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Schemes

A scheme is either
a positive integer i, called variable;
a pair (s0, s1) of schemes, called application of s0 on s1.

Let ᾱ be the binary operation defined by s0 ᾱ s1 := (s0, s1).

– Example –

2 2

1 4 1ᾱ

ᾱ

ᾱ

ᾱ

The tree of the left is the tree representation of the scheme

s := ((2 ᾱ 2) ᾱ 1) ᾱ(4 ᾱ 1).

The short representation of s is obtained by considering that ᾱ associates
to the left. Hence,

s = 221(41).

Let S be the set of schemes and S(n), n ⩾ 1, be the set of schemes having only variables in [n].
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Terms

A term is either
a pair (n, s) where n ⩾ 1 and s ∈ S(n), called rule (or basic combinator);
a pair (t0, t1) of terms, called application of t0 on t1.

Let ρn, n ⩾ 1, be the unary operation defined by ρn(s) := (n, s) and α be the binary operation
defined by t0 α t1 := (t0, t1).
The order of a rule ρn(s) is n.

– Example –

2

1

1 1 1

ρ2

ρ1

ᾱ

α

ρ1

ᾱ

α The tree of the left is the tree repre-
sentation of the term

t := (ρ2(2 ᾱ 1)αρ1(1 ᾱ 1))αρ2(1).

The short representation of terms follows the anal-
ogous conventions as the ones of schemes. Hence,

t =

T M

Kα

α

= TMK

where T := ρ2(21), M := ρ1(11), and K := ρ2(1).

Let T be the set of terms.
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Rewrite relation

Given s ∈ S(n) and t1, . . . , tn ∈ T, the
composition of t1, . . . , tn in s is the term
s[t1, . . . , tn] obtained by replacing all variables i
of s by ti.

– Example –

2 1

1ᾱ

ᾱ
[t1, t2, t3] =

t2 t1

t1α

α

The rewrite relation is the binary relation ⇒ on T such that t ⇒ t′ if t′ can be obtained from t by
locally replacing by s[t1, . . . , tn] one pattern ρn(s)t1 . . . tn.

– Example –

Let the rules I := ρ1(1), M := ρ1(11), and T := ρ2(21).

The rule T can be seen as the rewrite rule
T t1

t2α

α

⇒
t2 t1

α .

We have (M(IM))(T IM) ⇒ (M(IM))(MI).

On tree representations, this expresses as M M

I M T I

α

α

α

α

α ⇒
M I

I M

α

α

α

M

α .

6 / 37



The rules S, K, I

Let the three rules [Curry, 1930]

S := ρ3(13(23)), K := ρ2(1), I := ρ1(1).

– Example –
Here is a sequence of rewrite steps, which can be seen as forming a computation:

S

S I

K K

S

Kα

α

α

α

α

α

⇒

S K

K S Iα

α

α

α ⇒
K

IS I

K

S

α

α

α

α

α

⇒
S I

α

The set of terms using only the rules S, K, and I form a Turing-complete programming
language: any λ-term can be emulated by a term of this set through abstraction algorithms
[Rosser, 1955], [Curry, Feys, 1958].
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The Enchanted Forest of combinator birds

In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a great number of rules are listed,
forming the Enchanted forest of combinator birds.

Here is a sublist (with some others introduced since then):

Idiot bird: I := ρ1(1)
Mockingbird: M := ρ1(11)

Kestrel: K := ρ2(1)
Kite: Ki := ρ2(2)
Thrush: T := ρ2(21)
Crossed Konstant Mocker: MCK := ρ2(11)
Konstant Mocker: MK := ρ2(22)
Mockingbird 1: M1 := ρ2(112)
Warbler: W := ρ2(122)
Converse Warbler: W1 := ρ2(211)
Lark: L := ρ2(1(22))
Owl: O := ρ2(2(12))

Double Mockingbird: M2 := ρ2(12(12))
Turing bird: U := ρ2(2(112))

Cardinal: C := ρ3(132)
Robin: R := ρ3(231)
Vireo: V := ρ3(312)
Finch: F := ρ3(321)
Bluebird: B := ρ3(1(23))
Quixotic bird: Q1 := ρ3(1(32))
Queer bird: Q := ρ3(2(13))
Quizzical bird: Q2 := ρ3(2(31))
Quirky bird: Q3 := ρ3(3(12))
Quarky bird: Q4 := ρ3(3(21))

Hummingbird: H := ρ3(1232)
Starling: S := ρ3(13(23))

Dove: D := ρ4(12(34))
Goldfinch: G := ρ4(14(23))
Blackbird: B1 := ρ4(1(234))
Becard: B3 := ρ4(1(2(34)))
Jay: J := ρ4(12(143))

Eagle: E := ρ5(12(345))
Bunting: B2 := ρ5(1(2345))
Dickcissel: D1 := ρ5(123(45))
Dovekies: D2 := ρ5(1(23)(45))
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Rewrite graphs, prosets, and posets

Let ≼ be the reflexive and transitive closure of⇒.

Let ≡ be the symmetric closure of ≼.

Let⇌ be the equivalence relation on T such that t ⇌ t′ if t ≼ t′ and t′ ≼ t.

Given a term t,
the set of terms accessible from t is t⋆ := {t′ ∈ T : t ≼ t′}.

the rewrite graph of t is the directed multigraph G(t) on t⋆ such that there are m edges from t′

to t′′ if there are exactly m ways to obtain t′′ by a rewrite step from t′;

the poset P(t) of t is the poset (t⋆/⇌,≪) where ≪ satisfies [t′]⇌ ≪ [t′′]⇌ if there are
t′ ∈ [t′]⇌ and t′′ ∈ [t′′]⇌ such that t′ ≼ t′′.

Every rewrite system (t⋆,⇒) is confluent [Rosen, 1973].
Similar structures have been considered for λ-calculus [Barendregt, 1981], [Venturini-Zilli, 1984] but G(t)
is in general not isomorphic to the reduction graph of the natural λ-term of t.
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Some examples — 1/6

– Example –
Let t := XX(XXX)(XX) where X := I = ρ1(1). Here are G(t) and the Hasse diagram of P(t):

1

2 1

1 1 2

2 1 1 1

1 11

1

1 11 1

1 1 11 1

1 1 1

X

XX

X(XX) XXX

XX(XX) X(XX)X

X(XX)(XX) X(XXX)X

XXXX

X(XXX)(XX)

XXX(XX) XX(XX)X

XX(XX)(XX) XX(XXX)X

XX(XXX)(XX)

{X}

{XX}

{X(XX)} {XXX}

{XX(XX)} {X(XX)X}

{X(XX)(XX)} {X(XXX)X}

{XXXX}

{X(XXX)(XX)}

{XXX(XX)} {XX(XX)X}

{XX(XX)(XX)} {XX(XXX)X}

{XX(XXX)(XX)}

10 / 37



Some examples — 2/6

– Example –
Let t := XX(X(XXX(XXX))X) where X := K = ρ2(1). Here are G(t) and the Hasse diagram of P(t):

1

1

1

1

11

1 1

1

1 1

1

1 11

1

11

1 1

X

XX(XX)

XX(X(XXX)) XX(X(XX)X)

XX(X(X(XXX))X) XX(X(XXXX)X)

XX(XXXX)

XX(X(XXX(XXX))X)

XX(XXX(XXX))

{X}

{XX(XX)}

{XX(X(XXX))} {XX(X(XX)X)}

{XX(X(X(XXX))X)} {XX(X(XXXX)X)}

{XX(XXXX)}

{XX(X(XXX(XXX))X)}

{XX(XXX(XXX))}
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Some examples — 3/6

– Example –
Let t := X(XXX)(X(XXX)X) where X := T = ρ2(21). Here are G(t) and the Hasse diagram of P(t):

1

1

11 1

1

11

11

1 1

1 11

1 1

11

1 11

111

11 1

11 11

1

1

1 1 1

1 11 1

1 11

XX

XXX

XX(XX)

XX(XXX)

XXXX

X(XX)(XX)

X(XX)(X(XX))

X(XX)(X(XXX))

X(XXX)(XX) X(XX)(XXX)

XXX(XX)

X(XX)(X(XX)X)

X(XX)X(XX)

X(XX)(X(XXX)X)

X(XXX)X(XX) X(XXX)(X(XX))

X(XXX)(X(XXX))

X(XXX)(XXX)

XXX(XXX)

X(XXX)(X(XX)X)

X(XX)X(XXX)

X(XXX)(X(XXX)X)

X(XXX)X(XXX)

{XX}

{XXX}

{XX(XX)}

{XX(XXX)}

{XXXX}

{X(XX)(XX)}

{X(XX)(X(XX))}

{X(XX)(X(XXX))}

{X(XXX)(XX)} {X(XX)(XXX)}

{XXX(XX)}

{X(XX)(X(XX)X)}

{X(XX)X(XX)}

{X(XX)(X(XXX)X)}

{X(XXX)X(XX)} {X(XXX)(X(XX))}

{X(XXX)(X(XXX))}

{X(XXX)(XXX)}

{XXX(XXX)}

{X(XXX)(X(XX)X)}

{X(XX)X(XXX)}

{X(XXX)(X(XXX)X)}

{X(XXX)X(XXX)}
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Some examples — 4/6

– Example –
Let t := X(X(XXXX)XXX)XX where X := B = ρ3(1(23)). Here are G(t) and the Hasse diagram of P(t):

1

1

1

1 1

1 1

1 1 1

1 1

1

1

1 1

1

X(X(X(XX)))

X(XXX(XX))

XX(XXX)(XX)

X(XX(XXX))XX

X(X(XX)(XX)X)XX

X(XX)(XX)X(XX)

X(X(X(XX))XXX)XX

X(X(XX))XXX(XX)

X(X(XXXX)XXX)XX

X(XXXX(XX)X)XX X(XXXX)XXX(XX)

XXXX(XX)X(XX)

{X(X(X(XX)))}

{X(XXX(XX))}

{XX(XXX)(XX)}

{X(XX(XXX))XX}

{X(X(XX)(XX)X)XX}

{X(XX)(XX)X(XX)}

{X(X(X(XX))XXX)XX}

{X(X(XX))XXX(XX)}

{X(X(XXXX)XXX)XX}

{X(XXXX(XX)X)XX} {X(XXXX)XXX(XX)}

{XXXX(XX)X(XX)}
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Some examples — 5/6

– Example –
Let t := X(X(XX)) where X := M = ρ1(11). Here are G(t) and the Hasse diagram of P(t):

1

1 1

2

1

2

1 1

3

1

3

1

4

X(X(XX))

X(XX(XX))

X(XX)(X(XX))

XX(XX)(XX(XX))

X(XX)(XX(XX)) XX(XX)(X(XX))

{X(X(XX))}

{X(XX(XX))} {X(XX)(X(XX))}

{XX(XX)(XX(XX))}

{X(XX)(XX(XX))} {XX(XX)(X(XX))}
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Some examples — 6/6

– Example –
Let t := XX(XX(XXX)) where X := ρ2(22). Here are G(t) and the Hasse diagram of P(t):

1

1

1

1

1 1

1

1 1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1

1

1

11

1

1

1

1

1

1

1

11

11

1

1

1

1

11

XX(XX(XX))

XX(XX)(XX(XX))

XX(XX(XXX))

XX(XXX(XXX))

XX(XXX)(XX(XXX))

XX(XXX(XX))

XXX(XX)(XXX(XX))

XXX(XXX)(XXX(XXX))

XX(XX)(XX(XXX))

XX(XX)(XXX(XXX))

XX(XX)(XXX(XX))

XX(XXX)(XX(XX))

XXX(XXX)(XX(XX))

XX(XXX)(XXX(XXX))

XXX(XXX)(XX(XXX))

XX(XXX)(XXX(XX))

XXX(XXX)(XXX(XX))

XXX(XX)(XX(XX))

XXX(XX)(XX(XXX))

XXX(XX)(XXX(XXX))

{XX(XX(XX))}

{XX(XX)(XX(XX))}

{XX(XX(XXX)), XX(XXX(XXX))}

{XX(XXX(XX))}

{XX(XXX)(XX(XXX)), XX(XXX)(XXX(XXX)), XXX(XXX)(XX(XXX)), XXX(XXX)(XXX(XXX))}

{XXX(XX)(XXX(XX))} {XX(XX)(XX(XXX)), XX(XX)(XXX(XXX))}

{XX(XX)(XXX(XX))}

{XX(XXX)(XX(XX)), XXX(XXX)(XX(XX))}

{XXX(XX)(XX(XX))}

{XX(XXX)(XXX(XX)), XXX(XXX)(XXX(XX))} {XXX(XX)(XX(XXX)), XXX(XX)(XXX(XXX))}
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Usual questions

– Word problem –
Given a set or rules, is there an algorithm taking as input two terms t and t′ on these rules and deciding if t ≡ t′?
See [Baader, Nipkow, 1998], [Statman, 2000].

Yes for the terms on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].
Yes for the terms onW [Sprenger, Wymann-Böni, 1993].
Yes for the terms onM1 [Sprenger, Wymann-Böni, 1993].
Open for the terms on S [RTA Problem #97, 1975].

– Strong normalization problem –
Given a set of rules, is there an algorithm taking as input a term t on these rules and deciding if all rewrite sequences
from t are finite?

Yes for the terms on S [Waldmann, 2000].
Yes for the terms on J [Probst, Studer, 2000].
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Outline

2. A combinatorial approach
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Combinatorial questions

– On rewrite sets –
Given a term t,

is t⋆ finite? If it is the case, how many elements it contains?

– On rewrite graphs –
Given a term t,

is G(t) a simple graph?

Is G(t) acyclic?

Is G(t) a graded graph?

Is G(t) shortcutless?

– On rewrite posets –
Given a term t,

is the quotient t⋆/⇌ trivial?

Is P(t) a graded poset?

Is P(t) a lattice?

If it is the case, is P(t) a distributive lattice?
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Some computer experiments

Rule Simple graphs Acyclic graphs Graded graphs Graded posets Lattices Max. size

I = ρ1(1) × ✓ ✓ ✓ × 9

K = ρ2(1) × ✓ × ✓ × 10

Ki = ρ2(2) × ✓ × ✓ × 10

T = ρ2(21) ✓ ✓ ✓ ✓ ✓ 11

B = ρ3(1(23)) ✓ ✓ ✓ ✓ ✓ 11

C = ρ3(132) ✓ ✓ ✓ ✓ ✓ 11

ρ3(12) ✓ ✓ × ✓ ✓ 10

M = ρ1(11) × × × × ✓ [G., 2022]

MK = ρ2(22) × × × × ✓ 7

ρ3(112(22)) × × × × × 8

Any “✓” says that all terms t on the specified rule and having a size less than or equal to the
specified maximal size are such that G(t) and P(t) have the specified property.

Any “×” says that a counter-example has been found.
19 / 37



Formal series of terms

Let K be any field of characteristic zero —usually Q— and K⟨⟨T⟩⟩ be the dual space of the K-linear
span K⟨T⟩ of T.
Any F ∈ K⟨⟨T⟩⟩ is a formal series of terms and can be expressed as a possibly infinite formal
sum

F =
∑
t∈T

⟨t, F⟩ t

where ⟨t, F⟩ is the coefficient F(t) ∈ K of t in F.

For any term t, the t-multi-application map is the linear map γt : T(K⟨⟨T⟩⟩) → K⟨⟨T⟩⟩ satisfying,
for any t1, . . . , tℓ ∈ T, ℓ ⩾ 0,

γt(t1 ⊗ · · · ⊗ tℓ) = t t1 . . . tℓ.

– Example –

γK I(2K⊗ I + I⊗K I + K⊗K I⊗K) = 2K IK I + K I I(K I) + K IK(K I)K
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Next map

The next map is the linear map nx : K⟨⟨T⟩⟩ → K⟨⟨T⟩⟩ satisfying, for any s ∈ S(n), n ⩾ 1, and
t1, . . . , tℓ ∈ T, ℓ ⩾ 0,

nx(ρn(s)t1 . . . tℓ) = [[[ℓ ⩾ n]]]s[t1, . . . , tn]tn+1 . . . tℓ +
∑
i∈[ℓ]

γρn(s)
(t1 ⊗ · · · ⊗ nx(ti)⊗ · · · ⊗ tℓ).

– Example –

nx(I I(I(I I))) = I(I(I I)) + γI(nx(I)⊗ I(I I) + I⊗nx(I(I I)))

= I(I(I I)) + 2 I I(I I)

1
2

3

1
1

1

1

2 II I

I(I I)

I(I(I I))

I I I
I I(I I)

I I(I(I I))

– Lemma [G., 2023+] –
Let t and t′ be two terms.

We have t ⇒ t′ iff t′ appears in nx(t).

The coefficient ⟨t′,nx(t)⟩ is the number of ways to obtain t′ from t by a rewrite step.
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Path map

The path map is the linear map ph : K⟨⟨T⟩⟩ → K⟨⟨T⟩⟩ satisfying, for any t ∈ T,

ph(t) = t+ ph(nx(t)).

– Example –

ph(I I(I(I I))) = I I(I(I I)) + ph(nx(I I(I(I I))))

= I I(I(I I)) + ph(I(I(I I)) + 2 I I(I I))

= 12 I+12 I I+5 I(I I) + I(I(I I))

+ 2 I I I+2 I I(I I) + I I(I(I I))

1
2

3

1
1

1

1

2 II I

I(I I)

I(I(I I))

I I I
I I(I I)

I I(I(I I))

– Proposition [G., 2023+] –
For any term t, ph(t) is a well-defined polynomial iff the rewrite graph G(t) is acyclic.

When this condition holds, the coefficient ⟨t′, ph(t)⟩ is the number of ways to obtain t′ from t by a sequence of rewrite
steps.
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Outline

3. Some results
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Properties on schemes

Let s be a scheme.
The frontier of s is the sequence fr(s) of the variables of s read from the left to the right.

The length len(s) of s is the length of fr(s).

The depth sequence dep(s) of s is the sequence of length len(s) such that for any j ∈ [len(s)],
depj(s) is the number of internal nodes ᾱ which are ancestors of the i-th variable of s.

– Example –
Let the scheme

s := 221(41) =

2 2

1 4 1ᾱ

ᾱ

ᾱ

ᾱ .

This scheme s satisfies

fr(s) = 22141;

len(s) = 5;

dep(s) = 33222.
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Properties on rules

Given n ⩾ 1 and s ∈ S(n), a rule ρn(s) is
projective if s is a variable;

linear if s admits at most one occurrence of any variable;

conservative if s admits at least one occurrence of each variable of [n];

retractive if for any j ∈ [len(s)], depj(s) ⩽ n+ 1− frj(s).

For all these properties P , a term t is P (resp. anti-P) if all rules of t are P (resp. are not P).

– Example –
I = ρ1(1) is projective, linear, conservative, and retractive;

K = ρ2(1) and Ki = ρ2(2) are projective, linear, and retractive;

T = ρ2(21) is linear, conservative, and retractive;

B = ρ3(1(23)) is linear and conservative;

M = ρ1(11) andM1 = ρ2(112) are conservative and retractive.
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Classification of rules

The set of rules is structured as follows according to these properties:

Rpro

Rlin Rret

Rcon

B

I

T

K

M

W1
S

ρ2(11)
ρ4(412)

ρ3(12)

ρ2(222)
where

Rpro is the set of projective rules;
Rlin is the set of linear rules;
Rcon is the set of conservative rules;
Rret is the set of retractive rules.
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Conservative and linear terms

– Proposition [G., 2023+] –
For any n ⩾ 1, the number of conservative and linear rules of S(n) is

#(S(n) ∩Rcon ∩Rlin) =
(2n− 2)!
(n− 1)!

.

The first numbers are 1, 2, 12, 120, 1680, 30240, 665280 (Sequence A001813).

A graph G(t) is graded if there is a map ϕ : t⋆ → N such that ϕ(t) = 0 and for any terms t′ and t′′

of t⋆ such that t′ ⇒ t′′, ϕ(t′′) = ϕ(t′) + 1.

An edge t′ ⇒ t′′ of G(t) is a shortcut if there is a term t′′′ such that t′ ̸= t′′′ ̸= t′′ and t′ ≼ t′′′ ≼ t′′.

– Proposition [G., 2023+] –
If t is a conservative and linear term, then

the graph G(t) is graded; the graph G(t) is shortcutless.
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Conservative and linear terms — examples

– Example –
The rewrite graph of the con-
servative and linear term
t := X(X(XXX)(XX))(XX)
where X := T = ρ2(21) is graded
and shortcutless:

1

1

11

11

1 1111

111

11

1

1 1

1 1

1 1 11 1

1 11

1 1

1

1

1 11

11

1

XX

XXX

XX(XX)

XX(XXX)

XXXX

XX(XX(XX))

XX(XX)X

XX(XX(XXX))

XX(XXXX)XX(XXX)X

XX(X(XX)(XX))

X(XX)(XX)X

XX(X(XXX)(XX))

X(XXX)(XX)X

XXXXX X(XX)(XX)

X(XXX)(XX)

X(XX(XX))(XX)

X(XX(XXX))(XX)

X(XXXX)(XX)

X(X(XX)(XX))(XX)

X(X(XXX)(XX))(XX)

– Example –
The rewrite graph of the linear
but not conservative term t :=

X(XX(XXXX))XX where X :=

ρ3(13) is not shortcutless:

1

1

1 1

1 1

XX

XX(XX)X

XX(XXXX)X X(XX(XX))XX

X(XX(XXXX))XX

– Example –
The rewrite graph of the conser-
vative but not linear term t :=

X(X(X(XX)X)XX) where X :=

M1 = ρ2(112) is not graded:

1 1

1

1

1 1

1

1

1

1

2

X(X(X(XX)X)XX)

X(X(XX(XX)X)XX)

X(X(XX)X(X(XX)X)XX)

X(XX(XX)X(XX(XX)X)XX)

X(X(XX)X(XX(XX)X)XX) X(XX(XX)X(X(XX)X)XX)
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Linear terms

– Proposition [G., 2023+] –
For any n ⩾ 1, the number of linear rules of S(n) is

#(S(n) ∩Rlin) =
∑
k∈[n]

(n
k

)(2k − 2
k − 1

)
.

The first numbers are 1, 4, 21, 184, 2425, 42396, 916909 (Sequence A224500).

A poset P(t) is graded if its Hasse diagram is a graded graph.

– Proposition [G., 2023+] –
If t is a linear term, then

the set t⋆ is finite; the quotient t⋆/⇌ is trivial; the poset P(t) is graded.
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Linear terms — examples 1/2

– Example –
The rewrite graph of the linear term t :=

X(X(XXX)(XX))(XXX) where X := K = ρ2(1)
is finite and not graded:

1 1

1

1 2 1 1

1

1 1

1 1

1

1 11 11

1

1 1 1

X

XXX XX(XX)

XX(XXX) X(XXX)X X(XXX)(XX)

X(XXX)(XXX)

X(XX(XX))X

X(XX(XX))(XXX) X(X(XXX)(XX))X

X(X(XXX)(XX))(XXX)

Its poset has trivial ⇌-equivalence classes and is
graded:

{X}

{XXX} {XX(XX)}

{XX(XXX)} {X(XXX)X} {X(XXX)(XX)}

{X(XXX)(XXX)}

{X(XX(XX))X}

{X(XX(XX))(XXX)} {X(X(XXX)(XX))X}

{X(X(XXX)(XX))(XXX)}
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Linear terms — examples 2/2

– Example –
The rewrite graph of the non-linear term t :=

XX(XXX)XXX where X := ρ3(3(2(11))) is fi-
nite and is not acyclic:

1

1

11

11

1

1

1

1

1

1 1

1 1

1

1

1 1

1

X(X(XX(X(XX))(XX(X(XX)))))

X(X(XX(X(XX))(X(XX)(XX))))

X(X(X(XX)(XX)(X(XX)(XX))))

X(X(XX(X(XX))(XXX(XX))))

X(X(XXX(XX)(X(XX)(XX))))

X(X(XX(XX(XX))(XX(XX(XX)))))

X(X(XX(XX(XX))(XX(XX)(XX))))

X(X(XX(XX)(XX)(XX(XX)(XX))))

X(X(X(XX)(XX)(XX(XX(XX)))))

X(X(XXX(XX)(XX(X(XX)))))

X(X(XXX(XX)(XXX(XX))))

X(X(XX(XX)(XX)(XX(XX(XX)))))

X(XX(X(XX)))XX

X(XXX(XX))XX

XX(XXX)XXX

Its poset has nontrivial⇌-equivalence classes and
is not graded:

{X(X(XX(X(XX))(XX(X(XX)))))}

{X(X(XX(X(XX))(X(XX)(XX))))}

{X(X(X(XX)(XX)(X(XX)(XX))))}

{X(X(XX(X(XX))(XXX(XX))))}

{X(X(XXX(XX)(X(XX)(XX))))}

{X(X(XX(XX(XX))(XX(XX(XX))))), X(X(XX(XX(XX))(XX(XX)(XX)))), X(X(XX(XX)(XX)(XX(XX(XX))))), X(X(XX(XX)(XX)(XX(XX)(XX))))}

{X(X(X(XX)(XX)(XX(XX(XX)))))}

{X(X(XXX(XX)(XX(X(XX)))))}

{X(X(XXX(XX)(XXX(XX))))} {X(XX(X(XX)))XX}

{X(XXX(XX))XX}

{XX(XXX)XXX}
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Linear and anti-projective terms

A term is anti-projective if it does not have any projective rule.

The rewrite graph G(t) is simple if it does not have any multi-edge.

– Conjecture (work-in-progress) [G., 2023+] –

If t is an anti-projective and linear term, then G(t) is simple.

A poset P(t) is a lattice if all pairs of its elements admit a greatest lower bound and a least upper
bound.

– Conjecture (work-in-progress) [G., 2023+] –

If t is an anti-projective and linear term, then P(t) is a lattice.
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Linear and anti-projective terms — examples 1/2

– Example –
The rewrite graph of the linear but not anti-
projective term t := XX(X(XX)(XXX)) where
X := Ki = ρ2(2) is not simple:

1

1

11

2

XX

XXXX

X(XXX)XX

X(XX(XXX))XX

– Example –
The rewrite graph of the anti-projective but not lin-
ear term t := X(X(XX)) where X := M = ρ1(11)
is not simple:

1

1 1

2

1

2

1 1

3

1

3

1

4

X(X(XX))

X(XX(XX))

X(XX)(X(XX))

XX(XX)(XX(XX))

X(XX)(XX(XX)) XX(XX)(X(XX))
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Linear and anti-projective terms – examples 2/2

– Example –
The rewrite poset of the linear but not anti-
projective term t := XX(X(XX)X) where X :=

I = ρ1(1) is not a lattice:

{X}

{XX}

{X(XX)}

{X(XXX)}

{XXX}

{X(X(XX)X)}

{X(XX)X}{XX(XX)}

{XX(XXX)}

{XX(X(XX)X)}

– Example –
The rewrite poset of the anti-projective but not lin-
ear term t := XX(XX(XXX))X where X :=

ρ3(3(22)) is not a lattice:

{X(X(XX(XX)(XX(XX))))}

{X(X(XX(XX)(XXX(XX))))}

{X(X(XXX(XX)(XX(XX))))}

{X(X(XX(XX)(XXX(XXX))))}

{X(X(XXX(XXX)(XX(XX))))}

{X(X(XX(XXX)(XX(XX))))}

{X(X(XX(XXX)(XX(XXX))))}

{X(X(XX(XXX)(XXX(XXX))))}

{X(X(XX(XXX)(XXX(XX))))}

{X(X(XXX(XX)(XXX(XXX))))}

{X(X(XXX(XXX)(XXX(XXX))))}

{X(X(XXX(XX)(XXX(XX))))}

{X(X(XXX(XXX)(XXX(XX))))}

{X(XX(XX(XXX))X)}
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Retractive terms

If ρn(s) is a retractive rule, then in s[t1, . . . , tn], the respective depths of the subterms t1, . . . , tn are
smaller than the ones they have in ρn(s)t1 . . . tm.

– Example –

3

2 1

1 1

2

1

ρ4

ᾱ

ᾱ

ᾱ

ᾱ

ᾱ

ᾱ

This rule is retractive.

4

2 1

1 1

2

1

ρ4

ᾱ

ᾱ

ᾱ

ᾱ

ᾱ

ᾱ

This rule is not retractive.

2

1 2

3

ρ3

ᾱ

ᾱ

ᾱ

This rule is not retractive.

As a consequence, when t is retractive, t ⇒ t′ implies ht(t) ⩾ ht(t′).

– Proposition [G., 2023+] –

If t is a retractive term, then t⋆ is finite.
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Retractive terms — example

– Example –
The rewrite graph of the retractive term t := XX(X(XXXX))X where X := ρ3(22(22)) is finite and not acyclic:

1

11

1

22

1

11

1

1

1

1

1

1

1

1

1 1

1

1

2

1

1 1

1

1 11

1 1 1

1

1

1

1 1 1

1

1

1 1

11 1 1 1

1

XX(X(XX(XX)))X

X(XX(XX))(X(XX(XX)))(X(XX(XX))(X(XX(XX))))

XX(X(XXXX))X

X(XXXX)(X(XXXX))(X(XXXX)(X(XXXX)))

X(XX(XX))(X(XX(XX)))(X(XX(XX))(X(XXXX)))X(XX(XX))(X(XX(XX)))(X(XXXX)(X(XX(XX))))

X(XX(XX))(X(XX(XX)))(X(XXXX)(X(XXXX)))

X(XX(XX))(X(XXXX))(X(XX(XX))(X(XX(XX))))

X(XX(XX))(X(XXXX))(X(XX(XX))(X(XXXX)))

X(XX(XX))(X(XXXX))(X(XXXX)(X(XX(XX))))

X(XX(XX))(X(XXXX))(X(XXXX)(X(XXXX)))

X(XXXX)(X(XX(XX)))(X(XX(XX))(X(XX(XX))))

X(XXXX)(X(XX(XX)))(X(XX(XX))(X(XXXX))) X(XXXX)(X(XX(XX)))(X(XXXX)(X(XX(XX))))

X(XXXX)(X(XX(XX)))(X(XXXX)(X(XXXX)))

X(XXXX)(X(XXXX))(X(XX(XX))(X(XX(XX))))

X(XXXX)(X(XXXX))(X(XX(XX))(X(XXXX))) X(XXXX)(X(XXXX))(X(XXXX)(X(XX(XX))))
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Conclusion

Rewrite graphs and rewrite posets of terms are provided with some combinatorial properties
depending on some characteristics of the terms:

Property on t t⋆ finite G(t) simple G(t) acyc. G(t) grad. G(t) shortcutl. P(t) grad. P(t) lattice

Lin. ✓ ✓ ✓

Lin. & cons. ✓ ✓ ✓ ✓ ✓

Lin. & anti-proj. ✓ ? ✓ ✓ ?

Retr. ✓

Perspectives:
prove the conjectured properties;

given a linear (resp. retractive) term t, describe a way to enumerate t⋆;

see such rewrite graphs and rewrite posets within the framework of differential graded posets
[Stanley, 1988] and the framework of duality of graded graphs [Fomin, 1994];

describe general properties of formal series of terms w.r.t. natural operations.
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