The Mockingbird system Order-theoretic and enumerative properties

Samuele Giraudo

LaCIM, Université du Québec à Montréal

Séminaire du LaCIM Montréal Canada

January 13, 2023

Outline

1. Combinatory logic

2. Mockingbird lattices

3. Enumerative properties

Outline

1. Combinatory logic

Applicative terms

Let \mathfrak{G} be a set, called <u>alphabet</u>.

A **G**-term is either

- a <u>variable</u> x_i from the set $X_n := \{x_1, \dots, x_n\}$ for an $n \ge 0$;
- a basic combinator X where $X \in \mathfrak{G}$;
- a pair (t_1, t_2) where t_1 and t_2 are \mathfrak{G} -terms, denoted by $t_1 \star t_2$.

Let $\mathfrak{T}(\mathfrak{G}) := \bigsqcup_{n \geq 0} \mathfrak{T}(\mathfrak{G})(n)$ where $\mathfrak{T}(\mathfrak{G})(n)$ is the set of the \mathfrak{G} -terms having all variables in \mathbb{X}_n .

– Example –

The tree of the left is the **tree representation** of the G-term

$$(\mathbf{A} \star (\mathbf{x}_1 \star \mathbf{A})) \star (((\mathbf{B} \star \mathbf{x}_2) \star \mathbf{x}_1))$$

where
$$\mathfrak{G} := \{A, B, C\}.$$

The **short representation** is obtained by considering that * associates to the left and by removing the superfluous parentheses:

$$A(x_1 A)(B x_2 x_1).$$

Combinatory logic systems

A <u>combinatory logic system</u> (<u>CLS</u>) is a pair (\mathfrak{G}, \to) where \to is a binary relation on $\mathfrak{T}(\mathfrak{G})$ such that for each $X \in \mathfrak{G}$, there is $n \geqslant 1$ and $\mathfrak{t}_X \in \mathfrak{T}(\emptyset)(n)$ such that

$$\mathbf{X} \mathsf{x}_1 \ldots \mathsf{x}_n \to \mathfrak{t}_{\mathbf{X}}.$$

The <u>context closure</u> of \to is the binary relation \Rightarrow on $\mathfrak{T}(\mathfrak{G})$ such that $\mathfrak{t} \Rightarrow \mathfrak{t}'$ if \mathfrak{t}' can be obtained from \mathfrak{t} by replacing a pattern $X x_1 \dots x_n$ by \mathfrak{t}_X .

- Example -

Let the CLS (\mathfrak{G}, \to) such that $\mathfrak{G} := \{M, T\}$ where $Mx_1 \to x_1x_1$ and $Tx_1x_2 \to x_2x_1$. We have

$$\Big(\underline{M(x_2M)}\Big)(T\,x_2x_3) \Rightarrow \Big(\underline{(x_2M)(x_2M)}\Big)(T\,x_2x_3)$$

$$(M(x_2M))\big(T\,x_2x_3\big)\Rightarrow (M(x_2M))\big(x_3x_2\big)$$

The S, K, I-system

Let the system [Curry, 1930] made on the three basic combinators S, K, and I, satisfying

$$\mathbf{S} \, x_1 x_2 x_3 \to x_1 x_3 (x_2 x_3), \quad \mathbf{K} \, x_1 x_2 \to x_1, \quad \mathbf{I} \, x_1 \to x_1.$$

This CLS is Turing-complete: there are algorithms to emulate any λ -term by a term of this CLS. These algorithms are called **abstraction algorithms** [Rosser, 1955], [Curry, Feys, 1958].

Rewrite graphs

Given a CLS $\mathcal{C} := (\mathfrak{G}, \rightarrow)$, let

- \blacksquare \leq be the reflexive and transitive closure of \Rightarrow ;
- \blacksquare \equiv be the reflexive, symmetric, and transitive closure of \Rightarrow ;
- for any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, let $\mathfrak{t}^* := \{\mathfrak{t}' \in \mathfrak{T}(\mathfrak{G}) : \mathfrak{t} \leq \mathfrak{t}'\}$. The graph $(\mathfrak{t}^*, \Rightarrow)$ is the <u>rewrite graph</u> of \mathfrak{t} .

- Example -

Let the CLS (\mathfrak{G}, \to) such that $\mathfrak{G} := \{I\}$ and $Ix_1 \to x_1$.

This is the rewrite graph of **II**(**III**).

We have $I(III) \leq I$ and $I(III) \leq II(II)$.

It is possible to prove that for any $\mathfrak{t},\mathfrak{t}'\in\mathfrak{T}(\mathfrak{G}),\mathfrak{t}\equiv\mathfrak{t}'.$

The Enchanted Forest of combinator birds

In *To Mock a Mockingbird: and Other Logic Puzzles* [Smullyan, 1985], a great number of basic combinators with their rules are listed, forming the Enchanted forest of combinator birds.

Here is a sublist:

- Identity bird: $I x_1 \rightarrow x_1$
- Mockingbird: $M x_1 \rightarrow x_1 x_1$
- **Kestrel**: $\mathbf{K} \mathbf{x}_1 \mathbf{x}_2 \rightarrow \mathbf{x}_1$
- Thrush: $\mathbf{T} \mathbf{x}_1 \mathbf{x}_2 \rightarrow \mathbf{x}_2 \mathbf{x}_1$
- Mockingbird 1: $M_1 x_1 x_2 \rightarrow x_1 x_1 x_2$
- Warbler: $\mathbf{W} \mathbf{x}_1 \mathbf{x}_2 \rightarrow \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_2$
- Lark: L $x_1x_2 \rightarrow x_1(x_2x_2)$

- **Owl**: **O** $x_1x_2 \rightarrow x_2(x_1x_2)$
- Turing bird: $U x_1 x_2 \rightarrow x_2(x_1 x_1 x_2)$
- Cardinal: $C x_1x_2x_3 \rightarrow x_1x_3x_2$
- Vireo: $\mathbf{V} \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \rightarrow \mathbf{x}_3 \mathbf{x}_1 \mathbf{x}_2$
- Bluebird: $\mathbf{B} \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \rightarrow \mathbf{x}_1(\mathbf{x}_2 \mathbf{x}_3)$
- Starling: $\mathbf{S} \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \rightarrow \mathbf{x}_1 \mathbf{x}_3 (\mathbf{x}_2 \mathbf{x}_3)$
- **Jay**: $\mathbf{J} \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 \rightarrow \mathbf{x}_1 \mathbf{x}_2 (\mathbf{x}_1 \mathbf{x}_4 \mathbf{x}_3)$

Rewrite graph of L

In the CLS containing only the $Lark\ L$, the rewrite graphs of closed terms of degrees up to 5 and up to 4 rewrite steps have the shape

Rewrite graph of S

In the CLS containing only the **Starling S**, the rewrite graphs of closed terms of degrees up to 6 and up to 11 rewrite steps have the shape

Usual questions

Let C be a CLS.

- Word problem -

Is there an algorithm to decide, given two terms \mathfrak{t} and \mathfrak{t}' of \mathcal{C} , if $\mathfrak{t} \equiv \mathfrak{t}'$? See [Baader, Nipkow, 1998], [Statman, 2000].

- Yes for the CLS on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].
- Yes for the CLS on W [Sprenger, Wymann-Böni, 1993].
- Yes for the CLS on M_1 [Sprenger, Wymann-Böni, 1993].
- Open for the CLS on **S** [RTA Problem #97, 1975].

- Strong normalization problem -

Is there an algorithm to decide, given a term $\mathfrak t$ of $\mathcal C$, if all rewrite sequences from $\mathfrak t$ are finite?

- Yes for the CLS on **S** [Waldmann, 2000].
- Yes for the CLS on **J** [Probst, Studer, 2000].

Order theoretical questions

A <u>lattice</u> is a partial order (poset) wherein each pair $\{x, x'\}$ of elements has a greatest lower bound $x \wedge x'$ and a least upper bound $x \vee x'$.

Let C be a CLS. A \mathfrak{G} -term t has

- 1. the poset property if $(\mathfrak{t}^*, \preccurlyeq)$ is a **poset**;
- 2. the <u>lattice property</u> if $(\mathfrak{t}^*, \preceq)$, is a **lattice**.

This CLS has the poset (resp. lattice) property if all terms of \mathcal{C} have the poset (resp. lattice) property.

- Poset and lattice properties -

Is there an algorithm to decide, given a term t of C, if t has the poset (resp. lattice) property?

Given a term t of C, perform a **combinatorial study** of (t^*, \preceq) as the enumeration of its elements and intervals.

- A new source of posets -

Use combinatory logic as a source to **build original posets**.

Outline

2. Mockingbird lattices

The Mockingbird system

The Mockingbird system is the CLS $\mathcal C$ containing only the Mockingbird M.

Recall that **M** satisfies $Mx_1 \rightarrow x_1x_1$.

The **rewrite graphs** of closed terms of C of degrees up to 4 have the shape

- **Proposition** [G., 2022] -

The CLS \mathcal{C} has the **poset property** and each \equiv -equivalence class of \mathcal{C} is **finite** and contains a **greatest** and a **least** element.

Duplicative forests

A <u>duplicative forest</u> is a **forest of planar rooted trees** where nodes are either black • or white o.

Let \mathcal{D}^F be the set of the duplicative forests and \mathcal{D}^T be the set of the duplicative trees.

Let \Rightarrow be the binary relation on \mathcal{D}^F such that for any $\mathfrak{f},\mathfrak{f}'\in\mathcal{D}^F$, we have $\mathfrak{f}\Rightarrow\mathfrak{f}'$ if \mathfrak{f}' is obtained by blackening a white node of \mathfrak{f} and then by **duplicating** its sequence of descendants.

The reflexive and transitive closure \ll of \Rightarrow is a partial order relation.

For any
$$\mathfrak{f}\in\mathcal{D}^F$$
, let $\mathfrak{f}^*:=\big\{\mathfrak{f}'\in\mathcal{D}^F:\mathfrak{f}\ll\mathfrak{f}'\big\}.$

Lattice of duplicative forests

Let \land and \lor be the two binary, commutative, and associative partial operations on \mathcal{D}^F defined recursively, for any $\ell \geqslant 0$, $\mathfrak{f}_1, \ldots, \mathfrak{f}_\ell \in \mathcal{D}^T$, $\mathfrak{f}'_1, \ldots, \mathfrak{f}'_\ell \in \mathcal{D}^T$, and $\mathfrak{f}, \mathfrak{f}', \mathfrak{f}'' \in \mathcal{D}^F$, by

$$\begin{split} \mathfrak{f}_1 \dots \mathfrak{f}_\ell \wedge \mathfrak{f}_1' \dots \mathfrak{f}_\ell' &:= (\mathfrak{f}_1 \wedge \mathfrak{f}_1') \dots (\mathfrak{f}_\ell \wedge \mathfrak{f}_\ell'), \\ \circ (\mathfrak{f}) \wedge \circ (\mathfrak{f}') &:= \circ (\mathfrak{f} \wedge \mathfrak{f}'), \qquad \bullet (\mathfrak{f}) \wedge \bullet (\mathfrak{f}') := \bullet (\mathfrak{f} \wedge \mathfrak{f}'), \\ \circ (\mathfrak{f}) \wedge \bullet (\mathfrak{f}'\mathfrak{f}'') &:= \circ (\mathfrak{f} \wedge \mathfrak{f}' \wedge \mathfrak{f}''), \\ \mathfrak{f}_1 \dots \mathfrak{f}_\ell \vee \mathfrak{f}_1' \dots \mathfrak{f}_\ell' &:= (\mathfrak{f}_1 \vee \mathfrak{f}_1') \dots (\mathfrak{f}_\ell \vee \mathfrak{f}_\ell'), \\ \circ (\mathfrak{f}) \vee \circ (\mathfrak{f}') &:= \circ (\mathfrak{f} \vee \mathfrak{f}'), \qquad \bullet (\mathfrak{f}) \vee \bullet (\mathfrak{f}') := \bullet (\mathfrak{f} \vee \mathfrak{f}'), \\ \circ (\mathfrak{f}) \vee \bullet (\mathfrak{f}'\mathfrak{f}'') &:= \bullet ((\mathfrak{f} \vee \mathfrak{f}')(\mathfrak{f} \vee \mathfrak{f}'')). \end{split}$$

- **Proposition** [G., 2022] -

Given a duplicative forest \mathfrak{f} , the poset (\mathfrak{f}^*, \ll) is a **lattice** for the operations \wedge and \vee .

This can be proved by structural induction on duplicative forests.

From Mockingbird terms to duplicative trees

Let $dt : \mathfrak{T}(\mathfrak{G}) \to \mathcal{D}^T$ be the map defined recursively, for any $x_i \in \mathbb{X}$ and $\mathfrak{t}, \mathfrak{t}' \in \mathfrak{T}(\mathfrak{G})$, by

$$\begin{split} \mathrm{d} t(\mathsf{x}_i) &:= \epsilon, \\ \mathrm{d} t(\mathbf{M}) &:= \epsilon, \\ \mathrm{d} t(\mathfrak{t} \star \mathfrak{t}') &:= \begin{cases} \mathsf{o}(\mathrm{d} t(\mathfrak{t}')) & \text{if } \mathfrak{t} = \mathbf{M} \text{ and } \mathfrak{t}' \neq \mathbf{M}, \\ \bullet (\mathrm{d} t(\mathfrak{t}) \; \mathrm{d} t(\mathfrak{t}')) & \text{otherwise}. \end{cases} \end{split}$$

Poset isomorphism

- **Proposition** [G., 2022] -

For any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, the **posets** $(\mathfrak{t}^*, \preccurlyeq)$ and $(d\mathfrak{t}(\mathfrak{t})^*, \ll)$ are **isomorphic** and dt is such an isomorphism.

- Example -

Let $\mathfrak{t} := \mathbf{M}(x_1(\mathbf{M}x_2))(\mathbf{M}\mathbf{M})$.

The Hasse diagram of the poset $(\mathfrak{t}^*, \preceq)$.

The Hasse diagram of the poset $(dt(t)^*, \ll)$.

- Theorem [G., 2022] -

For any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, the poset $(\mathfrak{t}^*, \preccurlyeq)$ is a **finite lattice**.

Mockingbird lattices

For any $h \ge 0$, the <u>h</u>-right comb tree is the \mathfrak{G} -term \mathfrak{r}_h satisfying

$$\mathfrak{r}_h = egin{cases} \mathbf{M} & ext{if } h = 0, \ \mathbf{M}\,\mathfrak{r}_h & ext{otherwise}. \end{cases}$$

The Mockingbird lattice of order h is the lattice $\mathcal{M}(h) := (\mathfrak{r}_h^*, \preccurlyeq)$.

- Examples - $\circ \qquad \circ \qquad \circ$ $\mathcal{M}^{(0)} \qquad \mathcal{M}^{(1)} \qquad \mathcal{M}^{(2)} \qquad \mathcal{M}^{(3)} \qquad \mathcal{M}^{(4)}$

For any $h \ge 0$, the <u>h-ladder</u> is the duplicative tree l_h satisfying

$$\mathfrak{l}_h = \begin{cases} \epsilon & \text{if } h = 0, \\ \diamond(\mathfrak{l}_{h-1}) & \text{otherwise.} \end{cases}$$

When $h \ge 1$, the lattice $\mathcal{M}(h)$ is isomorphic to $(\mathfrak{l}_{h-1}^*, \ll)$.

Outline

3. Enumerative properties

Formal series of duplicative forests

Let $\mathbb{Z}\langle\langle\mathcal{D}^F\rangle\rangle$ be the set of the possibly infinite **formal sums** of duplicative forests with coefficients in \mathbb{Z} . These are <u>formal series</u> on \mathcal{D}^F with integer coefficients.

For any $\mathbf{F} \in \mathbb{Z}\langle\langle \mathcal{D}^F \rangle\rangle$ and $\mathfrak{f} \in \mathcal{D}^F$, the coefficient of \mathfrak{f} in \mathbf{F} is denoted by $\langle \mathfrak{f}, \mathbf{F} \rangle$.

Given a statistics $\omega: \mathcal{D}^F \to \mathbb{N}$ and $\mathbf{F} \in \mathbb{Z}\langle\langle \mathcal{D}^F \rangle\rangle$, the $\underline{\omega$ -specialization of \mathbf{F} is the generating series

$$\omega(\mathbf{F}) := \sum_{\mathfrak{f} \in \mathcal{D}^{\mathtt{F}}} \langle \mathfrak{f}, \mathbf{F}
angle \, z^{\omega(\mathfrak{f})}$$

of $\mathbb{Z}\langle\langle z\rangle\rangle$.

The <u>characteristic series</u> of a set F of duplicative forests is the formal series

$$\mathbf{c}(F) := \sum_{\mathfrak{f} \in F} \mathfrak{f}.$$

In particular, $ht(\mathbf{c}(F))$ is the generating series of the forests of F enumerated w.r.t. their heights.

Strategy for the enumeration

- Strategy -

To enumerate a family F of duplicative forests, provide a functional equation describing $\mathbf{c}(F)$ and then specialize it to obtain a description of $\mathrm{ht}(\mathbf{c}(F))$.

An important ingredient for this is the series of the ladders

Observe that **ld** satisfies the functional equation

$$\mathbf{ld} = \epsilon + \circ(\mathbf{ld}).$$

We deduce from this that $ht(\mathbf{ld}) = 1 + z ht(\mathbf{ld})$, implying

$$\operatorname{ht}(\mathbf{ld}) = \frac{1}{1-z}$$

as expected.

Number of elements -1/2

For any $\mathfrak{f} \in \mathcal{D}^F$, let

$$\mathbf{gr}(\mathfrak{f}) = \sum_{\mathfrak{f}' \in \mathfrak{f}^*} \mathfrak{f}'.$$

- Example -

By extending **gr** by **linearity**, $\mathbf{gr}(\mathbf{ld})$ is a well-defined formal series on \mathcal{D}^F :

$$\mathbf{gr}(\mathbf{Id}) = \sum_{h\geqslant 0} \mathbf{gr}(\mathfrak{l}_h) = \sum_{h\geqslant 0} \sum_{\mathfrak{f}\in\mathfrak{l}_h^*} \mathfrak{f}.$$

The ht-specialization of the previous series satisfies

$$\operatorname{ht}(\operatorname{\mathbf{gr}}(\operatorname{\mathbf{Id}})) = \sum_{h \geq 0} (\#\mathfrak{l}_h^*) \, z^h.$$

Number of elements -2/2

Let $\Delta: \mathbb{Z}\big\langle\big\langle\mathcal{D}^{\mathsf{F}}\big\rangle\big\rangle \to \mathbb{Z}\big\langle\big\langle\mathcal{D}^{\mathsf{F}}\big\rangle\big\rangle$ be the linear map satisfying $\Delta(\mathfrak{f})=\mathfrak{f}\mathfrak{f}$ for any $\mathfrak{f}\in\mathcal{D}^{\mathsf{F}}$.

- Theorem [G., 2022] -

The series gr(ld) satisfies

$$\operatorname{gr}(\operatorname{Id}) = \epsilon + \operatorname{O}(\operatorname{gr}(\operatorname{Id})) + \operatorname{O}(\operatorname{gr}(\Delta(\operatorname{Id}))).$$

From this, we deduce that the ht-specialization A of $\mathbf{gr}(\mathbf{ld})$ satisfies

$$A = 1 + zA + z(A \boxtimes A),$$

where \boxtimes is the **Hadamard product** of generating series.

The coefficients $a(h) := \langle z^h, A \rangle$ satisfy a(0) = 1 and for any $h \ge 1$,

$$a(h) = a(h-1) + a(h-1)^{2}$$
.

The sequence $(a(h))_{h\geqslant 0}$ starts by

and forms Sequence **A007018**.

Number of intervals -1/3

For any $\mathfrak{f} \in \mathcal{D}^F$, let $\mathbf{ns}(\mathfrak{f}) = \mathbf{gr}(\mathbf{gr}(\mathfrak{f}))$. We obtain

$$\mathbf{ns}(\mathfrak{f}) = \sum_{\mathfrak{f}' \in \mathfrak{f}^*} \#[\mathfrak{f}, \mathfrak{f}'] \, \mathfrak{f}'.$$

- Example -

$$\mathbf{ns}\left(\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \right) = \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} + 2 \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} + 2 \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} + 4 \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} + 4 \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} + 3 \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} + 3 \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} + 6 \stackrel{\circ}{\circ} \stackrel{\circ}{\circ}$$

By extending **ns** by **linearity**, **ns**(**ld**) is a well-defined formal series on \mathcal{D}^F :

$$\mathbf{ns}(\mathbf{ld}) = \sum_{h\geqslant 0} \mathbf{ns}(\mathfrak{l}_h) = \sum_{h\geqslant 0} \sum_{\mathfrak{f}\in \mathfrak{l}_h^*} \#[\mathfrak{l}_h,\mathfrak{f}]\,\mathfrak{f}.$$

The ht-specialization of the previous series satisfies

$$\operatorname{ht}(\mathbf{ns}(\mathbf{ld})) = \sum_{h \geqslant 0} I_h z^h$$

where I_h is the **number of intervals** of the poset (l_h^*, \ll) .

Number of intervals -2/3

To provide a functional equation for ns(ld), we need the following two tools.

The <u>k-meet decomposition</u>, $k \geqslant 1$, of $\mathfrak{f} \in \mathcal{D}^{F}$ is

$$\mathbf{md}_k(\mathfrak{f}) = \sum_{\substack{\mathfrak{g}_1, \dots, \mathfrak{g}_k \in \mathfrak{f}^* \\ \mathfrak{g}_1 \wedge \dots \wedge \mathfrak{g}_k = \mathfrak{f}}} \mathfrak{g}_1 \otimes \dots \otimes \mathfrak{g}_k.$$

For any $u \in \{o, \bullet\}^*$, the <u>merging product</u> of $\mathfrak{f}_1, \dots, \mathfrak{f}_\ell \in \mathcal{D}^F$ satisfies

$$mg_{\mathsf{O} u}(\mathfrak{f}_1\otimes\mathfrak{f}_2\otimes\cdots\otimes\mathfrak{f}_\ell)=o(\mathfrak{f}_1)\otimes mg_u(\mathfrak{f}_2\otimes\cdots\otimes\mathfrak{f}_\ell),$$

$$\mathrm{mg}_{\bullet u}(\mathfrak{f}_1 \otimes \mathfrak{f}_2 \otimes \mathfrak{f}_3 \otimes \cdots \otimes \mathfrak{f}_{\ell}) = \bullet(\mathfrak{f}_1\mathfrak{f}_2) \otimes \mathrm{mg}_u(\mathfrak{f}_3 \otimes \cdots \otimes \mathfrak{f}_{\ell}).$$

– Example –

Number of intervals -3/3

- Theorem [G., 2022] -

For any $k \ge 1$, the series $\mathbf{md}_k(\mathbf{ns}(\mathbf{ld}))$ satisfies

$$\mathbf{md}_k(\mathbf{ns}(\mathbf{ld})) = \epsilon^{k \otimes} + \sum_{u \in \{\mathbf{O}, \mathbf{O}\}^k} \mathrm{mg}_u \Big(\mathbf{md}_{k+|u|_{\mathbf{O}}}(\mathbf{ns}(\mathbf{ld})) \Big) + \mathbf{O}(\mathbf{md}_k(\mathbf{ns}(\Delta(\mathbf{ld})))).$$

Since $md_1(ns(ld)) = ns(ld)$, this provides a functional equation for ns(ld).

From this, we deduce that the ht-specialization A_k of $\mathbf{md}_k(\mathbf{ns}(\mathbf{ld}))$ satisfies

$$A_k = 1 + z(A_k \boxtimes A_k) + z \sum_{0 \leqslant i \leqslant k} {k \choose i} A_{k+i}.$$

The coefficients $a_k(h) := \langle z^h, A_k \rangle$ satisfy $a_k(0) = 1$ and for any $h \ge 1$,

$$a_k(h) = a_k(h-1)^2 + \sum_{0 \le i \le k} {k \choose i} a_{k+i}(h-1).$$

The sequence $(a_1(h))_{h\geqslant 0}$ starts by

1, 3, 17, 371, 144513, 20932611523, 438176621806663544657.

Conclusion and perspectives

We have studied a very simple CLS, the Mockingbird system, having nevertheless some rich combinatorics:

- its rewrite graphs are Hasse diagrams of posets;
- all intervals of these posets are lattices;
- these lattices are not graded, not self-dual, and not semidistributive;
- enumerative data is accessible but nontrivial.

Some **questions** and **projects**:

- 1. study, under an order theoretic point of view, some other CLS built from some basic combinators of the Enchanted forest of combinator birds;
- provide necessary and/or sufficient conditions for a CLS to have the poset or the lattice property;
- 3. realize some well-known posets (like Tamari lattices, Stanley lattices, or Kreweras lattices) as intervals of posets built from specific CLSs.