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Applicative terms

Let G be a set, called alphabet.

A G-term is either
a variable xi from the set Xn := {x1, . . . , xn} for an n ⩾ 0;

a basic combinator X where X ∈ G;

a pair (t1, t2) where t1 and t2 are G-terms, denoted by t1 ⋆ t2.

Let T(G) :=
⊔

n⩾0 T(G)(n) where T(G)(n) is the set of the G-terms having all variables in Xn.

– Example –

A x1
x1 A B x2

⋆

⋆

⋆

⋆

⋆

The tree of the left is the tree representation of the G-term
(A ⋆(x1 ⋆ A)) ⋆ (((B ⋆x2) ⋆ x1))

where G := {A,B,C}.
The short representation is obtained by considering that ⋆ associates to the left and by
removing the superfluous parentheses:

A(x1 A)(B x2x1).
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Combinatory logic systems

A combinatory logic system (CLS) is a pair (G,→) where→ is a binary relation on T(G) such
that for each X ∈ G, there is n ⩾ 1 and tX ∈ T(∅)(n) such that

X x1 . . . xn → tX.

The context closure of→ is the binary relation⇒ on T(G) such that t ⇒ t′ if t′ can be obtained
from t by replacing a pattern X x1 . . . xn by tX.

– Example –
Let the CLS (G,→) such that G := {M,T} where Mx1 → x1x1 and T x1x2 → x2x1. We have

(
M(x2M)

)
(T x2x3) ⇒

(
(x2M)(x2M)

)
(T x2x3)

M x3

x2 M T x2

⋆

⋆

⋆

⋆

⋆ ⇒

x2 x2

x3

M x2 M T

⋆

⋆⋆

⋆

⋆

⋆

(M(x2M))
(
T x2x3

)
⇒ (M(x2M))

(
x3x2

)
M x3

x2 M T x2

⋆

⋆

⋆

⋆

⋆ ⇒
M x2

x2 M

⋆

⋆

⋆

x3

⋆
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The S, K, I-system

Let the system [Curry, 1930] made on the three basic combinators S, K, and I, satisfying

S x1x2x3 → x1x3(x2x3), K x1x2 → x1, I x1 → x1.

– Example –
Here is a sequence of computation:

S

S I

K K

S

K⋆

⋆

⋆

⋆

⋆

⋆

⇒

S K

K S I⋆

⋆

⋆

⋆ ⇒
K

IS I

K

S

⋆

⋆

⋆

⋆

⋆

⇒
S I

⋆

This CLS is Turing-complete: there are algorithms to emulate any λ-term by a term of this CLS.
These algorithms are called abstraction algorithms [Rosser, 1955], [Curry, Feys, 1958].
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Rewrite graphs

Given a CLS C := (G,→), let
≼ be the reflexive and transitive closure of⇒;

≡ be the reflexive, symmetric, and transitive closure of⇒;

for any t ∈ T(G), let t∗ := {t′ ∈ T(G) : t ≼ t′}. The graph (t∗,⇒) is the rewrite graph of t.

– Example –
Let the CLS (G,→) such that G := {I} and Ix1 → x1.

II(III)

I(III) II(II)

I(II) III

II

I

This is the rewrite graph of II(III).

We have I(III) ≼ I and I(III)�≼ II(II).

It is possible to prove that for any t, t′ ∈ T(G), t ≡ t′.
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The Enchanted Forest of combinator birds

In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a great number of basic
combinators with their rules are listed, forming the Enchanted forest of combinator birds.

Here is a sublist:

Identity bird: I x1 → x1

Mockingbird: M x1 → x1x1

Kestrel: K x1x2 → x1

Thrush: T x1x2 → x2x1

Mockingbird 1: M1 x1x2 → x1x1x2

Warbler: W x1x2 → x1x2x2

Lark: L x1x2 → x1(x2x2)

Owl: O x1x2 → x2(x1x2)

Turing bird: U x1x2 → x2(x1x1x2)

Cardinal: C x1x2x3 → x1x3x2

Vireo: V x1x2x3 → x3x1x2

Bluebird: B x1x2x3 → x1(x2x3)

Starling: S x1x2x3 → x1x3(x2x3)

Jay: J x1x2x3x4 → x1x2(x1x4x3)
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Rewrite graph of L

In the CLS containing only the Lark L, the rewrite graphs of closed terms of degrees up to 5 and up
to 4 rewrite steps have the shape
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Rewrite graph of S

In the CLS containing only the Starling S, the rewrite graphs of closed terms of degrees up to 6
and up to 11 rewrite steps have the shape
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Usual questions

Let C be a CLS.

– Word problem –
Is there an algorithm to decide, given two terms t and t′ of C, if t ≡ t′?
See [Baader, Nipkow, 1998], [Statman, 2000].

Yes for the CLS on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].
Yes for the CLS on W [Sprenger, Wymann-Böni, 1993].
Yes for the CLS on M1 [Sprenger, Wymann-Böni, 1993].
Open for the CLS on S [RTA Problem #97, 1975].

– Strong normalization problem –

Is there an algorithm to decide, given a term t of C, if all rewrite sequences from t are finite?

Yes for the CLS on S [Waldmann, 2000].
Yes for the CLS on J [Probst, Studer, 2000].
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Order theoretical questions

A lattice is a partial order (poset) wherein each pair {x, x′} of elements has a greatest lower bound
x ∧ x′ and a least upper bound x ∨ x′.

Let C be a CLS. A G-term t has
1. the poset property if (t∗,≼) is a poset;

2. the lattice property if (t∗,≼), is a lattice.
This CLS has the poset (resp. lattice) property if all terms of C have the poset (resp. lattice) property.

– Poset and lattice properties –
Is there an algorithm to decide, given a term t of C, if t has the poset (resp. lattice) property?
Given a term t of C, perform a combinatorial study of (t∗,≼) as the enumeration of its elements and intervals.

– A new source of posets –

Use combinatory logic as a source to build original posets.
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The Mockingbird system

TheMockingbird system is the CLS C containing only the Mockingbird M.
Recall that M satisfiesMx1 → x1x1.

The rewrite graphs of closed terms of C of degrees up to 4 have the shape

– Proposition [G., 2022] –
The CLS C has the poset property and each ≡-equivalence class of C is finite and contains a greatest and a least
element.
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Duplicative forests

A duplicative forest is a forest of planar rooted trees where nodes are either black or white .

Let DF be the set of the duplicative forests and DT be the set of the duplicative trees.

Let ⇒⇒ be the binary relation on DF such that for any f, f′ ∈ DF, we have f⇒⇒ f′ if f′ is obtained by
blackening a white node of f and then by duplicating its sequence of descendants.

– Example –

⇒⇒

The reflexive and transitive closure≪ of ⇒⇒ is a partial order relation.

For any f ∈ DF, let f∗ :=
{
f′ ∈ DF : f ≪ f′

}
.
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Lattice of duplicative forests

Let ∧ and ∨ be the two binary, commutative, and associative partial operations on DF defined
recursively, for any ℓ ⩾ 0, f1, . . . , fℓ ∈ DT, f′1, . . . , f′ℓ ∈ DT, and f, f′, f′′ ∈ DF, by

f1 . . . fℓ ∧ f′1 . . . f
′
ℓ := (f1 ∧ f′1) . . . (fℓ ∧ f′ℓ),

(f) ∧ (f′) := (f ∧ f′), (f) ∧ (f′) := (f ∧ f′),

(f) ∧ (f′f′′) := (f ∧ f′ ∧ f′′),

f1 . . . fℓ ∨ f′1 . . . f
′
ℓ := (f1 ∨ f′1) . . . (fℓ ∨ f′ℓ),

(f) ∨ (f′) := (f ∨ f′), (f) ∨ (f′) := (f ∨ f′),

(f) ∨ (f′f′′) := ((f ∨ f′)(f ∨ f′′)).

– Proposition [G., 2022] –

Given a duplicative forest f, the poset (f∗,≪) is a lattice for the operations ∧ and ∨.

This can be proved by structural induction on duplicative forests.
16 / 28



From Mockingbird terms to duplicative trees

Let dt : T(G) → DT be the map defined recursively, for any xi ∈ X and t, t′ ∈ T(G), by

dt(xi) := ϵ,

dt(M) := ϵ,

dt(t ⋆ t′) :=

{
(dt(t′)) if t = M and t′ ̸= M,

(dt(t) dt(t′)) otherwise.

– Example –

M

x1

x1

M M

M

M

M M

x3 x2

x2 M

M

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

dt7−→
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Poset isomorphism

– Proposition [G., 2022] –

For any t ∈ T(G), the posets (t∗,≼) and (dt(t)∗,≪) are isomorphic and dt is such an isomorphism.

– Example –
Let t := M(x1(Mx2))(MM).

M(x1(Mx2))(MM)

M(x1(x2x2))(MM)

x1(Mx2)(x1(Mx2))(MM)

x1(x2x2)(x1(Mx2))(MM) x1(Mx2)(x1(x2x2))(MM)

x1(x2x2)(x1(x2x2))(MM)

The Hasse diagram of the poset (t∗,≼). The Hasse diagram of the poset (dt(t)∗,≪).

– Theorem [G., 2022] –
For any t ∈ T(G), the poset (t∗,≼) is a finite lattice.

18 / 28



Mockingbird lattices

For any h ⩾ 0, the h-right comb tree is the
G-term rh satisfying

rh =

{
M if h = 0,
M rh otherwise.

TheMockingbird lattice of order h is the latticeM(h) := (r∗h ,≼).

– Examples –

M(0) M(1) M(2) M(3) M(4)

For any h ⩾ 0, the h-ladder is the duplicative
tree lh satisfying

lh =

{
ϵ if h = 0,
(lh−1) otherwise.

When h ⩾ 1, the lattice M(h) is isomorphic to
(
l∗h−1,≪

)
.

19 / 28



Outline

3. Enumerative properties
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Formal series of duplicative forests

Let Z
〈〈
DF〉〉 be the set of the possibly infinite formal sums of duplicative forests with coefficients

in Z. These are formal series on DF with integer coefficients.

For any F ∈ Z
〈〈
DF〉〉 and f ∈ DF, the coefficient of f in F is denoted by ⟨f, F⟩.

Given a statistics ω : DF → N and F ∈ Z
〈〈
DF〉〉, the ω-specialization of F is the generating

series
ω(F) :=

∑
f∈DF

⟨f, F⟩ zω(f)

of Z⟨⟨z⟩⟩.

The characteristic series of a set F of duplicative forests is the formal series

c(F) :=
∑
f∈F

f.

In particular, ht(c(F)) is the generating series of the forests of F enumerated w.r.t. their heights.
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Strategy for the enumeration

– Strategy –
To enumerate a family F of duplicative forests, provide a functional equation describing c(F) and then specialize it
to obtain a description of ht(c(F)).

An important ingredient for this is the series of the ladders

ld :=
∑
h⩾0

lh = ϵ+ + + + + · · · .

Observe that ld satisfies the functional equation

ld = ϵ+ (ld).

We deduce from this that ht(ld) = 1+ z ht(ld), implying

ht(ld) =
1

1− z
as expected.
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Number of elements — 1/2

For any f ∈ DF, let
gr(f) =

∑
f′∈f∗

f′.

– Example –

gr
( )

= + + + + + + +

By extending gr by linearity, gr(ld) is a well-defined formal series on DF:

gr(ld) =
∑
h⩾0

gr(lh) =
∑
h⩾0

∑
f∈l∗h

f.

The ht-specialization of the previous series satisfies

ht(gr(ld)) =
∑
h⩾0

(#l∗h) z
h.
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Number of elements — 2/2

Let ∆ : Z
〈〈
DF〉〉 → Z

〈〈
DF〉〉 be the linear map satisfying ∆(f) = f f for any f ∈ DF.

– Theorem [G., 2022] –
The series gr(ld) satisfies

gr(ld) = ϵ+ (gr(ld)) + (gr(∆(ld))).

From this, we deduce that the ht-specialization A of gr(ld) satisfies

A = 1+ z A+ z (A⊠A),

where ⊠ is the Hadamard product of generating series.

The coefficients a(h) :=
〈
zh,A

〉
satisfy a(0) = 1 and for any h ⩾ 1,

a(h) = a(h− 1) + a(h− 1)2.

The sequence (a(h))h⩾0 starts by

1, 2, 6, 42, 1806, 3263442, 10650056950806

and forms Sequence A007018. 24 / 28
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Number of intervals — 1/3

For any f ∈ DF, let ns(f) = gr(gr(f)).We obtain

ns(f) =
∑
f′∈f∗

#[f, f′] f′.

– Example –
ns

( )
= + 2 + 2 + 4 + 2 + 4 + 3 + 3 + 6 + 6 + 6 + 12

By extending ns by linearity, ns(ld) is a well-defined formal series on DF:

ns(ld) =
∑
h⩾0

ns(lh) =
∑
h⩾0

∑
f∈l∗h

#[lh, f] f.

The ht-specialization of the previous series satisfies

ht(ns(ld)) =
∑
h⩾0

Ih zh

where Ih is the number of intervals of the poset (l∗h ,≪).
25 / 28



Number of intervals — 2/3

To provide a functional equation for ns(ld), we need the following two tools.
The k-meet decomposition, k ⩾ 1, of f ∈ DF is

mdk(f) =
∑

g1,...,gk∈f∗

g1∧...∧gk=f

g1 ⊗ · · · ⊗ gk.

For any u ∈ { , }∗, the merging product of f1, . . . , fℓ ∈ DF satisfies

mg u(f1 ⊗ f2 ⊗ · · · ⊗ fℓ) = (f1)⊗mgu(f2 ⊗ · · · ⊗ fℓ),

mg u(f1 ⊗ f2 ⊗ f3 ⊗ · · · ⊗ fℓ) = (f1f2)⊗mgu(f3 ⊗ · · · ⊗ fℓ).

– Example –

mg
(

⊗ ⊗ ⊗ ⊗
)
= ⊗ ⊗
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Number of intervals — 3/3

– Theorem [G., 2022] –
For any k ⩾ 1, the series mdk(ns(ld)) satisfies

mdk(ns(ld)) = ϵk⊗ +
∑

u∈{ , }k
mgu

(
mdk+|u| (ns(ld))

)
+ (mdk(ns(∆(ld)))).

Since md1(ns(ld)) = ns(ld), this provides a functional equation for ns(ld).

From this, we deduce that the ht-specialization Ak ofmdk(ns(ld)) satisfies

Ak = 1+ z(Ak ⊠Ak) + z
∑

0⩽i⩽k

(k
i

)
Ak+i.

The coefficients ak(h) :=
〈
zh,Ak

〉
satisfy ak(0) = 1 and for any h ⩾ 1,

ak(h) = ak(h− 1)2 +
∑

0⩽i⩽k

(k
i

)
ak+i(h− 1).

The sequence (a1(h))h⩾0 starts by

1, 3, 17, 371, 144513, 20932611523, 438176621806663544657.
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Conclusion and perspectives

We have studied a very simple CLS, the Mockingbird system, having nevertheless some rich
combinatorics:

its rewrite graphs are Hasse diagrams of posets;

all intervals of these posets are lattices;

these lattices are not graded, not self-dual, and not semidistributive;

enumerative data is accessible but nontrivial.

Some questions and projects:

1. study, under an order theoretic point of view, some other CLS built from some basic
combinators of the Enchanted forest of combinator birds;

2. provide necessary and/or sufficient conditions for a CLS to have the poset or the lattice
property;

3. realize some well-known posets (like Tamari lattices, Stanley lattices, or Kreweras lattices) as
intervals of posets built from specific CLSs.
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