Mathématiques discrètes

DUT 1 Informatique 2017-2018

Fiche de TD 3

Ensembles — 2^e approche

* Exercice 1 — Diagrammes de Venn

Dessiner les diagrammes de Venn pour chacune des définitions des ensembles A, B et C suivantes:

- $\begin{array}{lll} 1. & A := \{1,2\}, \, B := \{2,3\}, \, C := \{4\}\,; \\ & 2. & A := \{1,2\}, \, B := \{2,3\}, \, C := \{2,4\}\,; \\ & 3. & A := \{1,2\}, \, B := \{2,3\}, \, C := \{3,4\}\,; \\ & 3. & A := \{1,2\}, \, B := \{2,3\}, \, C := \{3,4\}\,; \\ & 3. & A := \{1,2\}, \, B := \{2,3\}, \, C := \{3,4\}\,; \\ & 4. := \{1,2,3\}, \, B := \{4\}, \, C := \{1,2,4\}\,; \\ & 6. & A := \mathbb{N}, \, B := \mathbb{Z}, \, C := \mathbb{Q}\,; \\ & 7. & A := \emptyset, \, B := \{\emptyset\}, \, C := \{\{\emptyset\}\}\,; \\ & 6. & A := \mathbb{N}, \, B := \{\emptyset\}, \, C := \{\{\emptyset\}\}\,; \\ & 6. & A := \{1,2,3\}, \, B := \{1,2,4\}\,; \\ & 6. & A := \{1,2,3\}, \, B := \{1,2,4\}\,; \\ & 6. & A := \{1,2,3\}, \, B := \{1,2,4\}\,; \\ & 6. & A := \{1,2,3\}, \, B := \{1,2,4\}\,; \\ & 6. & A := \{1,2,3\}, \, B := \{1,2,4\}\,; \\ & 6. & A := \{1,2,3\}, \, B := \{1,2,4\}\,; \\ & 6. & A := \{1,2,3\}, \, B := \{1,2,4\}\,; \\ & 6. & A := \{1,2,3\}, \, B := \{1,2,4\}\,; \\ & 7. & A := \{1,2,4\}, \, B := \{1,2,4\}\,; \\ & 7. & A := \{1,2,4\}, \, B := \{1,2,4\}\,; \\ & 7. & A := \{1,2,4\}, \, B := \{1,2,4\},$

- 4. $A := \{1, 2\}, B := \{1, 2, 3, 4\}, C := \{3, 4\};$ 8. $A := \{\emptyset\}, B := \{A\}, C := \{B, 7\}.$

* Exercice 2 Calcul ensembliste

On considère les sous-ensembles de $\mathbb N$ suivants :

$$A := \{1, 3, 7, 9, 12\},\$$

$$B := \{2, 4, 7, 8, 12\}, \qquad C := \{3, 4, 7, 9\}, \qquad D := \{3, 5\}.$$

$$C := \{3, 4, 7, 9\},\$$

$$D := \{3, 5\}.$$

Calculer les résultats des expressions suivantes et donner les cardinaux des ensembles obtenus.

1. $A \cap B$;

6. $A \setminus B$;

11. $(A \cup C) \cap (B \cup C)$;

2. $D \times C$;

7. $B \setminus A$;

12. $A \cap \mathcal{C}_{\mathbb{N}}(B)$;

3. $C \times D$;

8. $A \cap (B \cup C)$;

13. $(A \cap B) \cup (A \cap \mathcal{C}_{\mathbb{N}}(B))$;

4. $D \times D$;

9. $(A \cap B) \cup C$;

14. $A \Delta B$;

5. $C \setminus A$;

- 10. $(A \cap B) \cup (A \cap C)$;
- 15. $\mathcal{P}(D)$.

* Exercice 3 — Double inclusion

Soit A, B et C trois ensembles. Démontrer, par le théorème de la double inclusion, les égalités

1. $A \setminus B = (A \cup B) \setminus B$;

- 3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;
- 2. $A \cup B = ((A \cup B) \cap A) \cup ((A \cup B) \cap B)$;
- 4. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

* Exercice 4 — Cardinaux

En supposant que A, B, C et D sont des ensembles tels que #A=3, #B=2, #C=1 et #D=0, déterminer les cardinaux des ensembles suivants :

- 1. A^4 ; 5. $\mathcal{P}(C)$; 2. $A \times B \times C \times B$; 6. $\mathcal{P}(A \times B)$
- 3. $A^3 \times B^4$; 7. $A^{1024} \times D \times B^{65536}$;
- 4. $\mathcal{P}(A)$; 8. $\mathcal{P}(D)$.

* Exercice 5 — Mises en relation

Dans cet exercice, A, B et C désignent des sous-ensembles d'un ensemble E. Mettre en relation, avec \subset , \supset ou = et lorsque cela est possible, les paires d'ensembles suivantes et justifier :

- 1. $\{1,2,3\}$ et $\{3,2,1\}$; 7. N et \mathbb{Z} ;
- 2. $\{1,3,1\}$ et $\{1,2\}$; 8. \mathbb{Z} et \mathbb{Q}^+ ;
- 3. $\{1,2,3\}$ et $\{1,2,4\}$; 9. $(A \times B) \cup (A \times C)$ et $A \times (B \cup C)$;
- 4. $\{1\} \times \{2\} \text{ et } \{1,2\} \times \{1,2\};$ 10. $A \setminus (B \cup C) \text{ et } (A \setminus B) \setminus C;$
- 5. $\{1,2\}^2$ et $\{1,2\}^3$; 11. $A \cup (B \setminus C)$ et $(A \cup B) \setminus C$;
- 6. $\{\emptyset\}$ et \emptyset ; 12. $\mathcal{C}_{E\times E}(A\times B)$ et $\mathcal{C}_{E}(A)\times \mathcal{C}_{E}(B)$.

** Exercice 6 — Parties d'ensembles

- 1. Donner quatre exemples d'éléments de $\mathcal{P}(\mathbb{N})$. 4. Calculer $\mathcal{P}(\emptyset)$.
- 2. Calculer $\mathcal{P}(\{1,2\})$. 5. Calculer $\mathcal{P}(\mathcal{P}(\emptyset))$.
- 3. Calculer $\mathcal{P}(\{\mathbb{N}\})$. 6. Calculer $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

** Exercice 7 — Ensembles cofinis

Soit E un ensemble infini. Un sous-ensemble A de E est dit cofini si le complémentaire $C_E(A)$ est un ensemble fini.

- 1. Si $E = \mathbb{N}$, déterminer si le sous-ensemble $A := \{x \in E : 3x 25 \ge 0\}$ est cofini.
- 2. Si $E = \mathbb{Z}$, déterminer si le sous-ensemble $A := \{x \in E : 3x 25 \ge 0\}$ est cofini.
- 3. Lorsque $E=\mathbb{N},$ construire un exemple d'un sous-ensemble qui ne soit ni fini, ni cofini.
- 4. Montrez que si A et B sont deux sous-ensembles de E et que $A \subset B$, alors $\mathcal{C}_E(B) \subset \mathcal{C}_E(A)$.
- 5. Démontrer ou bien infirmer la phrase suivante :
 - « L'union de deux ensembles cofinis est un ensemble cofini. ».
- 6. Démontrer ou bien infirmer la phrase suivante :
 - « L'intersection de deux ensembles cofinis est un ensemble cofini. ».