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1. Combinatory logic



Let & be a set, called alphabet.

A &-term is either
m avariable x; from the set X, :== {x;,...,x,} foran n > 0;
m a basic combinator X where X € &;

m a pair (t;, t;) where t; and t, are ®-terms, denoted by t; * t,.

Let T(&) := | |,5, T(®)(n) where T(&)(n) is the set of the &-terms having all variables in X,.

The tree of the left is the tree representation of the &-term
(A*(x1 *xA)) % (((B*x2) *x1))
. N where & := {A,B,C}.

The short representation is obtained by considering that x associates to the left and by
removing the superfluous parentheses:

A(x1 A)(B x2x1).



A combinatory logic system (CLS) is a pair (&, —) where — is a binary relation on T(®) such

that for each X € &, there is n > 1 and tx € T(0)(n) such that

XX;...X, = tx.

The context closure of — is the binary relation = on T(®) such that t = t' if t’ can be obtained
from t by replacing a pattern Xx; . .. x, by tx.

Let the CLS (&, —) such that & := {M, T} where Mx; — x1x; and T x;xz — x2x1. We have

(M0aM) ) (Txzxa) = (M) (M) ) (T xexs) . s o [TF .

M * * X3 * * * X3

(M) (Txxs) = (M) (s522) * ST *



Let the system [Curry, 1930] made on the three basic combinators S, K, and I, satisfying
SX1X2X3 — X1X3(X2X3), KX1X2 — X1, IX1 — X1.

Here is a sequence of computation:

This CLS is Turing-complete: there are algorithms to emulate any A-term by a term of this CLS.
These algorithms are called abstraction algorithms [Rosser, 1955], [Curry, Feys, 1958].



Givena CLS C := (&, —), let

m < be the reflexive and transitive closure of =;

m = be the reflexive, symmetric, and transitive closure of =;

m forany t € T(&), let t* := {t' € T(&) : t < t'}. The graph (t*, =) is the rewrite graph of t.

Let the CLS (&, —) such that & := {I} and Ix; — x;.

TI(IID)
v N
1(1) ><I(H) This is the rewrite graph of II(III).
Ll I We have I(IIT) < I and I(III) < TI(II).

It is possible to prove that for any t, ' € (&), t = t'.



In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a great number of basic
combinators with their rules are listed, forming the Enchanted forest of combinator birds.

Here is a sublist:

m Identity bird: Ix; — x; B Owl: Ox;x; — x2(x1%2)

m Mockingbird: M x; — x;x; m Turing bird: Ux;x; — Xx2(X1X1X2)
m Kestrel: Kx;x; — xq m Cardinal: Cx;x3X3 — X1X3Xy

m Thrush: T x;x; — X2%; m Vireo: Vx;XoX3 — X3X1X2

m Mockingbird 1: Mj x;x; — X1X1X2 m Bluebird: B x;x;x3 — x1(X2x3)

m Warbler: W x;x3 — X1XoX2

Starling: S x;xax3 — X1X3(X2X3)

m Lark: Lx;x; — x;(x2x2) Jay: JxixaXsXq — X1X2(X1X4X3)



In the CLS containing only the Lark L, the rewrite graphs of closed terms of degrees up to 5 and up
to 4 rewrite steps have the shape



In the CLS containing only the Starling S, the rewrite graphs of closed terms of degrees up to 6

and up to 11 rewrite steps have the shape
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Let C be a CLS.

— Word problem -

Is there an algorithm to decide, given two terms tand t' of C, if t = t'?
See [Baader, Nipkow, 1998], [Statman, 2000].

m Yes for the CLS on L [Statman, 1989], [Sprenger, Wymann-Béni, 1993].
m Yes for the CLS on W [Sprenger, Wymann-Béni, 1993].

m Yes for the CLS on M; [Sprenger, Wymann-Béni, 1993].

m Open for the CLS on S [RTA Problem #97, 1975].

— Strong normalization problem —

Is there an algorithm to decide, given a term t of C, if all rewrite sequences from t are finite?

m Yes for the CLS on S [Waldmann, 2000].
m Yes for the CLS on J [Probst, Studer, 2000].
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A lattice is a partial order (poset) wherein each pair {x, x'} of elements has a greatest lower bound
x A x" and a least upper bound x V x’.

Let C be a CLS. A &-term t has
1. the poset property if (t*, %) is a poset;
2. the lattice property if (t*, %), is a lattice.
This CLS has the poset (resp. lattice) property if all terms of C have the poset (resp. lattice) property.

— Poset and lattice properties -

Is there an algorithm to decide, given a term t of C, if t has the poset (resp. lattice) property?

Given a term t of C, perform a combinatorial study of (t*, x) as the enumeration of its elements and intervals.

— A new source of posets —

Use combinatory logic as a source to build original posets.
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2. Mockingbird lattices



The Mockingbird system is the CLS C containing only the Mockingbird M.

Recall that M satisfies Mx; — x1X;.

The rewrite graphs of closed terms of C of degrees up to 4 have the shape

DIFAVD ) 09 KA VD g

- Proposition =

The CLS C has the poset property and each =-equivalence class of C is finite and contains a greatest and a least

element.
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A duplicative forest is a forest of planar rooted trees where nodes are either black @ or white o.

Let DF be the set of the duplicative forests and DT be the set of the duplicative trees.

Let => be the binary relation on DF such that for any f, ' € DY, we have § = § if § is obtained by
blackening a white node of f and then by duplicating its sequence of descendants.

5] o e [} oe
O OO0 O = o0 @ (@)
O O OO0 00
© e o

The reflexive and transitive closure < of =% is a partial order relation.

For any f € DF, let f* := {} € DF : f < f'}.
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Let A and V be the two binary, commutative, and associative partial operations on DF defined
recursively, for any £ > 0, f1,...,f, € DT, f;,...,§, € DT, and },§,f’ € D', by

fio e At fo= G Af) ... (e AT,
off) Aoff') =o(fAT),  e(f) Ae(f) :=e(fAT),
of) Ae(f'f") :=o(f Af AF),
fro eV fo= V). (Fe Vo),
off) Vo(f) =o(f Vi),  e(f)Vve(f) =e(fVy),
off) v e(f'f") := e((f v f)(f Vi)

— Proposition =

Given a duplicative forest f, the poset (f*, <) is a lattice for the operations A and V.

This can be proved by structural induction on duplicative forests.
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Let dt : T(&) — DT be the map defined recursively, for any x; € X and t,t' € (&), by

dt(x;) := €,
dt(M) := ¢,
o(dt(t')) ift=Mandt #M,

o(dt(t) dt(t')) otherwise.

dt(txt') := {
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— Proposition

For any t € T(®), the posets (t*, <) and (dt(t)*, <) are isomorphic and dt is such an isomorphism.

Let t := M(x1(Mxz))(MM).

M(XI(MXZ))(MM)\ N
1 (Mxe) (x1 (Mxy)) (MM), ‘ \
\ R /o o \ .
M(x (x,x2)) (MM) 1(x2%2) (%1 (Mx)) (MM) X1 (Mxz) (x1 (x2x2) ) (MM) C:) ° :.8 ° 8.:
\\ / \ .
) (s () (VM) o3
T e ) The Hasse diagram of the poset (dt(t)*, <).

— Theorem -

For any t € T(®), the poset (t*, ) is a finite lattice.
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®-term vy, satisfying

For any h > 0, the h-right comb tree is the M if h=0,
tp =
Mz, otherwise.

The Mockingbird lattice of order h is the lattice M(h) := (¢}, <).

M(0) M(1) M(2) M(3)
For any h > 0, the h-ladder is the duplicative [ € if h=0,
tree [, satistying " o(lp—1) otherwise.

When h > 1, the lattice M (h) is isomorphic to ([2_1, <<).
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3. Enumerative properties
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Let Z<<DF>> be the set of the possibly infinite formal sums of duplicative forests with coefficients
in Z. These are formal series on D' with integer coefficients.

For any F € Z((DF)) and § € DF, the coefficient of § in F is denoted by (f, F).

Given a statistics w : D — NandF € Z<<DF>>, the w-specialization of F is the generating
series

w(F) := Z (5, F) 22D

feDF
of Z{(z)).

The characteristic series of a set F of duplicative forests is the formal series

¢(F) =)}

feF

In particular, ht(c(F)) is the generating series of the forests of F enumerated w.r.t. their heights.
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To enumerate a family F of duplicative forests, provide a functional equation describing ¢(F) and then specialize it
to obtain a description of ht(c(F)).

An important ingredient for this is the series of the ladders

d:=> lh=c+tot+3+3+3+ .

h>0

000
0000

Observe that 1d satisfies the functional equation
1d = ¢ + o(1d).

We deduce from this that ht(1d) = 1 + zht(1d), implying

1

ht(ld) = -
—Z

as expected.
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For any f € D, let

gr(f) = > .

ST

gr(o.o 2) = o.o 2 aF o.o 2 aF o.o 2+ o.o o.o aF o.. 2+ o.o o.o aF o.. o.o aF o.. o..
oo ° ° 00 o ° o0 oo o ° o0 o000 0000

By extending gr by linearity, gr(ld) is a well-defined formal series on D*:

gr(ld) = gr(t) => > .

h>0 h>0 felr
The ht-specialization of the previous series satisfies

ht(gr(ld)) = Y (#1;) 2"

h>0
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Let A : Z{(D")) — Z{{DF)) be the linear map satisfying A(f) = ff for any § € DF.

The series gr(ld) satisfies

gr(ld) = e + o(gr(1d)) + @(gr(A(1d))).

From this, we deduce that the ht-specialization A of gr(ld) satisfies
A=1+4+zA+z(AKA),
where X is the Hadamard product of generating series.
The coefficients a(h) := (2", A) satisfy a(0) = 1 and for any h > 1,
a(h) = a(h— 1) + a(h — 1)
The sequence (a(h))p=o starts by
1,2, 6,42, 1806, 3263442, 10650056950806

and forms Sequence A007018. sa)2s


http://oeis.org/A007018

For any f € DF, let ns(f) = gr(gr(f)). We obtain

= > #[f1f

frer

ns(go) — 904 29€429014001 2801 4RO 380,380L6RO|LGMOLGROLIIN O

By extending ns by linearity, ns(1d) is a well-defined formal series on DF:

ns(ld) Zns (Ip) = zz#[lhaﬂf

h>0 h20 fEILT
The ht-specialization of the previous series satisfies

ht(ns(1d)) ZI;, z
h>0

where Ij is the number of intervals of the poset ([}, <).
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To provide a functional equation for ns(1d), we need the following two tools.
The k-meet decomposition, k > 1, of f € DF is

For any u € {o,e}", the merging product of f;, ..., f, € DF satisfies
mgo, (f1 ®f2 ® -+ @ fe) = o(f1) @ mg,(f2 ® - - ® fo),
mge,(f1 ®f2 @ fs @ - - @ ) = o(f1f2) ® Mg, (fs @ - -+ @ fir).

mgo..(: ® £ ® °3Q ce ® oo) = ; ® ooogg ® oo.oo
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— Theorem -

For any k > 1, the series mdy(ns(1d)) satisfies

mdi(ns(ld)) = ¥+ 3" mg, (mdkﬂu| .(ns(ld))) + @(mdi(ns(A(1d)))).
ue{0,@}*

Since md, (ns(1d)) = ns(1d), this provides a functional equation for ns(1d).
From this, we deduce that the ht-specialization Ay of mdy(ns(1d)) satisfies

A =1+ Z(AkgAk) +z Z (I;)Ak+i.
0<i<k

The coefficients ax(h) := (z", Ay) satisfy ax(0) = 1 and for any h > 1
ar(h) = a(h— 1) + 3 ()am—l)

0<i<k
The sequence (a;(h)),, starts by
1,3,17,371, 144513, 20932611523, 438176621806663544657.
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We have studied a very simple CLS, the Mockingbird system, having nevertheless some rich
combinatorics:

m its rewrite graphs are Hasse diagrams of posets;
m all intervals of these posets are lattices;
m these lattices are not graded, not self-dual, and not semidistributive;

m enumerative data is accessible but nontrivial.

Some questions and projects:
1. study, under an order theoretic point of view, some other CLS built from some basic

combinators of the Enchanted forest of combinator birds;

2. provide necessary and/or sufficient conditions for a CLS to have the poset or the lattice
property;
3. realize some well-known posets (like Tamari lattices, Stanley lattices, or Kreweras lattices) as

intervals of posets built from specific CLSs.
28/28



	Combinatory logic
	Mockingbird lattices
	Enumerative properties
	Conclusion

