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1. Combinatory logic



A scheme is either

m a positive integer i, called variable;
m a pair (s¢, 51) of schemes, called application of s, on s;.
Let & be the binary operation defined by s, & s; := (s, 51).

The tree of the left is the tree representation of the scheme

“ s:=((2a2)al)a(dal).
« «
The short representation of s is obtained by considering that & associates
@ e i to the left. Hence,
2 2 5 = 221(41).

Let G be the set of schemes and G(n), n > 1, be the set of schemes having only variables in [n].



A term is either

m a pair (n,5) where n > 1 and s € &(n), called rule (or basic combinator);
m a pair (to, t;) of terms, called application of t, on t;.

Let p,, n > 1, be the unary operation defined by p,(s) := (n,s) and « be the binary operation
defined by ty at; := (o, t1).

The order of a rule p,(s) is n.

The short representation of terms follows the anal-

@ The tree of the left is the tree repre- ogous conventions as the ones of schemes. Hence,
o P1 sentation of the term t= 4  =TMK
T t=peanaptan)an). T ow
2 1 1 1 where T := p,(21), M := p,(11), and K := p,(1).

Let ¥ be the set of terms.



Given s € 6(n) and t;,...,t, € %, the

composition of t;, ..., t, in § is the term

s[ty, ..., t,] obtained by replacing all variables i e bt = "h

a

of s by t;. 2 1 b b

The rewrite relation is the binary relation = on ¥ such that t = t’ if t’ can be obtained from t by
locally replacing by s[t;, . . ., t,] one pattern p,(s)t; .. . t,.

Let the rules I := p; (1), M := p;(11), and T := p,(21). a
= a
t
The rule T can be seen as the rewrite rule ¥ : . t 4
We have (M(IM))(TIM) = (M(IM))(MI). @ «
a a5 o« o,
On tree representations, this expresses as o N " 2 N M1



Let the three rules [Curry, 1930]

S :=p5(13(23)), K:=p,(1), I:=p(1).

Here is a sequence of rewrite steps, which can be seen as forming a computation:

e @ & @

The set of terms using only the rules S, K, and I form a Turing-complete programming
language: any \-term can be emulated by a term of this set through abstraction algorithms
[Rosser, 1955], [Curry, Feys, 1958].



In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a great number of rules are listed,
forming the Enchanted forest of combinator birds.

Here is a sublist (with some others introduced since then):

n Idiot bird: I := p, (1)
m Mockingbird: M := p, (11)

n Kestrel: K := p,(1)

m Kite: Ki := p,(2)

m Thrush: T := p,(21)

W Crossed Konstant Mocker: Mcx := p,(11)
n Konstant Mocker: Mg := p,(22)
m Mockingbird 1: M; := p,(112)

m Warbler: W := p,(122)

m Converse Warbler: W' := p,(211)
m Lark: L := p,(1(22))

m Owl: O := p,(2(12))

Double Mockingbird: My := p,(12(12))
Turing bird: U := p,(2(112))

Cardinal: C := p;(132)

Robin: R := p,(231)

Vireo: V := p,(312)

Finch: F := p,(321)

Bluebird: B := p,(1(23))
Quixotic bird: Q, := p,(1(32))
Queer bird: Q := p,(2(13))
Quizzical bird: Q, := p;(2(31))
Quirky bird: Q, := p,(3(12))
Quarky bird: Q, := p,(3(21))

Hummingbird: H := p,(1232)
Starling: S := p;(13(23))

Dove: D := p,(12(34))
Goldfinch: G := p,(14(23))
Blackbird: B, := p,(1(234))
Becard: B := p,(1(2(34)))
Jay ] i= p,(12(143))

Eagle: E := p,(12(345))
Bunting: B, := p;(1(2345))
Dickcissel: Dy := p;(123(45))
Dovekies: D, := p;(1(23)(45))



m Let < be the reflexive and transitive closure of =.

m Let = be the symmetric closure of <.

m Let = be the equivalence relation on ¥ such that t = t' ift < t' and t’ < t.
Given a term {,

m the set of terms accessible from tis t* ;= {t' € T : t L t'}.

m the rewrite graph of t is the directed multigraph G(t) on t* such that there are m edges from ¥/
to t” if there are exactly m ways to obtain t” by a rewrite step from t';

m the poset P(t) of tis the poset (t*/_, <) where < satisfies [t'] . < [t”]_. if there are
t' € [t]_ and t” € [t"]_ such that t' < t".

Every rewrite system (t*, =) is confluent [Rosen, 1973].

Similar structures have been considered for A-calculus [Barendregt, 1981], [Venturini-Zilli, 1984] but G(t)
is in general not isomorphic to the reduction graph of the natural A-term of t.



Let t := X X(X X X)(XX) where X := I = p,(1). Here are G(t) and the Hasse diagram of P(t):

XX(XXX)(XX)
{XX(XXX)(XX)}
1 1 1
XOo)00) XXEX(X) XXOOK)X (XERX)XX)} {XX(XX)(XX)} (XXXXX]
1 1 1 1 1 1
X(XX)(XX) XXX(XX) X(XXX)X XX(XX)X (x(xx)(’xx)} (x%x()éx)) ’{X(XXX)X) ((xx(xx)x)
2 1 1 1 -1 1 1

30000 R 30000 pXOCON ooOX oo

It 1 2 1 |

X(XX) XXX XXX} e

] i
XX X}
1
X X
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Let t := X X(X(X X X(XXX)) X) where X := K = p,(1). Here are G(t) and the Hasse diagram of P(t):

[ XXX xxx))

1

XX(XXXX(XKX))X)
1 A 1
p / N
(X(. )X) ( ( ) (X( )X)
1 1 1 \L-1 1
(X(XX)X) | XX(XXXX)
L 1 A 1
N A
1 XX(XX) | 1
¢ | Y
W
Ny

XXXXXX(XXX)X)}

| >

(xx(x(x(xxx‘))x)} IXX(XXX(XXX))} XX(XXXXX)X)}

v

(XX(X(XX)Z))) (XXX} ()ZX(XXXX))

.

XXX}

|

x}
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X(XXX)X(XXX)X)
i 1
1 1A

— Example -

Let t := X(X X X)(X(XXX) X) where X := T = p,(21). Here are G(t) and the Hasse diagram of P(t):

XOXR)XXX)X)}

1N 1 A T~
XXX(XXX) (XXX)(XX) ] (XXX
1 T 1 1
(XXX) XXX(XX) X(XX)(XX)
1 1 1
XXXX XX(XX)
1 4
XXX
it
XX

POXOXN) (X0

)OXX)] (XX)(XXX)} X

(XXX

pocoy

(XXXOO0) X000}

X0}

p;xx)

XX}
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:= B = p;(1(23)). Here are G(t) and the Hasse diagram of P(t):

Let t := X(X(XXXX) XX X) X X where X
{X(XXXXX)XXK)XX}

X(X(XXXX)XXX)XX

1 1
XOXXXX)XXX(XX)}

{XXXXX(XX)X)XX}

x(xx'xx)xxx(xx) {XXXXX)XXX)XX}

XOKXOOXXXXK  XKXXX(X)XXX

I LA 1 1 ht |
x(x(xx)‘(xx{x)xx X(X(XX)XXX(XX) XXXX(X;()X(XX) {X(X(XX)[ )}) { : ( )(’ O} ((() ”v (XX)}
‘ | ‘
“1 1 1 1 {
X(xx();xx))xx XOO)ROOX0) KOO0 (XEAEOOXE00)
1 1
XXXX)(XX) IRXCOO00X)}
1
X(XXX(XX)) {XXXX(XX)}
1
(XXOK)))

X(X(XE)
13/37



Let t := X(X(X X)) where X := M = p, (11). Here are G(t) and the Hasse diagram of P(t):

XXXX), 1
[\

/ N
XEX(KX)_ 2 [t N 1
N1 XCOOXXXX)) 3 XXXX)XXX)
\ -
\ P

XX(XX)(XX(XX)) 4

=g

{XXXX))
/ \
/ N\
/ \\\
s N\
XXX(XX)} XXX)XXX))}
\ | A
\ N
v N
N XEX)XXXN)) XXXX)X(XX))}
\\\ //
N\ e
XXXX)XXXX))}
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— Example -
p,(22). Here are G(t) and the Hasse diagram of P(t):

Let t := X X(XX(X X X)) where X

XXOOKKXXX)
1 {XOXO00), XXX}
L
XX!X‘X(XXXD XX(XXX(XX))

1
RXOKXP 1 .

XXOOOIOXOO0)
A A

XXX

XXXKXXRXKET 1

' . ! u L 7
XRXOOOXNXEN)  XXRIOX KT XXXXEOO) KON} XXX
1 ¢ ( {
(O] 1 XXOXYXXXOK] 1
L i )
(XXECOCXO0)

XXX



- Word problem -

Given a set or rules, is there an algorithm taking as input two terms t and t’ on these rules and deciding if t = t'?
See [Baader, Nipkow, 1998], [Statman, 2000].

m Yes for the terms on L [Statman, 1989], [Sprenger, Wymann-Béni, 1993].
m Yes for the terms on W [Sprenger, Wymann-Béni, 1993].
m Yes for the terms on M [Sprenger, Wymann-Béni, 1993].

m Open for the terms on S [RTA Problem #97, 1975].

— Strong normalization problem -

Given a set of rules, is there an algorithm taking as input a term t on these rules and deciding if all rewrite sequences
from t are finite?

m Yes for the terms on S [Waldmann, 2000].

m Yes for the terms on J [Probst, Studer, 2000].

16/37



2. A combinatorial approach



— On rewrite sets —

Given a term t,

m is t* finite? m If it is the case, how many elements it contains?

— On rewrite graphs —
Given a term t,
m is G(t) a simple graph? m Is G(t) a graded graph?

ic?
0 &) emolbe m Is G(t) shortcutless?

— On rewrite posets -

Given a term t,

m is the quotient t*/_ trivial? m IsP(t) a lattice?

)
0 B @ g o s m Ifit is the case, is P(t) a distributive lattice?
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Rule Simple graphs | Acyclic graphs | Graded graphs | Graded posets | Lattices Max. size
1=p,(1) X X 9
K = p,(1) X X X 10
Ki = p,(2) X X X 10
T = p,(21) 11
B = p,(1(23)) 11
C = p,(132) 11
p5(12) X 10

M = p,(11) X X X X [G., 2022]
Mk = p,(22) X X X X 7
ps(112(22)) X X X X X 8

Any “v” says that all terms t on the specified rule and having a size less than or equal to the

specified maximal size are such that G(t) and P(t) have the specified property.

Any “x” says that a counter-example has been found.

19/37



Let K be any field of characteristic zero —usually Q— and K((%¥)) be the dual space of the K-linear
span K(¥) of T.

Any F € K({(%)) is a formal series of terms and can be expressed as a possibly infinite formal

sum

F=) (tF)t

€T
where (t,F) is the coefficient F(t) € K of tin F.

For any term t, the t-multi-application map is the linear map v, : T(K{(%))) — K((%)) satisfying,
forany t;,...,tp € T, ¢ > 0,

Yt @ @t) =tt ...t

Y 2K®T + I®KI + K®KI®K) = 2KIKI + KII(KI) + KIK(KI)K

20/37



The next map is the linear map nx : K((¥)) — K((%)) satisfying, for any s € &(n), n > 1, and
G, heT L0,

nx(p,(s)ts .. te) = [€ = nlsts, .. taltaps - te+ DY, (o) (h @ @Nx(L) @ ® ).

i€[f]
FE § ) O
pelteon L
nx(II(I(IT))) = I(I(XT)) + ~v;(nx(I) @ I(IT) + I @nx(I(11))) H(I(m/)/}/ \1\\ L e §
= I(I(IT)) + 2 TI(IT) L a1

Ty 3

— Lemma -

Let t and t’ be two terms.
m We have t = t/ iff t’ appears in nx(t).
m The coefficient (', nx(t)) is the number of ways to obtain t’ from t by a rewrite step.

21/37



The path map is the linear map ph : K((%)) — K((¥)) satisfying, for any t € T,

ph(t) = t+ ph(nx(t)).

ph(II(I(11))) = II(I(I1T)) + ph(nx(II(I(IT))))
= T1I(I(11)) + ph(I(I(I1)) 4 2 TI(I1)) - »
= 121 +12T1+51(IT) 4 I(I(IT)) L Imwj/l(ﬂ)f
+ 21T1+21I(IT) + TI(I(IT))

— Proposition =

For any term t, ph(t) is a well-defined polynomial iff the rewrite graph G(t) is acyclic.

When this condition holds, the coefficient (t', ph(t)) is the number of ways to obtain t’ from t by a sequence of rewrite
steps.

22/37



3. Some results



Let s be a scheme.

m The frontier of s is the sequence fr(s) of the variables of s read from the left to the right.

m The length len(s) of s is the length of fr(s).

m The depth sequence dep(s) of s is the sequence of length len(s) such that for any j € [len(s)],
dep;(s) is the number of internal nodes & which are ancestors of the i-th variable of s.

Let the scheme

This scheme s satisfies

« m fr(s) = 22141;
5= 221(41) = C CH m len(s) = 5;
@ LG m dep(s) = 33222.
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Givenn > 1and s € &(n), arule p,(s) is

m projective if § is a variable;
m linear if 5 admits at most one occurrence of any variable;
m conservative if s admits at least one occurrence of each variable of [n];
m retractive if for any j € [len(s)], dep;(s) < n+ 1 — fr;(s).
For all these properties P, a term t is P (resp. anti-P) if all rules of t are P (resp. are not P).

mI=p, (1) is projective, linear, conservative, and retractive;
m K = p,(1) and Ki = p,(2) are projective, linear, and retractive;

n T= p2(21) is linear, conservative, and retractive;

B = p;(1(23)) is linear and conservative;

M = p,(11) and M; = p,(112) are conservative and retractive.

25/37



The set of rules is structured as follows according to these properties:

7?/COI’I

where
m Ry, is the set of projective rules;

m Ry, is the set of linear rules;

m Reon is the set of conservative rules;

p,(11) | m R is the set of retractive rules.

Rlin 7-\)fret
Rpro

p4(412)

26/37



- Proposition =

For any n > 1, the number of conservative and linear rules of G(n) is

(2n—2)!

(n—1)!"

#(6(n) N Reon N Riin) =

The first numbers are 1, 2, 12, 120, 1680, 30240, 665280 (Sequence A001813).

A graph G(t) is graded if there is a map ¢ : t* — N such that ¢(t) = 0 and for any terms t’ and t”’
of t* such that t' = t”, ¢(t") = ¢(t') + 1.

An edge t' = t” of G(t) is a shortcut if there is a term t"”/ such that ' £t £ t" and ¢/ <t g .

— Proposition =

If t is a conservative and linear term, then

m the graph G(t) is graded; m the graph G(t) is shortcutless.

27/37


http://oeis.org/A001813

The rewrite graph of the con-
servative  and  linear  term
t X(X(X X X)(XX))(XX)
where X := T = p,(21) is graded
and shortcutless:

XXX

T h a

XXORXX)XX)

XOKOXXNKN) XOKXOOKXNEN)
7§ 4 A T
XOOXNKXX XXXOX)XX) XXOOKEOX) XOXOONOX) XOXKNKK)
L A y A h 1A ot
YOO XXX XXOKOKK) XXOOKK) XKXKYKK)
. g A 4 A " 1 h
X000 100000 XK0006) X000
1 ' b 1
“xxxx X009

The rewrite graph of the linear
but not conservative term t
X(XX(XXXX))XX where X :=
p3(13) is not shortcutless:

X(XX(XXXX)XX

/ \
/1 “d
/ \
¥ N

XX(XXXX)X X(XX(XX)XX

|\ /

(

| AN N
| N
\1 XX(XX)X

/1

L%

XX

The rewrite graph of the conser-
vative but not linear term t :=
X(X(X(XX) X) XX) where X :=
M; = p,(112) is not graded:

X(X(X(XX)X)XX)
! 1

XXX XXXX)XX)

XXEXKXXXK) 1t 1

i 1

XOXXXXXX(XX)X)XX) 2

28/37



- Proposition =

For any n > 1, the number of linear rules of S(n) is

#emnrm =Y (D).

k/ \k—1

k€ [n]

The first numbers are 1, 4, 21, 184, 2425, 42396, 916909 (Sequence A224500).
A poset P(t) is graded if its Hasse diagram is a graded graph.

— Proposition =

If t is a linear term, then

m the set t* is finite; m the quotient t* /— is trivial; m the poset P(t) is graded.

29/37


http://oeis.org/A224500

The rewrite graph of the linear term t := Its poset has trivial =-equivalence classes and is

X(X(XXX)(XX))(XXX) where X := K = p,(1) graded:
is finite and not graded:
XXX (XX))(XXX)}
X(X(XXX)(XX))(XXX)
1 1 N 1 - N
» / : \ \ {X(XXX)(XXX)} {X(XX(XX))(XXX)} {X(X(XXX)(XX))X}
X(XXX)(XXX) XOXEONXKK)  XKEOEX)X N 1 ~ ;
7 P T\ 1 1 \ }/’ N ., {
/ V N . \ L  \ XX(XXX)} {X(XXX)X} XXX (XX)X} XXXX)(XX)}
(1 XX(XXX) X(XXX)X X(XX(XX)X 1 X(XXX)(XX)
N 1 2 1 PN T ! 7
T XXX XX(XX)“ XXX} XXX}
1 1
"R & X}

30/37



The rewrite graph of the non-linear term t
XX(XXX) XXX where X :

nite and is not acyclic:

XXOO0OXXX
1
XOOOKE0XX
1 '
XXOXXXXKX000)
1 XXX OXNXX
XXX (XXX XXOOXXXXNXX X))
i i
XOOOXOXXKXNKN) XOXKONOXKNN)
L 1
XOOXOLONXGO000))
i
XOKXEO0XONI000)
1
XOXOOOX)XXOXCOXN))
i
XX OKXX O KX XXKX))
!
XXX XXONI00)
L
XX XXCXEXIKXKXKXN)
T
XOKRXEO0000XXGXXX)

p(3(2(11))) is fi-

- Example -

Its poset has nontrivial =-equivalence classes and

is not graded:

[XXOOXXK]
{XOXXNXX]

XCOXXOXNXEXN}— XKXXEX)XX

XXX

XEXEXXXEX)OXN)

IXCXOX)XX)XXKXOXN))

|




A term is anti-projective if it does not have any projective rule.

The rewrite graph G(t) is simple if it does not have any multi-edge.

— Conjecture (work-in-progress)

If t is an anti-projective and linear term, then G(t) is simple.

A poset P(t) is a lattice if all pairs of its elements admit a greatest lower bound and a least upper
bound.

- Conjecture (work-in-progress)

If t is an anti-projective and linear term, then P(t) is a lattice.
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The rewrite graph of the linear but not anti- The rewrite graph of the anti-projective but not lin-
projective term t := XX(X(XX) (XXX)) where ear term t := X(X(X X)) where X :=M = pl(ll)
X := Ki = p,(2) is not simple: is not simple:

XX(XX),_— 1
[\

P

X(XX(XXX))XX

N / o
. XXX)X(XX),_ 2
X(XXX)XX RN
N XXXX) 2 1
1 N N Y
1 ;XXX 1 x(xx)&x(xx)lj’jj 3 xx@(x)(x(xx)zjj 3
yd N\ “ el
4 xx(fx)(xx&x)} o
XX
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The rewrite poset of the linear but not anti- The rewrite poset of the anti-projective but not lin-
projective term t := X X(X(XX) X) where X := ear term t := XX(XX(XXX))X where X :=
I = p;(1) is not a lattice: p3(3(22)) is not a lattice:
(XXX XXX} XXX XXX}
) y - \\\ XK XXKXXNKX XXX
XXXXX)} XXEX)X)}
2N N\ IXOXOXOOXNXXX XX}
/ \ / \
/ AN / N\
}/ N V' \l
XXX} XEXX)} X)X}
X0 oo
pod
J XXOOROXHKON)
X}

{XOXRXOKHXX KX}
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If p,(s) is a retractive rule, then in s[t;, . . ., t,], the respective depths of the subterms t,, ..., t, are
smaller than the ones they have in p,(s)t; . . . tp.

[)
& a Ps3
& a _
«
a a @ @
(o4 3
3 @ 1 @ 4 @ 1 @
2 a
@ ] 2 1 @ 2 2 1
1 2
11 11
This rule is retractive. This rule is not retractive. This rule is not retractive.

As a consequence, when t is retractive, t = t’ implies ht(t) > ht(t').

If t is a retractive term, then t* is finite.
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— Example -

The rewrite graph of the retractive term t := X X(X(X XX X)) X where X := p;(22(22)) is finite and not acyclic:

XOOXOO0) XXX OOXNY KX

XX OO0 XOOOXN XX XN XXX

XXXOOOX)X

h 2 1 1 1 1 1 1 1 1 XXXXXOXNX

1 1 1 1 i T 1 1 T

XXX X (XX 1 X(OOX)X XXX XXONXXXOXN) /1

2 2 2

XXX (X XXX KX KX XK1
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Rewrite graphs and rewrite posets of terms are provided with some combinatorial properties
depending on some characteristics of the terms:

Property on t H t* finite H G(t) simple | G(t)acye. | G(t)grad. | G(t) shortcutl. H P(t) grad. | P(t) lattice

Lin.

Lin. & cons.

Lin. & anti-proj. ? ?

Retr.

Perspectives:

m prove the conjectured properties;
m given a linear (resp. retractive) term ¢, describe a way to enumerate t*;

m see such rewrite graphs and rewrite posets within the framework of differential graded posets
[Stanley, 1988] and the framework of duality of graded graphs [Fomin, 1994];

m describe general properties of formal series of terms w.r.t. natural operations.
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