C ′ where C ′(n) contains all elements of C of size n > 0.

35 / 135

Section

2.2 Operations on collections

36 / 135

Casting

Let C be an I-collection, J be an index set, and

ω : I → J

be a map.

The ω-casting of C is the J-collection Castω(C) satisfying

(Castω(C)) (j) =
⋃
i∈I

ω(i)=j

C(i)

for any j ∈ J .

When J = N, one can see ω : I → N as a size function wherein the size of
any x ∈ C(i) is ω(i), and we say that Castω(C) is the ω-graduation of C .

37 / 135

Disjoint union

Let C1 and C2 be two I-collections.

The disjoint union of C1 and C2 is the I-collection C1 t C2 satisfying

(C1 t C2) (i) = C1(i) t C2(i)

for any i ∈ I .

– Proposition –
If C1 and C2 are two combinatorial I-collections, then C1 t C2 is combinatorial.

If, additionally, I = N, then

GC1tC2(t) = GC1(t) + GC2(t).

38 / 135

Cartesian product

Let C1 be an I1-collection, . . . , and Cp be an Ip-collection where p > 0.

The Cartesian product of C1, . . . , Cp is the I1 × · · · × Ip-collection
[[[C1, . . . , Cp]]]× satisfying

[[[C1, . . . , Cp]]]× ((i1, . . . , ip)) = C1 (i1)× · · · × Cp (ip)

for any (i1, . . . , ip) ∈ I1 × · · · × Ip.

When ω : I1 × · · · × Ip → J is a map, the ω-Cartesian product of C1, . . . ,
Cp is the J-collection

[[[C1, . . . , Cp]]]ω× := Castω ([[[C1, . . . , Cp]]]×) .

39 / 135

Cartesian product

When all C1, . . . , Cp are graded collections, we denote by + : Np → N the
map satisfying + (n1, . . . , np) := n1 + · · ·+ np.

In this case, [[[C1, . . . , Cp]]]+× is a graded collection.

– Proposition –
If C1 be a combinatorial I1-collection, . . . , and Cp be a combinatorial Ip-collection,
then [[[C1, . . . , Cp]]]× is combinatorial.

If additionally, I1 = · · · = Ip = N, then

G[[[C1,...,Cp]]]+×
(t) =

∏
j∈[p]

GCj (t).

40 / 135

List

Let C be an I-collection.

The list collection of C is the I∗-collection

List(C) :=
⊔
p>0

[[[C, . . . , C]]]×︸ ︷︷ ︸
p terms

.

When ω : I∗ → J is a map, the ω-list collection of C is the J-collection

Listω(C) := Castω(List(C)).

– Proposition –
If C is a combinatorial then List(C) is combinatorial.

If additionally, I = N and C is augmented, then

GList+(C)(t) =
1

1− GC(t)
.

41 / 135

Composition

Let C1 and C2 be two graded collections.

The composition of C1 and C2 is the graded collection C1 � C2 satisfying

(C1 � C2) (n) =
⊔
p>0

C1(p), [[[C2, . . . , C2]]]+×︸ ︷︷ ︸

p terms

(n)

π2
×

for any n ∈ N, where π2 : N2 → N is the map defined by
π2 (n1, n2) := n2.

– Proposition –
If C1 and C2 are two combinatorial and graded collections, and C2 is augmented,
then C1 � C2 is combinatorial.

Moreover,
GC1�C2(t) = GC1 (GC2(t)) .

42 / 135

Section

2.3 Some collections

43 / 135

Words

An alphabet is a set A wherein elements are called le�ers.

We can see A as a graded collection where all le�ers have size 1. Then
A = A(1).

The collections of words on A is the graded collection

A∗ := List+(A).

We denote by u1 . . . un each element (u1, . . . , un) of List+(A)(n). The
size of a word is its length.

– Example –
Let A := {a, b, c}.
One has A∗(0) = {ε}, A∗(1) = {a, b, c}, A∗(2) = {aa, ab, ac, ba, bb, bc, ca, cb, cc}.
Since GA(t) = 3t,

GA∗ (t) =
1

1− 3t
=
∑
n>0

3ntn.

44 / 135

Integer compositions

We can see N as a graded collection wherein N(n) = {n} for any n > 0.
The collection of integer compositions is the graded collection

Com := List+ (N \ {0}) .

An integer composition is a sequence λ = λ1 . . .λk of positive integers.
The size of λ is λ1 + · · ·+ λk . The length of λ is its number k of parts.
Since GN\{0}(t) = t

1−t ,

GCom(t) =
1

1− t
1−t

= 1 +
∑
n>1

2n−1tn.

The ribbon diagram of λ is the diagram obtained by concatenating lines of
boxes for each part of λ.

– Example –
The integer composition λ := 3141 admits the ribbon diagram

.

45 / 135

Binary trees

The collection of binary trees is the graded collection BT defined as the
one satisfying the relation

BT = { } t
[[[
{ } , [BT ,BT]

+
×

]]]
+
×,

where is an object of size 0 called leaf and is an object of size 1 called
internal node.

By definition, a binary tree t is

either the leaf ;

or an ordered pair (, (t1, t2)), where t1 and t2 are both binary trees.

– Example –
The pair

(, ((, (,)) , (, (, (, (,))))))

is a binary tree.

46 / 135

Binary trees — size and representation

By definition of BT , the size of a binary tree t satisfies

|t| =

{
0 if t = ,

1 + |t1|+ |t2| otherwise, where t = (, (t1, t2)) .

Binary trees are drawn by pu�ing the root on the top.

– Example –
The binary tree

(, ((, (,)) , (, (, (, (,))))))

is drawn as

.

47 / 135

Binary trees – enumeration

Moreover, the generating series of BT satisfies the quadratic algebraic
equation

GBT (t) = 1 + tGBT (t)2.

The unique solution of this equation having a combinatorial meaning is

GBT (t) =
1−
√

1− 4t

2t
=
∑
n>0

cat(n)tn.

Let ω : N→ N \ {0} be the map defined by ω(n) := n+ 1 for any n > 0.

By se�ing
BT := Castω (BT) ,

we have, for any n > 1.

BT (n) = BT (n− 1).

The size of a binary tree of BT is its number of leaves.

48 / 135

Section

2.4 Exercises

49 / 135

About enumeration

– Exercise –
Show the stated formulas for the generating series for the operations of disjoint union,
Cartesian product, List, and composition.

– Exercise –
Let C be a combinatorial, graded, and
augmented collection. Let MSet(C) be the
graded collection of multisets on C , that are
multisets *x1, . . . , xp+ where p > 0 and
xj ∈ C for all j ∈ [p]. The size of a multiset

is the sum of the sizes of its elements w.r.t.
the size function of C .

Prove that

GMSet(C)(t) =
∏
n>1

(
1

1− tn

)#C(n)

.

– Exercise –
Let C be a combinatorial and graded
collection. Let Set(C) be the graded
collection of sets on C , defined as the
subcollection of MSet(C) restrained to

multisets without repeated elements.

Prove that

GSet(C)(t) =
∏
n>1

(1 + tn)#C(n) .

50 / 135

Collection morphisms

– Exercise –
A Dyck path of size n > 0 is a path in N2 starting from (0, 0) and ending at (2n, 0), made of
steps (+1,+1) and (+1,−1). By se�ing D as the graded collection of all Dyck paths, show
that the collections BT and D are isomorphic.

– Exercise –
Let Per be the graded collections of all permutations, that are bijections σ : [n]→ [n], where
the size of a permutation is the cardinality of its domain.

Let bst : Per→ BT be the collection morphism wherein, for any σ ∈ Per, bst(σ) is the
binary tree obtained by inserting the le�ers of σ from the right to the le� following the
binary search tree insertion algorithm.

Prove that two permutations σ and σ′ belong to the same fiber of bst i� one can transform σ

into σ′ through the (nonoriented) moves

u ac v bw ←→ u ca v bw

where u, v, and w are any words of integers, and a, b, and c are le�ers satisfying a < b < c.

This binary relation is the sylvester relation [Hivert, Novelli, Thibon, 2005].

51 / 135

Chapter

3. Treelike structures

52 / 135

Section

3.1 Syntax trees

53 / 135

Planar rooted trees

The collection of planar rooted trees is the graded collection PRT defined
as the one satisfying the relation

PRT = { } t
[[[
{ } ,List+(PRT)

]]]
+
×,

where is an object of size 1 called internal node.

By definition, a planar rooted tree is an ordered pair (, (t1, . . . , tk)) where
k > 0 and all ti, i ∈ [k], are planar rooted trees.

The size of t = (, (t1, . . . , tk)) satisfies

|t| = 1 +
∑
i∈[k]

|ti| .

– Example –
The planar rooted tree (, ((, ε) , (, ε) , (, ((, ε))) , (, ε))) is drawn as

54 / 135

Planar rooted trees and binary trees

The generating series of PRT satisfies

GPRT(t) = t+ GPRT(t)2,

so that GPRT(t) = GBT (t).

The Knuth rotation correspondence is the collection isomorphism
φ : PRT→ BT defined for any planar rooted tree t := (, (t1, . . . , tk)) by

φ(t) :=

{
if t = (, ε) ,

(, (φ (t1) , φ ((, (t2, . . . , tk))))) otherwise.

– Example –

φ7−→

55 / 135

Right partial action

Let A := N \ {0} and

· : PRT×A∗ → PRT

be the right partial monoid action defined for any planar rooted tree
t := (, (t1, . . . , tk)) by

t · u :=

{
t if u = ε,

tu1
·
(
u2 . . . u|u|

)
otherwise.

If u1 /∈ [k], then t · u is not defined. Therefore, · is a partial action.

– Example –
Let

t := ,

We have

t · 1 = ,

t · 21 = ,

t · 23 = .

t · 231 = ,

t · 3 = .

56 / 135

Language of a tree

Let t ∈ PRT. Let

N (t) := {u ∈ A∗ : t · u is well-defined}

be the language of t.

Some definitions:

Any word of N (t) is a node;

A maximal element of N (t) for the prefix order relation is a leaf;

A node of t which is not a leaf is internal;

The root of t is the node ε;

A node u is an ancestor of a node v if u is a prefix of v;

A node v is a child of u if v = ui for an i ∈ N;

The depth-first order is the lexicographic total order on N (t);

The degree deg(t) of t is its number of internal nodes;

The arity ari(t) of t is its number of leaves;

The height ht(t) of t is max {|u| : u ∈ N (t)}.
57 / 135

Language of a tree

– Example –
Let

t := .

Then,
N (t) = {ε, 1, 2, 21, 211, 2111, 2112, 22, 23, 231, 232, 3}.

The leaves of t are 1, 2111, 2112, 22, 231, 232, and 3.

The internal nodes of t are ε, 2, 21, 211, and 23.

The depth-first order 4 sorts the nodes of t as

ε 4 1 4 2 4 21 4 211 4 2111 4 2112 4 22 4 23 4 231 4 232 4 3.

The degree of t is 5, its arity is 7, and its height is 4.

58 / 135

Syntax trees

Let G be an augmented graded collection.

A G-syntax tree is a planar rooted tree t together with a map

λt : N (t)→ G,

where N (t) is the set of internal nodes of t, and such that for any
u ∈ N (t), if u has k > 1 children, then λt(u) ∈ G(k).

– Example –
Let G := {a, b, c, d} such that |a| = 1,
|b| = 2, |c| = 2, and |d| = 3.

Let

t :=

be the G-syntax tree such that λt(ε) = d,

λt(2) = d, λt(21) = a, λt(211) = b, and
λt(23) = b.

This syntax tree is depicted as

d

a

b

d

b
.

59 / 135

Graded collections of syntax trees

Given an augmented graded collection G, let S(G) be the graded collection
of all G-syntax trees, where for any t ∈ S(G), |t| := ari(t).

Alternatively, S(G) satisfies the relation

S(G) = {} t [[[{ } ,G� S(G)]]]π2
× ,

where is an object of size 1 and is an object of size 0.

Therefore, the generating series of S(G) satisfies

GS(G)(t) = t+ GG
(
GS(G)(t)

)
.

– Example –
Let G := {a, b, c, d} such that |a| = 1, |b| = 2, |c| = 2, and |d| = 3.

Since
GG(t) = t+ 2t2 + t3,

the generating series of S(G) satisfies

GS(G)(t) = t+ GS(G)(t) + 2GS(G)(t)2 + GS(G)(t)3.

60 / 135

Section

3.2 Operations on trees

61 / 135

Partial composition

For any t ∈ S(G)(n) and any i ∈ [n], the i-th leaf of t is the i-th leaf w.r.t.
the depth-first order of t.

Let for n,m > 1 and i ∈ [n] the product

◦(n,m)
i : S(G)(n)× S(G)(m)→ S(G)(n+m− 1)

such that, for any t ∈ S(G)(n) and s ∈ S(G)(m), t ◦(n,m)
i s is the G-syntax

tree obtained by overlying the root of s onto the i-th leaf of t.

– Example –

c

ba

c b1

5

8

◦(8,5)5 a

b

c
=

c

b

c

b

ba

c

a

We shall omit the mention to n and m in ◦(n,m)
i in order to write simply ◦i.

62 / 135

Full composition

Let for any n > 1 and m1, . . . ,mn > 0 the product

◦(m1,...,mn) : S(G)(n)×S(G) (m1)×· · ·×S(G) (mn)→ S(G) (m1 + · · ·+mn)

defined, for where for any t ∈ S(G)(n), s1 ∈ S(G) (m1), . . . ,
sn ∈ S(G) (mn), by

◦(m1,...,mn) (t, s1, . . . , sn) := (. . . ((t ◦n sn) ◦n−1 sn−1) . . .) ◦1 s1.

– Example –

◦(2,1,4,2)

 a

c
, a , ,

c

a
, b

 =

a

ba

c

c

a

We shall omit the mention to m1, . . . , mn in ◦(m1,...,mn) in order to write
simply ◦.

63 / 135

Factors, prefixes, and su�ixes

Let t, s ∈ S(G).

We say that s is a factor of t if there exist r, r1, . . . , r|s| ∈ S(G) and i ∈ [|r|]
such that

t = r ◦i
(
s ◦
[
r1, . . . , r|s|

])
.

This property is denoted by s 4f t.

If r = , then s is a prefix of t. This property is denoted by s 4p t.

If all ri = , then s is a su�ix of t. This property is denoted by s 4s t.

– Example –

c

b
4f

a

b

a

b

c

c

b

b
, c

b

b

4p
a

b

a

b

c

c

b

b
,

b

b
4s

a

b

a

b

c

c

b

b

64 / 135

Occurrences

A node u of t is an occurrence of s in t if s is a prefix of t · u.

This node u is the position of the root of s in t.

– Example –
Given the tree

a

a

a

a

a

b

a

c

b
,

the nodes 1, 3, and 31 are occurrences of

a

a

and the nodes 2 and 112 are occurrences of

b .

By definition, a tree s admits an occurrence in t i� s 4f t.

If s admits no occurrence in t, then t avoids s.

65 / 135

Section

3.3 Term rewrite systems

66 / 135

Rewrite relations

A rewrite relation on S(G) is a binary relation→ on S(G) such that if
t→ t′, then |t| = |t′|. Each pair (t, t′) such that t→ t′ is a rewrite rule.

The closure of→ is the binary relation⇒ on S(G) satisfying

r ◦i
(
s ◦
[
r1, . . . , r|s|

])
⇒ r ◦i

(
s′ ◦

[
r1, . . . , r|s|

])
if s→ s′, where r and r1, . . . , r|s| are any G-trees, and i ∈ [|r|].

– Example –

If→ is the rewrite relation satisfying b

a

a

→
a

b

b

, one has

a

a

a

a

a

a

a

a

a

b ⇒ a b

a

a

b

a

a

a

a

a

.

67 / 135

Rewrite relations — definitions

Let→ be a rewrite relation on G-trees (and⇒ be its closure).

Let us define
∗⇒ as the reflexive and transitive closure of⇒;
∗⇔ as the reflexive, symmetric, and transitive closure of⇒.

A tree t rewrites into a tree t′ if t ∗⇒ t′.

Two trees t and t′ are linked if t ∗⇔ t′.

Let E→ be the graded collection of all ∗⇔-equivalence classes.

A normal form for→ is a tree t such that t ∗⇒ t′ implies t = t′.

Let F→ be the graded collection of all normal forms for→.

68 / 135

Termination and confluence

When there is no infinite chain t0 ⇒ t1 ⇒ t2 ⇒ · · · , the rewrite relation
→ is terminating.

When t
∗⇒ s1 and t

∗⇒ s2 implies the existence of t′ such that s1
∗⇒ t′ and

s2
∗⇒ t′,→ is confluent.

When t⇒ s1 and t⇒ s2 implies the existence of t′ such that s1
∗⇒ t′ and

s2
∗⇒ t′,→ is locally confluent.

– Theorem (Diamond property) [Newman, 1942] –
If→ is terminating and locally confluent, then→ is confluent.

– Proposition –

If→ is terminating, then F→ is the set of all G-trees avoiding the le�
members of→.

If→ is terminating and confluent, then F→ is isomorphic, as a graded
collection, with E→.

69 / 135

Some rewritings

– Example –
Let G := {a, b, c} with |a| = |b| = 2 and |c| = 3, and→ be the rewrite relation satisfying

a → b ,
a

b → c .

One has

a

a

c

a

b

a

a

c

b

b
c

c b

a

c

c b

b

a

b

c

a

b
a

c

c

b b

c

c

b

This rewrite relation→ is not confluent.

It is terminating. This is implied by the fact that each rewriting decreases by one the number
of internal nodes labeled by a and there is a finite number of G-trees with a given arity.

70 / 135

An important rewrite relation: Tamari la�ices

Let G := {a} with |a| = 2, and→ be the rewrite relation on S(G) satisfying

a

a
→

a

a
.

First graphs (S(G)(n),⇒):

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a
a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

1 2 3 4 5

71 / 135

Tamari rewrite relation

The binary relation→ is the right rotation operation, an important
operation appearing in computer science.

This rewrite relation is terminating and confluent.

As consequence, the binary relation ∗⇒ endow each S(G)(n) with a
poset structure, called Tamari order, having a least and greatest
element.

The set F→ contains all right comb trees, that are the trees avoiding

a

a
.

The integer sequence associated with E→ is 1, 1, 1, 1,

72 / 135

Properties of Tamari la�ices

Introduced by Tamari in order to study nonassociative
operations [Tamari, 1962].

The Tamari order relation ∗⇒ endows each set BT(n) with the
structure of a la�ice [Huang, Tamari, 1972].

Its number of intervals (thare are, pairs (t, t′) such that t ∗⇒ t′) have
been enumerated in [Chapoton, 2006].

These intervals can be encoded by interval-posets [Châtel, Pons, 2013].

The sets of all Tamari intervals forms also la�ice, the la�ice of cubic
coordinates, having a lot of combinatorial and geometrical
properties [Combe, 2019].

Some generalizations have been introduced:
m-Tamari la�ices [Bergeron, Préville-Ratelle, 2012];
ν-Tamari la�ices [Préville-Ratelle, Viennot, 2017];
δ-canyon la�ices [Combe, G., 2020].

73 / 135

A variant of Tamari la�ices

Let G := {a} with |a| = 2, and→ be the rewrite relation on S(G) satisfying

a

a

a

→
a

a

a

.

First graphs (S(G)(n),⇒):

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

1 2 3 4 5

74 / 135

Properties of a variant of Tamari la�ices

This rewrite relation is terminating but not confluent.

The Buchberger completion algorithm [Dotsenko, Khoroshkin, 2010] is a
semi-algorithm taking as input a terminating an not confluent rewrite
relation→, and outpu�ing a new rewrite relation→′ such that

→′ is terminating and confluent;
∗⇒ =

∗⇒
′
.

– Theorem [Chenavier, Cordero, G., 2018] –
The collection F→ can be described as the set of the G-trees avoiding 11 trees.

The integer sequence associated with E→ is

1, 1, 2, 4, 8, 14, 20, 19, 16, 14, 14, 15, 16, 17, . . .

and its generating series satisfies

GE→(t) =
t

(1− t)2
(
1− t+ t2 + t3 + 2t4 + 2t5 − 7t7 − 2t8 + t9 + 2t10 + t11

)
.

75 / 135

Proving termination

Let→ be a rewrite relation on G-trees and (P,4P) be a well-founded
poset.

A map
θ : S(G)→ P

is a termination invariant of→ if, for any t, t′ ∈ S(G),

t⇒ t′ implies θ (t′) ≺P θ(t)

– Proposition –
If the rewrite relation→ admits a termination invariant, then→ is terminating.

Indeed, assuming that there is an infinite chain t0 ⇒ t1 ⇒ t2 ⇒ · · · , this
implies that there is a infinite chain

· · · ≺P θ (t2) ≺P θ (t1) ≺P θ (t0) ,

contradicting the fact that ≺P is a well-founded relation.
76 / 135

Proving termination

– Example –
Let G := {a, b} with |a| = |b| = 2, and let→ be the rewrite relation satisfying

a

a → b

a
,

b

b →
b

a
.

Let (P,4P) be the poset N2 wherein elements are ordered lexicographically.

Let θ : S(G)→ P be the map defined by θ(t) := (τ(t),#bt), where τ(t) is the sum, for all
internal nodes u of t of the number of internal nodes in t · u1.

For instance,

a a

a

ba

b

b

a
θ7−→ (3 + 2 + 0 + 0 + 0 + 0 + 1 + 0, 3) = (6, 3).

One has

θ

(
b

a

)
= (0, 1) ≺P (1, 0) = θ

(
a

a

)
, θ

(
b

a

)
= (1, 1) ≺P (1, 2) = θ

(
b

b

)
.

77 / 135

Branching trees

A G-tree t is branching of→ if there are two di�erent G-trees s and s′ such
that t⇒ s and t⇒ s′.

The pair {s, s′} is a branching pair of t.

A tree r merges {s, s′} if s ∗⇒ r and s′
∗⇒ r.

– Example –
Let G := {a, b} with |a| = |b| = 2, and let→ be the rewrite relation satisfying

b

a → b

a
,

a

a →
b

b .

b

a

a
b

b

b

b

a

a b

a

a

b

b

b

The tree at the le� is branching and the
showed pair admits no merging tree.

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

The tree at the le� is branching and the
showed pair is mergeable by the rightmost
tree.

78 / 135

Branching trees and occurrences

Assume that→ contains the two di�erent rewrite rules r→ s and r′ → s′.

Let t be a tree admi�ing an occurrence u of r and an occurrence u′ of r′.

Therefore, t is branching and one has the following possible configurations:

1.
The words u and u′ are not prefix one of
the other. Thus,

t =

r r′

u u′
;

2.
The word u is a prefix of u′ and there is
no overlapping internal node between the
occurrences of r and r′ in t. Thus,

t = r

r′

u

u′
;

3.
The word u is a prefix of u′ and there is at
least one internal node shared by the oc-
currences of r and r′ in t. Thus,

t = r

r′

u

u′ .

79 / 135

Branching trees and merging trees

Assume that t admits the branching pair {q, q′}.

By considering the three previous configurations of occurrences, one has
the following graphs of rewritings:

1.

r r′

s r′

r s′

s s′

which is merging;

2.

r

r′

s

r′

r

s′

s

s′

which is merging;

3.

r

r′

s

r′

r

s′

q

∗

∗

which is merging when the pair
{

s

r′

, r

s′

}
admits a merging tree q .

80 / 135

An algorithm to prove confluence

The degree deg(→) of→ is the maximal degree of the trees appearing as
le� members of→.

– Proposition –
If all branching trees of→ of degrees at most 2deg(→)− 1 have all their
branching pairs mergeable, then→ is locally confluent.

For any G-tree t, let the set

Rt :=
{
s ∈ S(G) : t

∗⇒ s
}
.

– Theorem –
Let→ be a rewrite relation on S(G). If

1. → admits a termination invariant;

2. for any G-tree t of degree at most 2deg(→)− 1, the graph (Rt,⇒) admits
exactly one sink;

then→ is terminating and confluent.

81 / 135

An algorithm to prove confluence

– Example –
Let G := {a, b} with |a| = |b| = 2 and |c| = 3, and→ be the rewrite relation satisfying

a

b → c , b

a
→ c , c → a

a
,

a

a → a

a
,

This rewrite rule is terminating.

Since deg(→) = 2, to prove that→ is confluent, one has to consider each graphsRt where
t ∈ S(G) and deg(t) 6 3.

For instance, here is such a graph:

a

b

a

c

a

a

a

a

a

c

a

a

a

82 / 135

Section

3.4 Exercises

83 / 135

About tree encoding

– Exercise –
Show that the Knuth rotation correspondence is a collection isomorphism between PRT

and BT .

Explain how to generalize this isomorphism in order to encode, by labeled binary trees,
G-trees.

– Exercise –
The prefix word of a G-tree t is the word p(t) on the alphabet AG := {0} t G obtained by
visiting the nodes of t by following the depth-first order and, for each considered node u, by
writing the label of u if u is internal and by writing 0 otherwise.

1. Given the labeling graded collection G, describe a necessary and su�icient condition
for a word u to be the prefix word of a G-tree.

2. Show that p is a collection isomorphism between the collection of the words on AG

satisfying the previous condition and S(G).

3. Given two G-trees t and s, express p (t ◦i s) in terms of p(t) and p(s).

4. Given the G-trees t and s1, . . . , s|t|, express p
(
t ◦
[
s1, . . . , s|t|

])
in terms of p(t) and

p (s1), . . . , p
(
s|t|
)
.

5. Describe a necessary and su�icient condition on two prefix words u and v for the fact
the tree p−1(v) is a factor (resp. a prefix, a su�ix) of the tree p−1(u).

84 / 135

About rewrite relations

– Exercise –
Let G be an augmented graded collection endowed with a total order 4. This order is
extended on AG by se�ing that 0 is the least element.

Let→ be a rewrite relation on G-trees such that t→ t′ implies that p(t) is greater than the
prefix word of p (t′) w.r.t. the order on AG extended lexicographically on A∗G.

Show that→ is terminating.

– Exercise –
Prove the previous proposition stating that if→ is terminating, then F→ is the set of all trees
avoiding the le� members of→.

– Exercise –
Let→ be a rewrite relation on G-trees such that G is combinatorial and G(1) = ∅. Prove that
if→ is not terminating, then there exist two G-trees t and t′ such that t 6= t′ and t

∗⇒ t′
∗⇒ t.

85 / 135

About rewrite relations

– Exercise –
Construct a rewrite relation which is terminating and not confluent.

– Exercise –
Construct a rewrite relation which is not terminating and not confluent.

– Exercise –
Construct a rewrite relation which is not terminating and confluent.

– Exercise –
Construct a rewrite relation→ which is terminating and confluent, and such that the integer
sequence associated with F→ is

(
2n−1

)
n>1

.

86 / 135

A “Motzkin” rewrite relation

– Exercise –
Let the graded collection G := {a, c} where |a| = 2 and c| = 3.

Let→ be the rewrite relation on S(G) satisfying

a

a → a

a
,

a

c
→

a

c
,

c

a
→

c

a
,

c

c
→

c

c
.

1. Show that→ is terminating.

2. Show that→ is confluent.

3. Describe the elements of the collection F→.

4. Give a description of the generating series of F→.

87 / 135

A “Fuss-Catalan” rewrite relation

– Exercise –
Let m > 0 be an integer and let the graded collection Gm := {a0, a1, . . . , am} where
|ai| = 2 for all i ∈ [0,m].

Let→ be the rewrite relation on S (Gm)-trees satisfying

aα

aα+β

→
aα

aβ
, where α, β > 0 and α+ β 6 m.

1. Show that→ is terminating.

2. Show that→ is confluent.

3. Describe the elements of the collection F→.

4. Give a description of the generating series of F→.

88 / 135

A “directed animal” rewrite relation

– Exercice –
Let the graded collection G := {a, b} where |a| = 2 and |b| = 2.

Let→ be the rewrite relation on S(G) satisfying

a

a → a

a
,

a

b → a

b
,

b

a
→

b

b
,

b

b

b

→ b

b

a

.

1. Show that→ is terminating.

2. Show that→ is confluent.

3. Describe the elements of the collection F→.

4. Give a description of the generating series of F→.

89 / 135

Chapter

4. Operads

90 / 135

Section

4.1 Spaces and series on collections

91 / 135

Series on collections

Let K be a field of characteristic zero and C be a collection.

A C-series is a map
f : C → K.

The coe�icient f(x) of x ∈ C in f is denoted by 〈x, f〉.

The set of all C-series is K 〈〈C〉〉.

Endowed with the pointwise addition

〈x, f + g〉 := 〈x, f〉+ 〈x,g〉

and the pointwise multiplication

〈x, λf〉 := λ 〈x, f〉

for any scalar λ ∈ K, the set K 〈〈C〉〉 is a vector space.

The sum notation of f is

f =
∑
x∈C
〈x, f〉x.

92 / 135

Series on collections

The scalar product of two C-series f and g is

〈f ,g〉 :=
∑
x∈C
〈x, f〉 〈x,g〉 .

The support of f is the set Supp(f) := {x ∈ C : 〈x, f〉 6= 0} .

The characteristic series of C is the series

ch (C) :=
∑
x∈C

x.

We shall consider implicitly that any object x of C is the C-series defined
as the characteristic series of {x}.

A C-series f is a C-polynomial if Supp(f) is finite.

The subspace of K 〈〈C〉〉 of all C-polynomials is denoted by K 〈C〉.

By definition, all bases of K 〈C〉 are indexed by C .
93 / 135

Traces of series

Let f be a C-series where C is a graded collection.

The trace of f is the generating series of K 〈〈t〉〉 defined by

tr(f) :=
∑
x∈C
〈x, f〉 t|x|.

Observe that
tr (ch (C)) = GC(t).

– Example –
Let A := {a, b} and the A∗-series

f :=
∑
u∈A∗
bb/∈u

u = ε+ a + b + aa + ab + ba + aaa + aab + aba + baa + bab + · · · .

The trace of this series is

tr(f) = 1 + 2t+ 3t2 + 5t3 + · · · .

94 / 135

Formal series and algebraic structures

When C is an algebraic structure, its operations lead to operations on
C-series.

Indeed, if
? : Cp → C

is a product of arity p > 0 on C , one obtains a product ?̄ on K 〈〈C〉〉
defined by

〈x, ?̄ (f1, . . . , fp)〉 :=
∑

y1,...,yp∈C
x=?(y1,...,yp)

∏
i∈[p]

〈yi, fi〉 .

– Example –
A binary product ? : C × C → C leads to the (possibly partial) product

f1 ?̄ f2 :=
∑

y1,y2∈C
〈y1, f1〉 〈y2, f2〉 (y1 ? y2)

on K 〈〈C〉〉.

95 / 135

Generalizing the product of generating series

Let C be a graded combinatorial collection.

A binary product ? on C is graded if |x1 ? x2| = |x1|+ |x2|.

– Proposition –
Let ? be a graded product on C .

The map tr is an associative algebra morphism between K 〈〈C〉〉 endowed with the
product ?̄ and K[[t]] endowed with the usual generating series multiplication.

Moreover, this morphism is surjective when C(n) 6= ∅ for all n ∈ N.

Therefore, (K 〈〈C〉〉 , ?̄) is a generalization of usual generating series.

Structure on C Sort of series
(N,+, 0) Usual series K[[t]]

Free comm. monoid Multivariate series K[[t1, t2, . . .]]

Free monoid Noncomm. series K 〈〈t1, t2, . . . 〉〉 [Eilenberg, 1974]

Monoid Series on monoids [Salomaa, Soi�ola, 1978]

Operad Series on operads [Chapoton, 2002, 2008]
96 / 135

Section

4.2 Operads

97 / 135

Operads

Operads are algebraic structures formalizing the notion of some kinds of
operators and their compositions.

A nonsymmetric operad is a space K 〈C〉 where

C is a graded collection;

For any n > 0, m > 0, and i ∈ [n],

◦(n,m)
i : K 〈C(n)〉 ⊗K 〈C(m)〉 → K 〈C(n+m− 1)〉 ,

is a map, called partial composition map;

There is a map
1 : K→ K 〈C(1)〉 ,

called unit map.

When there is no ambiguity, ◦(n,m)
i is simply wri�en as ◦i.

Moreover, we shall write 1 for 1(1).

This data has to satisfy some axioms, easy to understand in term of planar
operators.

98 / 135

Planar operators

An planar operator is an entity f having n > 0 inputs and a single output:

f

1 n. . .

.

The arity |f | of f is its number n of inputs, numbered from 1 to n.

Composing two planar operators f and g consists in
1. selecting an input of f specified by its position i;

2. gra�ing the output of g onto this input.

This produces a new operator

f

1 |f |i.

◦i g

1 |g|. . .

=

f

1 |f |+|g|−1.g

i i+|g|−1. . .

of arity |f |+ |g| − 1.
99 / 135

Operad axioms

The associativity relation

(f ◦i g) ◦i+j−1 h = f ◦i (g ◦j h)

1 6 i 6 |f |, 1 6 j 6 |g|

says that the pictured operation can
be constructed from top to bo�om or
from bo�om to top.

f

1 |f|+|g|+|h|−2.g

i i+|g|+|h|−2.
h

i+j−1 i+j+|h|−2. . .

The commutativity relation

(f ◦i g) ◦j+|g|−1 h = (f ◦j h) ◦i g

1 6 i < j 6 |f |

says that the pictured operation can
be constructed from le� to right or
from right to le�.

f

1 |f|+|g|+|h|−2.
. . .g

i i+|g|−1. . .

h

j+|g|+|h|−2j+|g|−1. . .

The unitality relation

1 ◦1 f = f = f ◦i 1
1 6 i 6 |f |

says that 1 is the identity operation.

1 =

100 / 135

Example: Pat operad

Let Pat := K 〈P 〉 be the operad wherein:
P is the graded collection of all paths, that are words u on N and
where |u| is the length of u.

– Example –

is the path 1212232100112 and has arity 13.

The partial composition u ◦i v is computed by replacing the i-th point
of u by a copy of v.

– Example –

◦4 =

011232101 ◦4 11224 = 0113344632101

The unit is the path 0, depicted as , having arity 1.
101 / 135

Example: Per operad

Let Per := K 〈Per〉 be the operad wherein:
Per is the graded collection of all permutations seen as matrices and
where |σ| is the dimension of the matrix.

– Example –
•
•

•

•

•

•

•

•
• is the permutation 972638145 and has arity 9.

The partial composition σ ◦i ν is computed by replacing the i-th point
of σ by a copy of ν.

– Example –

•
•
•

•
•
◦3 •

•
• =

•

•

•
•
•

•
•

35412 ◦3 132 = 3746512

The unit is the permutation 1.
102 / 135

Example: PLie operad

Let PLie := K 〈T 〉 [Chapoton, Livernet, 2001] be the operad wherein:
T is the graded collection of all standard rooted trees where the size
of a tree is its number of nodes.

– Example –

4

1

3

2

is a standard rooted tree of size 4.
This tree is the same as 4

1

3

2

The partial composition t ◦i s is computed by replacing the node of t labeled by i by a

copy of s, by relabeling the nodes in a standard way, and by summing over all possible

ways to connect the children of this node on nodes of the copy.

– Example –

1

3

2

4 ◦3 1

2

=
∑

connections

1

3

4

2

5

=

1

3

2 4

5
+

4

2

3

1

5

+
4

1

3

2

5

+ 3

1

4

2

5

The unit is the tree 1 .
103 / 135

Arities, full compositions, and morphisms

Let O = K 〈C〉 be an operad.

For any n > 0, O(n) := K 〈C(n)〉 is the n-th homogeneous component
of O.

The arity |f | of any f ∈ O is n provided that f ∈ O(n). In this case, f is
homogeneous.

The full composition map of O is the map ◦ defined by

f ◦ [g1, . . . , gn] := (. . . ((f ◦n gn) ◦n−1 gn−1) . . .) ◦1 g1

for any f ∈ O(n) and g1, . . . , gn ∈ O.

Let O′ = K 〈C ′〉 be another operad.

A map φ : O → O′ is an operad morphism if

for any n > 0 and any f ∈ O(n), |φ(f)| = n;

φ(1) = 1′;

for any homogeneous elements f, g ∈ O, φ (f ◦i g) = φ(f) ◦′i φ(g).
104 / 135

Suboperads, generating sets, and quotients

When O′ is an operad such that for any n > 0, O′(n) is a subspace of
O(n) and O′ is endowed with the same partial composition maps and unit
as the ones of O, O′ is a suboperad of O.

The operad generated by a subset G of homogeneous elements of O is the
smallest suboperad OG of O containing G.

When G is such that OG = O, we say that G is a generating set of O.

When moreover G is minimal for set inclusion among all sets satisfying
this property, G is a minimal generating set of O.

An operad ideal of O is a subspace I of O such that, for any homogeneous
element f of I and any homogeneous element g of O, f ◦i g ∈ I and
g ◦j f ∈ I .

In this case, O/I is the quotient operad of O.

105 / 135

Section

4.3 Free operads and presentations

106 / 135

Free operads

Let G be an augmented graded collection.

The free operad on G is the operad S(G) := K 〈S(G)〉 wherein:

the partial composition maps ◦i are the ones of the G-trees;

the unit is the tree .

Let c : G→ S(G) be the natural injection, sending each label x ∈ G to the
G-syntax tree of degree 1 and arity |x|.

Free operads satisfy the following universality property.

For any augmented graded collec-
tionG, any operadO, and any map
θ : G → O preserving the arities,
there exists a unique operad mor-
phism φ : S(G) → O such that
θ = φ ◦ c.

G O

S(G)

θ

c φ

107 / 135

Evaluations and treelike expressions

Let O = K 〈C〉 be an operad.

The evaluation map of O is the map

ev : S(C)→ O,

defined linearly and recursively by

ev(t) :=

{
1 if t = ,

λt(ε) ◦ [ev (t · 1) , . . . , ev (t · k)] otherwise, where t has k children.

– Example –
In Per, we have

•
•
•

•

•
•

•
•
•

•
•

ev7−→
•

•
•
•

•
•
•

Given f ∈ O, if g is an element of S(C) such that ev(g) = f , then g is a
treelike expression of f .

108 / 135

Presentations by generators and relations

Let O = K 〈C〉 be an operad.

A presentation of O is a pair (G,R) such that

G is a subcollection of C and is a minimal generating set of O, called
set of generators;

R is a subset of S(G), called set of relations;

by denoting by 〈R〉 the operad ideal of S(C) generated byR,

O ' S(G)/〈R〉.

We say that a presentation (G,R) is

quadratic if all trees appearing inR have degree 2;

binary if all elements of G are of size 2.

By extension, O is quadratic (resp. binary) if O admits a quadratic
(resp. binary) presentation.

109 / 135

Realizations

On the other way round, it is possible to define operads through a
presentation.

In this way, a presentation specifies a quotient of a free operad.

A realization of a presentation (G,R) consists in

a space O = K 〈C〉;
an explicit description of the partial compositions maps ◦i on C ;

such that O ' S(G)/〈R〉.

Of course, there can be di�erent realizations O = K 〈C〉 and O′ = K 〈C ′〉
of (G,R). We have necessarily that C and C ′ are isomorphic graded
collections, and that O and O′ are isomorphic operads.

As we shall see, proving presentations and establishing realizations of
operads use rewrite relations on syntax trees.

110 / 135

The duplicial operad

The duplicial operad Dup [Loday, 2008] is the operad admi�ing the
presentation (G,R) where G is the graded collection {�,�} with
| � | = 2 and | � | = 2, andR is the set containing the three
S(G)-polynomials

c(�) ◦1 c(�)− c(�) ◦2 c(�),

c(�) ◦1 c(�)− c(�) ◦2 c(�),

c(�) ◦1 c(�)− c(�) ◦2 c(�).

This operad is realized as Dup = K 〈BT − { }〉 where for any binary
trees t and s, t ◦i s is obtained by replacing the i-th internal node u of t by
a copy of s, and by gra�ing the le� (resp. right) subtree of u to the first
(resp. last) leaf of the copy.

– Example –

◦6 =

111 / 135

The dendriform operad

The dendriform operad Dendr [Loday, 2001] is the operad admi�ing the
presentation (G,R) where G is the graded collection {≺,�} with
| ≺ | = 2 and | � | = 2, andR is the set containing the S(G)-polynomials

c(≺) ◦1 c(≺)− c(≺) ◦2 c(≺)− c(≺) ◦2 c(�),

c(≺) ◦1 c(�)− c(�) ◦2 c(≺),

c(�) ◦1 c(≺) + c(�) ◦1 c(�)− c(�) ◦2 c(�).

This operad is realized as Dendr = K 〈BT − { }〉 where for any binary
trees t and s, if the root of t is its i-th internal node, then

t ◦i s =
∑

q,r∈BT

t·1 s·14q4t·1 s·1
s·2 t·24r4s·2 t·2

(, (q, r)) ,

where 4 is the Tamari order, and for binary trees p and p′, p p′ (resp. p p′)
is the binary tree obtained by gra�ing the root of p (resp. p′) onto the first
(resp. last) leaf of p′ (resp. p).

112 / 135

Dendriform operad and generalizations

Dendriform operads are important devices used to split associative
operations in two pieces.

There are in fact some rigidity theorems saying that associative operations
that can be split by dendriform operations are free.

Several generalizations of the dendriform operad exist:

tridendriform operad [Loday, Ronco, 2004], where associative products
are split into three parts;

quadendriform operad [Aguiar, Loday, 2004], where associative products
are split into four parts;

enneadendriform operad [Leroux, 2007], where associative products are
split into nine parts;

m-polydendriform operad [G., 2016], where associative products are
split into 2m parts, m > 0.

m-polytridendriform operad [G., 2016], where associative products are
split into 2m+ 1 parts, m > 0.

113 / 135

The diassociative operad

The diassociative operad Dias [Loday, 2001] is the operad admi�ing the
presentation (G,R) where G is the graded collection {a,`} with | a | = 2

and | ` | = 2, andR is the set containing the S(G)-polynomials

c(a) ◦1 c(a)− c(a) ◦2 c(a), c(a) ◦1 c(a)− c(a) ◦2 c(`),

c(a) ◦1 c(`)− c(`) ◦2 c(a),

c(`) ◦1 c(a)− c(`) ◦2 c(`), c(`) ◦1 c(`)− c(`) ◦2 c(`).

This operad is realized as Dias = K 〈W 〉 where W is the graded collection
of all words on {0, 1} having exactly one occurrence of 0, and where for
any u, v ∈W , u ◦i v is obtained by replacing the i-th le�er of u by v if
ui = 0 and by 1|v| otherwise.

– Examples –
10111 ◦4 110 = 1011111

10111 ◦2 110 = 1110111

114 / 135

Reduced set-operads

Let O = K 〈C〉 be an operad.

If C is augmented and #C(1) = 1, then O is reduced.

If for any x, y ∈ C and i ∈ [|x|], Supp (x ◦i y) is a singleton, then O
is a set-operad.

– Example –

Pat is a set-operad but is not reduced. Indeed, Pat(0) = {ε} and Pat(1) = N.

Per is a set-operad but is not reduced. Indeed, Per(0) = {ε}.

PLie is a reduced operad but is not a set-operad.

If G is augmented and G(1) = ∅, then S(G) is a reduced set-operad.

Dup is a reduced set-operad.

Dendr is a reduced operad but not a set-operad.

Dias is a reduced set-operad.

115 / 135

Minimal generating sets of reduced set-operads

Given a reduced set-operad O = K 〈C〉, x ∈ C is indecomposable if for
any y, z ∈ C and i ∈ [|y|], x = y ◦i z implies (y, z) ∈ {(x,1), (1, x)}.

– Example –
Let the reduced suboperad Per′ := Per− K 〈Per(0)〉 of Per.

The permutation 143562 is not indecomposable in Per′ since 143562 = 1342 ◦2 213.

The permutation 4135726 is indecomposable in Per′.

– Proposition –
If O is a reduced set-operad, then the set of all the indecomposable elements of O
is a minimal generating set of O.

– Example –
A permutation σ belongs to the minimal generating set of Per′ i� |σ| > 2 and σ is simple: σ
does not admit any factor of length between 2 and |σ| − 1 which is a segment.

The integer sequence associated with this graded collection is Sequence A111111, beginning
by

0, 2, 0, 2, 6, 46, 338, 2926, 28146, 298526.
116 / 135

http://oeis.org/A111111

Proving presentations of set-operads

Our objective is, given a realization of a reduced set-operad O = K 〈C〉, to
provide a presentation (G,R) of O.

A tree polynomial f of the form f = t− t′ where t, t′ ∈ S(C) is a
nontrivial relation of O if t 6= t′ and ev(f) = 0.

An orientation of a setR of nontrivial relations is a rewrite relation→
such that, for any t− t′ ∈ R, then either t→ t′ or t′ → t.

– Proposition –
LetR be a set of C-tree polynomials of the form t− t′ with t 6= t′.

Let→ be an orientation ofR.

The operad ideal 〈R〉 of S(C) is the linear span of all the C-tree polynomials g of
the form g = s− s′ such that s ∗⇔ s′.

117 / 135

Proving presentations of set-operads

– Theorem –
Let O := K 〈C〉 be a reduced set-operad. If

G is a minimal generating set of O;

R is a set of nontrivial relations of O;

there exists a terminating and confluent orientation→ ofR such that
F→ ' C ;

then the pair (G,R) is a presentation of O.

– Proposition –
Let O := K 〈C〉 be a reduced set-operad where C is combinatorial. If

G is a minimal generating set of O;

R is a set of nontrivial relations of O;

there exists a terminating orientation→ ofR such that F→ ' C ;

then the pair (G,R) is a presentation of O.

118 / 135

Presentation of an operad of Motzkin paths

– Example 1/2 –
Let Motz [G., 2015] be the subcollection of Pat restrained on all nonnempty Motzkin paths.

It is easy to show that Motz is a suboperad of Pat, and that it is a reduced set-operad. For
instance,

◦4 = .

By induction on the arities, one can show that

G :=
{

,
}

is a minimal generating set of Motz.

The only quadratic nontrivial relations on G-trees are

c () ◦1 c ()− c () ◦2 c () ,

c
()

◦1 c ()− c () ◦2 c
()

,

c () ◦1 c
()

− c
()

◦3 c () ,

c
()

◦1 c
()

− c
()

◦3 c
()

.

LetR be the set of these four relations. The question now is to prove that there are no
further nontrivial relations involving trees of higher degrees.

119 / 135

Presentation of an operad of Motzkin paths

– Example 2/2 –
Let→ be the rewrite relation on G-trees, defined as the orientation ofR satisfying

c () ◦1 c ()→ c () ◦2 c () ,

c
()

◦1 c ()→ c () ◦2 c
()

,

c () ◦1 c
()

→ c
()

◦3 c () ,

c
()

◦1 c
()

→ c
()

◦3 c
()

.

First,→ is terminating since the map τ seen previously is a termination invariant.

The normal forms for→ are the G-trees avoiding the four trees appearing as le� members of
→. By an obvious description of these trees, one obtains that the characteristic series of F→
satisfies

ch (F→) = c () + c () ◦̄ [c () , ch (F→)] + c
()

◦̄ [c () , ch (F→) , ch (F→)] .

The trace of this formal power series is the generating series of F→ which satisfies

GF→ (t) = t+ tGF→ (t) + tGF→ (t)2

This is the generating series of Motzkin paths, so that F→ 'M , where M is the graded
collection of all Motzkin paths.

This proves that Motz contains exactly the four previous nontrivial relations.
120 / 135

Section

4.4 Algebras over operads

121 / 135

Algebras over an operad

Let O be an operad.

A space A is an O-algebra if there are, for all n > 0, linear maps

f(n) : O(n)⊗A⊗n → A

such that, by writing simply f (a1, . . . , an) instead of
f(n) (f ⊗ a1 ⊗ · · · ⊗ an) for any f ∈ O(n) and any a1, . . . , an ∈ A, the
two relations

for any a ∈ A,
1(a) = a;

for any f ∈ O(n), g ∈ O(m), and a1, . . . , an+m−1 ∈ A,

(f ◦i g) (a1, . . . , an+m−1)

= f (a1, . . . , ai−1, g (ai, . . . , ai+m−1) , ai+m, . . . , an+m−1) ;

are satisfied.
122 / 135

Algebras over an operad and presentations

Let O be an operad and (G,R) be a presentation of O.

From the previous definition, a space A is an O-algebra if and only

A is endowed with operations
{
x : A⊗|x| → A : x ∈ G

}
;

For any f ∈ R and any a1, . . . , a|f | ∈ A, (ev(f))
(
a1, . . . , a|f |

)
= 0.

– Example –
LetA be a Motz-algebra.

The spaceA is endowed with two generating operations

: A⊗2 → A and : A⊗3 → A,

satisfying
((a1, a2) , a3)− (a1, (a2, a3)) = 0,

((a1, a2) , a3, a4)−
(
a1, (a2, a3, a4)

)
= 0,(

(a1, a2, a3) , a4
)
−

(
a1, (a2, a3, a4)

)
= 0,(

(a1, a2, a3) , a4, a5
)
−

(
a1, a2, (a3, a4, a5)

)
= 0.

123 / 135

Categories and constructions

Any operadO gives rise to a category, the category ofO-algebras, wherein

objects are all O-algebras;

arrows are all linear maps φ : A → A′ such that, for any f ∈ O(n)

and a1, . . . , an ∈ A,

φ (f (a1, . . . , an)) = f (φ (a1) , . . . , φ (an)) .

The space O is an O-algebra itself by se�ing, for any f ∈ O(n) and
a1, . . . , an ∈ O, that f (a1, . . . , an) := f ◦ [a1, . . . , an]. This is the free
O-algebra over one generator.

– Theorem –
Let O and O′ be two operads and φ : O → O′ be an operad morphism.

If A is an O′-algebra, then by defining for each f ∈ O(n) the linear map f from
A⊗n to A by

f (a1, . . . , an) := (φ(f)) (a1, . . . , an) ,

the space A becomes an O-algebra.

124 / 135

From dendriform algebras to associative algebras

The associative operad As is the operad K 〈N〉 where, for any a, b ∈ N,
a ◦i b := a+ b− 1. This operad admits the presentation (G,R) where
G := {?} with | ? | = 2, andR contains the single relation

c(?) ◦1 c(?)− c(?) ◦2 c(?).

Let φ : As→ Dendr be the unique operad morphism satisfying

φ(?) :=≺ + � .

Since, by using the relations of Dendr,

φ(?) ◦1 φ(?)− φ(?) ◦2 φ(?) = 0,

this morphism is well-defined.

Therefore, φ describes a construction from Dendr-algebras to
As-algebras: given a dendriform algebra (A,≺,�), one obtains an
As-algebra (A, ?) by se�ing

f ? g := f ≺ g + f � g

for any f, g ∈ A.
125 / 135

Section

4.5 Koszul duality and Koszulity

126 / 135

Koszul duality

Let O be a binary and quadratic operad admi�ing the presentation (G,R).

The Koszul dual of O is the operad O! isomorphic to the operad admi�ing
the presentation

(
G,R⊥

)
whereR⊥ is a basis of the annihilator in

S(G)(3) of the linear span ofR w.r.t. the linear map

〈−,−〉 : S(G)(3)⊗ S(G)(3)→ K,

linearly defined, for any x, x′, y, y′ ∈ G by

〈c(x) ◦i c(y), c (x′) ◦i′ c (y′)〉 :=

1 if x = x′, y = y′, and i = i′ = 1,

−1 if x = x′, y = y′, and i = i′ = 2,

0 otherwise.

Therefore, from the knowledge of a presentation of O, one can compute a
presentation of O!.

127 / 135

The Koszul pair (Dendr,Dias)

Let (G,R) be the usual presentation of Dendr.

A tree polynomial f :=
∑

t∈S(G)(3) αt t belongs to the linear span ofR⊥ i�

〈f, c(≺) ◦1 c(≺)− c(≺) ◦2 c(≺)− c(≺) ◦2 c(�)〉 = 0,

〈f, c(�) ◦1 c(≺)− c(�) ◦2 c(≺)〉 = 0,

〈f, c(�) ◦1 c(≺) + c(�) ◦1 c(�)− c(�) ◦2 c(�)〉 = 0.

This is equivalent to

αc(≺)◦1c(≺) + αc(≺)◦2c(≺) + αc(≺)◦2c(�) = 0,

αc(�)◦1c(≺) + αc(�)◦2c(≺) = 0,

αc(�)◦1c(≺) + αc(�)◦1c(�) + αc(�)◦2c(�) = 0.

Therefore, a basis ofR⊥ is

{c(≺) ◦1 c(≺)− c(≺) ◦2 c(≺), c(≺) ◦1 c(≺)− c(≺) ◦2 c(�),

c(�) ◦1 c(≺)− c(�) ◦2 c(≺),

c(�) ◦1 c(≺)− c(�) ◦2 c(�), c(�) ◦1 c(�)− c(�) ◦2 c(�)} .

We recognize the relations of Dias.
128 / 135

Koszulity

Formally, an operad O is a Koszul operad if the Koszul complex of O is
acyclic. Moreover, O is Koszul i� O! is Koszul.

There is a combinatorial criterion to prove that some operads are Koszul
involving rewrite relations on trees:

– Theorem –
Let O = K 〈C〉 be a binary and quadratic operad. If O admits a presentation
(G,R) and a terminating and confluent orientation→, then O is a Koszul operad.

– Example –
The rewrite relation

c(a) ◦2 c(a)→ c(a) ◦1 c(a), c(a) ◦2 c(`)→ c(a) ◦1 c(a),

c(`) ◦2 c(a)→ c(a) ◦1 c(`),

c(`) ◦1 c(a)→ c(`) ◦2 c(`), c(`) ◦1 c(`)→ c(`) ◦2 c(`),

is terminating and convergent, and is an orientation of the set of nontrivial relations of Dias.
Therefore, Dias and Dendr ' Dias! are Koszul.

129 / 135

Koszulity and generating series

– Theorem –
Let O = K 〈C〉 be a Koszul, binary, and quadratic operad where C is
combinatorial. Then,

GC (−GC!(−t)) = t = GC! (−GC(−t))

where O! = K
〈
C !
〉
.

– Example –
The generating series G(t) of the underlying collection of Dendr satisfies
G(t) = t+ 2tG(t) + tG(t)2 so that t = G(t) (1 + G(t))−2 .

Let G′(t) be the generating series of the underlying collection of Dias.

By substitution, we obtain

−G′(−t) = G
(
−G′(−t)

) (
1 + G

(
−G′(−t)

))−2

and by the previous theorem,

G′(t) = t(1− t)−2 = t+ 2t2 + 3t3 + 4t4 + 5t5 + · · · .

130 / 135

Generic realizations

There is a generic way to build realizations of presentations of (in
particular) Koszul operads.

Let (G,R) be an operad presentation, and→ be a terminating and
confluent orientation of→.

Let O(G,R),→ be the operad on the space K 〈F→〉 wherein

for any t, s ∈ F→, the partial composition t ◦i s is the unique normal
form r such that t ◦i s

∗⇒ r (here, ◦i is the partial composition of
syntax trees);

the unit is the tree .

– Proposition –
The operad O(G,R),→ admits (G,R) as presentation.

In particular, when (G,R) is binary and quadratic, this presentation is the
one of a Koszul operad and one can build in this way a realization of this
presentation.

131 / 135

Generic realizations

– Example –
Let DA [G., 2015] be the operad admi�ing the presentation (G,R) where G is the graded
collection {a, b} whith |a| = 2 and |b| = 2, andR is the set containing the four
S(G)-polynomials

c(a) ◦1 c(a)− c(a) ◦2 c(a),

c(b) ◦1 c(a)− c(a) ◦2 c(b),

c(b) ◦1 c(b)− c(b) ◦2 c(a),

(c(a) ◦1 c(b)) ◦2 c(b)− (c(b) ◦2 c(b)) ◦3 c(b).

Let→ be the rewrite relation on S(G) satisfying

a

a → a

a
,

a

b → a

b
, b

a
→

b

b ,
b

b

b

→ b

b

a

.

This rewrite relation is an orientation ofR and is terminating and convergent.

In the realizationO(G,R),→ of DA, one has

b

b

a

a ◦3 b =
b

b

b

a

a ⇒
b

b

a

a

a ⇒ b

b

a

a

a

.

132 / 135

Section

4.6 Exercises

133 / 135

About presentations

– Exercise –
LetO = K 〈C〉 be a reduced set operad. When C is combinatorial, propose an algorithm to
compute up to a given arity n > 1, the minimal generating set ofO.

– Exercise –
Describe a minimal generating set of the operad Pat.

Describe a minimal generating set of the operad Pat′ := Pat− K 〈P (0)〉.

– Exercise –
Describe a minimal generating set of the operad Per.

134 / 135

About Koszul duality

– Exercise –
1. Compute a presentation for the Koszul dual of the operad Dup.

2. Prove that Dup is a Koszul operad.

3. Compute the generating series of the underlying collection of Dup!.

– Exercise –
The operad BS is the operad admi�ing the presentation (G,R) where G is the graded
collection {?0, ?1} with |?0| = 2 and |?1| = 2, andR is the set containing the
S(G)-polynomials

c (?0) ◦1 c (?0)− c (?0) ◦2 c (?0)

c (?1) ◦1 c (?1)− c (?1) ◦2 c (?1) .

This operad is sometimes called the two-associative operad [Loday, Ronco, 2006].

1. Compute a presentation for the Koszul dual of the operad BS.

2. Prove that BS is a Koszul operad.

3. By considering first the generic realization of BS, construct a realization of this operad.

135 / 135

	Introduction
	Collections
	Treelike structures
	Operads

