Tree rewriting and enumeration

Samuele Giraudo
LIGM, Université Paris-Est Marne-la-Vallée

GT Combinatoire Énumérative et Algébrique, LaBRI

September 17, 2018
Outline

Trees, patterns, and rewrite systems

Tree series and pattern avoidance

Operads and enumeration
Outline

Trees, patterns, and rewrite systems
Syntax trees

A set of letters is a graded set

\[\mathcal{G} := \bigsqcup_{n \geq 1} \mathcal{G}(n) \]

such that each \(\mathcal{G}(n) \) is finite.

Example: Let \(\mathcal{G} := \mathcal{G}(2) \sqcup \mathcal{G}(3) \) such that \(\mathcal{G}(2) = \{a, b\} \) and \(\mathcal{G}(3) = \{c\} \). Here is a \(\mathcal{G} \)-tree:

```
  c
 / \  \\
 b  c
 / \  \\
 b  a
```
Syntax trees

A set of letters is a graded set

\[\mathcal{G} := \bigsqcup_{n \geq 1} \mathcal{G}(n) \]

such that each \(\mathcal{G}(n) \) is finite.

A syntax tree on \(\mathcal{G} \) (called \(\mathcal{G} \)-tree) is a planar rooted tree \(t \) such that each internal node of arity \(n \) is labeled by a letter of \(\mathcal{G}(n) \).
Syntax trees

A set of letters is a graded set

\[\mathcal{G} := \bigsqcup_{n \geq 1} \mathcal{G}(n) \]

such that each \(\mathcal{G}(n) \) is finite.

A syntax tree on \(\mathcal{G} \) (called \(\mathcal{G} \)-tree) is a planar rooted tree \(t \) such that each internal node of arity \(n \) is labeled by a letter of \(\mathcal{G}(n) \).

Example

Let \(\mathcal{G} := \mathcal{G}(2) \sqcup \mathcal{G}(3) \) such that \(\mathcal{G}(2) = \{a, b\} \) and \(\mathcal{G}(3) = \{c\} \).

Here is a \(\mathcal{G} \)-tree:
Sets of syntax trees

Let \mathcal{G} be a set of letters.

The set of all \mathcal{G}-trees is denoted by $F(\mathcal{G})$.
Sets of syntax trees

Let \mathcal{G} be a set of letters.

The set of all \mathcal{G}-trees is denoted by $F(\mathcal{G})$.

For any $t \in F(\mathcal{G})$, let

- $|t|$ be the arity of t, that is its number of leaves;
Sets of syntax trees

Let \mathcal{G} be a set of letters.

The set of all \mathcal{G}-trees is denoted by $F(\mathcal{G})$.

For any $t \in F(\mathcal{G})$, let

- $|t|$ be the **arity** of t, that is its number of leaves;
- $\text{deg}(t)$ be the **degree** of t, that is the number of internal nodes of t;
Sets of syntax trees

Let \(\mathcal{G} \) be a set of letters.

The set of all \(\mathcal{G} \)-trees is denoted by \(F(\mathcal{G}) \).

For any \(t \in F(\mathcal{G}) \), let

- \(|t| \) be the arity of \(t \), that is its number of leaves;
- \(\deg(t) \) be the degree of \(t \), that is the number of internal nodes of \(t \);
- \(a(t) \) be the number of edges of \(t \) (satisfying \(a(t) = |t| + \deg(t) \)).

Therefore, \(F(\mathcal{G}) = \bigcup_{n \geq 1} F(\mathcal{G})(n) \).

Remark: since each \(\mathcal{G}(n) \) is finite, if \(\mathcal{G}(1) = \emptyset \), then all \(F(\mathcal{G})(n) \) are finite.
Sets of syntax trees

Let \mathcal{G} be a set of letters.

The set of all \mathcal{G}-trees is denoted by $F(\mathcal{G})$.

For any $t \in F(\mathcal{G})$, let

- $|t|$ be the arity of t, that is its number of leaves;
- $\text{deg}(t)$ be the degree of t, that is the number of internal nodes of t;
- $a(t)$ be the number of edges of t (satisfying $a(t) = |t| + \text{deg}(t)$).

We set $F(\mathcal{G})(n)$ as the set of the \mathcal{G}-trees of arity n.

Therefore,

$$F(\mathcal{G}) = \bigsqcup_{n \geq 1} F(\mathcal{G})(n).$$
Sets of syntax trees

Let \mathcal{G} be a set of letters.

The set of all \mathcal{G}-trees is denoted by $\mathbf{F}(\mathcal{G})$.

For any $t \in \mathbf{F}(\mathcal{G})$, let

- $|t|$ be the arity of t, that is its number of leaves;
- $\text{deg}(t)$ be the degree of t, that is the number of internal nodes of t;
- $a(t)$ be the number of edges of t (satisfying $a(t) = |t| + \text{deg}(t)$).

We set $\mathbf{F}(\mathcal{G})(n)$ as the set of the \mathcal{G}-trees of arity n.

Therefore,

$$\mathbf{F}(\mathcal{G}) = \bigsqcup_{n \geq 1} \mathbf{F}(\mathcal{G})(n).$$

Remark: since each $\mathcal{G}(n)$ is finite, if $\mathcal{G}(1) = \emptyset$, then all $\mathbf{F}(\mathcal{G})(n)$ are finite.
Partial composition

Let $t, s \in F(\mathcal{G})$.

For each $i \in [|t|]$, $t \circ_i s$ is the tree obtained by grafting the root of a copy of s onto the ith leaf of t.

Example
Partial composition

Let $t, s \in \mathbf{F}(G)$.

For each $i \in [|t|]$, $t \circ_i s$ is the tree obtained by grafting the root of a copy of s onto the ith leaf of t.

Example

\[
\begin{array}{c}
\begin{array}{c}
\text{c} \\
\text{c} \\
\text{a} \\
\text{b} \\
\text{b}
\end{array}
\end{array}
\quad \circ_5
\begin{array}{c}
\begin{array}{c}
\text{b} \\
\text{a} \\
\text{c} \\
\text{a} \\
\text{b}
\end{array}
\end{array}
= \\
\begin{array}{c}
\begin{array}{c}
\text{c} \\
\text{c} \\
\text{a} \\
\text{b} \\
\text{b}
\end{array}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{c} \\
\text{c} \\
\text{a} \\
\text{b} \\
\text{b}
\end{array}
\end{array}
\end{array}
\]

Therefore, \circ_i is a map

\[\circ_i : \mathbf{F}(G)(n) \times \mathbf{F}(G)(m) \rightarrow \mathbf{F}(G)(n + m - 1)\]

where $i \in [n]$ and $1 \leq m$, called partial composition map.
Complete composition

Let $t, s_1, \ldots, s_{|t|} \in F(\mathcal{G})$.

The $t \circ [s_1, \ldots, s_{|t|}]$ is obtained by grafting simultaneously the roots of copies of the s_i onto the ith leaves of t.

Example

\[
\begin{bmatrix}
 a & a \\
 a & \, \, i, \, c
\end{bmatrix}
\]

\[
\xrightarrow{\text{}}
\]

\[
\begin{bmatrix}
 a & a \\
 a & a & a & c
\end{bmatrix}
\]
Let $t, s_1, \ldots, s_{|t|} \in F(G)$.

The $t \circ [s_1, \ldots, s_{|t|}]$ is obtained by grafting simultaneously the roots of copies of the s_i onto the ith leaves of t.

Example

Therefore, \circ is a map

$$\circ : F(G)(n) \times F(G)(m_1) \times \cdots \times F(G)(m_n) \rightarrow F(G)(m_1 + \cdots + m_n)$$

where $1 \leq n$ and $1 \leq m_1, \ldots, m_n$, called complete composition map.
Patterns and occurrences

Let $t, s \in F(G)$. A G-tree t admits an occurrence of a G-tree s if one can put s onto t by superimposing the root of s and a node of t and leaves of s with leaves of nodes of t.

This property is denoted by $s \preceq t$.

Patterns and occurrences

Let $t, s \in F(G)$. A G-tree t admits an occurrence of a G-tree s if one can put s onto t by superimposing the root of s and a node of t and leaves of s with leaves of nodes of t.

This property is denoted by $s \preceq t$.

Example
Patterns and occurrences

Let $t, s \in F(\mathcal{G})$. A \mathcal{G}-tree t admits an occurrence of a \mathcal{G}-tree s if one can put s onto t by superimposing the root of s and a node of t and leaves of s with leaves of nodes of t.

This property is denoted by $s \preceq t$.

Example

This relation \preceq endows $F(\mathcal{G})$ with the structure of a poset.
Patterns and occurrences

Let $t, s \in \mathbf{F}(\mathcal{G})$. A \mathcal{G}-tree t admits an occurrence of a \mathcal{G}-tree s if one can put s onto t by superimposing the root of s and a node of t and leaves of s with leaves of nodes of t.

This property is denoted by $s \preceq t$.

Example

![Diagram of trees](image)

This relation \preceq endows $\mathbf{F}(\mathcal{G})$ with the structure of a poset.

More formally, $s \preceq t$ holds if there exist $r, r_1, \ldots, r_{|s|} \in \mathbf{F}(\mathcal{G})$ and $i \in [|r|]$ such that

$$t = r \circ_i (s \circ [r_1, \ldots, r_{|s|}]).$$
Pattern avoidance

Given a set $\mathcal{P} \subseteq F(\mathcal{G})$, let $A(\mathcal{P})$ be the set of all \mathcal{G}-trees avoiding all patterns of \mathcal{P}.

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a usual question.
Pattern avoidance

Given a set \(\mathcal{P} \subseteq \mathbf{F}(\mathcal{G}) \), let \(A(\mathcal{P}) \) be the set of all \(\mathcal{G} \)-trees avoiding all patterns of \(\mathcal{P} \).

Counting the elements of \(A(\mathcal{P}) \) w.r.t. the arity is a usual question.

Examples

▶ For \(\mathcal{P} := \{ \begin{array}{l} a \, a, \quad a \, b, \quad b \, a, \quad b \, b \end{array} \} \), \(A(\mathcal{P}) \) is enumerated by

\[
1, 2, 4, 8, 16, 32, 64, 128, \ldots ;
\]
Pattern avoidance

Given a set \(\mathcal{P} \subseteq \mathbf{F}(\mathcal{G}) \), let \(A(\mathcal{P}) \) be the set of all \(\mathcal{G} \)-trees avoiding all patterns of \(\mathcal{P} \).

Counting the elements of \(A(\mathcal{P}) \) w.r.t. the arity is a usual question.

Examples

- For \(\mathcal{P} := \{ a, b, a, b \} \), \(A(\mathcal{P}) \) is enumerated by
 \[
 1, 2, 4, 8, 16, 32, 64, 128, \ldots
 \]

- For \(\mathcal{P} := \{ a, c, a, c \} \), \(A(\mathcal{P}) \) is enumerated by
 \[
 1, 1, 2, 4, 9, 21, 51, 127, \ldots
 \]
Pattern avoidance

Given a set $\mathcal{P} \subseteq \mathcal{F}(\mathcal{G})$, let $A(\mathcal{P})$ be the set of all \mathcal{G}-trees avoiding all patterns of \mathcal{P}.

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a usual question.

Examples

- For $\mathcal{P} := \begin{Bmatrix} a, & b, & a, & b, \\ \text{a} & \text{b} & \text{a} & \text{b} \end{Bmatrix}$, $A(\mathcal{P})$ is enumerated by $1, 2, 4, 8, 16, 32, 64, 128, \ldots$;

- For $\mathcal{P} := \begin{Bmatrix} a, & c, & a, & c, \\ \text{a} & \text{c} & \text{a} & \text{c} \end{Bmatrix}$, $A(\mathcal{P})$ is enumerated by $1, 1, 2, 4, 9, 21, 51, 127, \ldots$;

- For $\mathcal{P} := \begin{Bmatrix} a, & b, & b, \\ \text{a} & \text{b} & \text{a} & \text{b} \end{Bmatrix}$, $A(\mathcal{P})$ is enumerated by $1, 2, 5, 13, 35, 96, 167, 750, \ldots$.
Rewrite rules

A rewrite rule is a binary relation \rightarrow on $\mathbf{F}(\mathfrak{G})$ such that $s \rightarrow s'$ implies $|s| = |s'|$.

Example

If \rightarrow is the rewrite rule satisfying $b a a \rightarrow a b b$, one has $a a a a a a a a b \Rightarrow a b a a b a a a a a$.

Rewrite rules

A rewrite rule is a binary relation \to on $F(\mathcal{G})$ such that $s \to s'$ implies $|s| = |s'|$.

The rewrite relation induced by \to is the binary relation \Rightarrow on $F(\mathcal{G})$ satisfying

$$r \circ_i (s \circ [r_1, \ldots, r_{|s|}]) \Rightarrow r \circ_i (s' \circ [r_1, \ldots, r_{|s|}])$$

if $s \to s'$, where r and $r_1, \ldots, r_{|s|}$ are any \mathcal{G}-trees.
Rewrite rules

A rewrite rule is a binary relation \rightarrow on $\mathbf{F}(\mathcal{G})$ such that $s \rightarrow s'$ implies $|s| = |s'|$.

The rewrite relation induced by \rightarrow is the binary relation \Rightarrow on $\mathbf{F}(\mathcal{G})$ satisfying

$$r \circ_i (s \circ [r_1, \ldots, r_{|s|}]) \Rightarrow r \circ_i (s' \circ [r_1, \ldots, r_{|s|}])$$

if $s \rightarrow s'$, where r and $r_1, \ldots, r_{|s|}$ are any \mathcal{G}-trees.

Example

If \rightarrow is the rewrite rule satisfying $\begin{array}{c} \text{a} \text{b} \\ \text{a} \end{array} \rightarrow \begin{array}{c} \text{a} \\ \text{b} \end{array}$, one has

$$\begin{array}{c} \text{a} \text{b} \\ \text{a} \text{a} \\ \text{a} \end{array} \Rightarrow \begin{array}{c} \text{a} \\ \text{b} \end{array} \begin{array}{c} \text{a} \\ \text{a} \text{a} \\ \text{a} \end{array}.$$
Rewrite systems

Let \rightarrow a rewrite rule on \mathcal{G}-trees and \Rightarrow be the rewrite relation induced by \rightarrow.

Let us define

- $\ast \Rightarrow$ as the reflexive and transitive closure of \Rightarrow;
- $\ast \iff$ as the reflexive, symmetric, and transitive closure of \Rightarrow.

A tree t rewrites into a tree t' if $t \ast \Rightarrow t'$.

Two trees t and t' are linked if $t \ast \iff t'$.

Let $F(\mathcal{G})/\ast \iff$ be the set of all $\ast \iff$-equivalence classes.

A normal form for \Rightarrow is a tree t such that $t \ast \Rightarrow t'$ implies $t = t'$.

Let $N\Rightarrow$ be the set of all normal forms.
Rewrite systems

Let → a rewrite rule on \mathcal{G}-trees and \Rightarrow be the rewrite relation induced by →.

Let us define

- \Rightarrow^* as the reflexive and transitive closure of \Rightarrow;
- $\Rightarrow^* \Leftrightarrow$ as the reflexive, symmetric, and transitive closure of \Rightarrow.

A tree t rewrites into a tree t' if $t \Rightarrow^* t'$.

A tree t rewrites into a tree t' if $t \Rightarrow t'$.

Rewrite systems

Let \(\rightarrow \) a rewrite rule on \(\mathcal{G} \)-trees and \(\Rightarrow \) be the rewrite relation induced by \(\rightarrow \).

Let us define

- \(\Rightarrow^* \) as the reflexive and transitive closure of \(\Rightarrow \);
- \(\Leftrightarrow^* \) as the reflexive, symmetric, and transitive closure of \(\Rightarrow \).

A tree \(t \) rewrites into a tree \(t' \) if \(t \Rightarrow^* t' \).

Two trees \(t \) and \(t' \) are linked if \(t \Leftrightarrow^* t' \). Let \(F(\mathcal{G})/\Leftrightarrow^* \) be the set of all \(\Leftrightarrow^* \)-equivalence classes.
Rewrite systems

Let \rightarrow a rewrite rule on \mathcal{G}-trees and \Rightarrow be the rewrite relation induced by \rightarrow.

Let us define

- \Rightarrow^* as the reflexive and transitive closure of \Rightarrow;
- \Rightarrow^\ast as the reflexive, symmetric, and transitive closure of \Rightarrow.

A tree t rewrites into a tree t' if $t \Rightarrow^* t'$.

Two trees t and t' are linked if $t \Rightarrow^\ast t'$. Let $\mathbf{F}(\mathcal{G})/\Rightarrow^\ast$ be the set of all \Rightarrow^\ast-equivalence classes.

A normal form for \Rightarrow is a tree t such that $t \Rightarrow^* t'$ implies $t = t'$. Let \mathcal{N}_\Rightarrow be the set of all normal forms.
Termination and confluence

When there is no infinite chain $t_0 \Rightarrow t_1 \Rightarrow t_2 \Rightarrow \cdots$, the rewrite relation \Rightarrow is terminating.
Termination and confluence

When there is no infinite chain \(t_0 \Rightarrow t_1 \Rightarrow t_2 \Rightarrow \cdots \), the rewrite relation \(\Rightarrow \) is terminating.

When \(t \Rightarrow^* s_1 \) and \(t \Rightarrow^* s_2 \) implies the existence of \(t' \) such that \(s_1 \Rightarrow t' \) and \(s_2 \Rightarrow t' \), \(\Rightarrow \) is confluent.
Termination and confluence

When there is no infinite chain $t_0 \Rightarrow t_1 \Rightarrow t_2 \Rightarrow \cdots$, the rewrite relation \Rightarrow is terminating.

When $t \Rightarrow^* s_1$ and $t \Rightarrow^* s_2$ implies the existence of t' such that $s_1 \Rightarrow^* t'$ and $s_2 \Rightarrow^* t'$, \Rightarrow is confluent.

When $t \Rightarrow s_1$ and $t \Rightarrow s_2$ implies the existence of t' such that $s_1 \Rightarrow^* t'$ and $s_2 \Rightarrow^* t'$, \Rightarrow is locally confluent.
Termination and confluence

When there is no infinite chain \(t_0 \Rightarrow t_1 \Rightarrow t_2 \Rightarrow \cdots \), the rewrite relation \(\Rightarrow \) is terminating.

When \(t \xrightarrow{*} s_1 \) and \(t \xrightarrow{*} s_2 \) implies the existence of \(t' \) such that \(s_1 \xrightarrow{*} t' \) and \(s_2 \xrightarrow{*} t' \), \(\Rightarrow \) is confluent.

When \(t \Rightarrow s_1 \) and \(t \Rightarrow s_2 \) implies the existence of \(t' \) such that \(s_1 \Rightarrow t' \) and \(s_2 \Rightarrow t' \), \(\Rightarrow \) is locally confluent.

Theorem (Diamond property)

If \(\Rightarrow \) is terminating and locally confluent, then \(\Rightarrow \) is confluent.
Termination and confluence

When there is no infinite chain $t_0 \Rightarrow t_1 \Rightarrow t_2 \Rightarrow \cdots$, the rewrite relation \Rightarrow is terminating.

When $t^* \Rightarrow s_1$ and $t^* \Rightarrow s_2$ implies the existence of t' such that $s_1 \Rightarrow t'$ and $s_2 \Rightarrow t'$, \Rightarrow is confluent.

When $t \Rightarrow s_1$ and $t \Rightarrow s_2$ implies the existence of t' such that $s_1 \Rightarrow t'$ and $s_2 \Rightarrow t'$, \Rightarrow is locally confluent.

Theorem (Diamond property)

If \Rightarrow is terminating and locally confluent, then \Rightarrow is confluent.

Proposition

Let \rightarrow be a rewrite rule on $\text{F}(\mathcal{G})$. If \Rightarrow is terminating and confluent, then \mathcal{N}_\Rightarrow is

- the set of all \mathcal{G}-trees avoiding the left members of \rightarrow;
- in a one-to-one correspondence respecting the arities with $\text{F}(\mathcal{G})/\Leftrightarrow$.

Tamari lattices

Let \rightarrow be the rewrite rule on $\mathbf{F}\{\{a\}\}$ defined by

$$a \rightarrow \overset{a}{\text{}} \overset{a}{\text{}}.$$
Tamari lattices

Let \(\rightarrow \) be the rewrite rule on \(F(\{a\}) \) defined by

\[
\begin{array}{cc}
\ \ & a \\
\rightarrow & a
\end{array}
\]

First graphs \((F(\{a\})(n), \Rightarrow)\):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Tamari lattices

Let \(\rightarrow \) be the rewrite rule on \(\mathbb{F}(\{a\}) \) defined by

First graphs \((\mathbb{F}(\{a\})(n), \Rightarrow) \):

Properties:

\(\Rightarrow \) is terminating and confluent;
\(\mathcal{N} \Rightarrow \) is the set of the trees avoiding \(\vdash \), that are right comb trees;
The sequence \((\mathbb{F}(\{a\})/\cong(n))_{n\geq 1} \) is 1, 1, 1, 1, \ldots.
A variant of Tamari lattices

Let \rightarrow be the rewrite rule on $F(\{a\})$ defined by $\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array}.$
A variant of Tamari lattices

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by \rightarrow.

First graphs $(\mathbf{F}(\{a\})(n), \Rightarrow)$:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018] \Rightarrow is terminating but not confluent; \Rightarrow can be described as the set of the $\{a\}$-trees avoiding $\overline{11}$ patterns; the sequence $(\mathbf{F}(\{a\})(n)/\ast \iff (n))_{n \geq 1}$ is $1, 1, 2, 4, 8, 14, 20, 19, 16, 14, 15, 16, 17, \ldots$ and its generating function is $t(1-t)^2(1-t+t^2+t^3+2t^4+2t^5-7t^7-2t^8+t^9+2t^{10}+t^{11})$.

14 / 51
A variant of Tamari lattices

Let \rightarrow be the rewrite rule on $F(\{a\})$ defined by $\overset{a}{a} \overset{a}{a} \overset{a}{a} \rightarrow \overset{a}{a}$.

First graphs $(F(\{a\})(n), \Rightarrow)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \Rightarrow is terminating but not confluent;
- $\mathcal{N} \Rightarrow$ can be described as the set of the $\{a\}$-trees avoiding 11 patterns;
A variant of Tamari lattices

Let \rightarrow be the rewrite rule on $F(\{a\})$ defined by $\begin{array}{c} a \downarrow \end{array} \rightarrow \begin{array}{c} a \downarrow \end{array}$.

First graphs $(F(\{a\})(n), \Rightarrow)$:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \Rightarrow is terminating but not confluent;
- $\mathcal{N}\Rightarrow$ can be described as the set of the $\{a\}$-trees avoiding 11 patterns;
- The sequence \((F(\{a\})/\Rightarrow(n))_{n \geq 1} \) is
 \[1, 1, 2, 4, 8, \ldots \]
A variant of Tamari lattices

Let \to be the rewrite rule on $F(\{a\})$ defined by $\begin{array}{c} a \quad a \quad a \quad a \quad a \\ \end{array} \rightarrow \begin{array}{c} a \quad a \quad a \\ \end{array}$.

First graphs $(F(\{a\})(n), \Rightarrow)$:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \Rightarrow is terminating but not confluent;
- $\mathcal{N} \Rightarrow$ can be described as the set of the $\{a\}$-trees avoiding 11 patterns;
- The sequence $(F(\{a\})/\Rightarrow(n))_{n \geq 1}$ is $1, 1, 2, 4, 8, 14,$...
A variant of Tamari lattices

Let \to be the rewrite rule on $F(\{a\})$ defined by $\quad \rightarrow \quad$.

First graphs $(F(\{a\})(n), \Rightarrow)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \Rightarrow is terminating but not confluent;
- $\mathcal{N} \Rightarrow$ can be described as the set of the $\{a\}$-trees avoiding 11 patterns;
- The sequence $\left(F(\{a\}) / \Rightarrow (n) \right)_{n \geq 1}$ is

$$1, 1, 2, 4, 8, 14, 20,$$
A variant of Tamari lattices

Let \to be the rewrite rule on $F(\{a\})$ defined by $\begin{array}{c} \begin{array}{c} a \end{array} \end{array} \to \begin{array}{c} \begin{array}{c} a \end{array} a \end{array}$. First graphs $(F(\{a\})(n), \Rightarrow)$:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \Rightarrow is terminating but not confluent;
- $\mathcal{N} \Rightarrow$ can be described as the set of the $\{a\}$-trees avoiding 11 patterns;
- The sequence $\left(F(\{a\})/\Rightarrow(n) \right)_{n \ge 1}$ is $1, 1, 2, 4, 8, 14, 20, 19,$...
A variant of Tamari lattices

Let → be the rewrite rule on $F(\{a\})$ defined by $\begin{array}{c} \begin{array}{c} a \end{array} \end{array} \rightarrow \begin{array}{c} \begin{array}{c} a \end{array} \end{array} \begin{array}{c} \begin{array}{c} a \end{array} \end{array}$.

First graphs $(F(\{a\})(n), \Rightarrow)$:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \Rightarrow is terminating but not confluent;
- $\mathcal{N} \Rightarrow$ can be described as the set of the $\{a\}$-trees avoiding 11 patterns;
- The sequence $\left(F(\{a\})/\Rightarrow (n) \right)_{n \geq 1}$ is

 $1, 1, 2, 4, 8, 14, 20, 19, 16$,
A variant of Tamari lattices

Let \rightarrow be the rewrite rule on $F(\{a\})$ defined by $a \rightarrow a$. First graphs $(F(\{a\})(n), \Rightarrow)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \Rightarrow is terminating but not confluent;
- $\mathcal{N}\Rightarrow$ can be described as the set of the $\{a\}$-trees avoiding 11 patterns;
- The sequence $(F(\{a\})/\Rightarrow(n))_{n \geq 1}$ is $1, 1, 2, 4, 8, 14, 20, 19, 16, 14,$
A variant of Tamari lattices

Let → be the rewrite rule on \(F(\{a\}) \) defined by \(\begin{array}{c} a \cr \end{array} → \begin{array}{c} a \cr \end{array} \begin{array}{c} a \cr \end{array} \).

First graphs \((F(\{a\})(n), \Rightarrow)\):

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \(\Rightarrow \) is terminating but not confluent;
- \(\mathcal{N} \Rightarrow \) can be described as the set of the \(\{a\}\)-trees avoiding 11 patterns;
- The sequence \(\left(F(\{a\})/\sim (n) \right)_{n \geq 1} \) is
 \[
 1, 1, 2, 4, 8, 14, 20, 19, 16, 14, 14,
 \]
A variant of Tamari lattices

Let → be the rewrite rule on $F\{a\}$ defined by $\{a\} \rightarrow \{a\}

First graphs $(F\{a\})(n), \Rightarrow)$:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \Rightarrow is terminating but not confluent;
- $\mathcal{N} \Rightarrow$ can be described as the set of the $\{a\}$-trees avoiding 11 patterns;
- The sequence $(F\{a\}/\Rightarrow (n))_{n \geq 1}$ is

 $1, 1, 2, 4, 8, 14, 20, 19, 16, 14, 14, 15, 16, 17, \ldots$
A variant of Tamari lattices

Let \(\rightarrow \) be the rewrite rule on \(F(\{a\}) \) defined by \(\rightarrow \).

First graphs \((F(\{a\}))(n), \Rightarrow \):

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Theorem [Chenavier, Cordero, G., 2018]

- \(\Rightarrow \) is terminating but not confluent;
- \(\mathcal{N} \Rightarrow \) can be described as the set of the \(\{a\}\)-trees avoiding 11 patterns;
- The sequence \(\left(F(\{a\})/\Rightarrow (n) \right)_{n \geq 1} \) is

 \[
 1, 1, 2, 4, 8, 14, 20, 19, 16, 14, 14, 16, 17, \ldots
 \]

 and its generating function is

 \[
 \frac{t}{(1-t)^2} \left(1 - t + t^2 + t^3 + 2t^4 + 2t^5 - 7t^7 - 2t^8 + t^9 + 2t^{10} + t^{11} \right).
 \]
Outline

Tree series and pattern avoidance
Space of tree series

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \ldots)$ and \mathcal{G} be a set of letters.
Let K be the field $\mathbb{Q}(q_0, q_1, q_2, \ldots)$ and \mathcal{G} be a set of letters. A $F(\mathcal{G})$-series (tree series) is a map

$$f : F(\mathcal{G}) \to K.$$

The coefficient $f(t)$ of $t \in F(\mathcal{G})$ in f is denoted by $\langle t, f \rangle$. The set of all $F(\mathcal{G})$-series is $K\langle\langle F(\mathcal{G}) \rangle\rangle$. Endowed with the pointwise addition $\langle t, f + g \rangle := \langle t, f \rangle + \langle t, g \rangle$ and the pointwise multiplication by a scalar $\langle t, \lambda f \rangle := \lambda \langle t, f \rangle$, the set $K\langle\langle F(\mathcal{G}) \rangle\rangle$ is a vector space. The sum notation of f is $f = \sum_{t \in F(\mathcal{G})} \langle t, f \rangle t$.
Space of tree series

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \ldots)$ and \mathcal{G} be a set of letters.

A $\mathcal{F}(\mathcal{G})$-series (tree series) is a map

$$f : \mathcal{F}(\mathcal{G}) \to \mathbb{K}.$$

The coefficient $f(t)$ of $t \in \mathcal{F}(\mathcal{G})$ in f is denoted by $\langle t, f \rangle$.

Space of tree series

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \ldots)$ and \mathcal{G} be a set of letters. A $F(\mathcal{G})$-series (tree series) is a map

$$f : F(\mathcal{G}) \rightarrow \mathbb{K}.$$

The coefficient $f(t)$ of $t \in F(\mathcal{G})$ in f is denoted by $\langle t, f \rangle$. The set of all $F(\mathcal{G})$-series is $\mathbb{K} \langle \langle F(\mathcal{G}) \rangle \rangle$.

The sum notation of f is $f = \sum_{t \in F(\mathcal{G})} \langle t, f \rangle t$.

16 / 51
Space of tree series

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \ldots)$ and \mathcal{S} be a set of letters. A $\mathcal{F}(\mathcal{S})$-series (tree series) is a map

$$f : \mathcal{F}(\mathcal{S}) \to \mathbb{K}.$$

The coefficient $f(t)$ of $t \in \mathcal{F}(\mathcal{S})$ in f is denoted by $\langle t, f \rangle$. The set of all $\mathcal{F}(\mathcal{S})$-series is $\mathbb{K}\langle \langle \mathcal{F}(\mathcal{S}) \rangle \rangle$.

Endowed with the pointwise addition

$$\langle t, f + g \rangle := \langle t, f \rangle + \langle t, g \rangle$$

and the pointwise multiplication by a scalar

$$\langle t, \lambda f \rangle := \lambda \langle t, f \rangle,$$

the set $\mathbb{K}\langle \langle \mathcal{F}(\mathcal{S}) \rangle \rangle$ is a vector space.
Space of tree series

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \ldots)$ and \mathcal{G} be a set of letters.

A $F(\mathcal{G})$-series (tree series) is a map

$$f : F(\mathcal{G}) \to \mathbb{K}.$$

The coefficient $f(t)$ of $t \in F(\mathcal{G})$ in f is denoted by $\langle t, f \rangle$.

The set of all $F(\mathcal{G})$-series is $\mathbb{K}\langle\langle F(\mathcal{G})\rangle\rangle$.

Endowed with the pointwise addition

$$\langle t, f + g \rangle := \langle t, f \rangle + \langle t, g \rangle$$

and the pointwise multiplication by a scalar

$$\langle t, \lambda f \rangle := \lambda \langle t, f \rangle,$$

the set $\mathbb{K}\langle\langle F(\mathcal{G})\rangle\rangle$ is a vector space.

The sum notation of f is

$$f = \sum_{t \in F(\mathcal{G})} \langle t, f \rangle t.$$
Some tree series

Example

For \(x \in \mathcal{G} \), let \(f_x \) be the \(\mathbf{F}(\mathcal{G}) \)-series wherein \(\langle t, f_x \rangle \) is the number of occurrences of \(x \) in \(t \). For instance,

\[
f_a = \frac{1}{a} + 2 \cdot \frac{1}{a} + \frac{1}{a} + \frac{1}{b} + \frac{1}{b} + 2 \cdot \frac{1}{a} + 3 \cdot \frac{1}{a} + \cdots.
\]
Some tree series

Example

For $x \in G$, let f_x be the $F(G)$-series wherein $\langle t, f_x \rangle$ is the number of occurrences of x in t. For instance,

$$f_a = \frac{1}{a} + 2 \frac{1}{a} + \frac{1}{b} + 2 \frac{1}{a} + 3 \frac{1}{a} + \cdots.$$

Example

Let f_t be the $F(G)$-series wherein $\langle t, f_t \rangle := |t|$. Hence,

$$f_t = \frac{1}{a} + 2 \frac{1}{a} + 2 \frac{1}{b} + 3 \frac{1}{c} + 3 \frac{1}{a} + 3 \frac{1}{a} + 3 \frac{1}{b} + \cdots.$$
Some tree series

Example

For $x \in \mathcal{G}$, let f_x be the $\mathbf{F}(\mathcal{G})$-series wherein $\langle t, f_x \rangle$ is the number of occurrences of x in t. For instance,

$$f_a = \frac{1}{a} + 2 \frac{1}{a} + \frac{1}{b} + \frac{1}{a} + 2 \frac{1}{a} + 3 \frac{1}{a} + \cdots.$$

Example

Let f_t be the $\mathbf{F}(\mathcal{G})$-series wherein $\langle t, f_t \rangle := |t|$. Hence,

$$f_t = 1 + 2 \frac{1}{a} + 2 \frac{1}{b} + 3 \frac{1}{c} + 3 \frac{1}{a} + 3 \frac{1}{a} + 3 \frac{1}{b} + 3 \frac{1}{a} + \cdots.$$

Example

In the tree series $f_a + f_b + f_c$, the coefficient of a tree is its degree.
Some tree series

Example
For $x \in \mathcal{G}$, let f_x be the $\mathbf{F}(\mathcal{G})$-series wherein $\langle t, f_x \rangle$ is the number of occurrences of x in t. For instance,

$$f_a = \underbrace{\frac{1}{a}} + 2 \underbrace{\frac{a}{b}} + \underbrace{\frac{a}{b}} + \underbrace{\frac{a}{b}} + 2 \underbrace{\frac{a}{a}} + 3 \underbrace{\frac{a}{a}} + \cdots.$$

Example
Let $f_\mathcal{G}$ be the $\mathbf{F}(\mathcal{G})$-series wherein $\langle t, f_\mathcal{G} \rangle := |t|$. Hence,

$$f_\mathcal{G} = 1 + 2 \underbrace{\frac{a}{b}} + 2 \underbrace{\frac{b}{b}} + 3 \underbrace{\frac{c}{c}} + 3 \underbrace{\frac{a}{a}} + 3 \underbrace{\frac{a}{b}} + 3 \underbrace{\frac{b}{a}} + \cdots.$$

Example
In the tree series $f_a + f_b + f_c$, the coefficient of a tree is its degree.
In the tree series $f_\mathcal{G} + f_a + f_b + f_c$, the coefficient of a tree is its number of edges.
Evaluation and generating series

Let S be a set of G-trees.

The characteristic series of S is the $F(G)$-série

$$f_S := \sum_{t \in S} t.$$
Evaluation and generating series

Let S be a set of \mathcal{G}-trees.

The characteristic series of S is the $\mathbf{F}(\mathcal{G})$-série

$$f_S := \sum_{t \in S} t.$$

The evaluation map

$$\text{ev} : \mathbb{K} \langle \langle \mathbf{F}(\mathcal{G}) \rangle \rangle \to \mathbb{K} \langle \langle t \rangle \rangle$$

is the linear map satisfying

$$\text{ev}(t) = t^{|t|}.$$
Evaluation and generating series

Let S be a set of \mathcal{G}-trees.

The characteristic series of S is the $F(\mathcal{G})$-série

$$f_S := \sum_{t \in S} t.$$

The evaluation map

$$\text{ev} : \mathbb{K} \langle \langle F(\mathcal{G}) \rangle \rangle \to \mathbb{K} \langle \langle t \rangle \rangle$$

is the linear map satisfying

$$\text{ev}(t) = t^{|t|}.$$

One has

$$\text{ev}(f_S) = \sum_{t \in S} t^{|t|} = \sum_{n \geq 1} \# \{ t \in S : |t| = n \} t^n = G_S(t)$$

where $G_S(t)$ is the generating series of S, enumerating its elements w.r.t. the arity.
Composition of tree series

The composition of the $F(G)$-series f and g_1, \ldots, g_n is the series

$$f \circ [g_1, \ldots, g_n] := \sum_{t \in F(G)(n)} \left(\langle t, f \rangle \prod_{i \in [n]} \langle s_i, g_i \rangle \right) t \circ [s_1, \ldots, s_n].$$

Observe that this product is linear in all its arguments.
Composition of tree series

The composition of the \(F(G) \)-series \(f \) and \(g_1, \ldots, g_n \) is the series

\[
f \circ [g_1, \ldots, g_n] := \sum_{t \in F(G)^{(n)}} \left(\langle t, f \rangle \prod_{i \in [n]} \langle s_i, g_i \rangle \right) t \circ [s_1, \ldots, s_n].
\]

Observe that this product is linear in all its arguments.

Example

\[
\left(a + b + c \right) \circ \left[l, c, a + b \right] = b + c + a + b + a + b
\]
Composition of tree series

The composition of the $F(\mathcal{G})$-series f and g_1, \ldots, g_n is the series

$$f \circ [g_1, \ldots, g_n] := \sum_{\substack{t \in F(\mathcal{G})(n) \\ \ s_1, \ldots, s_n \in F(\mathcal{G)}}} \left(\langle t, f \rangle \prod_{i \in [n]} \langle s_i, g_i \rangle \right) t \circ [s_1, \ldots, s_n].$$

Observe that this product is linear in all its arguments.

Example

$$\begin{pmatrix} a + b & b \\ \ \ \ c & b \end{pmatrix} \circ \left[a, c, a + b \right] = \begin{pmatrix} b & b \\ \ c & b \end{pmatrix} + \begin{pmatrix} b \end{pmatrix} + \begin{pmatrix} c \end{pmatrix} + \begin{pmatrix} c \end{pmatrix}.$$

For all $t \in F(\mathcal{G})(n)$ and all $F(\mathcal{G})$-series g_1, \ldots, g_n,

$$\text{ev} \left(f \circ [g_1, \ldots, g_n] \right) = \prod_{i \in [n]} \text{ev} \left(g_i \right).$$
Tree series avoiding patterns

Let \(\mathcal{P} \subseteq F(\mathcal{G}) \) and set

\[
 f(\mathcal{P}) := f_{A(\mathcal{P})} = \sum_{\left.\begin{array}{c} t \in F(\mathcal{G}) \\ \forall s \in \mathcal{P}, s \not\subseteq t \end{array}\right\}} t
\]

as the series of the \(\mathcal{G} \)-trees avoiding all patterns of \(\mathcal{P} \).
Tree series avoiding patterns

Let \(\mathcal{P} \subseteq \mathcal{F}(\mathcal{G}) \) and set

\[
f(\mathcal{P}) := f_{A(\mathcal{P})} = \sum_{t \in \mathcal{F}(\mathcal{G})} t \quad \forall s \in \mathcal{P}, s \not\approx t
\]

as the series of the \(\mathcal{G} \)-trees avoiding all patterns of \(\mathcal{P} \).

When \(\mathcal{G}(1) = \emptyset \), each \(\mathcal{F}(\mathcal{G})(n) \) is finite and thus, there is a finite number of \(\mathcal{G} \)-trees of arity \(n \) avoiding \(\mathcal{P} \). Therefore, the series

\[
\text{ev}(f(\mathcal{P})) = \mathcal{G}_{A(\mathcal{P})}(t)
\]

is well-defined.
Let \(\mathcal{P} \subseteq \mathbf{F}(\mathcal{G}) \) and set

\[
f(\mathcal{P}) := f_{A(\mathcal{P})} = \sum_{t \in \mathbf{F}(\mathcal{G})} t
\]

as the series of the \(\mathcal{G} \)-trees avoiding all patterns of \(\mathcal{P} \).

When \(\mathcal{G}(1) = \emptyset \), each \(\mathbf{F}(\mathcal{G})(n) \) is finite and thus, there is a finite number of \(\mathcal{G} \)-trees of arity \(n \) avoiding \(\mathcal{P} \). Therefore, the series

\[
\text{ev}(f(\mathcal{P})) = G_{A(\mathcal{P})}(t)
\]

is well-defined.

Goal

Given \(\mathcal{G} \) and \(\mathcal{P} \subseteq \mathbf{F}(\mathcal{G}) \), provide an expression for \(f(\mathcal{P}) \).
A \mathcal{G}-tree t admits an occurrence of a \mathcal{G}-tree s at root if there exists $r_1, \ldots, r_{|s|} \in F(\mathcal{G})$ and $i \in [|r|]$ such that

$$t = s \circ [r_1, \ldots, r_{|s|}] .$$

This property is denoted by $s \preceq_r t$.
Occurrences at root

A \mathcal{G}-tree t admits an occurrence of a \mathcal{G}-tree s at root if there exists $r_1, \ldots, r_{|s|} \in F(\mathcal{G})$ and $i \in [|r|]$ such that

$$t = s \circ [r_1, \ldots, r_{|s|}] .$$

This property is denoted by $s \preceq_r t$.

Example
Occurrences at root

A \mathcal{G}-tree t admits an occurrence of a \mathcal{G}-tree s at root if there exists $r_1, \ldots, r_{|s|} \in F(\mathcal{G})$ and $i \in [|r|]$ such that

$$t = s \circ [r_1, \ldots, r_{|s|}] .$$

This property is denoted by $s \preceq_r t$.

Example

Assume that $t = a \circ [t_1, \ldots, t_k]$ and $s = a \circ [s_1, \ldots, s_k]$ where $a \in \mathcal{G}(k)$.
Occurrences at root

A \mathcal{G}-tree t admits an occurrence of a \mathcal{G}-tree s at root if there exists $r_1, \ldots, r_{|s|} \in \mathbf{F}(\mathcal{G})$ and $i \in [|r|]$ such that

$$t = s \circ [r_1, \ldots, r_{|s|}] .$$

This property is denoted by $s \preceq_r t$.

Example

Assume that $t = a \circ [t_1, \ldots, t_k]$ and $s = a \circ [s_1, \ldots, s_k]$ where $a \in \mathcal{G}(k)$. Then, $s \preceq_r t$ if and only if there exists an $i \in [k]$ such that $s_i \preceq_r t_i$.
Admissible words

Let $\mathcal{P} \subseteq \mathcal{F}(\mathcal{G})$ and $a \in \mathcal{G}(k)$. Let

$$\mathcal{P}_a := \{s \in \mathcal{P} : a \preceq_r s\}.$$
Admissible words

Let \(\mathcal{P} \subseteq F(\mathcal{G}) \) and \(a \in \mathcal{G}(k) \). Let

\[
\mathcal{P}_a := \{ s \in \mathcal{P} : a \prec_r s \}.
\]

A \(\mathcal{G} \)-tree \(t = a \circ [t_1, \ldots, t_k] \) avoids at root all patterns of \(\mathcal{P} \) if for all patterns \(s = a \circ [s_1, \ldots, s_k] \in \mathcal{P}_a \), there is an \(i \in [k] \) such that \(s_i \not\approx_r t_i \).
Let $\mathcal{P} \subseteq F(\mathcal{G})$ and $a \in \mathcal{G}(k)$. Let
\[
\mathcal{P}_a := \{ s \in \mathcal{P} : a \preceq_r s \}.
\]

A \mathcal{G}-tree $t = a \circ [t_1, \ldots, t_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $s = a \circ [s_1, \ldots, s_k] \in \mathcal{P}_a$, there is an $i \in [k]$ such that $s_i \not\preceq_r t_i$.

A word (S_1, \ldots, S_k) where letters are sets of \mathcal{G}-trees different from \emptyset is \mathcal{P}_a-admissible if for any $s \in \mathcal{P}_a$, there is an $i \in [k]$ such that $s_i \in S_i$.

Admissible words

Let $\mathcal{P} \subseteq \mathcal{F}(\mathcal{G})$ and $a \in \mathcal{G}(k)$. Let

$$\mathcal{P}_a := \{ \mathcal{s} \in \mathcal{P} : a \preceq_r \mathcal{s} \}.$$

A \mathcal{G}-tree $t = a \circ [t_1, \ldots, t_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $\mathcal{s} = a \circ [\mathcal{s}_1, \ldots, \mathcal{s}_k] \in \mathcal{P}_a$, there is an $i \in [k]$ such that $\mathcal{s}_i \not\preceq_r t_i$.

A word (S_1, \ldots, S_k) where letters are sets of \mathcal{G}-trees different from \varnothing is \mathcal{P}_a-admissible if for any $\mathcal{s} \in \mathcal{P}_a$, there is an $i \in [k]$ such that $\mathcal{s}_i \in S_i$.

Example

Let $\mathcal{P} := \left\{ \begin{array}{c} \begin{array}{c} \text{a} \end{array} \begin{array}{c} \text{c} \end{array}, \\ \begin{array}{c} \text{b} \end{array} \begin{array}{c} \text{a} \end{array}, \\ \begin{array}{c} \text{c} \end{array} \begin{array}{c} \text{c} \end{array} \end{array} \right\}$. In terms of \mathcal{P}_c-admissibility, the word

$$\left(\{ \{ \text{a} \} \}, \varnothing, \{ \{ \text{a} \} \} \right)$$

is;
Admissible words

Let $\mathcal{P} \subseteq \mathcal{F}(\mathcal{G})$ and $a \in \mathcal{G}(k)$. Let

$$\mathcal{P}_a := \{ s \in \mathcal{P} : a \preceq_r s \} .$$

A \mathcal{G}-tree $t = a \circ [t_1, \ldots, t_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $s = a \circ [s_1, \ldots, s_k] \in \mathcal{P}_a$, there is an $i \in [k]$ such that $s_i \not\sim_r t_i$.

A word (S_1, \ldots, S_k) where letters are sets of \mathcal{G}-trees different from \varnothing is \mathcal{P}_a-admissible if for any $s \in \mathcal{P}_a$, there is an $i \in [k]$ such that $s_i \in S_i$.

Example

Let $\mathcal{P} := \{, \}$. In terms of \mathcal{P}_c-admissibility, the word

- $\left(\{ \frac{a}{\ }\}, \emptyset, \{ \frac{a}{\ }\} \right)$ is;
- $\left(\{ \frac{a}{\ }, \frac{c}{\ }\}, \emptyset, \{ \frac{a}{\ }\} \right)$ is;
Admissible words

Let $\mathcal{P} \subseteq F(\mathcal{G})$ and $a \in \mathcal{G}(k)$. Let

$$\mathcal{P}_a := \{ s \in \mathcal{P} : a \preceq_r s \} .$$

A \mathcal{G}-tree $t = a \circ [t_1, \ldots, t_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $s = a \circ [s_1, \ldots, s_k] \in \mathcal{P}_a$, there is an $i \in [k]$ such that $s_i \not\preceq_r t_i$.

A word (S_1, \ldots, S_k) where letters are sets of \mathcal{G}-trees different from \emptyset is \mathcal{P}_a-admissible if for any $s \in \mathcal{P}_a$, there is an $i \in [k]$ such that $s_i \in S_i$.

Example

Let $\mathcal{P} := \left\{ \begin{array}{c}
 a \xrightarrow{\text{c}} b, \\
 b \xrightarrow{\text{c}} a, \\
 a \xrightarrow{\text{c}} c
\end{array} \right\}$. In terms of \mathcal{P}_c-admissibility, the word

$$\left(\left\{ \frac{1}{a} \right\}, \emptyset, \left\{ \frac{1}{a} \right\} \right)$$

is;

$$\left(\left\{ \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \right\}, \emptyset, \emptyset \right)$$

is;

$$\left(\left\{ \frac{1}{a}, \frac{1}{c} \right\}, \emptyset, \left\{ \frac{1}{a} \right\} \right)$$

is;
Admissible words

Let \(\mathcal{P} \subseteq \mathcal{F}(\mathcal{G}) \) and \(a \in \mathcal{G}(k) \). Let

\[\mathcal{P}_a := \{ s \in \mathcal{P} : a \preceq r s \} . \]

A \(\mathcal{G} \)-tree \(t = a \circ [t_1, \ldots, t_k] \) avoids at root all patterns of \(\mathcal{P} \) if for all patterns \(s = a \circ [s_1, \ldots, s_k] \in \mathcal{P}_a \), there is an \(i \in [k] \) such that \(s_i \not\preceq_r t_i \).

A word \((S_1, \ldots, S_k)\) where letters are sets of \(\mathcal{G} \)-trees different from \(i \) is \(\mathcal{P}_a \)-admissible if for any \(s \in \mathcal{P}_a \), there is an \(i \in [k] \) such that \(s_i \in S_i \).

Example

Let \(\mathcal{P} := \Bigg\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \quad \text{c} \\
\text{a} \\
\text{b} \quad \text{a}
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{c} \\
\text{c}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}\Bigg\} \). In terms of \(\mathcal{P}_c \)-admissibility, the word

\[\bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) , \emptyset , \bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) \) is;

\[\bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) , \emptyset , \bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) \) is;

\[\bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) , \emptyset , \bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) \) is;

\[\bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{c} \\
\text{c}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) , \bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{b} \\
\text{b}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) , \bigg(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\end{array}
\end{array}
\end{array}\bigg) \) is not.
Minimal admissible words

The union of two words \((S_1, \ldots, S_k)\) and \((S'_1, \ldots, S'_k)\) of sets of trees is defined by

\[
(S_1, \ldots, S_k) \oplus (S'_1, \ldots, S'_k) := (S_1 \cup S'_1, \ldots, S_k \cup S'_k).
\]
Minimal admissible words

The union of two words \((S_1, \ldots, S_k)\) and \((S'_1, \ldots, S'_k)\) of sets of trees is defined by

\[
(S_1, \ldots, S_k) \oplus (S'_1, \ldots, S'_k) := (S_1 \cup S'_1, \ldots, S_k \cup S'_k).
\]

A \(P_a\)-admissible word \(u\) is minimal if any decomposition \(u = v \oplus v'\) where \(v\) is a \(P_a\)-admissible word and \(v'\) is a word of sets of trees implies \(u = v\).
Minimal admissible words

The union of two words \((S_1, \ldots, S_k)\) and \((S'_1, \ldots, S'_k)\) of sets of trees is defined by

\[
(S_1, \ldots, S_k) \oplus (S'_1, \ldots, S'_k) := (S_1 \cup S'_1, \ldots, S_k \cup S'_k).
\]

A \(P_a\)-admissible word \(u\) is minimal if any decomposition \(u = v \oplus v'\) where \(v\) is a \(P_a\)-admissible word and \(v'\) is a word of sets of trees implies \(u = v\).

The set of all minimal \(P_a\)-admissible words is denoted by \(M(P_a)\).
Minimal admissible words

The union of two words \((S_1, \ldots, S_k)\) and \((S'_1, \ldots, S'_k)\) of sets of trees is defined by

\[
(S_1, \ldots, S_k) \oplus (S'_1, \ldots, S'_k) := (S_1 \cup S'_1, \ldots, S_k \cup S'_k).
\]

A \(P_a\)-admissible word \(u\) is minimal if any decomposition \(u = v \oplus v'\) where \(v\) is a \(P_a\)-admissible word and \(v'\) is a word of sets of trees implies \(u = v\).

The set of all minimal \(P_a\)-admissible words is denoted by \(M(P_a)\).

Example

Let \(P := \left\{ \{a, c\}, \{b, a\}, \{c, c, a\} \right\} \). In terms of minimality, as a \(P_c\)-admissible word,

\[
\text{\textbullet } \left(\{a\}, \emptyset, \{a\} \right)
\]

is;
Minimal admissible words

The union of two words \((S_1, \ldots, S_k)\) and \((S'_1, \ldots, S'_k)\) of sets of trees is defined by

\[
(S_1, \ldots, S_k) \oplus (S'_1, \ldots, S'_k) := (S_1 \cup S'_1, \ldots, S_k \cup S'_k).
\]

A \(\mathcal{P}_a\)-admissible word \(u\) is minimal if any decomposition \(u = v \oplus v'\) where \(v\) is a \(\mathcal{P}_a\)-admissible word and \(v'\) is a word of sets of trees implies \(u = v\).

The set of all minimal \(\mathcal{P}_a\)-admissible words is denoted by \(M(\mathcal{P}_a)\).

Example

Let \(\mathcal{P} := \left\{\begin{array}{c}
\bullet a \,
\cdot
\quad c
\end{array},
\begin{array}{c}
\cdot
\quad b
\quad a
\end{array},
\begin{array}{c}
\cdot
\quad c
\quad a
\end{array}\right\}\). In terms of minimality, as a \(\mathcal{P}_c\)-admissible word,

\[
\begin{array}{c}
\bullet a
\end{array}, \emptyset, \begin{array}{c}
\bullet a
\end{array}\]

\(\triangleright\) \(\left(\begin{array}{c}
\bullet a
\end{array}, \emptyset, \begin{array}{c}
\bullet a
\end{array}\right)\) is;

\[
\begin{array}{c}
\bullet a, \quad b, \quad c
\end{array}, \emptyset, \emptyset\]

\(\triangleright\) \(\left(\begin{array}{c}
\bullet a, \quad b, \quad c
\end{array}, \emptyset, \emptyset\right)\) is;
Minimal admissible words

The union of two words \((S_1, \ldots, S_k)\) and \((S'_1, \ldots, S'_k)\) of sets of trees is defined by

\[(S_1, \ldots, S_k) \oplus (S'_1, \ldots, S'_k) := (S_1 \cup S'_1, \ldots, S_k \cup S'_k).\]

A \(P_a\)-admissible word \(u\) is minimal if any decomposition \(u = v \oplus v'\) where \(v\) is a \(P_a\)-admissible word and \(v'\) is a word of sets of trees implies \(u = v\).

The set of all minimal \(P_a\)-admissible words is denoted by \(M(P_a)\).

Example

Let \(P := \left\{ \left\{ \begin{array}{c} \text{a} \\ \text{b} \\ \text{c} \end{array} \right\}, \emptyset, \left\{ \begin{array}{c} \text{a} \\ \text{c} \end{array} \right\} \right\} \). In terms of minimality, as a \(P_c\)-admissible word,

\[\begin{align*}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
\end{array}
\end{array},
\emptyset,
\left\{ \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{c}
\end{array}
\end{array} \right\}
\end{array} \text{ is;}
\end{align*}\]

\[\begin{align*}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a},
\text{b},
\text{c}
\end{array}
\end{array}
\end{array},
\emptyset,
\emptyset
\end{array} \text{ is;}
\end{align*}\]

\[\begin{align*}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a}
\end{array}
\end{array}
\end{array},
\emptyset,
\left\{ \begin{array}{c}
\begin{array}{c}
\text{a}
\end{array}
\end{array} \right\}
\end{array} \text{ is not;}
\end{align*}\]
Minimal admissible words

The union of two words \((S_1, \ldots, S_k)\) and \((S'_1, \ldots, S'_k)\) of sets of trees is defined by

\[
(S_1, \ldots, S_k) \oplus (S'_1, \ldots, S'_k) := (S_1 \cup S'_1, \ldots, S_k \cup S'_k).
\]

A \(\mathcal{P}_a\)-admissible word \(u\) is minimal if any decomposition \(u = v \oplus v'\) where \(v\) is a \(\mathcal{P}_a\)-admissible word and \(v'\) is a word of sets of trees implies \(u = v\).

The set of all minimal \(\mathcal{P}_a\)-admissible words is denoted by \(M(\mathcal{P}_a)\).

Example

Let \(\mathcal{P} := \left\{\begin{array}{c}
\left\{\begin{array}{c}
a \\
\end{array}\right\}, \\
\emptyset, \\
\left\{\begin{array}{c}
a \\
\end{array}\right\}
\end{array}\right\}\). In terms of minimality, as a \(\mathcal{P}_c\)-admissible word,

- \(\left(\left\{\begin{array}{c}
a \\
\end{array}\right\}, \emptyset, \left\{\begin{array}{c}
a \\
\end{array}\right\}\right)\) is;
- \(\left(\left\{\begin{array}{c}
a, b \\
\end{array}\right\}, \emptyset, \emptyset\right)\) is;
- \(\left(\left\{\begin{array}{c}
a, b, c \\
\end{array}\right\}, \emptyset, \emptyset\right)\) is not;
- \(\left(\left\{\begin{array}{c}
a, b, c \\
\end{array}\right\}, \emptyset, \left\{\begin{array}{c}
a \\
\end{array}\right\}\right)\) is not.
Back to tree series

Let $\mathcal{P}, \mathcal{R} \subseteq \mathbf{F}(\mathcal{G})$.

Let the tree series

$$ f(\mathcal{P}, \mathcal{R}) := \sum_{t \in \mathbf{F}(\mathcal{G})} \sum_{\forall s \in \mathcal{P}, s \prec t} \sum_{\forall s \in \mathcal{R}, s \prec_r t} t $$

of the \mathcal{G}-trees avoiding \mathcal{P} and avoiding \mathcal{R} at root.
Back to tree series

Let $\mathcal{P}, \mathcal{R} \subseteq \mathcal{F}(\mathcal{G})$.

Let the tree series

$$ f(\mathcal{P}, \mathcal{R}) := \sum_{t \in \mathcal{F}(\mathcal{G})} t $$

$$ \forall s \in \mathcal{P}, s \not\sim t $$

$$ \forall s \in \mathcal{R}, s \not\sim r $$

of the \mathcal{G}-trees avoiding \mathcal{P} and avoiding \mathcal{R} at root.

If (S_1, \ldots, S_k) is a $(\mathcal{P} \cup \mathcal{R})_a$-admissible word, $a \circ [f(\mathcal{P}, S_1), \ldots, f(\mathcal{P}, S_k)]$ is the characteristic series of all the \mathcal{G}-trees $t = a \circ [t_1, \ldots, t_k]$ such that all t_i avoid \mathcal{P} and avoid S_i at root.
Back to tree series

Let $\mathcal{P}, \mathcal{R} \subseteq F(\mathcal{G})$.

Let the tree series
\[
f(\mathcal{P}, \mathcal{R}) := \sum_{t \in F(\mathcal{G})} \sum_{\forall s \in \mathcal{P}, s \lessdot t} \sum_{\forall s \in \mathcal{R}, s \lessdot r} t
\]
of the \mathcal{G}-trees avoiding \mathcal{P} and avoiding \mathcal{R} at root.

If (S_1, \ldots, S_k) is a $(\mathcal{P} \cup \mathcal{R})_a$-admissible word, $a \overline{\circ} [f(\mathcal{P}, S_1), \ldots, f(\mathcal{P}, S_k)]$ is the characteristic series of all the \mathcal{G}-trees $t = a \circ [t_1, \ldots, t_k]$ such that all t_i avoid \mathcal{P} and avoid S_i at root.

Moreover, the support of the tree series
\[
\sum_{(S_1, \ldots, S_k) \in M((\mathcal{P} \cup \mathcal{R})_a)} a \overline{\circ} [f(\mathcal{P}, S_1), \ldots, f(\mathcal{P}, S_k)]
\]
is the set of all \mathcal{G}-trees with root labeled by a and avoiding \mathcal{P} and avoiding \mathcal{R} at root.
System of equations

Observe that for any $\mathcal{R}, \mathcal{R}' \subseteq F(G)$, the characteristic series of the G-trees avoiding \mathcal{P}, and avoiding \mathcal{R} or \mathcal{R}' at root is

$$f(\mathcal{P}, \mathcal{R}) + f(\mathcal{P}, \mathcal{R}') - f(\mathcal{P}, \mathcal{R} \cup \mathcal{R}') .$$

Therefore, the description of $f(\mathcal{P}, \mathcal{R})$ uses the inclusion-exclusion principle.
System of equations

Observe that for any $\mathcal{R}, \mathcal{R}' \subseteq \mathbf{F}(\mathcal{G})$, the characteristic series of the \mathcal{G}-trees avoiding \mathcal{P}, and avoiding \mathcal{R} or \mathcal{R}' at root is

$$f(\mathcal{P}, \mathcal{R}) + f(\mathcal{P}, \mathcal{R}') - f(\mathcal{P}, \mathcal{R} \cup \mathcal{R}').$$

Therefore, the description of $f(\mathcal{P}, \mathcal{R})$ uses the inclusion-exclusion principle.

Theorem [G., 2017—]

For any set \mathcal{G} of letters and $\mathcal{P}, \mathcal{R} \subseteq \mathbf{F}(\mathcal{G})$,

$$f(\mathcal{P}, \mathcal{R}) = 1 + \sum_{k \geq 1} \sum_{a \in \mathcal{G}(k)} \sum_{\ell \geq 1} (-1)^{1+\ell} a \overline{\circ} [f(\mathcal{P}, S_1), \ldots, f(\mathcal{P}, S_k)].$$
System of equations

Observe that for any $\mathcal{R}, \mathcal{R}' \subseteq F(\mathcal{G})$, the characteristic series of the \mathcal{G}-trees avoiding \mathcal{P}, and avoiding \mathcal{R} or \mathcal{R}' at root is

$$f(\mathcal{P}, \mathcal{R}) + f(\mathcal{P}, \mathcal{R}') - f(\mathcal{P}, \mathcal{R} \cup \mathcal{R}') .$$

Therefore, the description of $f(\mathcal{P}, \mathcal{R})$ uses the inclusion-exclusion principle.

Theorem [G., 2017–]

For any set \mathcal{G} of letters and $\mathcal{P}, \mathcal{R} \subseteq F(\mathcal{G})$,

$$f(\mathcal{P}, \mathcal{R}) = 1 + \sum_{k \geq 1} \sum_{a \in \mathcal{G}(k)} \sum_{\ell \geq 1} (-1)^{1+\ell} a \circ [f(\mathcal{P}, S_1), \ldots, f(\mathcal{P}, S_k)] ,$$

where $a \circ [f(\mathcal{P}, S_1), \ldots, f(\mathcal{P}, S_k)]$ denotes the inner product of a with the sequence $[f(\mathcal{P}, S_1), \ldots, f(\mathcal{P}, S_k)]$.

Since in particular $f(\mathcal{P}) = f(\mathcal{P}, \emptyset)$ this provides a system of equations describing $f(\mathcal{P})$.

25 / 51
Main equation for the previous example

Example

Let $\mathcal{P} := \{ \bullet \overset{c}{\rightarrow} \overset{a}{\rightarrow}, \bullet \overset{b}{\rightarrow} \overset{c}{\rightarrow} \overset{a}{\rightarrow}, \bullet \overset{c}{\rightarrow} \overset{a}{\rightarrow} \}$. One has $M (\mathcal{P}_a) = M (\mathcal{P}_b) = \{(\emptyset, \emptyset)\}$ and $M (\mathcal{P}_c) = \left\{ \left(\begin{array}{c} \{ \overset{a}{\bullet} \} \\ \overset{b}{\bullet} \overset{c}{\bullet} \overset{a}{\bullet} \end{array} \right), \emptyset, \left(\begin{array}{c} \{ \overset{a}{\bullet} \} \\ \overset{b}{\bullet} \overset{c}{\bullet} \overset{a}{\bullet} \end{array} \right) \right\}$. Therefore,
Main equation for the previous example

Example

Let $\mathcal{P} := \left\{ \begin{array}{c} \backslash \backslash a \rightarrow c \backslash \backslash \\backslash b \rightarrow c \backslash \backslash \\backslash c \rightarrow a \end{array} \right\}$.

One has $M(\mathcal{P}_a) = M(\mathcal{P}_b) = \{(\emptyset, \emptyset)\}$ and
\[
M(\mathcal{P}_c) = \left\{ \left(\begin{array}{c} \{a\}, \emptyset, \{a\} \end{array} \right), \left(\begin{array}{c} \{a\}, \{b\}, \{c\} \end{array} \right), \emptyset, \emptyset \right\}.
\]

Therefore,
\[
f(\mathcal{P}, \emptyset) = 1.
\]
Main equation for the previous example

Example

Let \(\mathcal{P} := \left\{ \begin{array}{c} a \setminus c, \ \ b \setminus c \setminus a, \ \ c \setminus a \setminus c \setminus c \end{array} \right\} \).

One has \(M (\mathcal{P}_a) = M (\mathcal{P}_b) = \{(\emptyset, \emptyset)\} \) and
\[
M (\mathcal{P}_c) = \left\{ \left(\left\{ \begin{array}{c} a \setminus b \setminus c \end{array} \right\}, \emptyset, \left\{ \begin{array}{c} a \setminus b \setminus c \end{array} \right\} \right), \left(\left\{ \begin{array}{c} a \setminus b \setminus c \end{array} \right\}, \emptyset, \emptyset \right) \right\}.
\]

Therefore,
\[
f (\mathcal{P}, \emptyset) = 1 + a \bar{a} \left[f (\mathcal{P}, \emptyset), f (\mathcal{P}, \emptyset) \right].
\]
Main equation for the previous example

Example

Let $\mathcal{P} := \left\{ \begin{array}{c}
\begin{array}{c}
\text{a} \quad \text{c} \\
\text{b} \quad \text{a} \\
\text{c} \quad \text{a}
\end{array}
\end{array} \right\}$.

One has $M(\mathcal{P}_{a}) = M(\mathcal{P}_{b}) = \{(\emptyset, \emptyset)\}$ and

$M(\mathcal{P}_{c}) = \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
\end{array}, \emptyset, \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
\end{array} \right\}, \left(\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}, \emptyset, \emptyset
\end{array} \right) \right\}$.

Therefore,

$$f(\mathcal{P}, \emptyset) = 1 + a \circ [f(\mathcal{P}, \emptyset), f(\mathcal{P}, \emptyset)] + b \circ [f(\mathcal{P}, \emptyset), f(\mathcal{P}, \emptyset)]$$
Main equation for the previous example

Example

Let $\mathcal{P} := \{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 a \ \ \ \ \ \ \ \ b \ \ \ \ \ \ \ c \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
\end{array}
\end{array}
\end{array} \} \}$.

One has $M(\mathcal{P}_a) = M(\mathcal{P}_b) = \{(\emptyset, \emptyset)\}$ and

$M(\mathcal{P}_c) = \left\{ \left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 a \ \ \ \ \ \ \ b \ \ \ \ \ \ \ c \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
\end{array}
\end{array} \right), \emptyset, \emptyset \right\}, \left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 a \ \ \ \ \ \ \ b \ \ \ \ \ \ \ c \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
\end{array}
\end{array} \right), \emptyset, \emptyset \right\} \}$.

Therefore,

$$f(\mathcal{P}, \emptyset) = 1 + a \bar{\circ} [f(\mathcal{P}, \emptyset), f(\mathcal{P}, \emptyset)] + b \bar{\circ} [f(\mathcal{P}, \emptyset), f(\mathcal{P}, \emptyset)]$$

$$+ c \bar{\circ} \left[f \left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 a \ \ \ \ \ \ \ b \ \ \ \ \ \ \ c \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
\end{array}
\end{array} \right), f(\mathcal{P}, \emptyset), f \left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 a \ \ \ \ \ \ \ b \ \ \ \ \ \ \ c \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
\end{array}
\end{array} \right) \right]$$

$$+ c \bar{\circ} \left[f \left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 a \ \ \ \ \ \ \ b \ \ \ \ \ \ \ c \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
\end{array}
\end{array} \right), f(\mathcal{P}, \emptyset), f(\mathcal{P}, \emptyset) \right]$$

$$- c \bar{\circ} \left[f \left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 a \ \ \ \ \ \ \ b \ \ \ \ \ \ \ c \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
\end{array}
\end{array} \right), f(\mathcal{P}, \emptyset), f \left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 a \ \ \ \ \ \ \ b \ \ \ \ \ \ \ c \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
\end{array}
\end{array} \right) \right] \right].$$
Example: directed animals

Example

Let \(\mathcal{P} := \begin{cases} \text{a}, & \text{a}, \text{b}, \text{b}, \text{b} \end{cases} \).
Example: directed animals

Example

Let \(\mathcal{P} := \{ a, b, b, b, a, a \} \).

One has

\[
\begin{align*}
f(\mathcal{P}, \emptyset) & = 1 + a \bar{\delta} \left[f\left(\mathcal{P}, \{ a \} \right), f(\mathcal{P}, \emptyset) \right] \\
& + b \bar{\delta} \left[f\left(\mathcal{P}, \{ a \} \right), f\left(\mathcal{P}, \{ a, b \} \right) \right],
\end{align*}
\]
Example: directed animals

Let $\mathcal{P} := \{ \begin{array}{l}
a \overset{1}{\rightarrow} a, \\
a \overset{1}{\rightarrow} b, \\
b \overset{1}{\rightarrow} b, \\
b \overset{1}{\rightarrow} b \
\end{array} \}$. One has

$$f(\mathcal{P}, \emptyset) = 1 + a \overset{1}{\circ} \left[f \left(\mathcal{P}, \{ a \} \right), f(\mathcal{P}, \emptyset) \right]$$

$$+ b \overset{1}{\circ} \left[f(\mathcal{P}, \{ a \}), f \left(\mathcal{P}, \{ a, b \} \right) \right],$$

$$f \left(\mathcal{P}, \{ a \} \right) = 1 + b \overset{1}{\circ} \left[f \left(\mathcal{P}, \{ a \} \right), f \left(\mathcal{P}, \{ a, b \} \right) \right].$$
Example: directed animals

Example

Let \(\mathcal{P} := \left\{ \begin{array}{c} a, \\
\begin{array}{c} a \quad b \\
\hline
b \quad b \\
\end{array}
\end{array} \right\}. \)

One has

\[
f(\mathcal{P}, \emptyset) = 1 + a\bar{a} \left[f\left(\mathcal{P}, \left\{ \begin{array}{c} a \end{array} \right\} \right), f\left(\mathcal{P}, \emptyset\right) \right] \\
+ b\bar{b} \left[f\left(\mathcal{P}, \left\{ \begin{array}{c} a \end{array} \right\} \right), f\left(\mathcal{P}, \left\{ \begin{array}{c} a, b \\
\hline
b, b \\
\end{array} \right\} \right) \right],
\]

\[
f\left(\mathcal{P}, \left\{ \begin{array}{c} a \end{array} \right\} \right) = 1 + b\bar{b} \left[f\left(\mathcal{P}, \left\{ \begin{array}{c} a \end{array} \right\} \right), f\left(\mathcal{P}, \left\{ \begin{array}{c} a, b \\
\hline
b, b \\
\end{array} \right\} \right) \right],
\]

\[
f\left(\mathcal{P}, \left\{ \begin{array}{c} a, b \\
\hline
b, b \\
\end{array} \right\} \right) = 1 + b\bar{b} \left[f\left(\mathcal{P}, \left\{ \begin{array}{c} a \end{array} \right\} \right), f\left(\mathcal{P}, \left\{ \begin{array}{c} a, b, b \\
\hline
b, b, b \\
\end{array} \right\} \right) \right],
\]
Example: directed animals

Example

Let \(\mathcal{P} := \{ a, b, \overline{a}, \overline{b} \} \).

One has

\[
\begin{align*}
f(\mathcal{P}, \emptyset) &= 1 + a\overline{a} \left[f(\mathcal{P}, \{ a \}) , f(\mathcal{P}, \emptyset) \right] \\
&\quad + b\overline{b} \left[f(\mathcal{P}, \{ a \}) , f(\mathcal{P}, \{ a, b \}) \right], \\
f(\mathcal{P}, \{ a \}) &= 1 + b\overline{a} \left[f(\mathcal{P}, \{ a \}) , f(\mathcal{P}, \{ a, b \}) \right], \\
f(\mathcal{P}, \{ a, b \}) &= 1 + b\overline{a} \left[f(\mathcal{P}, \{ a \}) , f(\mathcal{P}, \{ a, b \}) \right], \\
f(\mathcal{P}, \{ a, \overline{b} \}) &= 1 \quad \text{(with \(a, \overline{b} \) swapped)}.
\end{align*}
\]
Example: directed animals

Example

By evaluating each member of the previous system, one obtains the system

\[\mathcal{G}_S(t) = t + \mathcal{G}_{S_1}(t) \mathcal{G}_S(t) + \mathcal{G}_{S_1}(t) \mathcal{G}_{S_2}(t), \]

\[\mathcal{G}_{S_1}(t) = t + \mathcal{G}_{S_1}(t) \mathcal{G}_{S_2}(t), \]

\[\mathcal{G}_{S_2}(t) = t + \mathcal{G}_{S_1}(t) \mathcal{G}_{S_3}(t), \]

\[\mathcal{G}_{S_3}(t) = t \]

for the generating series \(\mathcal{G}_S(t) \) of directed animals.

This leads to

\[t + (3t - 1) \mathcal{G}_S(t) + (3t - 1) \mathcal{G}_S(t)^2 = 0, \]

an algebraic equation satisfied by \(\mathcal{G}_S(t) \).
Some remarks

The previous result includes, as special cases:

- pattern avoidance of factors in words [Goulden, Jackson, 1979] when $G = G(1)$;
Some remarks

The previous result includes, as special cases:

- pattern avoidance of factors in words [Goulden, Jackson, 1979] when $\mathcal{G} = \mathcal{G}(1)$;

- pattern avoidance of edges in trees [Parker, 1993], [Loday, 2005] when \mathcal{P} contains only trees of degree 2;
Some remarks

The previous result includes, as special cases:

- pattern avoidance of factors in words [Goulden, Jackson, 1979] when \(G = G(1) \);

- pattern avoidance of edges in trees [Parker, 1993], [Loday, 2005] when \(P \) contains only trees of degree 2;

- pattern avoidance in binary trees [Rowland, 2010] when \(G = G(2) = \{a\} \).
Some remarks

The previous result includes, as special cases:

- pattern avoidance of factors in words [Goulden, Jackson, 1979] when $\mathcal{S} = \mathcal{G}(1)$;
- pattern avoidance of edges in trees [Parker, 1993], [Loday, 2005] when \mathcal{P} contains only trees of degree 2;
- pattern avoidance in binary trees [Rowland, 2010] when $\mathcal{S} = \mathcal{G}(2) = \{a\}$.

Other systems of equations have been described for enumerating trees avoiding patterns in [Khoroshkin, Piontkovski, 2012].
Computing admissible words

Given a \mathcal{G}-tree $t = a \circ [t_1, \ldots, t_k]$, let the element

$$\phi(t) := \sum_{i \in [k], t_i \neq \emptyset} \left(\emptyset, \ldots, \emptyset, \{t_i\}, \emptyset, \ldots, \emptyset \right)$$

of the free module $\mathbb{B} \left\langle \left(2^{\mathcal{F}(\mathcal{G})}\right)^k \right\rangle$ on the Boolean semiring \mathbb{B}.

Example

Let $P := \{ac, ab, acb, abc\}$. One has $e_P a = e_P b = (\emptyset, \emptyset)$ and $e_P c = (\{a\}, \emptyset, \emptyset) \oplus (\emptyset, \{a\}, \emptyset) \oplus (\emptyset, \emptyset, \{b\}) = (\{a\}, \emptyset, \emptyset) \oplus (\emptyset, \{a\}, \{b\}) \oplus (\emptyset, \emptyset, \{b\})$.

30 / 51
Computing admissible words

Given a G-tree $t = a \circ [t_1, \ldots, t_k]$, let the element

$$\phi(t) := \sum_{i \in [k], t_i \neq 1} \left(\emptyset, \ldots, \emptyset, \{t_i\}, \emptyset, \ldots, \emptyset \right)$$

of the free module $\mathbb{B} \left\langle \left(2^{F(G)}\right)^k \right\rangle$ on the Boolean semiring \mathbb{B}.

Let the linear combination

$$e_{\mathcal{P}_a} := \bigoplus_{t \in \mathcal{P}_a} \phi(t),$$

containing all \mathcal{P}_a-admissible words (and other \mathcal{P}_a-admissible words).
Computing admissible words

Given a \mathcal{G}-tree $t = a \circ [t_1, \ldots, t_k]$, let the element

$$\phi(t) := \sum_{i \in [k], \ t_i \neq 1} \left(\emptyset, \ldots, \emptyset, \{t_i\}, \emptyset, \ldots, \emptyset \right)$$

of the free module $\mathbb{B} \left\langle \left(2^\mathcal{F}(\mathcal{G})\right)^k \right\rangle$ on the Boolean semiring \mathbb{B}.

Let the linear combination

$$e_{\mathcal{P}_a} := \bigoplus_{t \in \mathcal{P}_a} \phi(t),$$

containing all \mathcal{P}_a-admissible words (and other \mathcal{P}_a-admissible words).

Example

Let $\mathcal{P} := \left\{ a \xrightarrow{c} a, \ a \xrightarrow{c} b \xrightarrow{b} b \right\}$. One has $e_{\mathcal{P}_a} = e_{\mathcal{P}_b} = (\emptyset, \emptyset)$.
Computing admissible words

Given a G-tree $t = a \circ [t_1, \ldots, t_k]$, let the element

$$
\phi(t) := \sum_{\substack{i \in [k] \\
i \neq 1}} \left(\emptyset, \ldots, \emptyset, \{t_i\}, \emptyset, \ldots, \emptyset \right)_{i-1, \ldots, k-i}
$$

of the free module $\mathbb{B} \left\langle \left(2^{F(G)} \right)^k \right\rangle$ on the Boolean semiring \mathbb{B}.

Let the linear combination

$$
e_{P_a} := \bigoplus_{t \in P_a} \phi(t),
$$

containing all P_a-admissible words (and other P_a-admissible words).

Example

Let $P := \left\{ \begin{array}{c} \begin{array}{c} a \circ c \circ \ \ \ \ a \circ c \circ b \circ b \end{array} \end{array} \right\}$. One has $e_{P_a} = e_{P_b} = (\emptyset, \emptyset)$ and

$$
e_{P_c} = \left(\left(\left\{ \frac{a}{a} \right\}, \emptyset, \emptyset \right) + \left(\emptyset, \frac{a}{a}, \emptyset \right) \right) \oplus \left(\left(\left\{ \frac{a}{a} \right\}, \emptyset, \emptyset \right) + \left(\emptyset, \frac{b}{b}, \emptyset \right) + \left(\emptyset, \emptyset, \frac{b}{b} \right) \right)
$$
Computing admissible words

Given a \(G \)-tree \(t = a \circ [t_1, \ldots, t_k] \), let the element

\[
\phi(t) := \sum_{i \in [k]} \left(\begin{array}{c}
\emptyset, \ldots, \emptyset, \{t_i\}, \emptyset, \ldots, \emptyset \\
\emptyset, \ldots, \emptyset, \{t_i\}, \emptyset, \ldots, \emptyset
\end{array} \right)
\]

of the free module \(B \left\langle (2^F(G))^k \right\rangle \) on the Boolean semiring \(B \).

Let the linear combination

\[
e_{P_a} := \bigoplus_{t \in P_a} \phi(t),
\]

containing all \(P_a \)-admissible words (and other \(P_a \)-admissible words).

Example

Let \(P := \left\{ \begin{array}{c}
\begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ c
\end{array},
\begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ c \\
\circlearrowright \ b \\
\circlearrowright \ b
\end{array}
\end{array} \right\} \). One has \(e_{P_a} = e_{P_b} = (\emptyset, \emptyset) \) and

\[
e_{P_c} = \left(\left(\left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \emptyset, \emptyset \right) + \left(\emptyset, \left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \emptyset \right) \right) \oplus \left(\left(\left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \emptyset, \emptyset \right) + \left(\emptyset, \left\{ \begin{array}{c}
\circlearrowright \ b \\
\circlearrowright \ b
\end{array} \right\}, \emptyset \right) + \left(\emptyset, \emptyset, \left\{ \begin{array}{c}
\circlearrowright \ b \\
\circlearrowright \ b
\end{array} \right\} \right) \right)
\]

\[
= \left(\left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \emptyset, \emptyset \right) + \left(\left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \left\{ \begin{array}{c}
\circlearrowright \ b \\
\circlearrowright \ b
\end{array} \right\}, \emptyset \right) + \left(\left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \emptyset, \left\{ \begin{array}{c}
\circlearrowright \ b \\
\circlearrowright \ b
\end{array} \right\} \right)
\]

\[
+ \left(\left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \emptyset, \emptyset \right) + \left(\emptyset, \left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \emptyset \right) + \left(\emptyset, \left\{ \begin{array}{c}
\circlearrowright \ a \\
\circlearrowright \ a
\end{array} \right\}, \left\{ \begin{array}{c}
\circlearrowright \ b \\
\circlearrowright \ b
\end{array} \right\} \right) \right) .
\]
Outline

Operads and enumeration
Operators

An operator is an entity having \(n \geq 1 \) inputs and a single output:

\[
\begin{array}{c}
\text{x} \\
\downarrow \\
1 \quad \cdots \quad n
\end{array}
\]

Its arity is its number \(n \) of inputs.
Operators

An operator is an entity having $n \geq 1$ inputs and a single output:

Its arity is its number n of inputs.

Composing two operators x and y consists in

1. selecting an input of x specified by its position i;
2. grafting the output of y onto this input.
Operators

An operator is an entity having \(n \geq 1 \) inputs and a single output:

\[
x = \overbrace{x_1 \cdots x_n}^{1 \cdots n}.
\]

Its arity is its number \(n \) of inputs.

Composing two operators \(x \) and \(y \) consists in

1. selecting an input of \(x \) specified by its position \(i \);
2. grafting the output of \(y \) onto this input.

This produces a new operator \(x \circ_i y \) of arity \(n + m - 1 \):

\[
x \circ_i y = \overbrace{x_1 \cdots x_i \cdots x_n}^{1 \cdots i \cdots n} \circ_i \overbrace{y_1 \cdots y_m}^{1 \cdots m} = \overbrace{x_1 \cdots y_i \cdots x_n}^{1 \cdots i \cdots n + m - 1}.
\]
Operads

Operads are algebraic structures formalizing the notion of operators and their composition.
Operads

Operads are algebraic structures formalizing the notion of operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple \((\mathcal{O}, \circ_i, 1)\) where

1. \(\mathcal{O}\) is a graded set

\[
\mathcal{O} := \bigsqcup_{n \geq 1} \mathcal{O}(n);
\]
Operads

Operads are algebraic structures formalizing the notion of operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple \((\mathcal{O}, \circ_i, 1)\) where

1. \(\mathcal{O}\) is a graded set

\[
\mathcal{O} := \bigsqcup_{n \geq 1} \mathcal{O}(n);
\]

2. \(\circ_i\) is a map, called partial composition map,

\[
\circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n + m - 1), \quad 1 \leq i \leq n, \ 1 \leq m;
\]
Operads

Operads are algebraic structures formalizing the notion of operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple \((O, \circ_i, 1)\) where

1. \(O\) is a graded set
 \[O := \bigsqcup_{n \geq 1} O(n); \]

2. \(\circ_i\) is a map, called partial composition map,
 \[\circ_i : O(n) \times O(m) \to O(n + m - 1), \quad 1 \leq i \leq n, \quad 1 \leq m; \]

3. \(1\) is an element of \(O(1)\) called unit.
Operads

Operads are algebraic structures formalizing the notion of operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple \((\mathcal{O}, \circ_i, 1)\) where

1. \(\mathcal{O}\) is a graded set
 \[
 \mathcal{O} := \bigsqcup_{n \geq 1} \mathcal{O}(n);
 \]

2. \(\circ_i\) is a map, called partial composition map,
 \[
 \circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n + m - 1), \quad 1 \leq i \leq n, \quad 1 \leq m;
 \]

3. \(1\) is an element of \(\mathcal{O}(1)\) called unit.

This data has to satisfy some axioms.
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]
Operad axioms

Associativity:

\[(x \circ_i y)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]
Operad axioms

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z$$

$1 \leq i \leq |x|, 1 \leq j \leq |y|$$
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = (y \circ_j z)\]

1 \leq i \leq |x|, 1 \leq j \leq |y|

Commutativity:

\[(x \circ_{i+j} y) \circ_{|i|} z = (y \circ_{|j|} z) \circ_{i+j} x\]

1 \leq i < j \leq |x|

Unitality:

1 \circ_i 1 \circ x = x = x \circ_i 1

1 \leq i \leq |x|
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z \sim x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]
\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]
\[1 \leq i < j \leq |x|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y)\]

\[1 \leq i < j \leq |x|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z\]

\[1 \leq i < j \leq |x|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z)\]

\[1 \leq i < j \leq |x|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]

\[1 \leq i < j \leq |x|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]

\[1 \leq i < j \leq |x|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]

\[1 \leq i < j \leq |x|\]

Unitality:

\[1 \circ_1 x = x = x \circ_i 1\]

\[1 \leq i \leq |x|\]
Operad axioms

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$1 \leq i \leq |x|, 1 \leq j \leq |y|$

Commutativity:

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$

$1 \leq i < j \leq |x|$

Unitality:

$$1 \circ_1 x = x \circ_i 1 = x$$

$1 \leq i \leq |x|$
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]

\[1 \leq i < j \leq |x|\]

Unitality:

\[1 \circ_1 x = x\]

\[1 \leq i \leq |x|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]

\[1 \leq i < j \leq |x|\]

Unitality:

\[1 \circ_1 x = x = x \circ_i 1\]

\[1 \leq i \leq |x|\]
Operad axioms

Associativity:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

Commutativity:

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]

\[1 \leq i < j \leq |x|\]

Unitality:

\[1 \circ_1 x = x = x \circ_i 1\]

\[1 \leq i \leq |x|\]
Free operads

Let \mathcal{G} be a set of letters.
Free operads

Let \mathcal{G} be a set of letters.

The free operad on \mathcal{G} is the operad $F(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
Free operads

Let \mathcal{G} be a set of letters.

The free operad on \mathcal{G} is the operad $F(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
- the partial composition map \circ_i is the one of the \mathcal{G}-trees;
Free operads

Let \mathcal{G} be a set of letters.

The free operad on \mathcal{G} is the operad $F(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
- the partial composition map \circ_i is the one of the \mathcal{G}-trees;
- the unit is 1.

Free operads

Let \mathcal{G} be a set of letters.

The free operad on \mathcal{G} is the operad $\mathbf{F}(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
- the partial composition map \circ_i is the one of the \mathcal{G}-trees;
- the unit is 1.

Let $c : \mathcal{G} \to \mathbf{F}(\mathcal{G})$ be the natural injection (made implicit in the sequel).
Free operads

Let \mathcal{G} be a set of letters.

The free operad on \mathcal{G} is the operad $F(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
- the partial composition map \circ_i is the one of the \mathcal{G}-trees;
- the unit is 1.

Let $c : \mathcal{G} \rightarrow F(\mathcal{G})$ be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any set \mathcal{G} of letters, any operad \mathcal{O}, and any map $f : \mathcal{G} \rightarrow \mathcal{O}$ respecting the arities, there exists a unique operad morphism $\phi : F(\mathcal{G}) \rightarrow \mathcal{O}$ such that $f = \phi \circ c$.
An operad on paths

Let Paths be the operad wherein:

- $\text{Paths}(n)$ is the set of all paths with n points, that are words $u_1 \ldots u_n$ of elements of \mathbb{N}.

Example

is the path 121232100112 of arity 13.
An operad on paths

Let *Paths* be the operad wherein:

- *Paths*(\(n\)) is the set of all *paths* with \(n\) points, that are words \(u_1 \ldots u_n\) of elements of \(\mathbb{N}\).

Example

is the path 121232100112 of arity 13.

- The partial composition \(u \circ_i v\) is computed by replacing the \(i\)th point of \(u\) by a copy of \(v\).

Example

\[
\begin{align*}
011232101 \circ_4 11224 &= 0113344632101
\end{align*}
\]
An operad on paths

Let \textbf{Paths} be the operad wherein:

- \textbf{Paths}(n) is the set of all paths with \(n \) points, that are words \(u_1 \ldots u_n \) of elements of \(\mathbb{N} \).

Example

The partial composition \(u \circ_i v \) is computed by replacing the \(i \)th point of \(u \) by a copy of \(v \).

Example

The unit is the path 0, depicted as \(\circ \), having arity 1.
Suboperad on m-Dyck paths

Let for any $m \geq 0$ the suboperad $m\text{Dyck}$ of Paths generated by $\mathcal{G}_{m\text{Dyck}} := \mathcal{G}_{m\text{Dyck}}(m+2) := \{g_m\}$ where

$$g_m := 0 \ m \ (m-1) \ \ldots \ 1 \ 0 = \begin{array}{ccccccc}
0 & & & & & m \\
& & & & & & \\
& & & & & m+1
\end{array}.$$
Suboperad on m-Dyck paths

Let for any $m \geq 0$ the suboperad $m\text{Dyck}$ of Paths generated by $\mathcal{G}_{m\text{Dyck}} := \mathcal{G}_{m\text{Dyck}}(m + 2) := \{g_m\}$ where

$$g_m := 0 m (m - 1) \ldots 1 0 = \begin{array}{c}
\end{array}.$$

Example

The elements of 2Dyck are, by definition, the paths obtained by composing g_m with itself.

- $\text{2Dyck}(1) = \{ \circ \};$
- $\text{2Dyck}(2) = \text{2Dyck}(3) = \emptyset;$
- $\text{2Dyck}(4) = \{ \begin{array}{c}
\end{array} \};$
- $\text{2Dyck}(5) = \text{2Dyck}(6) = \emptyset;$
- $\text{2Dyck}(7) = \{ \begin{array}{c}
\end{array} \};$
- $\text{2Dyck}(8) = \text{2Dyck}(9) = \emptyset.$
Suboperad on m-Dyck paths

Let for any $m \geq 0$ the suboperad $m\text{Dyck}$ of Paths generated by $\mathcal{G}_{m\text{Dyck}} := \mathcal{G}_{m\text{Dyck}}(m + 2) := \{g_m\}$ where

$$g_m := 0 \ m \ (m - 1) \ \ldots \ 1 \ 0.$$

Example

The elements of 2Dyck are, by definition, the paths obtained by composing g_m with itself.

- $2\text{Dyck}(1) = \{\circ\};$
- $2\text{Dyck}(2) = 2\text{Dyck}(3) = \emptyset;$
- $2\text{Dyck}(4) = \{\text{\begin{tikzpicture}[scale=0.7, baseline=-0.5ex]
 \draw (0,0) -- (1,1);
 \draw (1,0) -- (0,1);
 \end{tikzpicture}}\};$
- $2\text{Dyck}(5) = 2\text{Dyck}(6) = \emptyset;$
- $2\text{Dyck}(7) = \{\text{\begin{tikzpicture}[scale=0.7, baseline=-0.5ex]
 \draw (0,0) -- (1,1);
 \draw (1,0) -- (0,1);
 \draw (0,1) -- (1,0);
 \end{tikzpicture}}, \text{\begin{tikzpicture}[scale=0.7, baseline=-0.5ex]
 \draw (0,0) -- (1,1);
 \draw (1,0) -- (0,1);
 \draw (0,1) -- (0,0);
 \end{tikzpicture}}, \text{\begin{tikzpicture}[scale=0.7, baseline=-0.5ex]
 \draw (0,0) -- (1,1);
 \draw (1,0) -- (0,1);
 \draw (0,0) -- (1,0);
 \end{tikzpicture}}\};$
- $2\text{Dyck}(8) = 2\text{Dyck}(9) = \emptyset.$

Proposition

For any $m \geq 0$ and $n \geq 1$, $m\text{Dyck}(n)$ is the set of all m-Dyck paths of length $n - 1$.
Presentations

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathcal{G}, \equiv) where
Presentations

Let \mathcal{O} be an operad.

A **presentation** of \mathcal{O} is a pair (\mathcal{G}, \equiv) where

- \mathcal{G} is a set of letters, called **generating set**;
Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathcal{G}, \equiv) where

- \mathcal{G} is a set of letters, called generating set;
- \equiv is an operad congruence of $F(\mathcal{G})$, that is an equivalence relation on the \mathcal{G}-trees such that if $t \equiv t'$ and $s \equiv s'$, then $t \circ_i s \equiv t' \circ_i s'$;
Presentations

Let \(\mathcal{O} \) be an operad.

A presentation of \(\mathcal{O} \) is a pair \((\mathcal{G}, \equiv)\) where

- \(\mathcal{G} \) is a set of letters, called generating set;
- \(\equiv \) is an operad congruence of \(F(\mathcal{G}) \), that is an equivalence relation on the \(\mathcal{G} \)-trees such that if \(t \equiv t' \) and \(s \equiv s' \), then \(t \circ_i s \equiv t' \circ_i s' \);

such that

\[
\mathcal{O} \simeq F(\mathcal{G})/\equiv.
\]
Presentations

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathcal{G}, \equiv) where

- \mathcal{G} is a set of letters, called generating set;
- \equiv is an operad congruence of $\mathcal{F}(\mathcal{G})$, that is an equivalence relation on the \mathcal{G}-trees such that if $t \equiv t'$ and $s \equiv s'$, then $t \circ_i s \equiv t' \circ_i s'$;

such that

$$\mathcal{O} \simeq \mathcal{F}(\mathcal{G})/\equiv.$$

The presentation (\mathcal{G}, \equiv) is

- binary when $\mathcal{G} = \mathcal{G}(2)$;
Presentations

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathcal{G}, \equiv) where

- \mathcal{G} is a set of letters, called generating set;
- \equiv is an operad congruence of $F(\mathcal{G})$, that is an equivalence relation on the \mathcal{G}-trees such that if $t \equiv t'$ and $s \equiv s'$, then $t \circ_i s \equiv t' \circ_i s'$;

such that

$\mathcal{O} \simeq F(\mathcal{G})/\equiv$.

The presentation (\mathcal{G}, \equiv) is

- binary when $\mathcal{G} = \mathcal{G}(2)$;
- quadratic when \equiv is generated as an operad congruence by an equivalence relation on trees concentrated in degree 2.
Presentation of $m\text{Dyck}$

To find a presentation of $m\text{Dyck}$, we list all the nontrivial relations made of expressions involving the generator g_m and the o_i. We find for instance in 2Dyck,

\[
g_2 \circ_1 g_2 = g_2 \circ_4 g_2
\]

\[
\begin{array}{c}
\circ_1 \\
\circ_2 \\
\end{array}
\]

\[
\begin{array}{c}
\circ_4 \\
\circ_2 \\
\end{array}
\]

Proposition

For any $m \geq 0$, $m\text{Dyck}$ admits the presentation $(G_m\text{Dyck}, \equiv m\text{Dyck})$ where $G_m\text{Dyck} := \{g_m\}$ and $\equiv m\text{Dyck}$ is the smallest congruence of $F(G_m\text{Dyck})$ satisfying

\[
g_m \circ_1 g_m \equiv m\text{Dyck} g_m \circ_m + 2 g_m
\]

This says that all relations in higher degrees are consequence of this single one and the operad axioms.
Presentation of $m\text{Dyck}$

To find a presentation of $m\text{Dyck}$, we list all the nontrivial relations made of expressions involving the generator g_m and the \circ_i. We find for instance in 2Dyck,

$$g_2 \circ_1 g_2 = g_2 \circ_4 g_2$$

Proposition

For any $m \geq 0$, $m\text{Dyck}$ admits the presentation $(\mathcal{G}_{m\text{Dyck}}, \equiv_{m\text{Dyck}})$ where

$$\mathcal{G}_{m\text{Dyck}} := \{g_m\}$$

and $\equiv_{m\text{Dyck}}$ is the smallest congruence of $F(\mathcal{G}_{m\text{Dyck}})$ satisfying

$$g_m \circ_1 g_m \equiv_{m\text{Dyck}} g_m \circ_{m+2} g_m.$$
Presentation of mDyck

To find a presentation of mDyck, we list all the nontrivial relations made of expressions involving the generator g_m and the \circ_i. We find for instance in 2Dyck,

$$g_2 \circ_1 g_2 = g_2 \circ_4 g_2$$

Proposition

For any $m \geq 0$, mDyck admits the presentation $(\mathcal{G}_mDyck, \equiv_{mDyck})$ where

$$\mathcal{G}_{mDyck} := \{g_m\}$$

and \equiv_{mDyck} is the smallest congruence of $F(\mathcal{G}_{mDyck})$ satisfying

$$g_m \circ_1 g_m \equiv_{mDyck} g_m \circ_{m+2} g_m.$$

This says that all relations in higher degrees are consequence of this single one and the operad axioms.
An operad on Motzkin paths

Let \textbf{Motz} be an operad wherein:

- $\textbf{Motz}(n)$ is the set of all Motzkin paths with n points.

Example

[Diagram of a Motzkin path]

is a Motzkin path of arity 16.
An operad on Motzkin paths

Let \textbf{Motz} be an operad wherein:

- $\textbf{Motz}(n)$ is the set of all Motzkin paths with n points.

Example

$\text{Motz}(16)$ is a Motzkin path of arity 16.

- The partial composition in \textbf{Motz} is the one of \textbf{Paths}.

Example

$\circ_{4} = \text{Motz}(16)$
An operad on Motzkin paths

Let \textbf{Motz} be an operad wherein:

▶ $\textbf{Motz}(n)$ is the set of all Motzkin paths with n points.

Example

![Motzkin path example]

is a Motzkin path of arity 16.

▶ The partial composition in \textbf{Motz} is the one of \textbf{Paths}.

Example

![Partial composition example]

▶ The unit is $\textcircled{0}$.
<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motz is a suboperad of Paths.</td>
</tr>
</tbody>
</table>
Properties of \textit{Motz}

\begin{proposition}
\textbf{Motz} is a suboperad of \textbf{Paths}.
\end{proposition}

\begin{proposition}
The operad \textbf{Motz} admits the presentation \((\mathcal{G}_{\text{Motz}}, \equiv_{\text{Motz}})\) where

\[\mathcal{G}_{\text{Motz}} := \{\begin{array}{c}
- \\
- \\
\end{array}, \quad \begin{array}{c}
- \\
- \\
\end{array}\}\]

and \(\equiv\) is the smallest operad congruence satisfying

\[\begin{array}{c}
\begin{array}{c}
- \\
- \\
\end{array} \equiv_{\text{Motz}} \begin{array}{c}
- \\
- \\
\end{array},
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
- \\
- \\
\end{array} \equiv_{\text{Motz}} \begin{array}{c}
- \\
- \\
\end{array},
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
- \\
- \\
\end{array} \equiv_{\text{Motz}} \begin{array}{c}
- \\
- \\
\end{array},
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
- \\
- \\
\end{array} \equiv_{\text{Motz}} \begin{array}{c}
- \\
- \\
\end{array}.
\end{array}\]
Let \mathcal{O} be an operad with presentation (\mathcal{G}, \equiv).

Poincaré-Birkhoff-Witt bases
Let \(\mathcal{O} \) be an operad with presentation \((\mathcal{G}, \equiv)\).

A Poincaré-Birkhoff-Witt basis (PBW basis) of \(\mathcal{O} \) w.r.t. \((\mathcal{G}, \equiv)\) is a set \(B \) of \(\mathcal{G} \)-trees such that for each \([t]_\equiv \in F(\mathcal{G})/\equiv\), there exists a unique \(s \in B \) such that \(s \in [t]_\equiv\).
Let \mathcal{O} be an operad with presentation (\mathcal{G}, \equiv).

A Poincaré-Birkhoff-Witt basis (PBW basis) of \mathcal{O} w.r.t. (\mathcal{G}, \equiv) is a set B of \mathcal{G}-trees such that for each $[t] \equiv \in F(\mathcal{G})/\equiv$, there exists a unique $s \in B$ such that $s \in [t] \equiv$.

Proposition

Let \mathcal{O} be an operad admitting a presentation (\mathcal{G}, \equiv). If

1. \rightarrow is a rewrite rule on $F(\mathcal{G})$ generating \equiv as an operad congruence;
2. the rewrite relation \Rightarrow induced by \rightarrow is terminating and confluent;

then the set of the normal forms for \Rightarrow is a PBW basis of \mathcal{O}.
Let \mathcal{O} be an operad with presentation (\mathcal{G}, \equiv).

A Poincaré-Birkhoff-Witt basis (PBW basis) of \mathcal{O} w.r.t. (\mathcal{G}, \equiv) is a set B of \mathcal{G}-trees such that for each $[t]_\equiv \in F(\mathcal{G})/\equiv$, there exists a unique $s \in B$ such that $s \in [t]_\equiv$.

Proposition

Let \mathcal{O} be an operad admitting a presentation (\mathcal{G}, \equiv). If

1. \rightarrow is a rewrite rule on $F(\mathcal{G})$ generating \equiv as an operad congruence;
2. the rewrite relation \Rightarrow induced by \rightarrow is terminating and confluent;

then the set of the normal forms for \Rightarrow is a PBW basis of \mathcal{O}.

Such a PBW basis of \mathcal{O} can be described as the set of the trees avoiding the trees appearing as left members for \rightarrow.

Poincaré-Birkhoff-Witt bases
PBW basis of Motz

Let \rightarrow be the rewrite rule on $\mathbf{F}(\mathcal{G}_{Motz})$ defined by

$\circ\circ\circ_1 \circ\circ \rightarrow \circ\circ\circ_2 \circ\circ,$

$\circ\circ\circ_1 \circ\circ \rightarrow \circ\circ\circ_3 \circ\circ,$

$\circ\circ\circ_1 \circ\circ \rightarrow \circ\circ\circ_2 \circ\circ,$

$\circ\circ\circ_1 \circ\circ \rightarrow \circ\circ\circ_3 \circ\circ.$

This rewrite rule can be seen as an orientation of \equiv_{Motz}.
PBW basis of Motz

Let → be the rewrite rule on $F(\mathcal{G}_{\text{Motz}})$ defined by

\[
\begin{align*}
\circ \circ \circ \circ_1 \circ \circ & \rightarrow \circ \circ \circ \circ \circ_2, \\
\circ \circ \circ \circ_1 \circ \circ & \rightarrow \circ \circ \circ \circ \circ_2, \\
\circ \circ \circ \circ \circ_1 \circ \circ & \rightarrow \circ \circ \circ \circ \circ \circ_3, \\
\circ \circ \circ \circ \circ_1 \circ \circ & \rightarrow \circ \circ \circ \circ \circ \circ_3.
\end{align*}
\]

This rewrite rule can be seen as an orientation of \equiv_{Motz}.

The induced rewrite relation \Rightarrow is terminating, confluent, and its normal forms are in one-to-one correspondence with Motzkin paths.
PBW basis of Motz

Let \(\to \) be the rewrite rule on \(\mathbb{F}(\mathcal{G}_{\text{Motz}}) \) defined by

\[
\begin{align*}
\bullet \bullet \circ_1 \bullet \bullet & \to \bullet \bullet \circ_2 \bullet \bullet, \\
\bullet \circ_1 \bullet \bullet & \to \bullet \circ_2 \bullet \bullet, \\
\circ_1 \circ \bullet & \to \circ_2 \bullet \bullet, \\
\circ_1 \circ \bullet & \to \circ_2 \circ \bullet \bullet.
\end{align*}
\]

This rewrite rule can be seen as an orientation of \(\equiv_{\text{Motz}} \).

The induced rewrite relation \(\Rightarrow \) is terminating, confluent, and its normal forms are in one-to-one correspondence with Motzkin paths.

Example

A normal form for \(\Rightarrow \) and the Motzkin path in correspondence with it:
An operad on cyclic paths

For any \(\ell \geq 1 \), let \(\ell \text{CPaths} \) be the operad wherein:

- \(\ell \text{CPaths}(n) \) is the set of all paths with \(n \) points having height smaller than \(\ell \), that are words \(u_1 \ldots u_n \) of elements of \(\{0, \ldots, \ell - 1\} \).

Example

3 = 0	is the path 1212202100112 of 3CPaths.
2	
1	
0	
An operad on cyclic paths

For any $\ell \geq 1$, let ℓCPaths be the operad wherein:

- $\ell \text{CPaths}(n)$ is the set of all paths with n points having height smaller than ℓ, that are words $u_1 \ldots u_n$ of elements of $\{0, \ldots, \ell - 1\}$.

Example

\[3 = 0 \]

\[\begin{array}{c}
\text{is the path 1212202100112 of 3CPaths.}
\end{array} \]

- The partial composition $u \circ_i v$ is computed by replacing the ith point of u by a copy of v, and by fitting the obtained path on the cylinder.

Example

In 3CPaths,

\[011202101 \circ_4 10221 = 011(32443)_{3}02101 = 0110211002101 \]
An operad on cyclic paths

For any $\ell \geq 1$, let ℓCPaths be the operad wherein:

- $\ell \text{CPaths}(n)$ is the set of all paths with n points having height smaller than ℓ, that are words $u_1 \ldots u_n$ of elements of $\{0, \ldots, \ell - 1\}$.

Example

$3 = 0$ is the path 1212202100112 of 3CPaths.

- The partial composition $u \circ_i v$ is computed by replacing the ith point of u by a copy of v, and by fitting the obtained path on the cylinder.

Example

In 3CPaths,

$011202101 \circ_4 10221 = 011(32443)\%_3 02101 = 0110211002101$

- The unit is \circ.
A suboperad on directed animals

Let \mathbf{DA} be the suboperad of $3\mathbf{CPaths}$ generated by

$$\mathcal{G}_{DA} := \{ \begin{array}{c} \begin{tikzpicture}[baseline=-0.65ex]
\draw[->] (0,0) -- (1,0);
\draw[->] (1,0) -- (2,0);
\end{tikzpicture} \\
\begin{tikzpicture}[baseline=-0.65ex]
\draw[->] (0,0) -- (1,0);
\draw[->] (0,0) -- (0,1);
\end{tikzpicture} \end{array} \}.$$
A suboperad on directed animals

Let \(\mathbf{DA} \) be the suboperad of \(\mathcal{3CPaths} \) generated by

\[
\mathcal{G}_{\mathbf{DA}} := \left\{ \begin{array}{c}
\end{array} \right\}.
\]

Example

The elements of \(\mathbf{DA}(4) \) are

\[
\begin{array}{c}
\end{array}.
\]
A suboperad on directed animals

Let \mathbf{DA} be the suboperad of $3\mathbf{CPaths}$ generated by

$$\mathbf{G}_{\mathbf{DA}} := \{\text{, }\}.$$

Example

The elements of $\mathbf{DA}(4)$ are

$$\text{, , , , , , , , , , , , , , , , , , .}$$

Proposition

For any $n \geq 1$, $\mathbf{DA}(n)$ is in one-to-one correspondence with the set of directed animals of size n.
Presentation and PBW basis of DA

Proposition

DA admits the presentation \((\mathcal{G}_{DA}, \equiv)\) where \(\equiv_{DA}\) is the smallest congruence of \(F(\mathcal{G}_{DA})\) satisfying

\[
\begin{align*}
\circ_1 \equiv_{DA} \circ_2, \\
\circ_1 \equiv_{DA} \circ_2, \\
\circ_1 \equiv_{DA} \circ_2
\end{align*}
\]

\[
\left(\begin{array}{c}
\circ_1 \\
\circ_2
\end{array}\right) \equiv_{DA} \left(\begin{array}{c}
\circ_2 \\
\circ_3
\end{array}\right)
\]
Proposition

DA admits the presentation \((\mathcal{G}_{\text{DA}}, \equiv)\) where \(\equiv_{\text{DA}}\) is the smallest congruence of \(F(\mathcal{G}_{\text{DA}})\) satisfying

\[
\begin{align*}
&\circ_1 \equiv_{\text{DA}} \circ_2, \quad \circ_1 \equiv_{\text{DA}} \circ_2, \quad \circ_1 \equiv_{\text{DA}} \circ_2, \\
&\left(\circ_1 \circ_2\right) \circ_3 \equiv_{\text{DA}} \left(\circ_2 \circ_3\right) \circ_2.
\end{align*}
\]

Let \(\rightarrow\) be the orientation of \(\equiv_{\text{DA}}\) satisfying

\[
\begin{align*}
&\circ_1 \rightarrow \circ_2, \quad \circ_1 \rightarrow \circ_2, \quad \circ_2 \rightarrow \circ_1, \\
&\left(\circ_2 \circ_3\right) \circ_3 \rightarrow \left(\circ_1 \circ_2\right) \circ_2.
\end{align*}
\]
Proposition

DA admits the presentation \((\mathcal{G}_{\text{DA}}, \equiv)\) where \(\equiv_{\text{DA}}\) is the smallest congruence of \(F(\mathcal{G}_{\text{DA}})\) satisfying

\[
\begin{align*}
\circ_1 & \equiv_{\text{DA}} \circ_2, \\
\circ_1 & \equiv_{\text{DA}} \circ_2, \\
\circ_1 & \equiv_{\text{DA}} \circ_2,
\end{align*}
\]

\[
\left(\begin{array}{c} \circ_1 \\ \circ_2 \end{array} \right) \circ_2 \equiv_{\text{DA}} \left(\begin{array}{c} \circ_2 \\ \circ_3 \end{array} \right) \circ_3.
\]

Let \(\rightarrow\) be the orientation of \(\equiv_{\text{DA}}\) satisfying

\[
\begin{align*}
\circ_1 & \rightarrow \circ_2, \\
\circ_1 & \rightarrow \circ_2, \\
\circ_2 & \rightarrow \circ_1,
\end{align*}
\]

\[
\left(\begin{array}{c} \circ_2 \\ \circ_3 \end{array} \right) \rightarrow \left(\begin{array}{c} \circ_1 \\ \circ_2 \end{array} \right) \rightarrow \circ_2.
\]

The rewrite relation \(\Rightarrow\) induced by \(\rightarrow\) is terminating and confluent. The \(\mathcal{G}_{\text{DA}}\)-trees avoiding the left members of \(\rightarrow\) form a PBW basis of \(\text{DA}\).
Dimensions:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paths</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>0Dyck</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1Dyck</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>2Dyck</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Motz</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>21</td>
<td>51</td>
<td>127</td>
<td>323</td>
<td>835</td>
</tr>
<tr>
<td>2CPaths</td>
<td></td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td>3CPaths</td>
<td></td>
<td>3</td>
<td>9</td>
<td>27</td>
<td>81</td>
<td>243</td>
<td>729</td>
<td>2187</td>
<td>6561</td>
<td>19683</td>
<td>59049</td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>13</td>
<td>35</td>
<td>96</td>
<td>267</td>
<td>750</td>
<td>2123</td>
<td>6046</td>
</tr>
</tbody>
</table>
Application to enumeration

Let S be a combinatorial set we are searching a generating series.
Let S be a combinatorial set we are searching a generating series.

Then, we successively

1. endow S with an operad structure O;
Application to enumeration

Let S be a combinatorial set we are searching a generating series.

Then, we successively

1. endow S with an operad structure O;
2. establish a presentation $(G, ≡)$ of O;

Finally, $\text{ev}(f(P))$ is the Hilbert series of O and the generating series of S.
Application to enumeration

Let S be a combinatorial set we are searching a generating series.

Then, we successively

1. endow S with an operad structure O;

2. establish a presentation (\mathcal{G}, \equiv) of O;

3. deduce a PBW of O w.r.t. (\mathcal{G}, \equiv), described as the trees avoiding a certain set \mathcal{P} of patterns;

Finally, $\text{ev}(f(P))$ is the Hilbert series of O and the generating series of S.
Application to enumeration

Let \(S \) be a combinatorial set we are searching a generating series.

Then, we successively

1. endow \(S \) with an operad structure \(O \);
2. establish a presentation \((\mathcal{G}, \equiv)\) of \(O \);
3. deduce a PBW of \(O \) w.r.t. \((\mathcal{G}, \equiv)\), described as the trees avoiding a certain set \(\mathcal{P} \) of patterns;
4. compute \(f(\mathcal{P}) \) by using tree series and their operations.
Application to enumeration

Let S be a combinatorial set we are searching a generating series.

Then, we successively

1. endow S with an operad structure O;
2. establish a presentation (\mathcal{G}, \equiv) of O;
3. deduce a PBW of O w.r.t. (\mathcal{G}, \equiv), described as the trees avoiding a certain set \mathcal{P} of patterns;
4. compute $f(\mathcal{P})$ by using tree series and their operations.

Finally, $\text{ev}(f(\mathcal{P}))$ is the Hilbert series of O and the generating series of S.
Hilbert series of $m\text{Dyck}$

The set \mathcal{B} of the $G_{m\text{Dyck}}$-trees avoiding

$$\mathcal{P} := \{ g_m \circ_1 g_m \}$$

is a PBW basis of $m\text{Dyck}$.

The characteristic series of \mathcal{B} is $f(\mathcal{P}, \emptyset)$ where

$$f(\mathcal{P}, \emptyset) = 1 + g_m \overline{o} \left[f(\mathcal{P}, \{ g_m \}), f(\mathcal{P}, \emptyset), \ldots, f(\mathcal{P}, \emptyset) \right]_{m+1},$$

$$f(\mathcal{P}, \{ g_m \}) = 1.$$

By setting $\mathcal{H}(t) := \text{ev}(f(\mathcal{P}, \emptyset))$, the Hilbert series $\mathcal{H}(t)$ of $m\text{Dyck}$ satisfies

$$t - \mathcal{H}(t) + t\mathcal{H}(t)^{m+1} = 0.$$
Hilbert series of Motz

The set \mathcal{B} of the $\mathcal{G}_{\text{Motz}}$-trees avoiding

$$\mathcal{P} := \{ \text{\includegraphics{tree1}}, \text{\includegraphics{tree2}}, \text{\includegraphics{tree3}}, \text{\includegraphics{tree4}} \}$$

is a PBW basis of Motz.

The characteristic series of \mathcal{B} is $f(\mathcal{P}, \emptyset)$ where

$$f(\mathcal{P}, \emptyset) = 1 + \text{\includegraphics{tree5}} \left[f(\mathcal{P}, \{ \text{\includegraphics{tree6}}, \text{\includegraphics{tree7}} \}) , f(\mathcal{P}, \emptyset) \right]$$

$$+ \text{\includegraphics{tree8}} \left[f(\mathcal{P}, \{ \text{\includegraphics{tree9}}, \text{\includegraphics{tree10}} \}) , f(\mathcal{P}, \emptyset) , f(\mathcal{P}, \emptyset) \right]$$

$$f(\mathcal{P}, \{ \text{\includegraphics{tree11}}, \text{\includegraphics{tree12}} \}) = 1.$$

By setting $\mathcal{H}(t) := \text{ev}(f(\mathcal{P}, \emptyset))$, the Hilbert series $\mathcal{H}(t)$ of Motz satisfies

$$t - (t - 1)\mathcal{H}(t) + t\mathcal{H}(t)^2 = 0.$$
Hilbert series of DA

The set \mathcal{B} of the \mathcal{G}_{DA}-trees avoiding $\mathcal{P} := \{ \circ_1 \circ_1 \circ_0, \circ_1 \circ_2 \circ_0, (\circ_2 \circ_0 \circ_0) \circ_3 \circ_0 \}$ is a PBW basis of DA.

The characteristic series of \mathcal{B} is $f(\mathcal{P}, \emptyset)$ where

$$f(\mathcal{P}, \emptyset) = 1 + \overline{\circ} \left[f(\mathcal{P}, \{ \circ_1 \circ_1 \circ_0 \}) + f(\mathcal{P}, \{ \circ_1 \circ_2 \circ_0 \}) + f(\mathcal{P}, \{ (\circ_2 \circ_0 \circ_0) \circ_3 \circ_0 \}) \right]$$

$$f(\mathcal{P}, \{ \circ_1 \circ_1 \circ_0 \}) = 1 + \overline{\circ} \left[f(\mathcal{P}, \{ \circ_1 \circ_1 \circ_0 \}) + f(\mathcal{P}, \{ \circ_1 \circ_2 \circ_0 \}) + f(\mathcal{P}, \{ (\circ_2 \circ_0 \circ_0) \circ_3 \circ_0 \}) \right]$$

$$f(\mathcal{P}, \{ \circ_1 \circ_2 \circ_0 \}) = 1 + \overline{\circ} \left[f(\mathcal{P}, \{ \circ_1 \circ_1 \circ_0 \}) + f(\mathcal{P}, \{ \circ_1 \circ_2 \circ_0 \}) + f(\mathcal{P}, \{ (\circ_2 \circ_0 \circ_0) \circ_3 \circ_0 \}) \right]$$

$$f(\mathcal{P}, \{ (\circ_2 \circ_0 \circ_0) \circ_3 \circ_0 \}) = 1.$$

By setting $\mathcal{H}(t) := \text{ev}(f(\mathcal{P}, \emptyset))$, the Hilbert series $\mathcal{H}(t)$ of DA satisfies

$$t - (3t - 1)\mathcal{H}(t) + (3t - 1)\mathcal{H}(t)^2 = 0.$$