Some enumerative and order-theoretic properties in combinatory logic

Samuele Giraudo

LaCIM, Université du Québec à Montréal

Logic seminar, Carnegie Mellon University Pittsburgh United States

April 11, 2023

Outline

1. Combinatory logic

2. A combinatorial approach

3. Some results

Outline

1. Combinatory logic

Schemes

A scheme is either

- \blacksquare a positive integer *i*, called <u>variable</u>;
- a pair $(\mathfrak{s}_0, \mathfrak{s}_1)$ of schemes, called <u>application</u> of \mathfrak{s}_0 on \mathfrak{s}_1 .

Let $\bar{\alpha}$ be the binary operation defined by $\mathfrak{s}_0 \bar{\alpha} \, \mathfrak{s}_1 := (\mathfrak{s}_0, \mathfrak{s}_1)$.

- Example -

 $\bar{\alpha}$ $\bar{\alpha}$

The tree of the left is the **tree representation** of the scheme

$$\mathfrak{s}:=((2\,\bar{\alpha}\,2)\,\bar{\alpha}\,1)\,\bar{\alpha}(4\,\bar{\alpha}\,1).$$

The short representation of $\mathfrak s$ is obtained by considering that $\bar \alpha$ associates to the left. Hence,

$$\mathfrak{s} = 221(41).$$

Let \mathfrak{S} be the set of schemes and $\mathfrak{S}(n)$, $n \ge 1$, be the set of schemes having only variables in [n].

Terms

A term is either

- a pair (n, \mathfrak{s}) where $n \ge 1$ and $\mathfrak{s} \in \mathfrak{S}(n)$, called <u>rule</u> (or <u>basic combinator</u>);
- **a** a pair $(\mathfrak{t}_0,\mathfrak{t}_1)$ of terms, called <u>application</u> of \mathfrak{t}_0 on \mathfrak{t}_1 .

Let ρ_n , $n \ge 1$, be the unary operation defined by $\rho_n(\mathfrak{s}) := (n, \mathfrak{s})$ and α be the binary operation defined by $\mathfrak{t}_0 \alpha \mathfrak{t}_1 := (\mathfrak{t}_0, \mathfrak{t}_1)$.

The <u>order</u> of a rule $\rho_n(\mathfrak{s})$ is n.

- Example -

The tree of the left is the **tree representation** of the term

$$\mathfrak{t}:=\left(\rho_2(2\,\bar{\alpha}\,\mathbf{1})\,\alpha\,\rho_1(\mathbf{1}\,\bar{\alpha}\,\mathbf{1})\right)\alpha\,\rho_2(\mathbf{1}).$$

The **short representation** of terms follows the analogous conventions as the ones of schemes. Hence,

$$\mathfrak{t} = \bigvee_{\substack{\alpha \\ \text{T} \ M}}^{\alpha} = \mathbf{T} \mathbf{M} \mathbf{K}$$

where
$$\mathbf{T} := \rho_2(21)$$
, $\mathbf{M} := \rho_1(11)$, and $\mathbf{K} := \rho_2(1)$.

Let \mathfrak{T} be the **set of terms**.

Rewrite relation

Given $\mathfrak{s} \in \mathfrak{S}(n)$ and $\mathfrak{t}_1, \ldots, \mathfrak{t}_n \in \mathfrak{T}$, the <u>composition</u> of $\mathfrak{t}_1, \ldots, \mathfrak{t}_n$ in \mathfrak{s} is the term $\mathfrak{s}[\mathfrak{t}_1, \ldots, \mathfrak{t}_n]$ obtained by replacing all variables i of \mathfrak{s} by \mathfrak{t}_i .

- Example -
$$\overset{\tilde{\alpha}}{\underset{2)}{\tilde{\alpha}}}_{1}[t_{1},t_{2},t_{3}] = \overset{\alpha}{\underset{t_{2}}{\tilde{\alpha}}}_{t_{1}}$$

The <u>rewrite relation</u> is the binary relation \Rightarrow on \mathfrak{T} such that $\mathfrak{t} \Rightarrow \mathfrak{t}'$ if \mathfrak{t}' can be obtained from \mathfrak{t} by **locally replacing** by $\mathfrak{s}[\mathfrak{t}_1, \ldots, \mathfrak{t}_n]$ one **pattern** $\rho_n(\mathfrak{s})\mathfrak{t}_1 \ldots \mathfrak{t}_n$.

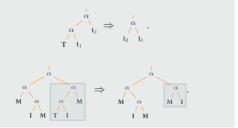
- Example -

Let the rules $\mathbf{I}:=\rho_1(1), \mathbf{M}:=\rho_1(11),$ and $\mathbf{T}:=\rho_2(21).$

The rule T can be seen as the rewrite rule

We have $(M(IM))(\underline{TIM}) \Rightarrow (M(IM))(\underline{MI})$.

On tree representations, this expresses as



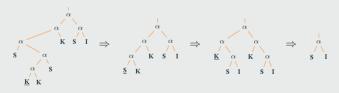
The rules S, K, I

Let the three rules [Curry, 1930]

$$\mathbf{S} := \rho_3(13(23)), \quad \mathbf{K} := \rho_2(1), \quad \mathbf{I} := \rho_1(1).$$

- Example -

Here is a sequence of rewrite steps, which can be seen as forming a **computation**:



The set of terms using only the rules **S**, **K**, and **I** form a **Turing-complete programming language**: any λ -term can be emulated by a term of this set through **abstraction algorithms** [Rosser, 1955], [Curry, Feys, 1958].

The Enchanted Forest of combinator birds

In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a great number of rules are listed, forming the Enchanted forest of combinator birds.

Here is a sublist (with some others introduced since then):

■ Idiot bird:
$$I := \rho_1(1)$$

■ Mockingbird:
$$M := \rho_1(11)$$

Kestrel:
$$K := \rho_2(1)$$

• **Kite**: **Ki** :=
$$\rho_2(2)$$

$$\blacksquare \ \ \mathbf{Thrush} : \mathbf{T} := \rho_2(21)$$

Crossed Konstant Mocker:
$$\mathbf{M}_{\mathrm{CK}} := \rho_2(11)$$

■ Konstant Mocker:
$$M_K := \rho_2(22)$$

$$\qquad \textbf{Mockingbird 1} : \mathbf{M}_1 := \rho_2(112)$$

$$\blacksquare \ \ \textbf{Warbler} : \textbf{W} := \rho_2(122)$$

■ Converse Warbler:
$$\mathbf{W}^1 := \rho_2(211)$$

$$\blacksquare \ \mathbf{Lark} \colon \mathbf{L} := \rho_2(1(22))$$

$$\quad \blacksquare \quad \mathbf{Owl} : \mathbf{O} := \rho_2(2(12))$$

Double Mockingbird:
$$\mathbf{M}_2 := \rho_2(12(12))$$
Turing bird: $\mathbf{U} := \rho_2(2(112))$

■ Cardinal:
$$C := \rho_3(132)$$

■ Robin:
$$\mathbf{R} := \rho_3(231)$$

■ **Vireo**: **V** :=
$$\rho_3(312)$$

■ Finch:
$$\mathbf{F} := \rho_3(321)$$

■ **Bluebird**: **B** :=
$$\rho_3(1(23))$$

$$\quad \blacksquare \quad {\bf Quixotic\ bird:}\ {\bf Q}_1:=\rho_3(1(32))$$

$$\quad \blacksquare \quad \mathbf{Quizzical \ bird} \colon \mathbf{Q}_2 := \rho_3(2(31))$$

$$\quad \blacksquare \quad \text{Quirky bird: } \mathbf{Q}_3 := \rho_3(3(12))$$

$$\quad \blacksquare \quad \mathbf{Quarky \ bird} \colon \mathbf{Q}_4 := \rho_3(3(21))$$

■ Hummingbird:
$$\mathbf{H} := \rho_3(1232)$$

• Starling:
$$S := \rho_3(13(23))$$

Dove:
$$\mathbf{D} := \rho_4(12(34))$$

■ Goldfinch:
$$G := \rho_4(14(23))$$

■ **Blackbird**:
$$\mathbf{B}_1 := \rho_4(1(234))$$

Becard:
$$\mathbf{B}_3 := \rho_4(1(2(34)))$$

Jay:
$$J := \rho_4(12(143))$$

Eagle:
$$E := \rho_5(12(345))$$

■ Bunting:
$$\mathbf{B}_2 := \rho_5(1(2345))$$

■ **Dickcissel**: **D**₁ :=
$$\rho_5(123(45))$$

■ **Dovekies**:
$$\mathbf{D}_2 := \rho_5(1(23)(45))$$

Rewrite graphs, prosets, and posets

- Let \leq be the reflexive and transitive closure of \Rightarrow .
- Let \equiv be the **symmetric closure** of \preccurlyeq .
- Let \rightleftharpoons be the equivalence relation on $\mathfrak T$ such that $\mathfrak t \rightleftharpoons \mathfrak t'$ if $\mathfrak t \preccurlyeq \mathfrak t'$ and $\mathfrak t' \preccurlyeq \mathfrak t$.

Given a term t,

- the set of terms <u>accessible</u> from \mathfrak{t} is $\mathfrak{t}^* := \{\mathfrak{t}' \in \mathfrak{T} : \mathfrak{t} \preccurlyeq \mathfrak{t}'\}$.
- the <u>rewrite graph</u> of t is the directed multigraph G(t) on t^* such that there are m edges from t' to t'' if there are exactly m ways to obtain t'' by a rewrite step from t';
- the <u>poset</u> $P(\mathfrak{t})$ of \mathfrak{t} is the poset $(\mathfrak{t}^*/_{\rightleftharpoons}, \ll)$ where \ll satisfies $[\mathfrak{t}']_{\rightleftharpoons} \ll [\mathfrak{t}'']_{\rightleftharpoons}$ if there are $\mathfrak{t}' \in [\mathfrak{t}']_{\rightleftharpoons}$ and $\mathfrak{t}'' \in [\mathfrak{t}'']_{\rightleftharpoons}$ such that $\mathfrak{t}' \prec \mathfrak{t}''$.

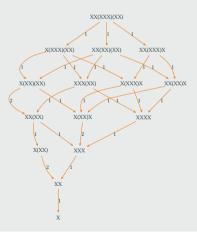
Every rewrite system $(\mathfrak{t}^*, \Rightarrow)$ is **confluent** [Rosen, 1973].

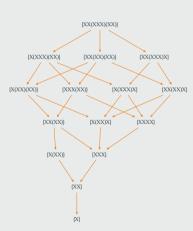
Similar structures have been considered for λ -calculus [Barendregt, 1981], [Venturini-Zilli, 1984] but $G(\mathfrak{t})$ is in general not isomorphic to the reduction graph of the natural λ -term of \mathfrak{t} .

Some examples -1/6

- Example -

Let $\mathfrak{t} := \mathbf{X}\mathbf{X}(\mathbf{X}\mathbf{X}\mathbf{X})(\mathbf{X}\mathbf{X})$ where $\mathbf{X} := \mathbf{I} = \rho_1(1)$. Here are $\mathbf{G}(\mathfrak{t})$ and the Hasse diagram of $\mathbf{P}(\mathfrak{t})$:

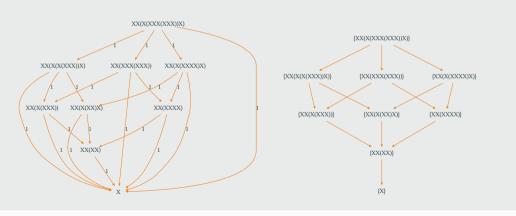




Some examples -2/6

- Example -

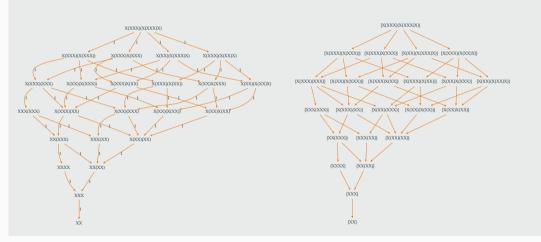
Let $\mathfrak{t}:=\mathbf{X}\,\mathbf{X}(\mathbf{X}(\mathbf{X}\,\mathbf{X}\,\mathbf{X}(\mathbf{X}\,\mathbf{X}))\,\mathbf{X})$ where $\mathbf{X}:=\mathbf{K}=\rho_2(1)$. Here are $G(\mathfrak{t})$ and the Hasse diagram of $P(\mathfrak{t})$:



Some examples -3/6

- Example -

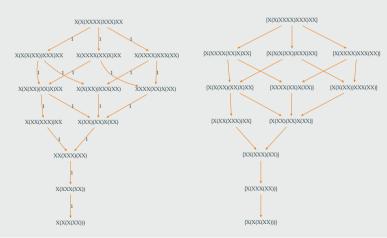
Let $\mathfrak{t} := \mathbf{X}(\mathbf{X}\mathbf{X}\mathbf{X})(\mathbf{X}(\mathbf{X}\mathbf{X}\mathbf{X})\mathbf{X})$ where $\mathbf{X} := \mathbf{T} = \rho_2(21)$. Here are $G(\mathfrak{t})$ and the Hasse diagram of $P(\mathfrak{t})$:



Some examples -4/6

- Example -

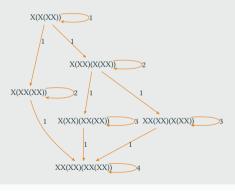
Let $\mathfrak{t}:=\mathbf{X}(\mathbf{X}(\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X})\mathbf{X}\mathbf{X})\mathbf{X}\mathbf{X}$ where $\mathbf{X}:=\mathbf{B}=\rho_3(1(23))$. Here are $\mathbf{G}(\mathfrak{t})$ and the Hasse diagram of $\mathbf{P}(\mathfrak{t})$:



Some examples -5/6

- Example -

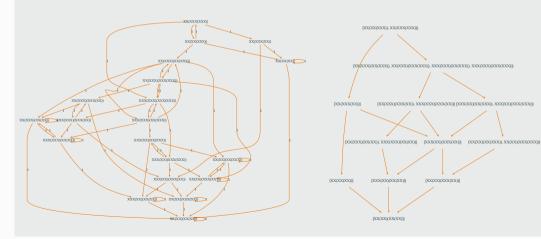
Let $\mathfrak{t} := \mathbf{X}(\mathbf{X}(\mathbf{X}\mathbf{X}))$ where $\mathbf{X} := \mathbf{M} = \rho_1(11)$. Here are $\mathbf{G}(\mathfrak{t})$ and the Hasse diagram of $\mathbf{P}(\mathfrak{t})$:



Some examples -6/6

- Example -

Let $\mathfrak{t} := \mathbf{X} \mathbf{X} (\mathbf{X} \mathbf{X} (\mathbf{X} \mathbf{X} \mathbf{X}))$ where $\mathbf{X} := \rho_2(22)$. Here are $\mathbf{G}(\mathfrak{t})$ and the Hasse diagram of $\mathbf{P}(\mathfrak{t})$:



Usual questions

- Word problem -

Given a set or rules, is there an algorithm taking as input two terms \mathfrak{t} and \mathfrak{t}' on these rules and deciding if $\mathfrak{t} \equiv \mathfrak{t}'$? See [Baader, Nipkow, 1998], [Statman, 2000].

- Yes for the terms on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].
- Yes for the terms on W [Sprenger, Wymann-Böni, 1993].
- Yes for the terms on M_1 [Sprenger, Wymann-Böni, 1993].
- Open for the terms on **S** [RTA Problem #97, 1975].

- Strong normalization problem -

Given a set of rules, is there an algorithm taking as input a term t on these rules and deciding if all rewrite sequences from t are finite?

- Yes for the terms on **S** [Waldmann, 2000].
- Yes for the terms on **J** [**Probst, Studer**, 2000].

Outline

2. A combinatorial approach

Combinatorial questions

- On rewrite sets -

Given a term t,

■ is t* finite?

■ If it is the case, **how many elements** it contains?

- On rewrite graphs -

Given a term t,

- \blacksquare is $G(\mathfrak{t})$ a **simple** graph?
- Is $G(\mathfrak{t})$ acyclic?

- Is $G(\mathfrak{t})$ a **graded** graph?
- Is G(t) shortcutless?

- On rewrite posets -

Given a term t,

- is the **quotient** $\mathfrak{t}^*/_{\rightleftharpoons}$ **trivial**?
- Is P(t) a **graded** poset?

- Is P(t) a **lattice**?
- If it is the case, is P(t) a **distributive lattice**?

Some computer experiments

Rule	Simple graphs	Acyclic graphs	Graded graphs	Graded posets	Lattices	Max. size
$I = \rho_1(1)$	×	✓	✓	√	×	9
$\mathbf{K} = \rho_2(1)$	×	✓	×	✓	×	10
$\mathbf{Ki}=\rho_2(2)$	×	✓	×	✓	×	10
$\mathbf{T} = \rho_2(21)$	✓	✓	✓	✓	✓	11
$\mathbf{B} = \rho_3(1(23))$	✓	✓	✓	✓	✓	11
$\mathbf{C} = \rho_3(132)$	✓	✓	✓	✓	✓	11
$\rho_{3}(12)$	✓	✓	×	✓	✓	10
$\mathbf{M} = \rho_1(11)$	×	×	×	×	✓	[G. , 2022]
$\mathbf{M}_{\mathrm{K}} = \rho_{2}(22)$	×	×	×	×	✓	7
$\rho_3(112(22))$	×	×	×	×	×	8

Any " \checkmark " says that all terms t on the specified rule and having a size less than or equal to the specified maximal size are such that G(t) and P(t) have the specified property.

Any "x" says that a **counter-example** has been found.

Formal series of terms

Let \mathbb{K} be any field of characteristic zero —usually \mathbb{Q} — and $\mathbb{K}\langle\langle\mathfrak{T}\rangle\rangle$ be the dual space of the \mathbb{K} -linear span $\mathbb{K}\langle\mathfrak{T}\rangle$ of \mathfrak{T} .

Any $\mathbf{F} \in \mathbb{K}\langle\langle \mathfrak{T} \rangle\rangle$ is a <u>formal series of terms</u> and can be expressed as a <u>possibly infinite formal sum</u>

$$\mathbf{F} = \sum_{\mathbf{t} \in \mathfrak{T}} \langle \mathbf{t}, \mathbf{F}
angle \; \mathbf{t}$$

where $\langle \mathfrak{t}, \mathbf{F} \rangle$ is the coefficient $\mathbf{F}(\mathfrak{t}) \in \mathbb{K}$ of \mathfrak{t} in \mathbf{F} .

For any term \mathfrak{t} , the $\underline{\mathfrak{t}\text{-multi-application map}}$ is the linear map $\gamma_{\mathfrak{t}}: T(\mathbb{K}\langle\langle\mathfrak{T}\rangle\rangle) \to \mathbb{K}\langle\langle\mathfrak{T}\rangle\rangle$ satisfying, for any $\mathfrak{t}_1, \ldots, \mathfrak{t}_\ell \in \mathfrak{T}, \ell \geqslant 0$,

$$\gamma_{\mathfrak{t}}(\mathfrak{t}_1\otimes\cdots\otimes\mathfrak{t}_\ell)=\mathfrak{t}\;\mathfrak{t}_1\ldots\mathfrak{t}_\ell.$$

– Example –

$$\gamma_{\mathbf{K}\mathbf{I}}(2\mathbf{K}\otimes\mathbf{I} + \mathbf{I}\otimes\mathbf{K}\mathbf{I} + \mathbf{K}\otimes\mathbf{K}\mathbf{I}\otimes\mathbf{K}) = 2\mathbf{K}\mathbf{I}\mathbf{K}\mathbf{I} + \mathbf{K}\mathbf{I}\mathbf{I}(\mathbf{K}\mathbf{I}) + \mathbf{K}\mathbf{I}\mathbf{K}(\mathbf{K}\mathbf{I})\mathbf{K}$$

Next map

The next map is the linear map $\mathbf{nx} : \mathbb{K}\langle\langle\mathfrak{T}\rangle\rangle \to \mathbb{K}\langle\langle\mathfrak{T}\rangle\rangle$ satisfying, for any $\mathfrak{s} \in \mathfrak{S}(n)$, $n \geqslant 1$, and $\mathfrak{t}_1, \ldots, \mathfrak{t}_\ell \in \mathfrak{T}, \ell \geqslant 0$,

$$\mathbf{nx}(\rho_n(\mathfrak{s})\mathfrak{t}_1\ldots\mathfrak{t}_\ell) = [\ell \geqslant n]\mathfrak{s}[\mathfrak{t}_1,\ldots,\mathfrak{t}_n]\mathfrak{t}_{n+1}\ldots\mathfrak{t}_\ell + \sum_{i\in[\ell]} \gamma_{\rho_n(\mathfrak{s})}(\mathfrak{t}_1\otimes\cdots\otimes\mathbf{nx}(\mathfrak{t}_i)\otimes\cdots\otimes\mathfrak{t}_\ell).$$

- Example -

$$\begin{split} \mathbf{nx}(\mathbf{II}(\mathbf{I}(\mathbf{II}))) &= \mathbf{I}(\mathbf{I}(\mathbf{II})) + \gamma_{\mathbf{I}}(\mathbf{nx}(\mathbf{I}) \otimes \mathbf{I}(\mathbf{II}) + \mathbf{I} \otimes \mathbf{nx}(\mathbf{I}(\mathbf{II}))) \\ &= \mathbf{I}(\mathbf{I}(\mathbf{II})) + 2 \ \mathbf{II}(\mathbf{II}) \end{split}$$

- Lemma [G., 2023+] -

Let \mathfrak{t} and \mathfrak{t}' be two terms.

- We have $\mathfrak{t} \Rightarrow \mathfrak{t}'$ iff \mathfrak{t}' appears in $\mathbf{nx}(\mathfrak{t})$.
- The coefficient $\langle \mathfrak{t}', \mathbf{nx}(\mathfrak{t}) \rangle$ is the number of ways to obtain \mathfrak{t}' from \mathfrak{t} by a rewrite step.

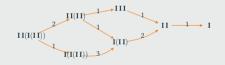
Path map

The <u>path map</u> is the linear map **ph** : $\mathbb{K}\langle\langle\mathfrak{T}\rangle\rangle \to \mathbb{K}\langle\langle\mathfrak{T}\rangle\rangle$ satisfying, for any $\mathfrak{t}\in\mathfrak{T}$,

$$ph(\mathfrak{t}) = \mathfrak{t} + ph(nx(\mathfrak{t})).$$

- Example -

$$\begin{aligned} \mathbf{ph}(\mathbf{II}(\mathbf{I}(\mathbf{II}))) &= \mathbf{II}(\mathbf{I}(\mathbf{II})) + \mathbf{ph}(\mathbf{nx}(\mathbf{II}(\mathbf{I}(\mathbf{II})))) \\ &= \mathbf{II}(\mathbf{I}(\mathbf{II})) + \mathbf{ph}(\mathbf{I}(\mathbf{I}(\mathbf{II})) + 2 \ \mathbf{II}(\mathbf{II})) \\ &= 12 \ \mathbf{I} + 12 \ \mathbf{II} + 5 \ \mathbf{I}(\mathbf{II}) + \mathbf{I}(\mathbf{I}(\mathbf{II})) \\ &+ 2 \ \mathbf{III} + 2 \ \mathbf{II}(\mathbf{II}) + \mathbf{II}(\mathbf{II}) \end{aligned}$$



- **Proposition** [G., 2023+] -

For any term $\mathfrak{t},$ $\mathbf{ph}(\mathfrak{t})$ is a well-defined polynomial iff the rewrite graph $G(\mathfrak{t})$ is acyclic.

When this condition holds, the coefficient $\langle t', \mathbf{ph}(t) \rangle$ is the number of ways to obtain t' from t by a sequence of rewrite steps.

Outline

3. Some results

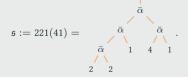
Properties on schemes

Let \$ be a scheme.

- The frontier of \mathfrak{s} is the sequence $fr(\mathfrak{s})$ of the variables of \mathfrak{s} read from the left to the right.
- The length len(\mathfrak{s}) of \mathfrak{s} is the length of fr(\mathfrak{s}).
- The <u>depth sequence</u> dep(\mathfrak{s}) of \mathfrak{s} is the sequence of length len(\mathfrak{s}) such that for any $j \in [\text{len}(\mathfrak{s})]$, dep_i(\mathfrak{s}) is the number of internal nodes $\bar{\alpha}$ which are ancestors of the *i*-th variable of \mathfrak{s} .

- Example -

Let the scheme



This scheme \$ satisfies

- $fr(\mathfrak{s}) = 22141;$
- \blacksquare len(\mathfrak{s}) = 5;
- \blacksquare dep(\mathfrak{s}) = 33222.

Properties on rules

Given $n \ge 1$ and $\mathfrak{s} \in \mathfrak{S}(n)$, a rule $\rho_n(\mathfrak{s})$ is

- projective if s is a variable;
- <u>linear</u> if \$ admits at most one occurrence of any variable;
- conservative if \mathfrak{s} admits at least one occurrence of each variable of [n];
- <u>retractive</u> if for any $j \in [\text{len}(\mathfrak{s})]$, $\text{dep}_j(\mathfrak{s}) \leqslant n + 1 \text{fr}_j(\mathfrak{s})$.

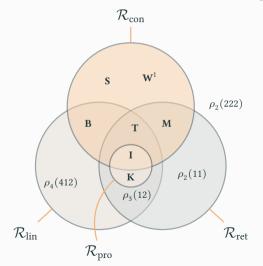
For all these properties P, a term \mathfrak{t} is \underline{P} (resp. $\underline{\mathsf{anti-}P}$) if all rules of \mathfrak{t} are P (resp. are not P).

– Example –

- ${f I}=
 ho_1(1)$ is projective, linear, conservative, and retractive;
- $\mathbf{K} = \rho_2(1)$ and $\mathbf{Ki} = \rho_2(2)$ are projective, linear, and retractive;
- $\blacksquare \ \ {\bf T}=\rho_2(21)$ is linear, conservative, and retractive;
- $\mathbf{B} = \rho_3(1(23))$ is linear and conservative;
- $\mathbf{M} = \rho_1(11)$ and $\mathbf{M}_1 = \rho_2(112)$ are conservative and retractive.

Classification of rules

The set of rules is structured as follows according to these properties:



where

- lacksquare \mathcal{R}_{pro} is the set of projective rules;
- \blacksquare \mathcal{R}_{lin} is the set of linear rules;
- \mathcal{R}_{con} is the set of conservative rules;
- \blacksquare \mathcal{R}_{ret} is the set of retractive rules.

Conservative and linear terms

- **Proposition** [G., 2023+] -

For any $n \ge 1$, the number of conservative and linear rules of $\mathfrak{S}(n)$ is

$$\#(\mathfrak{S}(n)\cap\mathcal{R}_{\mathrm{con}}\cap\mathcal{R}_{\mathrm{lin}})=\frac{(2n-2)!}{(n-1)!}.$$

The first numbers are 1, 2, 12, 120, 1680, 30240, 665280 (Sequence **A001813**).

A graph $G(\mathfrak{t})$ is graded if there is a map $\phi: \mathfrak{t}^* \to \mathbb{N}$ such that $\phi(\mathfrak{t}) = 0$ and for any terms \mathfrak{t}' and \mathfrak{t}'' of \mathfrak{t}^* such that $\mathfrak{t}' \Rightarrow \mathfrak{t}''$, $\phi(\mathfrak{t}'') = \phi(\mathfrak{t}') + 1$.

An edge $\mathfrak{t}'\Rightarrow\mathfrak{t}''$ of $G(\mathfrak{t})$ is a <u>shortcut</u> if there is a term \mathfrak{t}''' such that $\mathfrak{t}'\neq\mathfrak{t}'''\neq\mathfrak{t}''$ and $\mathfrak{t}'\preccurlyeq\mathfrak{t}'''$.

- **Proposition** [G., 2023+] -

If t is a conservative and linear term, then

lacktriangle the graph $G(\mathfrak{t})$ is graded;

■ the graph $G(\mathfrak{t})$ is shortcutless.

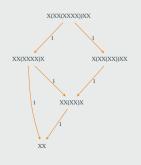
Conservative and linear terms — examples

- Example -

The rewrite graph of the conservative and linear term $\mathfrak{t}:=\mathbf{X}(\mathbf{X}(\mathbf{X}\mathbf{X}\mathbf{X})(\mathbf{X}\mathbf{X}))(\mathbf{X}\mathbf{X})$ where $\mathbf{X}:=\mathbf{T}=\rho_2(21)$ is graded and shortcutless:

- Example -

The rewrite graph of the linear but **not conservative** term $\mathfrak{t}:=\mathbf{X}(\mathbf{X}\,\mathbf{X}(\mathbf{X}\,\mathbf{X}\,\mathbf{X}\,\mathbf{X}))\,\mathbf{X}\,\mathbf{X}$ where $\mathbf{X}:=\rho_3(13)$ is **not shortcutless**:



- Example -

Linear terms

- **Proposition** [G., 2023+] -

For any $n \ge 1$, the number of linear rules of $\mathfrak{S}(n)$ is

$$\#(\mathfrak{S}(n)\cap\mathcal{R}_{\mathrm{lin}})=\sum_{k\in[n]}\binom{n}{k}\binom{2k-2}{k-1}.$$

The first numbers are 1, 4, 21, 184, 2425, 42396, 916909 (Sequence **A224500**).

A poset $P(\mathfrak{t})$ is graded if its Hasse diagram is a graded graph.

- **Proposition** [G., 2023+] -

If t is a linear term, then

■ the set t* is finite;

■ the quotient $\mathfrak{t}^{\star}/_{\rightleftharpoons}$ is trivial;

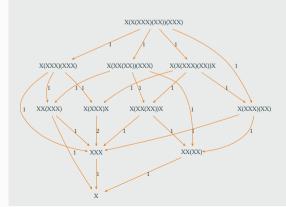
• the poset P(t) is graded.

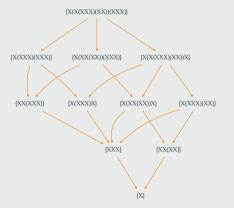
Linear terms — examples 1/2

- Example -

The rewrite graph of the linear term $\mathfrak{t}:=\mathbf{X}(\mathbf{X}(\mathbf{X}\,\mathbf{X}\,\mathbf{X})(\mathbf{X}\,\mathbf{X}))(\mathbf{X}\,\mathbf{X}\,\mathbf{X})$ where $\mathbf{X}:=\mathbf{K}=\rho_2(1)$ is finite and not graded:

Its poset has trivial \rightleftharpoons -equivalence classes and is graded:



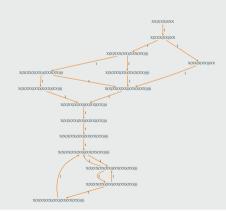


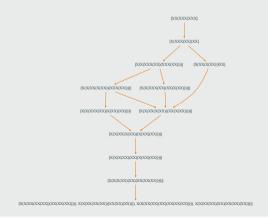
Linear terms — examples 2/2

- Example -

The rewrite graph of the non-linear term $\mathfrak{t}:=\mathbf{X}\mathbf{X}(\mathbf{X}\mathbf{X}\mathbf{X})\mathbf{X}\mathbf{X}\mathbf{X}$ where $\mathbf{X}:=\rho_3(3(2(11)))$ is finite and is **not acyclic**:

Its poset has **nontrivial ⇒-equivalence classes** and is **not graded**:





Linear and anti-projective terms

A term is <u>anti-projective</u> if it does not have any projective rule.

The rewrite graph G(t) is <u>simple</u> if it does not have any multi-edge.

- Conjecture (work-in-progress) [G., 2023+] -

If \mathfrak{t} is an anti-projective and linear term, then $G(\mathfrak{t})$ is simple.

A poset P(t) is a <u>lattice</u> if all pairs of its elements admit a greatest lower bound and a least upper bound.

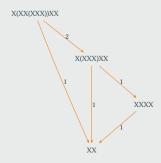
- Conjecture (work-in-progress) [G., 2023+] -

If $\mathfrak t$ is an anti-projective and linear term, then $P(\mathfrak t)$ is a lattice.

Linear and anti-projective terms — examples 1/2

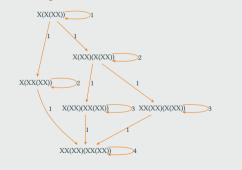
- Example -

The rewrite graph of the linear but **not antiprojective** term $\mathfrak{t} := \mathbf{X} \mathbf{X} (\mathbf{X} (\mathbf{X} \mathbf{X}) (\mathbf{X} \mathbf{X} \mathbf{X}))$ where $\mathbf{X} := \mathbf{Ki} = \rho_2(2)$ is **not simple**:



- Example -

The rewrite graph of the anti-projective but **not linear** term $\mathfrak{t}:=\mathbf{X}(\mathbf{X}(\mathbf{X}\,\mathbf{X}))$ where $\mathbf{X}:=\mathbf{M}=\rho_1(11)$ is **not simple**:



Linear and anti-projective terms – examples 2/2

- Example -

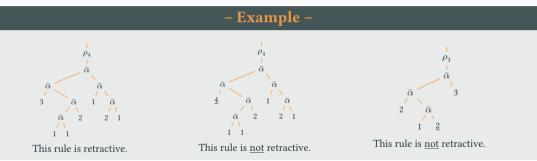
The rewrite poset of the linear but **not antiprojective** term $\mathfrak{t} := \mathbf{X} \mathbf{X} (\mathbf{X} (\mathbf{X} \mathbf{X}) \mathbf{X})$ where $\mathbf{X} := \mathbf{I} = \rho_1(1)$ is **not a lattice**:

- Example -

The rewrite poset of the anti-projective but **not linear** term $\mathfrak{t} := \mathbf{X} \mathbf{X} (\mathbf{X} \mathbf{X} (\mathbf{X} \mathbf{X} \mathbf{X})) \mathbf{X}$ where $\mathbf{X} := \rho_3(3(22))$ is **not a lattice**:

Retractive terms

If $\rho_n(\mathfrak{s})$ is a retractive rule, then in $\mathfrak{s}[\mathfrak{t}_1,\ldots,\mathfrak{t}_n]$, the respective depths of the subterms $\mathfrak{t}_1,\ldots,\mathfrak{t}_n$ are smaller than the ones they have in $\rho_n(\mathfrak{s})\mathfrak{t}_1\ldots\mathfrak{t}_m$.



As a consequence, when t is retractive, $t \Rightarrow t'$ implies $ht(t) \ge ht(t')$.

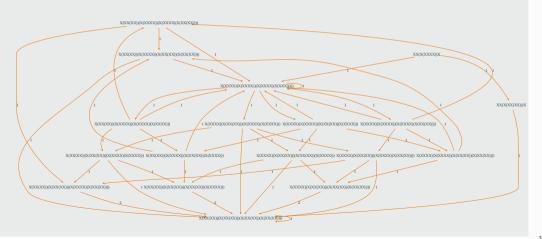
- **Proposition** [G., 2023+] -

If \mathfrak{t} is a retractive term, then \mathfrak{t}^* is finite.

Retractive terms — example

- Example -

The rewrite graph of the retractive term $\mathfrak{t} := \mathbf{X} \mathbf{X} (\mathbf{X} (\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X})) \mathbf{X}$ where $\mathbf{X} := \rho_3(22(22))$ is finite and not acyclic:



Conclusion

Rewrite graphs and rewrite posets of terms are provided with some **combinatorial properties** depending on some characteristics of the terms:

Property on t	t* finite	G(t) simple	G(t) acyc.	G(t) grad.	G(t) shortcutl.	P(t) grad.	P(t) lattice
Lin.	√		√			✓	
Lin. & cons.	√		√	√	✓	✓	
Lin. & anti-proj.	√	?	√			✓	?
Retr.	√						

Perspectives:

- prove the conjectured properties;
- lacktriangledown given a linear (resp. retractive) term \mathfrak{t} , describe a way to enumerate \mathfrak{t}^{\star} ;
- see such rewrite graphs and rewrite posets within the framework of differential graded posets [Stanley, 1988] and the framework of duality of graded graphs [Fomin, 1994];
- describe general properties of formal series of terms w.r.t. natural operations.