NATURAL HOPF ALGEBRAS OF OPERADS AND THEIR POLYNOMIAL REALIZATION

Samuele Giraudo

LACIM, Université du Québec à Montréal

giraudo.samuele@uqam.ca

Séminaire ADA, LMPA

April 11, 2024

Objectives

Present a polynomial realization of some Hopf algebras constructed from operads.

Main points:

- 1. Combinatorial Hopf algebras.
- 2. Polynomial realizations.
- 3. Nonsymmetric operads.
- 4. Natural Hopf algebras of nonsymmetric operads.
- 5. A polynomial realization of natural Hopf algebras of free operads.

Combinatorial Hopf algebras

All algebraic structures are over a field \mathbb{K} of characteristic zero.

A combinatorial Hopf algebra (CHA) ${\cal H}$ is a graded vector space decomposing as

$$\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \mathcal{H}(n)$$

endowed with

- \square an associative unital graded **product** $\star: \mathcal{H}(n_1) \otimes \mathcal{H}(n_2) \to \mathcal{H}(n_1 + n_2)$
- \square a coassociative counital cograded **coproduct** $\Delta:\mathcal{H}(n) o igoplus_{n=n_1+n_2}\mathcal{H}(n_1)\otimes\mathcal{H}(n_2)$

such that each $\mathcal{H}(n)$ is finite dimensional, $\dim \mathcal{H}(0) = 1$, and

$$\Delta(x_1 \star x_2) = \Delta(x_1) \,\bar{\star} \,\Delta(x_2).$$

Let \mathbf{FQSym} be the space such that $\mathbf{FQSym}(n)$ is the linear span of $\mathfrak{S}(n)$, the set of **permutations** of size n.

The set $\{F_{\sigma} : \sigma \in \mathfrak{S}\}$ is the fundamental basis of \mathbf{FQSym} .

Let \star be the shifted shuffle product on **FQSym**.

Example — **Product of FQSym** on the F-basis

 $\mathsf{F}_{231} \star \mathsf{F}_{12} = \mathsf{F}_{23145} + \mathsf{F}_{23415} + \mathsf{F}_{23451} + \mathsf{F}_{24315} + \mathsf{F}_{24351} + \mathsf{F}_{24531} + \mathsf{F}_{42315} + \mathsf{F}_{42351} + \mathsf{F}_{42531} + \mathsf{F}_{45231}$

Let Δ be the standardized deconcatenation coproduct on FQSym.

Example — Coproduct of FQSym on the F-basis

 $\Delta(\mathsf{F}_{24351}) = \mathsf{F}_{\epsilon} \otimes \mathsf{F}_{24351} \ + \ \mathsf{F}_{1} \otimes \mathsf{F}_{3241} \ + \ \mathsf{F}_{12} \otimes \mathsf{F}_{231} \ + \ \mathsf{F}_{132} \otimes \mathsf{F}_{21} \ + \ \mathsf{F}_{1324} \otimes \mathsf{F}_{1} \ + \ \mathsf{F}_{24351} \otimes \mathsf{F}_{\epsilon}$

This is the Malvenuto-Reutenauer CHA [Malvenuto, Reutenauer, 1995].

Polynomial realizations

For any alphabet A, let $\mathbb{K}\langle A\rangle$ be the space of noncommutative polynomials on A having a possibly **infinite** support but a **finite degree**.

Example — Some noncommutative polynomials

Set $A_{\mathbb{N}} := \{\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \ldots\}.$

 \square An element in $\mathbb{K}\langle A_{\mathbb{N}}\rangle$:

$$\sum_{0 \leqslant i_1 < i_2} \mathbf{a}_{i_1} \mathbf{a}_{i_2} = \mathbf{a}_0 \mathbf{a}_1 + \mathbf{a}_0 \mathbf{a}_2 + \dots + \mathbf{a}_1 \mathbf{a}_2 + \mathbf{a}_1 \mathbf{a}_3 + \dots$$

 \square An element which is not in $\mathbb{K}\langle A_{\mathbb{N}}\rangle$:

$$\sum_{n\geqslant 0} \mathbf{a}_0^n = 1 + \mathbf{a}_0 + \mathbf{a}_0^2 + \mathbf{a}_0^3 + \cdots$$

The space $\mathbb{K}\langle A\rangle$ is endowed with the product of noncommutative polynomials.

A polynomial realization of a CHA \mathcal{H} is a quadruple $(\mathcal{A}, +, r_A, \mathbb{A})$ such that

- 1. A is a class of alphabets (a class of sets possibly endowed with relations).
- 2. + is an associative operation of disjoint union on A.
- 3. For any alphabet A of \mathcal{A} ,

$$\mathsf{r}_A:\mathcal{H} o \mathbb{K}\langle A
angle$$

is an associative algebra morphism.

4. For any $x \in \mathcal{H}$ and any mutually commuting alphabets A' and A'' of A in $\mathbb{K}\langle A' + A'' \rangle$,

$$\mathsf{r}_{A' + A''}(x) = (\mathsf{r}_{A'} \otimes \mathsf{r}_{A''}) \circ \Delta(x).$$

5. A is an alphabet of \mathcal{A} such that $r_{\mathbb{A}}$ is injective.

Point 4. offers a way to compute the coproduct of \mathcal{H} by expressing the realization of x on the sum of two alphabets. This is the alphabet doubling trick.

Let A be an alphabet endowed with a total order \leq .

The standarization of $u \in A^*$ is the word of positive integers std(u) such that

$$\operatorname{std}(u)_i = \#\{j : j \leqslant i \text{ and } u_j \leqslant u_i\} + \#\{j : i < j \text{ and } u_i > u_j\}.$$

Example — Standardization of a word

Let on the alphabet $A_{\mathbb{N}}$ the total order relation \leq satisfying $\mathbf{a}_{i_1} \leq \mathbf{a}_{i_2}$ iff $i_1 \leq i_2$.

$$\operatorname{std}(\mathbf{a}_7 \ \mathbf{a}_2 \ \mathbf{a}_0 \ \mathbf{a}_0 \ \mathbf{a}_2 \ \mathbf{a}_6 \ \mathbf{a}_2 \ \mathbf{a}_0 \ \mathbf{a}_4) = \operatorname{std}(7 \ \underline{2} \ \underline{0} \ \underline{0} \ \underline{2} \ 6 \ 2 \ \underline{0} \ 4) = 9 \ 4 \ 1 \ 2 \ 5 \ 8 \ 6 \ 3 \ 7$$

Observations:

- \square std is a map from A^* to \mathfrak{S} ;
- \square std is surjective iff A is infinite;
- \square std(u) is the unique permutation having the same inversion set as the one of u.

Let $r_A : \mathbf{FQSym} \to \mathbb{K}\langle A \rangle$ be the map defined by

$$\mathsf{r}_A(\mathsf{F}_\sigma) := \sum_{\substack{u \in A^* \\ \mathrm{std}(u) = \sigma^{-1}}} u$$

Example — The polynomial of a basis element

$$\mathsf{r}_{A_{\mathbb{N}}}(\mathsf{F}_{312}) = \sum_{0 \leqslant i_1 < i_2 \leqslant i_3} \mathbf{a}_{i_2} \mathbf{a}_{i_3} \mathbf{a}_{i_1} = \mathbf{a}_1 \mathbf{a}_1 \mathbf{a}_0 + \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_0 + \dots + \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_0 + \mathbf{a}_2 \mathbf{a}_3 \mathbf{a}_0 + \dots + \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 + \dots$$

The disjoint sum A' + A'' of the totally ordered alphabets A' and A'' is the ordinal sum of A' and A''.

Theorem [Duchamp, Hivert, Thibon, 2002]

The class of totally ordered alphabets together with the ordinal sum operation +, the map r_A , and the alphabet A_N forms a polynomial realization of \mathbf{FQSym} .

Example — An alphabet doubling in FQSym

$$\mathsf{r}_{A' + A''}(\mathsf{F}_{312}) = \sum_{\substack{u \in \left(A' + A''\right)^* \\ \mathrm{std}(u) = 231}} u = \sum_{\substack{u_1, u_2, u_3 \in A' + A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1$$

$$= \sum_{\substack{u_1, u_2, u_3 \in A' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A', u_3 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A', u_1 \in A'' \\ u_1 \preccurlyeq u_2 \preccurlyeq u_3 \\ u_1 \neq u_2}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_2 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_1 \neq u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_2 \neq u_3}} u_3 u_1 + \sum_{\substack{u_1, u_2 \in A' \\ u_$$

$$= r_{A'}(\mathsf{F}_{312}) \otimes \mathsf{r}_{A''}(\mathsf{F}_{\epsilon}) + r_{A'}(\mathsf{F}_{21}) \otimes \mathsf{r}_{A''}(\mathsf{F}_{1}) + 0 + 0$$

$$+ \quad r_{A'}(\mathsf{F}_1) \otimes r_{A''}(\mathsf{F}_{12}) \quad + \quad 0 \quad + \quad 0 \quad + \quad r_{A'}(\mathsf{F}_{\varepsilon}) \otimes r_{A''}(\mathsf{F}_{312})$$

$$= (\mathsf{r}_{A'} \otimes \mathsf{r}_{A''}) \circ \Delta(\mathsf{F}_{312})$$

The following CHAs admit polynomial realizations: NCSF, the noncommutative symmetric functions CHA [Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, 1995]; FQSym, the Malvenuto-Reutenauer CHA [Duchamp, Hivert, Thibon, 2002]; **PBT**, the Loday-Ronco CHA [Hivert, Novelli, Thibon, 2005]; WQSym, the packed words CHA [Novelli, Thibon, 2006]; PQSym*, the dual parking functions CHA [Novelli, Thibon, 2007]; **UBP**, the uniform block permutations CHA [Maurice, 2013]; CK and NCK, the commutative and noncommutative Connes-Kreimer CHAs [Foissy, Novelli, Thibon, 2014]; $\mathbf{H}_{\mathcal{FG}}$, the CHA on Feynman graphs [Foissy, 2020].

There are several advantages to polynomial realizations.

- 1. They produce from a CHA \mathcal{H} a family of polynomials generalizing symmetric functions.
- 2. They lead to a **unified encoding** of the elements of a CHA \mathcal{H} by polynomials, no matter how complex are the product and coproduct of \mathcal{H} .
- 3. They lead to links between a CHA ${\cal H}$ and other CHAs by specializing the alphabet on which ${\cal H}$ is realized.
- 4. Given a space \mathcal{A} endowed with a product and a coproduct, the existence of a polynomial realization of \mathcal{A} proves that \mathcal{A} is a **Hopf algebra**.

Nonsymmetric operads

A nonsymmetric operad (operad) is a set

$$\mathcal{O} = \bigsqcup_{n \in \mathbb{N}} \mathcal{O}(n)$$

endowed with

$$\square$$
 a unit $\mathbb{1} \in \mathcal{O}(1)$;

$$\square$$
 a composition map $-[-,\ldots,-]:\mathcal{O}(n)\times\mathcal{O}(m_1)\times\cdots\times\mathcal{O}(m_n)\to\mathcal{O}(m_1+\cdots+m_n)$

such that

$$1[x] = x = x[1, \dots, 1]$$

and

$$x[y_1,\ldots,y_n][z_{1,1},\ldots,z_{1,m_1},\ldots,z_{n,1},\ldots,z_{n,m_n}] = x[y_1[z_{1,1},\ldots,z_{1,m_1}],\ldots,y_n[z_{n,1},\ldots,z_{n,m_n}]].$$

The arity ar(x) of $x \in \mathcal{O}$ is the unique integer n such that $x \in \mathcal{O}(n)$.

Let \mathcal{O} be an operad.

An element $x \in \mathcal{O}(n)$ is finitely factorizable if the set of pairs $(y,(z_1,\ldots,z_n))$ satisfying

$$x = y[z_1, \dots, z_n]$$

is finite.

When all elements of $\mathcal O$ are finitely factorizable, by extension, $\mathcal O$ is finitely factorizable.

A map $\mathrm{dg}:\mathcal{O}\to\mathbb{N}$ is a grading of \mathcal{O} if

- $\Box \ dg^{-1}(0) = \{1\};$
- \square for any $y \in \mathcal{O}(n)$ and $z_1, \ldots, z_n \in \mathcal{O}$,

$$dg(y[z_1,\ldots,z_n]) = dg(y) + dg(z_1) + \cdots + dg(z_n).$$

When such a map exists, \mathcal{O} is graded.

The nonsymmetric associative operad As is the operad such that

- \square As $(0) = \emptyset$ and for any $n \geqslant 1$, As(n) is the set $\{\alpha_n\}$;
- \square the unit is α_1 ;
- \Box the composition map satisfies

$$\alpha_n[\alpha_{m_1},\ldots,\alpha_{m_n}]=\alpha_{m_1+\cdots+m_n}.$$

Example — A composition in As

$$\alpha_4[\alpha_2, \alpha_2, \alpha_3, \alpha_1] = \alpha_{2+2+3+1} = \alpha_8$$

The map dg defined by $dg(\alpha_n) := n - 1$ is a grading of As.

The operad As is finitely factorizable.

Natural Hopf algebras of nonsymmetric operads

Let \mathcal{O} be an operad.

The reduced rd(w) of $w \in \mathcal{O}^*$ is the word obtained by removing the letters 1 in w.

Example — Reduced word of As*

$$rd(\alpha_2 \ \alpha_2 \ \alpha_1 \ \alpha_4 \ \alpha_1 \ \alpha_1) = \alpha_2 \ \alpha_2 \ \alpha_4$$

The natural space $N(\mathcal{O})$ of \mathcal{O} is the linear span of the set of reduced elements of \mathcal{O}^* .

The set $\{\mathsf{E}_w : w \in \mathrm{rd}(\mathcal{O}^*)\}$ is the elementary basis of $\mathbf{N}(\mathcal{O})$.

If \mathcal{O} admits a grading dg, then $N(\mathcal{O})$ becomes a graded space by setting

$$dg(\mathsf{E}_{w_1...w_\ell}) := dg(w_1) + \dots + dg(w_\ell).$$

Note that $dg(\mathsf{E}_{\epsilon}) = 0$.

Let \star be the **product** on $\mathbf{N}(\mathcal{O})$ defined by

$$\mathsf{E}_{w_1} \star \mathsf{E}_{w_2} := \mathsf{E}_{w_1 w_2}.$$

Let Δ be the **coproduct** on $\mathbf{N}(\mathcal{O})$ defined by

$$\Delta(\mathsf{E}_x) = \sum_{n \geqslant 0} \sum_{\substack{(y,w) \in \mathcal{O}(n) \times \mathcal{O}^n \\ x = y[w_1, \dots, w_n]}} \mathsf{E}_{\mathrm{rd}(y)} \otimes \mathsf{E}_{\mathrm{rd}(w)}.$$

Theorem [van der Laan, 2004] [Méndez, Liendo, 2014]

For any finitely factorizable operad \mathcal{O} , $\mathbf{N}(\mathcal{O})$ is a bialgebra.

If \mathcal{O} is graded, then $\mathbf{N}(\mathcal{O})$ is a Hopf algebra.

 $\mathbf{N}(\mathcal{O})$ is the natural Hopf algebra of \mathcal{O} .

Let us apply this construction on As endowed with the grading dg satisfying $dg(\alpha_n) = n - 1$.

For any $n \ge 1$, dim $\mathbf{N}(\mathsf{As})(n) = 2^{n-1}$.

Example — A product in N(As)

$$\mathsf{E}_{\alpha_3\alpha_2\alpha_2\alpha_5} \star \mathsf{E}_{\alpha_4\alpha_2} = \mathsf{E}_{\alpha_3\alpha_2\alpha_2\alpha_5\alpha_4\alpha_2}$$

Example — A coproduct in N(As)

$$\Delta(\mathsf{E}_{\alpha_4}) = \mathsf{E}_{\epsilon} \otimes \mathsf{E}_{\alpha_4} + 2\mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_3} + \mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_2\alpha_2} + 3\mathsf{E}_{\alpha_3} \otimes \mathsf{E}_{\alpha_2} + \mathsf{E}_{\alpha_4} \otimes \mathsf{E}_{\epsilon}.$$

Contributions to the coefficient 2 of $\mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_3}$:

$$\alpha_4 = \alpha_2[\alpha_1, \alpha_3], \quad \alpha_4 = \alpha_2[\alpha_3, \alpha_1].$$

Contributions to the coefficient 3 of $\mathsf{E}_{\alpha_3} \otimes \mathsf{E}_{\alpha_2}$:

$$\alpha_4 = \alpha_3[\alpha_1, \alpha_1, \alpha_2], \quad \alpha_4 = \alpha_3[\alpha_1, \alpha_2, \alpha_1], \quad \alpha_4 = \alpha_3[\alpha_2, \alpha_1, \alpha_1]$$

N(As) is the noncommutative Faà di Bruno Hopf algebra FdB [Figueroa, Gracia-Bondía, 2005] [Foissy, 2008].

Terms and forests

A signature is a set \mathcal{S} decomposing as $\mathcal{S} = \bigsqcup_{n \geq 0} \mathcal{S}(n)$.

An S-term is an **ordered rooted tree** decorated on S such that an internal node decorated by $g \in S(n)$ has exactly n children.

Let $\mathfrak{T}(S)$ be the set of S-terms.

For any $\mathfrak{t}\in\mathfrak{T}(\mathcal{S})$,

- \Box the degree $\mathrm{dg}(\mathfrak{t})$ of \mathfrak{t} is the number of internal nodes of $\mathfrak{t};$
- \Box the arity ar(t) of t is the number of leaves of t.

Example — An S-term

Let the signature $\mathcal{S}:=\mathcal{S}(1)\sqcup\mathcal{S}(3)$ with $\mathcal{S}(1):=\{\mathtt{a}\}$ and $\mathcal{S}(3):=\{\mathtt{b},\mathtt{c}\}.$

This $\mathcal{S}\text{-term}$ has degree 5 and arity 7.

Let S be a signature.

The free operad on S is the set $\mathfrak{T}(S)$ such that

- $\square \ \mathfrak{T}(\mathcal{S})(n)$ is the set of \mathcal{S} -terms of arity n;
- \square the unit is the \mathcal{S} -term containing exactly one leaf $\c 1$;
- \Box the composition map is such that $\mathfrak{t}[\mathfrak{t}_1,\ldots,\mathfrak{t}_n]$ is the \mathcal{S} -term obtained by grafting simultaneously each \mathfrak{t}_i on the i-th leaf of \mathfrak{t} .

The map dg is a grading of $\mathfrak{T}(\mathcal{S})$ and this operad is finitely factorizable.

Let S be a signature.

An S-forest is a word on $\mathfrak{T}(S)$. Let $\mathfrak{F}(S)$ be the set of S-forests.

The internal nodes of an S-forest \mathfrak{f} are identified with their positions for the **preorder traversal**.

Let $\xrightarrow{\hat{f}}_j$ be the binary relation on the set of internal nodes of \hat{f} such that $i_1 \xrightarrow{\hat{f}}_j i_2$ if i_1 is the j-th child of i_2 in \hat{f} .

Natural Hopf algebras of free operads

Let S be a signature.

The bases of $N(\mathfrak{T}(S))$ are indexed by the set of reduced S-forests.

Polynomial realization

Let S be a signature.

The class of S-forest-like alphabets is the class of alphabets A endowed with relations R, D_g , and \prec_j such that

- 1. R is a unary relation called root relation;
- 2. for any $g \in \mathcal{S}$, D_g is a unary relation called g-decoration relation;
- 3. for any $j \ge 1$, \prec_j is a binary relation called <u>j</u>-edge relation.

Let S be a signature, and A' and A'' be to S-forest-like alphabets.

The disjoint sum A' + A'' of A' and A'' is the S-forest-like alphabet

$$A := A' \sqcup A''$$

endowed with the relations R, D_g , and \prec_i such that

- 1. $R := R' \sqcup R''$:
- $2. \ \mathrm{D}_g := \mathrm{D}_g' \sqcup \mathrm{D}_g'';$
- 3. $a_1 \prec_i a_2$ holds if one of the three following conditions hold:
 - \square $a_1 \in A'$, $a_2 \in A'$, $a_1 \prec_j' a_2$;
- $\Box \ a_1 \in A'', \ a_2 \in A'', \ a_1 \prec_j'' a_2$

Let $\mathcal S$ be a signature, A be an $\mathcal S$ -forest-like alphabet, and $\mathfrak f$ be a reduced $\mathcal S$ -forest.

A word $w \in A^*$ is f-compatible, denoted by $w \Vdash^A \mathfrak{f}$, if

- 1. $\ell(w) = \mathrm{dg}(\mathfrak{f})$
- 2. if i is a root of f then $w_i \in \mathbb{R}$;
- 3. if i is decorated by $g \in \mathcal{S}$ in f then $w_i \in D_g$;
- 4. if $i_1 \xrightarrow{\overline{f}}_j i_2$ then $w_{i_1} \prec_j w_{i_2}$.

Example — An f-compatible word

- \square $\ell(w) = 7;$
- $\square \ w_1, w_5 \in \mathbb{R};$
- \square $w_2,w_4,w_7\in \mathrm{D_a}$, $w_3,w_5,w_6\in \mathrm{D_b}$, $w_1\in \mathrm{D_c}$;
- \square $w_1 \prec_1 w_2$, $w_1 \prec_3 w_3$, $w_3 \prec_1 w_4$, $w_5 \prec_2 w_6$, $w_6 \prec_1 w_7$.

Let S be a signature and A be an S-forest-like alphabet.

Let $r_A: \mathbf{N}(\mathfrak{T}(\mathcal{S})) \to \mathbb{K}\langle A \rangle$ be the linear map defined for any $\mathfrak{f} \in \mathrm{rd}(\mathfrak{F}(\mathcal{S}))$ by

$$\mathsf{r}_A(\mathsf{E}_{\mathfrak{f}}) := \sum_{\substack{w \in A^* \ w \Vdash^A \mathfrak{f}}} w.$$

This polynomial is the A-realization of \mathfrak{f} .

Lemma

For any signature S and any S-forest-like alphabet A, r_A is an associative algebra morphism.

Lemma

For any signature S, any S-forest-like alphabets A' and A'', and any S-forest f,

$$\mathsf{r}_{A' + A''}(\mathsf{E}_{\mathfrak{f}}) = (\mathsf{r}_{A'} \otimes \mathsf{r}_{A''}) \circ \Delta(\mathsf{E}_{\mathfrak{f}}).$$

Example — An alphabet doubling in $N(\mathfrak{T}(S))$

$$= \cdots + \mathsf{r}_{A'}\mathsf{E} \qquad \otimes \mathsf{r}_{A''}\mathsf{E} \qquad + \cdots$$

Let
$$\mathbb{P} := (\mathbb{N} \setminus \{0\})^*$$
.

The S-forest-like alphabet of positions is the S-forest-like alphabet

$$\mathbb{A}_{\mathrm{p}}(\mathcal{S}) := \{\mathbf{a}_{\mathsf{g},u} : \mathsf{g} \in \mathcal{S} \; \mathsf{and} \; u \in \mathbb{P} \}$$

such that

- 1. the root relation is defined by $R := \{ \mathbf{a}_{\sigma,u} \in \mathbb{A}_{\mathbf{p}}(\mathcal{S}) : u = \epsilon \};$
- 2. the g-decoration relation D_g is defined by $D_g:=\{\mathbf{a}_{\mathbf{g}',u}\in\mathbb{A}_{\mathrm{p}}(\mathcal{S}): \mathbf{g}'=\mathbf{g}\};$
- 3. the *j*-edge relation \prec_j is defined by $\mathbf{a}_{g,u} \prec_j \mathbf{a}_{g',u}$.

Example — An alphabet $\mathbb{A}_p(S)$

Let the signature $S := S(1) \sqcup S(3)$ such that $S(1) = \{a, b\}$ and $S(3) = \{c\}$. For instance,

- \square $\mathbf{a}_{\mathsf{a},\epsilon} \in \mathbb{R}$, $\mathbf{a}_{\mathsf{b},121} \notin \mathbb{R}$;
- \square $\mathbf{a}_{\mathsf{c}.1761} \in \mathcal{D}_{\mathsf{c}}, \ \mathbf{a}_{\mathsf{c}.\epsilon} \in \mathcal{D}_{\mathsf{c}}, \ \mathbf{a}_{\mathsf{b}.211} \notin \mathcal{D}_{\mathsf{c}};$
- \Box $\mathbf{a}_{a,1212} \prec_1 \mathbf{a}_{b,12121}, \ \mathbf{a}_{c,2} \prec_2 \mathbf{a}_{a,22}.$

Example — $\mathbb{A}_p(S)$ -polynomials associated with some forests

$$r_{\mathbb{A}_{\mathrm{p}}(\mathcal{S})}\mathsf{E}_{\begin{subarray}{c}oldsymbol{p}\begin{subarray}{c}\bladebol{p}\bladebol{p}\bladebol{p}\bladebol{p}\bladebol{p}\bladebol{p}\blade$$

$$\mathsf{r}_{\mathbb{A}_{\mathrm{p}}(\mathcal{S})}\mathsf{E} \underset{\overset{\bullet}{\mathfrak{b}}}{\overset{\bullet}{\mathfrak{b}}} \overset{\bullet}{\mathfrak{a}} = \ \mathbf{a}_{b,\varepsilon} \ \mathbf{a}_{a,\varepsilon}$$

$$r_{\mathbb{A}_{p}(\mathcal{S})}\mathsf{E}$$
 $=$ $\mathbf{a}_{b,\epsilon}$ $\mathbf{a}_{a,1}$

Let f be an S-forest.

The decoration $c_i(\mathfrak{f})$ of a node i of \mathfrak{f} is the element of \mathcal{S} decorating it.

The address $p_i(\mathfrak{f})$ of a node i of \mathfrak{f} is the word specifying the positions of the edges to reach i from the root.

Example — The decoration and the address of a node of an \mathcal{S} -term

For this S-forest \mathfrak{f} , we have $c_6(\mathfrak{f})=a$ and $p_6(\mathfrak{f})=213.$

Lemma

For any signature ${\mathcal S}$ and any ${\mathcal S}$ -forest ${\mathfrak f}$,

$$r_{\mathbb{A}_p(\mathcal{S})}(\mathsf{E}_\mathfrak{f}) = \mathbf{a}_{c_1(\mathfrak{f}),p_1(\mathfrak{f})} \dots \mathbf{a}_{c_d(\mathfrak{f}),p_d(\mathfrak{f})}.$$

Lemma

For any signature \mathcal{S} , the map $r_{\mathbb{A}_p(\mathcal{S})}:\mathbf{N}(\mathfrak{T}(\mathcal{S}))\to\mathbb{K}(\mathbb{A}_p(\mathcal{S}))$ is injective.

Theorem [G., 2024+]

For any signature S, the class of S-forest-like alphabets, together with the alphabet disjoint sum operation #, the map r_A , and the alphabet $\mathbb{A}_p(S)$, forms a polynomial realization of the Hopf algebra $\mathbb{N}(\mathfrak{T}(S))$.

The S-forest-like alphabet of extended positions is the S-forest-like alphabet

$$\mathbb{A}_{ ext{ep}}(\mathcal{S}) := \{\mathbf{a}_{ ext{g},u}: ext{g} \in \mathcal{S} ext{ and } u \in \mathbb{N}^*\}$$

such that

- 1. the root relation is defined by $R:=\left\{\mathbf{a}_{\mathbf{g},u}\in\mathbb{A}_{\mathrm{ep}}(\mathcal{S}):u=0^{\ell},\ell\geqslant0\right\};$
- 2. the g-decoration relation D_g is defined by $D_g := \{a_{g',u} \in \mathbb{A}_{\mathcal{S}} : g' = g\};$
- 3. the *j*-edge relation \prec_j is defined by $\mathbf{a}_{g,u} \prec_j \mathbf{a}_{g',u \ j \ 0^\ell}$.

Example — An alphabet $\mathbb{A}_{ep}(\mathcal{S})$

Let the signature $\mathcal{S}:=\mathcal{S}(1)\sqcup\mathcal{S}(3)$ such that $\mathcal{S}(1)=\{\mathsf{a},\mathsf{b}\}$ and $\mathcal{S}(3)=\{\mathsf{c}\}.$

For instance,

- \square $\mathbf{a}_{\mathsf{a},\epsilon} \in \mathbb{R}$, $\mathbf{a}_{\mathsf{a},000} \in \mathbb{R}$, $\mathbf{a}_{\mathsf{b},0100} \notin \mathbb{R}$ $\mathbf{a}_{\mathsf{c},210000} \notin \mathbb{R}$;
- \square $\mathbf{a}_{c,010761} \in D_c$, $\mathbf{a}_{c,000} \in D_c$, $\mathbf{a}_{b,20101} \notin D_c$;
- $\square \ \ \mathbf{a}_{\mathsf{a},10212} \prec_1 \mathbf{a}_{\mathsf{b},102121000} \text{,} \ \ \mathbf{a}_{\mathsf{c},00200} \prec_2 \mathbf{a}_{\mathsf{a},002002}.$

Example — $\mathbb{A}_{ep}(\mathcal{S})$ -polynomials associated with some forests

$$\mathsf{r}_{\mathbb{A}_{\mathrm{ep}}(\mathcal{S})}\mathsf{E} \, egin{array}{c} \mathsf{p} \ \mathsf{p} \end{array} = \sum_{\ell_1 \in \mathbb{N}} \mathbf{a}_{\mathsf{b},0^{\ell_1}}$$

$$\mathsf{r}_{\mathbb{A}_{\mathrm{ep}}(\mathcal{S})}\mathsf{E} \ \ \overset{\bullet}{\underset{b}{\circlearrowleft}} \ \ \overset{\bullet}{\underset{a}{\circlearrowleft}} \ = \sum_{\ell_1,\ell_2 \in \mathbb{N}} \mathbf{a}_{\mathsf{b},0^{\ell_1}} \ \mathbf{a}_{\mathsf{a},0^{\ell_2}}$$

$$\mathsf{r}_{\mathbb{A}_{\mathrm{ep}}(\mathcal{S})}\mathsf{E} \ \ \overset{\bullet}{\underset{\bullet}{\triangleright}} \ = \sum_{\ell_1,\ell_2 \in \mathbb{N}} \mathbf{a}_{\mathsf{b},0^{\ell_1}} \ \mathbf{a}_{\mathsf{a},0^{\ell_1}10^{\ell_2}}$$

$$\mathsf{r}_{\mathbb{A}_{\mathrm{ep}}(\mathcal{S})}\mathsf{E} = \sum_{\ell_1,\dots,\ell_7 \in \mathbb{N}} \mathbf{a}_{\mathsf{c},0^{\ell_1}} \; \mathbf{a}_{\mathsf{a},0^{\ell_1}10^{\ell_2}} \; \mathbf{a}_{\mathsf{b},0^{\ell_1}30^{\ell_3}} \; \mathbf{a}_{\mathsf{a},0^{\ell_1}30^{\ell_3}10^{\ell_4}} \; \mathbf{a}_{\mathsf{b},0^{\ell_5}20^{\ell_6}} \; \mathbf{a}_{\mathsf{b},0^{\ell_5}20^{\ell_6}10^{\ell_7}}$$

Conclusion

•		l in the second of the second
Presented here:		
\square a polynomial realization r_A of Γ	$\mathbf{N}(\mathcal{O})$ when \mathcal{O} is a free ope	erad.
Not presented here:		
\square when $\mathcal O$ is not free and satisfies s	some properties, we can ded	uce from r_A a polynomial realization of $\mathbf{N}(\mathcal{O})$;
 by considering alphabet specializer are isomorphic to 	ations, we can construct qu	otients or Hopf subalgebras of $\mathbf{N}(\mathfrak{T}(\mathcal{S}))$ which
\square \mathbf{NCK} and the noncommuta	ative \emph{D} -decorated Connes-K	reimer CHAs \mathbf{NCK}_D [Foissy, 2002];
\square \mathbf{FdB} and deformed noncom	mutative Faà di Bruno CHA	As \mathbf{FdB}_r [Foissy, 2008];
$\hfill\Box$ fundamental $\{F_{\mathfrak{f}}\}$ and homogeneous	ous $\{H_{f}\}$ bases, constructed	through a new partial order on forests.
Topics to explore and open questions:		
☐ study other alphabet specialization	ons linking $\mathbf{N}(\mathcal{O})$ with other	CHAs;
\square conditions on the operad ${\mathcal O}$ for th	he fact that $\mathbf{N}(\mathcal{O})$ is self-du	al, free, or cofree;
□ consider products of alphabets to	define internal coproducts.	
Samuele Giraudo	41/41	Natural Hopf algebras and poly. realizations