Polynomial realizations of Hopf algebras from operads

Samuele Giraudo

LACIM, Université du Québec à Montréal

giraudo.samuele@uqam.ca

Séminaire SPACE, IDP

March 21, 2024

Objectives

Present a polynomial realization of some Hopf algebras constructed from operads.

Main points:

- 1. Combinatorial Hopf algebras.
- 2. Polynomial realizations.
- 3. Nonsymmetric operads.
- 4. Natural Hopf algebras of nonsymmetric operads.
- 5. A polynomial realization of natural Hopf algebras of free operads.

Combinatorial Hopf algebras

All algebraic structures are over a field \mathbb{K} of characteristic zero.

A combinatorial Hopf algebra (CHA) ${\cal H}$ is a graded vector space decomposing as

$$\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \mathcal{H}(n)$$

endowed with

- \square an associative unital graded **product** $\star: \mathcal{H}(n_1) \otimes \mathcal{H}(n_2) \to \mathcal{H}(n_1+n_2)$
- \square a coassociative counital cograded **coproduct** $\Delta:\mathcal{H}(n) o igoplus_{n=n_1+n_2}\mathcal{H}(n_1)\otimes\mathcal{H}(n_2)$

such that each $\mathcal{H}(n)$ is finite dimensional, $\dim \mathcal{H}(0) = 1$, and

$$\Delta(x_1 \star x_2) = \Delta(x_1) \,\bar{\star} \,\Delta(x_2).$$

Let \mathbf{NCK} be the space such that $\mathbf{NCK}(n)$ is the linear span of $\mathfrak{F}(n)$, the set of ordered rooted forests of n nodes.

The set $\{E_{\mathfrak{f}}: \mathfrak{f} \in \mathfrak{F}\}$ is the elementary basis of NCK.

Let \star be the concatenation product on NCK.

Let Δ be the pruning coproduct on NCK.

This is the noncommutative Connes-Kreimer CHA [Connes, Kreimer, 1998] [Foissy, 2002].

Let \mathbf{FQSym} be the space such that $\mathbf{FQSym}(n)$ is the linear span of $\mathfrak{S}(n)$, the set of **permutations** of size n.

The set $\{F_{\sigma} : \sigma \in \mathfrak{S}\}$ is the fundamental basis of \mathbf{FQSym} .

Let \star be the shifted shuffle product on **FQSym**.

Example — **Product of FQSym on the F-basis**

 $\mathsf{F}_{231} \star \mathsf{F}_{12} = \mathsf{F}_{23145} + \mathsf{F}_{23415} + \mathsf{F}_{23451} + \mathsf{F}_{24315} + \mathsf{F}_{24351} + \mathsf{F}_{24531} + \mathsf{F}_{42315} + \mathsf{F}_{42351} + \mathsf{F}_{42531} + \mathsf{F}_{45231}$

Let Δ be the standardized deconcatenation coproduct on FQSym.

Example — Coproduct of FQSym on the F-basis

 $\Delta(\mathsf{F}_{24351}) = \mathsf{F}_{\epsilon} \otimes \mathsf{F}_{24351} \ + \ \mathsf{F}_{1} \otimes \mathsf{F}_{3241} \ + \ \mathsf{F}_{12} \otimes \mathsf{F}_{231} \ + \ \mathsf{F}_{132} \otimes \mathsf{F}_{21} \ + \ \mathsf{F}_{1324} \otimes \mathsf{F}_{1} \ + \ \mathsf{F}_{24351} \otimes \mathsf{F}_{\epsilon}$

This is the Malvenuto-Reutenauer CHA [Malvenuto, Reutenauer, 1995].

Polynomial realizations

For any alphabet A, let $\mathbb{K}\langle A\rangle$ be the space of noncommutative polynomials on A having a possibly **infinite** support but a **finite degree**.

Example — Some noncommutative polynomials

Set $A_{\mathbb{N}} := \{\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \ldots\}.$

 \square An element in $\mathbb{K}\langle A_{\mathbb{N}}\rangle$:

$$\sum_{0 \leqslant i_1 < i_2} \mathbf{a}_{i_1} \mathbf{a}_{i_2} = \mathbf{a}_0 \mathbf{a}_1 + \mathbf{a}_0 \mathbf{a}_2 + \dots + \mathbf{a}_1 \mathbf{a}_2 + \mathbf{a}_1 \mathbf{a}_3 + \dots$$

 \square An element which is not in $\mathbb{K}\langle A_{\mathbb{N}}\rangle$:

$$\sum_{n\geqslant 0} \mathbf{a}_0^n = 1 + \mathbf{a}_0 + \mathbf{a}_0^2 + \mathbf{a}_0^3 + \cdots$$

The space $\mathbb{K}\langle A\rangle$ is endowed with the product of noncommutative polynomials.

A polynomial realization of a CHA \mathcal{H} is a quadruple $(\mathcal{A}, +, r_A, \mathbb{A})$ such that

- 1. A is a class of alphabets (a class of sets possibly endowed with relations).
- 2. + is an associative operation of disjoint union on A.
- 3. For any alphabet A of A,

$$\mathsf{r}_A:\mathcal{H} o \mathbb{K}\langle A
angle$$

is an associative algebra morphism.

4. For any $x \in \mathcal{H}$ and any mutually commuting alphabets A' and A'' of A in $\mathbb{K}\langle A' + A'' \rangle$,

$$\mathsf{r}_{A' + A''}(x) = (\mathsf{r}_{A'} \otimes \mathsf{r}_{A''}) \circ \Delta(x).$$

5. A is an alphabet of \mathcal{A} such that $r_{\mathbb{A}}$ is injective.

Point 4. offers a way to compute the coproduct of \mathcal{H} by expressing the realization of x on the sum of two alphabets. This is the alphabet doubling trick.

Let A be an alphabet endowed with a total order \leq .

The standarization of $u \in A^*$ is the word of positive integers std(u) such that

$$\mathrm{std}(u)_i \ = \ \#\{j: j \leqslant i \text{ and } u_j \leqslant u_i\} \ + \ \#\{j: i < j \text{ and } u_i > u_j\}.$$

Example — **Standardization** of a word

Let on the alphabet $A_{\mathbb{N}}$ the total order relation \leq satisfying $\mathbf{a}_{i_1} \leq \mathbf{a}_{i_2}$ iff $i_1 \leq i_2$.

$$\operatorname{std}(\mathbf{a}_7 \ \underline{\mathbf{a}}_2 \ \underline{\mathbf{a}}_0 \ \underline{\mathbf{a}}_0 \ \underline{\mathbf{a}}_2 \ \underline{\mathbf{a}}_6 \ \mathbf{a}_2 \ \underline{\mathbf{a}}_0 \ \mathbf{a}_4) = 941258637$$

Observations:

- \square std is a map from A^* to \mathfrak{S} ;
- \square std is surjective iff A is infinite;
- \square std(u) is the unique permutation having the same inversion set as the one of u.

Let $r_A : \mathbf{FQSym} \to \mathbb{K}\langle A \rangle$ be the map defined by

$$\mathsf{r}_A(\mathsf{F}_\sigma) := \sum_{\substack{u \in A^* \\ \mathrm{std}(u) = \sigma^{-1}}} u$$

Example — The polynomial of a basis element

$$\mathsf{r}_{A_{\mathbb{N}}}(\mathsf{F}_{312}) = \sum_{0 \leqslant i_1 < i_2 \leqslant i_3} \mathbf{a}_{i_2} \mathbf{a}_{i_3} \mathbf{a}_{i_1} = \mathbf{a}_1 \mathbf{a}_1 \mathbf{a}_0 + \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_0 + \dots + \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_0 + \mathbf{a}_2 \mathbf{a}_3 \mathbf{a}_0 + \dots + \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 + \dots$$

The disjoint sum A' + A'' of the totally ordered alphabets A' and A'' is the ordinal sum of A' and A''.

Theorem [Duchamp, Hivert, Thibon, 2002]

The class of totally ordered alphabets together with the ordinal sum operation #, the map r_A , and the alphabet $A_{\mathbb{N}}$ forms a polynomial realization of \mathbf{FQSym} .

Example — An alphabet doubling in FQSym

$$\mathsf{r}_{A' + A''}(\mathsf{F}_{312}) = \sum_{\substack{u \in \left(A' + A''\right)^* \\ \mathrm{std}(u) = 231}} u = \sum_{\substack{u_1, u_2, u_3 \in A' + A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1$$

$$= \sum_{\substack{u_1, u_2, u_3 \in A' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A', u_3 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A', u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A', u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A', u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A', u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A', u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_2 \neq u_3}} u_3 u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A'' \\ u_1 \neq u_$$

$$+ \sum_{\substack{u_1 \in A', u_2, u_3 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_2 \in A', u_1, u_3 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_3 \in A', u_1, u_2 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1$$

$$= \mathsf{r}_{A'}(\mathsf{F}_{312}) \otimes \mathsf{r}_{A''}(\mathsf{F}_{\epsilon}) + \mathsf{r}_{A'}(\mathsf{F}_{21}) \otimes \mathsf{r}_{A''}(\mathsf{F}_{1}) + 0 + 0$$

$$+ \mathsf{r}_{A'}(\mathsf{F}_{1}) \otimes \mathsf{r}_{A''}(\mathsf{F}_{12}) + 0 + 0 + \mathsf{r}_{A'}(\mathsf{F}_{\epsilon}) \otimes \mathsf{r}_{A''}(\mathsf{F}_{312})$$

$$= (\mathsf{r}_{A'} \otimes \mathsf{r}_{A''}) \circ \Delta(\mathsf{F}_{312})$$

he following CHAs admit polynomial realizations:
□ NCSF, the noncommutative symmetric functions CHA [Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, 1995];
□ FQSym, the Malvenuto-Reutenauer CHA [Duchamp, Hivert, Thibon, 2002];
□ PBT , the Loday-Ronco CHA [Hivert, Novelli, Thibon, 2005];
□ WQSym, the packed words CHA [Novelli, Thibon, 2006];
□ PQSym *, the dual parking functions CHA [Novelli, Thibon, 2007];
□ UBP, the uniform block permutations CHA [Maurice, 2013];
\square CK and \mathbf{NCK} , the commutative and noncommutative Connes-Kreimer CHAs [Foissy, Novelli, Thibon, 2014];
\square $\mathbf{H}_{\mathcal{FG}}$, the CHA on Feynman graphs [Foissy, 2020].

There are several advantages to polynomial realizations.

- 1. They produce from a CHA \mathcal{H} a family of polynomials generalizing symmetric functions.
- 2. They lead to a **unified encoding** of the elements of a CHA \mathcal{H} by polynomials, no matter how complex are the product and coproduct of \mathcal{H} .
- 3. They lead to links between a CHA ${\cal H}$ and other CHAs by specializing the alphabet on which ${\cal H}$ is realized.
- 4. Given a space \mathcal{A} endowed with a product and a coproduct, the existence of a polynomial realization of \mathcal{A} proves that \mathcal{A} is a **Hopf algebra**.

Nonsymmetric operads

A nonsymmetric operad (operad) is a set

$$\mathcal{O} = \bigsqcup_{n \in \mathbb{N}} \mathcal{O}(n)$$

endowed with

$$\square$$
 a unit $\mathbb{1} \in \mathcal{O}(1)$;

$$\square$$
 a composition map $-[-,\ldots,-]:\mathcal{O}(n)\times\mathcal{O}(m_1)\times\cdots\times\mathcal{O}(m_n)\to\mathcal{O}(m_1+\cdots+m_n)$

such that

$$1[x] = x = x[1, \dots, 1]$$

and

$$x[y_1,\ldots,y_n][z_{1,1},\ldots,z_{1,m_1},\ldots,z_{n,1},\ldots,z_{n,m_n}] = x[y_1[z_{1,1},\ldots,z_{1,m_1}],\ldots,y_n[z_{n,1},\ldots,z_{n,m_n}]].$$

The arity ar(x) of $x \in \mathcal{O}$ is the unique integer n such that $x \in \mathcal{O}(n)$.

Let \mathcal{O} be an operad.

An element $x \in \mathcal{O}(n)$ is finitely factorizable if the set of pairs $(y,(z_1,\ldots,z_n))$ satisfying

$$x = y[z_1, \dots, z_n]$$

is finite.

When all elements of \mathcal{O} are finitely factorizable, by extension, \mathcal{O} is finitely factorizable.

A map $\mathrm{dg}:\mathcal{O}\to\mathbb{N}$ is a grading of \mathcal{O} if

- $\Box \ dg^{-1}(0) = \{1\};$
- \square for any $y \in \mathcal{O}(n)$ and $z_1, \ldots, z_n \in \mathcal{O}$,

$$dg(y[z_1,\ldots,z_n]) = dg(y) + dg(z_1) + \cdots + dg(z_n).$$

When such a map exists, \mathcal{O} is graded.

The nonsymmetric associative operad As is the operad such that

- \square As $(0) = \emptyset$ and for any $n \geqslant 1$, As(n) is the set $\{\alpha_n\}$;
- \square the unit is α_1 ;
- \square the composition map satisfies

$$\alpha_n[\alpha_{m_1},\ldots,\alpha_{m_n}]=\alpha_{m_1+\cdots+m_n}.$$

Example — A composition in As

$$\alpha_4[\alpha_2, \alpha_2, \alpha_3, \alpha_1] = \alpha_{2+2+3+1} = \alpha_8$$

The map dg defined by $dg(\alpha_n) := n - 1$ is a grading of As.

The operad As is finitely factorizable.

Natural Hopf algebras of nonsymmetric operads

Let \mathcal{O} be an operad.

The reduced rd(w) of $w \in \mathcal{O}^*$ is the word obtained by removing the letters 1 in w.

Example — Reduced word of As*

$$\boxed{ \operatorname{rd}(\alpha_2 \ \alpha_2 \ \alpha_1 \ \alpha_4 \ \alpha_1 \ \alpha_1) = \alpha_2 \ \alpha_2 \ \alpha_4 }$$

The natural space $N(\mathcal{O})$ of \mathcal{O} is the linear span of the set of reduced elements of \mathcal{O}^* .

The set $\{\mathsf{E}_w : w \in \mathrm{rd}(\mathcal{O}^*)\}$ is the elementary basis of $\mathbf{N}(\mathcal{O})$.

If \mathcal{O} admits a grading dg, then $N(\mathcal{O})$ becomes a graded space by setting

$$dg(\mathsf{E}_{w_1...w_\ell}) := dg(w_1) + \dots + dg(w_\ell).$$

Note that $dg(\mathsf{E}_{\epsilon}) = 0$.

Let \star be the **product** on $N(\mathcal{O})$ defined by

$$\mathsf{E}_{w_1} \star \mathsf{E}_{w_2} := \mathsf{E}_{w_1 w_2}.$$

Let Δ be the **coproduct** on $\mathbf{N}(\mathcal{O})$ defined by

$$\Delta(\mathsf{E}_x) = \sum_{n \geqslant 0} \sum_{\substack{(y,w) \in \mathcal{O}(n) \times \mathcal{O}^n \\ x = y[w_1, \dots, w_n]}} \mathsf{E}_{\mathrm{rd}(y)} \otimes \mathsf{E}_{\mathrm{rd}(w)}.$$

Theorem [van der Laan, 2004] [Méndez, Liendo, 2014]

For any finitely factorizable operad \mathcal{O} , $\mathbf{N}(\mathcal{O})$ is a bialgebra.

If \mathcal{O} is graded, then $\mathbf{N}(\mathcal{O})$ is a Hopf algebra.

 $\mathbf{N}(\mathcal{O})$ is the natural Hopf algebra of \mathcal{O} .

Let us apply this construction on As endowed with the grading dg satisfying $dg(\alpha_n) = n - 1$.

For any $n \ge 1$, $\dim \mathbf{N}(\mathsf{As})(n) = 2^{n-1}$.

Example — A product in N(As)

$$\mathsf{E}_{\alpha_3\alpha_2\alpha_2\alpha_5} \star \mathsf{E}_{\alpha_4\alpha_2} = \mathsf{E}_{\alpha_3\alpha_2\alpha_2\alpha_5\alpha_4\alpha_2}$$

Example — A coproduct in N(As)

$$\Delta(\mathsf{E}_{\alpha_4}) = \mathsf{E}_{\epsilon} \otimes \mathsf{E}_{\alpha_4} + 2\mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_3} + \mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_2\alpha_2} + 3\mathsf{E}_{\alpha_3} \otimes \mathsf{E}_{\alpha_2} + \mathsf{E}_{\alpha_4} \otimes \mathsf{E}_{\epsilon}.$$

Contributions to the coefficient 2 of $\mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_3}$:

$$\alpha_4 = \alpha_2[\alpha_1, \alpha_3], \quad \alpha_4 = \alpha_2[\alpha_3, \alpha_1].$$

Contributions to the coefficient 3 of $\mathsf{E}_{\alpha_3} \otimes \mathsf{E}_{\alpha_2}$:

$$\alpha_4 = \alpha_3[\alpha_1, \alpha_1, \alpha_2], \quad \alpha_4 = \alpha_3[\alpha_1, \alpha_2, \alpha_1], \quad \alpha_4 = \alpha_3[\alpha_2, \alpha_1, \alpha_1].$$

N(As) is the noncommutative Faà di Bruno Hopf algebra FdB [Figueroa, Gracia-Bondía, 2005] [Foissy, 2008].

Terms and forests

A signature is a set \mathcal{S} decomposing as $\mathcal{S} = \bigsqcup_{n \geq 0} \mathcal{S}(n)$.

An S-term is an **ordered rooted tree** decorated on S such that an internal node decorated by $g \in S(n)$ has exactly n children.

Let $\mathfrak{T}(S)$ be the set of S-terms.

For any $\mathfrak{t}\in\mathfrak{T}(\mathcal{S})$,

- \Box the degree $\mathrm{dg}(\mathfrak{t})$ of \mathfrak{t} is the number of internal nodes of $\mathfrak{t};$
- \Box the arity ar(t) of t is the number of leaves of t.

Example — An S-term

Let the signature $\mathcal{S}:=\mathcal{S}(1)\sqcup\mathcal{S}(3)$ with $\mathcal{S}(1):=\{\mathtt{a}\}$ and $\mathcal{S}(3):=\{\mathtt{b},\mathtt{c}\}.$

This \mathcal{S} -term has degree 5 and arity 7.

Let S be a signature.

The free operad on S is the set $\mathfrak{T}(S)$ such that

- $\square \ \mathfrak{T}(\mathcal{S})(n)$ is the set of \mathcal{S} -terms of arity n;
- \square the unit is the \mathcal{S} -term containing exactly one leaf $\c 1$;
- \square the composition map is such that $\mathfrak{t}[\mathfrak{t}_1,\ldots,\mathfrak{t}_n]$ is the \mathcal{S} -term obtained by grafting simultaneously each \mathfrak{t}_i on the i-th leaf of \mathfrak{t} .

The map dg is a grading of $\mathfrak{T}(S)$ and this operad is finitely factorizable.

Let S be a signature.

An S-forest is a word on $\mathfrak{T}(S)$. Let $\mathfrak{F}(S)$ be the set of S-forests.

The internal nodes of an S-forest \mathfrak{f} are identified with their positions for the **preorder traversal**.

Let $\xrightarrow{\hat{f}}_j$ be the binary relation on the set of internal nodes of \hat{f} such that $i_1 \xrightarrow{\hat{f}}_j i_2$ if i_1 is the j-th child of i_2 in \hat{f} .

Natural Hopf algebras of free operads

Let S be a signature.

The bases of $N(\mathfrak{T}(\mathcal{S}))$ are indexed by the set of reduced \mathcal{S} -forests.

Example — A product in
$$\mathbf{N}(\mathfrak{T}(\mathcal{S}))$$

$$\begin{bmatrix}
\mathbf{E} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\
\mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F}$$

Let S be a signature such that all S(n), $n \ge 0$, are finite.

The profile of S is the infinite word $w_0w_1w_2...$ such that w_i is the cardinality of S(i).

Example — The profile of a signature

Let the signature $\mathcal{S}:=\mathcal{S}(0)\sqcup\mathcal{S}(2)\sqcup\mathcal{S}(3)$ such that $\mathcal{S}(0)=\{\mathsf{a}_1,\mathsf{a}_2\}$, $\mathcal{S}(2)=\{\mathsf{b}_1\}$, and $\mathcal{S}(3)=\{\mathsf{c}_1,\mathsf{c}_2,\mathsf{c}_3\}$.

The profile of S is the infinite word 20130^{ω} .

Proposition [G., 2024+]

Let $\mathcal S$ be a signature of profile w. The Hopf algebra $\mathbf N(\mathfrak T(\mathcal S))$ is

- 1. commutative iff $w = 0^{\omega}$ or $w = 10^{\omega}$;
- 2. cocommutative iff $w=k0^{\omega}$, $k\in\mathbb{N}$, or $w=010^{\omega}$.

Polynomial realization

Let S be a signature.

The class of S-forest-like alphabets is the class of alphabets A endowed with relations R, D_g , and \prec_j such that

- 1. R is a unary relation called root relation;
- 2. for any $g \in \mathcal{S}$, D_g is a unary relation called g-decoration relation;
- 3. for any $j \ge 1$, \prec_j is a binary relation called <u>j</u>-edge relation.

Let S be a signature, and A' and A'' be to S-forest-like alphabets.

The disjoint sum A' + A'' of A' and A'' is the S-forest-like alphabet

$$A := A' \sqcup A''$$

endowed with the relations R, D_g , and \prec_i such that

- 1. $R := R' \sqcup R''$:
- 2. $D_g := D'_g \sqcup D''_g$;
- 3. $a_1 \prec_i a_2$ holds if one of the three following conditions hold:
 - $\square \ a_1 \in A', \ a_2 \in A', \ a_1 \prec_j' a_2;$
- $\square \ a_1 \in A''$, $a_2 \in A''$, $a_1 \prec_j '' a_2$

Let S be a signature, A be an S-forest-like alphabet, and f be a reduced S-forest.

A word $w \in A^*$ is f-compatible, denoted by $w \Vdash^A \mathfrak{f}$, if

- 1. $\ell(w) = \mathrm{dg}(\mathfrak{f})$
- 2. if i is a root of \mathfrak{f} then $w_i \in \mathbb{R}$;
- 3. if i is decorated by $g \in \mathcal{S}$ in f then $w_i \in D_g$;
- 4. if $i_1 \stackrel{\mathfrak{f}}{\rightarrow}_j i_2$ then $w_{i_1} \prec_j w_{i_2}$.

Example — An f-compatible word

Considering this reduced forest $\mathfrak f$, any $\mathfrak f\text{-compatible}$ word $w\in A^*$ satisfies

- \square $\ell(w) = 7;$
- $\square \ w_1, w_5 \in \mathbb{R};$
- $\exists w_2, w_4, w_7 \in D_a, w_3, w_5, w_6 \in D_b, w_1 \in D_c;$
- \square $w_1 \prec_1 w_2$, $w_1 \prec_3 w_3$, $w_3 \prec_1 w_4$, $w_5 \prec_2 w_6$, $w_6 \prec_1 w_7$.

Let S be a signature and A be an S-forest-like alphabet.

Let $r_A: \mathbf{N}(\mathfrak{T}(\mathcal{S})) \to \mathbb{K}\langle A \rangle$ be the linear map defined for any $\mathfrak{f} \in \mathrm{rd}(\mathfrak{F}(\mathcal{S}))$ by

$$\mathsf{r}_A(\mathsf{E}_{\mathfrak{f}}) := \sum_{\substack{w \in A^* \ w \Vdash^A \mathfrak{f}}} w.$$

This polynomial is the A-realization of \mathfrak{f} .

Lemma

For any signature $\mathcal S$ and any $\mathcal S$ -edge alphabet A, $\mathsf r_A$ is an associative algebra morphism.

Lemma

For any signature S, any S-edge alphabets A_1 and A_2 , and any S-term $\mathfrak t$ different from the leaf,

$$\mathsf{r}_{A_1 \# A_2}(\mathsf{E}_{\mathfrak{t}}) = (\mathsf{r}_{A_1} \otimes \mathsf{r}_{A_2}) \circ \Delta(\mathsf{E}_{\mathfrak{t}}).$$

Example — An alphabet doubling in $N(\mathfrak{T}(S))$

$$= \cdots + \mathsf{r}_{A'}\mathsf{E} \qquad \otimes \mathsf{r}_{A''}\mathsf{E} \qquad \Rightarrow \qquad + \cdots$$

Let the S-forest-like alphabet

$$\mathbb{A}_{\mathcal{S}} := \{\mathbf{a}_{\mathsf{g},u} : \mathsf{g} \in \mathcal{S} \; \mathsf{and} \; u \in \mathbb{N}^* \}$$

such that

- 1. the root relation is defined by $R:=\left\{\mathbf{a}_{\mathbf{g},u}\in\mathbb{A}_{\mathcal{S}}:u=0^{\ell},\ell\geqslant0\right\}$;
- 2. the g-decoration relation D_g is defined by $D_g := \{a_{g',u} \in A_{\mathcal{S}} : g' = g\}$;
- 3. the j-edge relation \prec_j is defined by $\mathbf{a}_{g,u} \prec_j \mathbf{a}_{g',u \ j \ 0^\ell}$.

Example — An alphabet $\mathbb{A}_{\mathcal{S}}$

Let the signature $\mathcal{S}:=\mathcal{S}(1)\sqcup\mathcal{S}(3)$ such that $\mathcal{S}(1)=\{\mathsf{a},\mathsf{b}\}$ and $\mathcal{S}(3)=\{\mathsf{c}\}.$

For instance,

- \square $\mathbf{a}_{\mathsf{a},\epsilon} \in \mathbb{R}$, $\mathbf{a}_{\mathsf{a},000} \in \mathbb{R}$, $\mathbf{a}_{\mathsf{b},00000} \in \mathbb{R}$, $\mathbf{a}_{\mathsf{b},0100} \notin \mathbb{R}$ $\mathbf{a}_{\mathsf{c},210000} \notin \mathbb{R}$;
- \square $\mathbf{a}_{c,010761} \in D_c$, $\mathbf{a}_{c,000} \in D_c$, $\mathbf{a}_{b,20101} \notin D_c$;
- $\square \ a_{\mathsf{a},10212} \prec_1 a_{\mathsf{b},102121000}, \ a_{\mathsf{c},00200} \prec_2 a_{\mathsf{a},002002}.$

Example — Polynomial associated with some forests

$$\mathsf{r}_{\mathbb{A}_{\mathcal{S}}}\mathsf{E}_{egin{array}{c}oldsymbol{0}\begin{array}{c}old$$

$$\mathsf{r}_{\mathbb{A}_{\mathcal{S}}}\mathsf{E} \underset{\overset{\bullet}{\mathfrak{b}}}{\overset{\bullet}{\mathfrak{p}}} \overset{\bullet}{\mathfrak{a}} = \sum_{\ell_1,\ell_2 \in \mathbb{N}} \mathbf{a}_{\mathsf{b},0^{\ell_1}} \; \mathbf{a}_{\mathsf{a},0^{\ell_2}}$$

$$\mathsf{r}_{\mathbb{A}_{\mathcal{S}}}\mathsf{E} \bigoplus_{\mathbf{a}_{\mathsf{b},0^{\ell_{1}}}} = \sum_{\ell_{1},\ell_{2} \in \mathbb{N}} \mathsf{a}_{\mathsf{b},0^{\ell_{1}}} \; \mathsf{a}_{\mathsf{a},0^{\ell_{1}}10^{\ell_{2}}}$$

$$\mathsf{r}_{\mathbb{A}_{\mathcal{S}}}\mathsf{E} = \sum_{\ell_1, \dots, \ell_7 \in \mathbb{N}} \mathbf{a}_{\mathsf{c}, 0^{\ell_1}} \; \mathbf{a}_{\mathsf{a}, 0^{\ell_1} 10^{\ell_2}} \; \mathbf{a}_{\mathsf{b}, 0^{\ell_1} 30^{\ell_3}} \; \mathbf{a}_{\mathsf{a}, 0^{\ell_1} 30^{\ell_3}} \; \mathbf{a}_{\mathsf{a}, 0^{\ell_1} 30^{\ell_3}} \; \mathbf{a}_{\mathsf{b}, 0^{\ell_5} 20^{\ell_6}} \; \mathbf{a}_{\mathsf{b}, 0^{\ell_5} 2$$

Let \mathfrak{t} be an \mathcal{S} -term.

The decoration $c_i(\mathfrak{t})$ of a node i of t is the element of S decorating it.

The address $p_i(t)$ of a node i of t is the word specifying the positions of the edges to reach i from the root.

For this S-term \mathfrak{t} , we have $c_6(\mathfrak{t})=a$ and

Let the associative algebra morphism $w_S: \mathbf{N}(\mathfrak{T}(S)) \to \mathbb{K}(\mathbb{A}_S)$ defined, for any S-term t of degree $d \geqslant 1$, by

$$w_{\mathcal{S}}(\mathsf{E}_{\mathfrak{t}}) := \mathbf{a}_{c_1(\mathfrak{t}),p_1(\mathfrak{t})} \dots \mathbf{a}_{c_d(\mathfrak{t}),p_d(\mathfrak{t})}.$$

This is the minimal word of t.

Example — The minimal word of a S-term

$$w_{\mathcal{S}}(\mathsf{E}_{\mathfrak{t}}) = \mathbf{a}_{\mathsf{c},\epsilon} \; \mathbf{a}_{\mathsf{a},1} \; \mathbf{a}_{\mathsf{b},11} \; \mathbf{a}_{\mathsf{b},2} \; \mathbf{a}_{\mathsf{c},21} \; \mathbf{a}_{\mathsf{a},213} \; \mathbf{a}_{\mathsf{c},2131} \; \mathbf{a}_{\mathsf{b},3}$$

Lemma

Let S be a signature.

- 1. The map $w_{\mathcal{S}}$ is injective.
- 2. For any reduced S-forest f, the monomial $w_{\mathcal{S}}(\mathsf{E}_{\mathfrak{f}})$ appears in $r_{\mathbb{A}_{\mathcal{S}}}(\mathsf{E}_{\mathfrak{f}})$.
- 3. The map $r_{\mathbb{A}_S}$ is injective.

Theorem [G., 2024+]

For any signature \mathcal{S} , the class of \mathcal{S} -forest-like alphabets, together with the alphabet disjoint sum operation #, the map r_A , and the alphabet $\mathbb{A}_{\mathcal{S}}$, forms a polynomial realization of the Hopf algebra $\mathbf{N}(\mathfrak{T}(\mathcal{S}))$.

Conclusion

Presented here: \square a polynomial realization r_A of $N(\mathcal{O})$ when \mathcal{O} is a free operad. Not presented here: \square when \mathcal{O} is **not free** and satisfies some properties, we can deduce from r_A a polynomial realization of $\mathbf{N}(\mathcal{O})$; by considering alphabet specializations, we can construct quotients or Hopf subalgebras of $N(\mathfrak{T}(S))$ which are isomorphic to □ NCK and the noncommutative D-decorated Connes-Kreimer CHAs NCK_D [Foissy, 2002]; FdB and deformed noncommutative Faà di Bruno CHAs $\overline{\text{FdB}}_r$ [Foissy, 2008]; \Box fundamental $\{F_f\}$ and homogeneous $\{H_f\}$ bases, constructed through a new partial order on forests. Topics to explore and open questions: \square study other alphabet specializations linking $\mathbb{N}(\mathcal{O})$ with other CHAs; conditions on the operad \mathcal{O} for the fact that $\mathbf{N}(\mathcal{O})$ is self-dual, free, or cofree. 41/41 POLY. REAL. HOPF ALGEBRAS FROM OPERADS Samuele Giraudo