NATURAL HOPF ALGEBRAS AND POLYNOMIAL REALIZATIONS THROUGH RELATED ALPHABETS

Samuele Giraudo

LACIM, Université du Québec à Montréal

giraudo.samuele@uqam.ca

Workshop Cetraro Algebraic Combinatorics and Finite Groups III

July 11, 2024

Objectives

Present a polynomial realization of some Hopf algebras constructed from operads.

Main points:

- 1. Combinatorial Hopf algebras.
- 2. Polynomial realizations.
- 3. Nonsymmetric operads.
- 4. Natural Hopf algebras of nonsymmetric operads.
- 5. Polynomial realization of natural Hopf algebras of free operads.
- 6. Polynomial realization of natural Hopf algebras of non-free operads.

Combinatorial Hopf algebras

All algebraic structures are over a field **K** of characteristic zero.

A combinatorial Hopf algebra (CHA) ${\cal H}$ is a graded vector space decomposing as

$$\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \mathcal{H}(n)$$

such that $\dim \mathcal{H}(0) = 1$ and each $\mathcal{H}(n)$ is finite dimensional, and endowed with

☐ an associative unital graded **product**

$$\star: \mathcal{H}(n_1) \otimes \mathcal{H}(n_2) \to \mathcal{H}(n_1 + n_2)$$

a coassociative counital cograded coproduct

$$\Delta: \mathcal{H}(n) \to \bigoplus_{n=n_1+n_2} \mathcal{H}(n_1) \otimes \mathcal{H}(n_2)$$

such that

$$\Delta(x_1 \star x_2) = \Delta(x_1) \,\bar{\star} \,\Delta(x_2).$$

Let \mathbf{WQSym} be the space such that $\mathbf{WQSym}(n)$ is the linear span of $\mathcal{P}(n)$, the set of **packed words** of size n (words on [n] where each letter from 1 to n appears at least once, like 13223 but not 131).

The set $\{M_{\mathfrak{p}} : \mathfrak{p} \in \mathcal{P}\}$ is a basis of \mathbf{WQSym} .

Let \star be the convolution product on **WQSym**.

Example — Product of WQSym on the M-basis

 $\mathsf{M}_{11} \star \mathsf{M}_{121} \ = \ \mathsf{M}_{11121} \ + \ \mathsf{M}_{11232} \ + \ \mathsf{M}_{22121} \ + \ \mathsf{M}_{22131} \ + \ \mathsf{M}_{33121}$

Let Δ be the packed unshuffling coproduct on **WQSym**.

Example — Coproduct of WQSym on the M-basis

$$\Delta(\mathsf{M}_{2312411}) \ = \ \mathsf{M}_{\epsilon} \otimes \mathsf{M}_{2312411} \ + \ \mathsf{M}_{111} \otimes \mathsf{M}_{1213} \ + \ \mathsf{M}_{21211} \otimes \mathsf{M}_{12} \ + \ \mathsf{M}_{231211} \otimes \mathsf{M}_{1} \ + \ \mathsf{M}_{2312411} \otimes \mathsf{M}_{\epsilon}$$

$$[1,2], [3,4]$$

$$21211, 34$$

This is the CHA of word quasi-symmetric functions [Hivert, 1999].

Polynomial realizations

For any alphabet A, let $\mathbb{K}\langle A\rangle$ be the space of noncommutative polynomials on A having a possibly **infinite** support but a **finite degree**.

Example — **Some noncommutative polynomials**

Set $A_{\mathbb{N}} := \{\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \ldots\}.$

 \square An element of $\mathbb{K}\langle A_{\mathbb{N}}\rangle$:

$$\sum_{0 \leqslant i_1 < i_2} \mathbf{a}_{i_1} \mathbf{a}_{i_2} = \mathbf{a}_0 \mathbf{a}_1 + \mathbf{a}_0 \mathbf{a}_2 + \dots + \mathbf{a}_1 \mathbf{a}_2 + \mathbf{a}_1 \mathbf{a}_3 + \dots$$

 \square An element which is not in $\mathbb{K}\langle A_{\mathbb{N}}\rangle$:

$$\sum_{n\geqslant 0} \mathbf{a}_0^n = 1 + \mathbf{a}_0 + \mathbf{a}_0^2 + \mathbf{a}_0^3 + \cdots$$

The space $\mathbb{K}\langle A \rangle$, endowed with the product of noncommutative polynomials, is a unital associative algebra.

A polynomial realization of a CHA \mathcal{H} is a map

$$\mathsf{r}_A:\mathcal{H} o\mathbb{K}\langle A
angle$$

defined for any alphabet A of C, a class of alphabets possibly endowed with n-ary relations, such that

- 1. r_A is a graded unital associative algebra morphism;
- 2. there exists an alphabet \mathbb{A} of \mathbb{C} such that $r_{\mathbb{A}}$ is **injective**;
- 3. there exists a sum operation + on C such that for any $x \in \mathcal{H}$ and any alphabets A_1 and A_2 of C,

$$\mathsf{r}_{A_1 + A_2}(x) = (\mathsf{r}_{A_1} \otimes \mathsf{r}_{A_2}) \circ \Delta(x),$$

where the variables of A_1 and A_2 are considered **mutually commuting** in $\mathbb{K}\langle A_1 + A_2 \rangle$.

Point 3. offers a way to compute the coproduct of \mathcal{H} by expressing the realization of x on the sum of two alphabets. This is the alphabet doubling trick.

Let A be an alphabet endowed with a total order \leq .

The packing of $u \in A^*$ is the word of positive integers pck(u) such that

$$\operatorname{pck}(u)_i = \#\{u_j : u_j \leq u_i\}.$$

pck(u) is the packed word obtained by projecting u on the segment [1, max(u)].

Let $\mathfrak{p} \in \mathcal{P}$. A word $u \in A^*$ is \mathfrak{p} -compatible, denoted by $u \Vdash^A \mathfrak{p}$, if $\operatorname{pck}(u) = \mathfrak{p}$.

Let $r_A : \mathbf{WQSym} \to \mathbb{K}\langle A \rangle$ be the map defined by

$$\mathsf{r}_A(\mathsf{M}_\mathfrak{p}) := \sum_{\substack{u \in A^* \ u \Vdash^A \mathfrak{p}}} u.$$

Example — The polynomial of a basis element

$$\mathsf{r}_{A_{\mathbb{N}}}(\mathsf{M}_{3121}) = \sum_{\ell_1 < \ell_2 < \ell_3 \in \mathbb{N}} \mathbf{a}_{\ell_3} \mathbf{a}_{\ell_1} \mathbf{a}_{\ell_2} \mathbf{a}_{\ell_1} = \mathbf{a}_2 \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_0 + \mathbf{a}_3 \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_0 + \mathbf{a}_3 \mathbf{a}_0 \mathbf{a}_2 \mathbf{a}_0 + \mathbf{a}_3 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 + \cdots$$

The sum $A_1 + A_2$ of the totally ordered alphabets A_1 and A_2 is the **disjoint ordinal sum** of A_1 and A_2 .

Theorem [Novelli, Thibon, 2006]

The map r_A is a polynomial realization of **WQSym**.

Example — An alphabet doubling in WQSym

$$\mathsf{r}_{A_1 \# A_2}(\mathsf{M}_{2131}) \quad = \quad \sum_{\substack{u \in (A_1 \# A_2)^* \\ \mathrm{pck}(u) = 2131}} u \quad = \quad \sum_{\substack{u_1, u_2, u_3 \in A_1 \# A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1$$

$$= \sum_{\substack{u_1, u_2, u_3 \in A_1 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2 \in A_1, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A_1, u_1 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_2, u_3 \in A_1, u_1 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_2 \in A_1, u_1, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_2 \in A_1, u_1, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1 \in A_1, u_1, u_2 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_1 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_1 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_1 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_1 u_1 u_1 u_2 u_1 u_2 u_1 u_3 u_1 + \sum_{\substack{u_1, u_2, u_3 \in A_2 \\ u_1 \prec u_2 \prec u_3}} u_1 u_1 u_2$$

 $+ r_{A_1}(M_1) \otimes r_{A_2}(M_{12}) + 0 + 0 + r_{A_1}(M_{\epsilon}) \otimes r_{A_2}(M_{2131})$

$$= (\mathsf{r}_{A_1} \otimes \mathsf{r}_{A_2}) \circ \Delta(\mathsf{M}_{2131})$$

There are many CHAs defined on linear spans of **various families** of combinatorial objects endowed with very **different products and coproducts**, admitting polynomials realizations (very incomplete list, sorry):

- □ NCSF, the noncommutative symmetric functions CHA [Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, 1995];
- $\begin{tabular}{lll} \hline & FQSym, the Malvenuto-Reutenauer CHA [Malvenuto, Reutenauer, 1995], [Duchamp, Hivert, Thibon, 2002]; \\ \hline \end{tabular}$
- □ **PQSym***, the dual parking functions CHA [Novelli, Thibon, 2007];
- □ *CK* and **NCK**, the commutative and noncommutative Connes-Kreimer CHAs [Connes, Kreimer, 1998], [Foissy, 2002], [Foissy, Novelli, Thibon, 2014];
- \square $\mathbf{H}_{\mathcal{FG}}$, the CHA on Feynman graphs [Foissy, 2020].

Polynomials realizations are interesting at least because

- 1. they provide a unified encoding of these CHAs as spaces of polynomials;
- 2. they provide families of polynomials generalizing symmetric functions.

Nonsymmetric operads

A nonsymmetric operad (operad) is a set

$$\mathcal{O} = \bigsqcup_{n \in \mathbb{N}} \mathcal{O}(n)$$

endowed with

$$\square$$
 a unit $\mathbb{1} \in \mathcal{O}(1)$;

$$\square$$
 a composition map $-[-,\ldots,-]$: $\mathcal{O}(n) \times (\mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n)) \rightarrow \mathcal{O}(m_1+\cdots+m_n)$

such that

$$1[x] = x = x[1, \dots, 1]$$

and

$$x[y_1,\ldots,y_n][z_{1,1},\ldots,z_{1,m_1},\ldots,z_{n,1},\ldots,z_{n,m_n}]=x[y_1[z_{1,1},\ldots,z_{1,m_1}],\ldots,y_n[z_{n,1},\ldots,z_{n,m_n}]].$$

The arity $\operatorname{ar}(x)$ of $x \in \mathcal{O}$ is the unique integer n such that $x \in \mathcal{O}(n)$.

Let \mathcal{O} be an operad.

An element $x \in \mathcal{O}(n)$ is finitely factorizable if the set of pairs $(y,(z_1,\ldots,z_n))$ satisfying

$$x = y[z_1, \dots, z_n]$$

is finite.

When all elements of \mathcal{O} are finitely factorizable, by extension, \mathcal{O} is finitely factorizable.

A map $\mathrm{d} g: \mathcal{O} \to \mathbb{N}$ is a grading of \mathcal{O} if

- $\square \ dg^{-1}(0) = \{1\};$
- \square for any $y \in \mathcal{O}(n)$ and $z_1, \ldots, z_n \in \mathcal{O}$,

$$dg(y[z_1,\ldots,z_n]) = dg(y) + dg(z_1) + \cdots + dg(z_n).$$

When such a map exists, \mathcal{O} is graded.

The nonsymmetric associative operad As is the operad such that

- \square As := $\{\alpha_n : n \in \mathbb{N}\}$ with $\operatorname{ar}(\alpha_n) := n + 1$;
- \square the unit is α_0 ;
- ☐ the composition map satisfies

$$\alpha_{\mathbf{n}}[\alpha_{m_1},\ldots,\alpha_{m_n}] = \alpha_{\mathbf{n}+m_1+\cdots+m_n}.$$

Example — A composition in As

$$\alpha_4[\alpha_1, \alpha_0, \alpha_2, \alpha_1, \alpha_0] = \alpha_{4+1+0+2+1+0} = \alpha_8$$

The map dg defined by $dg(\alpha_n) := n$ is a grading of As.

The operad As is finitely factorizable.

Natural Hopf algebras of operads

Let \mathcal{O} be an operad.

The reduced rd(v) of $v \in \mathcal{O}^*$ is the word obtained by removing the letters 1 in v.

Example — The reduced word of a word of As*

$$rd(\alpha_1 \ \alpha_1 \ \alpha_0 \ \alpha_3 \ \alpha_0 \ \alpha_0) = \alpha_1 \ \alpha_1 \ \alpha_3$$

The natural space $N(\mathcal{O})$ of \mathcal{O} is the linear span of the set of reduced elements of \mathcal{O}^* .

The set $\{E_v : v \in rd(\mathcal{O}^*)\}$ is the elementary basis of $\mathbf{N}(\mathcal{O})$.

If $\mathcal O$ admits a grading dg , then $\mathbf N(\mathcal O)$ becomes a **graded space** by setting

$$dg(\mathsf{E}_{v_1...v_\ell}) := dg(v_1) + \cdots + dg(v_\ell).$$

Note that $dg(E_{\epsilon}) = 0$.

Let \star be the **product** on $\mathbf{N}(\mathcal{O})$ defined by

$$\mathsf{E}_v \star \mathsf{E}_{v'} := \mathsf{E}_{vv'}.$$

Let Δ be the **coproduct** on $\mathbf{N}(\mathcal{O})$ defined by

$$\Delta(\mathsf{E}_x) = \sum_{n \geqslant 0} \sum_{\substack{(y,v) \in \mathcal{O}(n) \times \mathcal{O}^n \\ x = y[v_1, \dots, v_n]}} \mathsf{E}_{\mathrm{rd}(y)} \otimes \mathsf{E}_{\mathrm{rd}(v)}.$$

Theorem [van der Laan, 2004] [Méndez, Liendo, 2014]

For any finitely factorizable operad \mathcal{O} , $\mathbf{N}(\mathcal{O})$ is a bialgebra.

Moreover, if \mathcal{O} is graded, then $\mathbf{N}(\mathcal{O})$ is a Hopf algebra.

Under these two conditions on \mathcal{O} , $\mathbf{N}(\mathcal{O})$ is the natural Hopf algebra of \mathcal{O} .

Let us apply this construction on As endowed with the grading dg satisfying $dg(\alpha_n) = n$.

For any $n \ge 1$, dim $\mathbf{N}(\mathsf{As})(n) = 2^{n-1}$.

Example — A product in N(As)

$$\mathsf{E}_{\alpha_2\alpha_1\alpha_1\alpha_4}\star\mathsf{E}_{\alpha_3\alpha_1}=\mathsf{E}_{\alpha_2\alpha_1\alpha_1\alpha_4\alpha_3\alpha_1}$$

Example — A coproduct in N(As)

$$\Delta(\mathsf{E}_{\alpha_3}) = \mathsf{E}_\epsilon \otimes \mathsf{E}_{\alpha_3} + 2\mathsf{E}_{\alpha_1} \otimes \mathsf{E}_{\alpha_2} + \mathsf{E}_{\alpha_1} \otimes \mathsf{E}_{\alpha_1\alpha_1} + 3\mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_1} + \mathsf{E}_{\alpha_3} \otimes \mathsf{E}_\epsilon.$$

Contributions to the coefficient 2 of $\mathsf{E}_{\alpha_1} \otimes \mathsf{E}_{\alpha_2}$:

$$\alpha_3 = \alpha_1[\alpha_0, \alpha_2], \quad \alpha_3 = \alpha_1[\alpha_2, \alpha_0].$$

Contributions to the coefficient 3 of $\mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_2}$:

$$\alpha_3 = \alpha_2[\alpha_0, \alpha_0, \alpha_1], \quad \alpha_3 = \alpha_2[\alpha_0, \alpha_1, \alpha_0], \quad \alpha_3 = \alpha_2[\alpha_1, \alpha_0, \alpha_0].$$

N(As) is the noncommutative Faà di Bruno Hopf algebra FdB [Figueroa, Gracia-Bondía, 2005] [Foissy, 2008].

Terms and forests

A signature is a set \mathcal{S} decomposing as $\mathcal{S} = \bigsqcup_{n \geqslant 0} \mathcal{S}(n)$.

An S-term is an **ordered rooted tree** decorated on S such that an internal node decorated by $s \in S(n)$ has exactly n children.

Let $\mathfrak{T}(S)$ be the set of S-terms.

For any $\mathfrak{t} \in \mathfrak{T}(\mathcal{S})$,

- \Box the degree dg(t) of t is the number of internal nodes of t;
- \Box the arity ar(t) of t is the number of leaves of t.

Example — An S-term

Let the signature $\mathcal{S} := \mathcal{S}(1) \sqcup \mathcal{S}(3)$ with $\mathcal{S}(1) := \{a\}$ and $\mathcal{S}(3) := \{b,c\}$.

This S-term has degree 5 and arity 7.

Let S be a signature.

The free operad on S is the set $\mathfrak{T}(S)$ such that

- $\square \ \mathfrak{T}(\mathcal{S})(n)$ is the set of \mathcal{S} -terms of arity n;
- \square the unit is the S-term containing exactly one leaf $\ref{1}$;
- \square the composition map is such that $\mathfrak{t}[\mathfrak{t}_1,\ldots,\mathfrak{t}_n]$ is the \mathcal{S} -term obtained by grafting simultaneously each \mathfrak{t}_i on the i-th leaf of \mathfrak{t} .

The map dg is a grading of $\mathfrak{T}(S)$ and this operad is finitely factorizable.

Let S be a signature.

An S-forest is a word on $\mathfrak{T}(S)$. Let $\mathfrak{F}(S)$ be the set of S-forests.

The internal nodes of an S-forest f are identified by their positions during the **preorder traversal**.

Let $\xrightarrow{\mathfrak{f}}_{j}$ be the binary relation on the set of internal nodes of \mathfrak{f} such that $i_1 \xrightarrow{\mathfrak{f}}_{j} i_2$ if i_1 is the j-th child of i_2 in \mathfrak{f} .

Natural Hopf algebras of free operads

Let S be a signature.

The bases of $N(\mathfrak{T}(S))$ are indexed by the set of **reduced** S-**forests**.

Example — A product in
$$\mathbf{N}(\mathfrak{T}(\mathcal{S}))$$

$$\mathbf{E} \downarrow \mathbf{0} \downarrow$$

Polynomial realization

Let S be a signature.

The class of S-forest-like alphabets is the class of alphabets A endowed with relations R, D_s , and \prec_j such that

- 1. R is a unary relation called root relation;
- 2. for any $s \in \mathcal{S}$, D_s is a unary relation called s-decoration relation;
- 3. for any $j \ge 1$, \prec_j is a binary relation called *j*-edge relation.

Let \mathcal{S} be a signature, A be an \mathcal{S} -forest-like alphabet, and f be a reduced \mathcal{S} -forest.

A word $u \in A^*$ is f-compatible, denoted by $u \Vdash^A f$, if

- 1. $\ell(u) = \mathrm{dg}(\mathfrak{f});$
- 2. if i is a root of f, then $u_i \in \mathbb{R}$;
- 3. if i is decorated by $s \in \mathcal{S}$ in f, then $u_i \in D_s$;
- 4. if $i \stackrel{f}{\rightarrow}_i i'$, then $u_i \prec_i u_{i'}$.

Example — An f-compatible word

Considering this reduced forest f, any f-compatible word $u \in A^*$ satisfies

- \square $\ell(u) = 7$;
- \square $u_1, u_5 \in \mathbb{R}$;
- $\square u_2, u_4, u_7 \in D_a, u_3, u_5, u_6 \in D_b, u_1 \in D_c;$
- \square $u_1 \prec_1 u_2$, $u_1 \prec_3 u_3$, $u_3 \prec_1 u_4$, $u_5 \prec_2 u_6$, $u_6 \prec_1 u_7$.

Let S be a signature and A be an S-forest-like alphabet.

Let $r_A : \mathbf{N}(\mathfrak{T}(\mathcal{S})) \to \mathbb{K}\langle A \rangle$ be the linear map defined for any $\mathfrak{f} \in \mathrm{rd}(\mathfrak{F}(\mathcal{S}))$ by

$$\mathsf{r}_A(\mathsf{E}_{\mathfrak{f}}) := \sum_{\substack{u \in A^* \ u \Vdash^A \mathfrak{f}}} u.$$

This polynomial is the A-realization of f.

Lemma

For any signature S and any S-forest-like alphabet A, r_A is a graded unital associative algebra morphism.

Let \mathcal{S} be a signature, and A_1 and A_2 be to \mathcal{S} -forest-like alphabets.

The sum $A_1 + A_2$ of A_1 and A_2 is the S-forest-like alphabet

$$A := A_1 \sqcup A_2$$

endowed with the relations R, D_s , and \prec_i such that

- 1. $R := R^{(1)} \sqcup R^{(2)}$;
- 2. $D_s := D_s^{(1)} \sqcup D_s^{(2)};$
- 3. $a \prec_i a'$ holds if one of the three following conditions hold:
 - \square $a \in A_1$, $a' \in A_1$, and $a \prec_i^{(1)} a'$;
 - \square $a \in A_2$, $a' \in A_2$, and $a \prec_i^{(2)} a'$;
 - \square $a \in A_1$, $a' \in A_2$, and $a' \in \mathbb{R}^{(2)}$.

Lemma

For any signature S, any S-forest-like alphabets A_1 and A_2 , and any S-forest f,

$$\mathsf{r}_{A_1 + A_2}(\mathsf{E}_{\mathfrak{f}}) = (\mathsf{r}_{A_1} \otimes \mathsf{r}_{A_2}) \circ \Delta(\mathsf{E}_{\mathfrak{f}}).$$

Example — An alphabet doubling in $N(\mathfrak{T}(S))$

The S-forest-like alphabet of positions is the S-forest-like alphabet

$$\mathbb{A}_{\mathrm{p}}(\mathcal{S}) := \{\mathbf{a}_v^{\mathsf{s}} : \mathsf{s} \in \mathcal{S} \text{ and } v \in \mathbb{N}^*\}$$

such that

- 1. the root relation is defined by $R:=\left\{\mathbf{a}_{0^\ell}^{\mathsf{s}}\in\mathbb{A}_p(\mathcal{S}):\ell\geqslant 0\right\}$;
- 2. the s-decoration relation D_{s} is defined by $D_{\mathsf{s}} := \left\{\mathbf{a}^{\mathsf{s}'}_v \in \mathbb{A}_p(\mathcal{S}) : \mathsf{s}' = \mathsf{s}\right\};$
- 3. the *j*-edge relation \prec_j is defined by $\mathbf{a}_v^{\mathsf{s}} \prec_j \mathbf{a}_{v,j}^{\mathsf{s}'}$ where $\ell \geqslant 0$.

Example — An alphabet $\mathbb{A}_p(\mathcal{S})$

Let the signature $S := S(1) \sqcup S(3)$ such that $S(1) = \{a, b\}$ and $S(3) = \{c\}$. For instance,

- $\Box \ \mathbf{a}_{000}^{\mathsf{a}} \in \mathbf{R}, \quad \mathbf{a}_{10021}^{\mathsf{b}} \notin \mathbf{R};$
- $\square \ \mathbf{a}_{1706001}^{\mathsf{c}} \in \mathrm{D}_{\mathsf{c}}, \quad \mathbf{a}_{0211}^{\mathsf{b}} \notin \mathrm{D}_{\mathsf{c}};$
- $\Box \ \mathbf{a}_{103}^{\mathsf{a}} \prec_1 \mathbf{a}_{103100}^{\mathsf{b}}, \quad \mathbf{a}_{1}^{\mathsf{c}} \prec_2 \mathbf{a}_{12}^{\mathsf{a}}.$

Example — $\mathbb{A}_{p}(S)$ -realizations of some reduced forests

$$\mathsf{r}_{\mathbb{A}_\mathrm{p}(\mathcal{S})}\mathsf{E}_{\begin{subarray}{c} \bullet\\ \end{subarray}} \ = \ \sum_{\ell_1\in\mathbb{N}} \mathbf{a}_{0^{\ell_1}}^\mathsf{b}$$

$$r_{\mathbb{A}_{\mathrm{p}}(\mathcal{S})}\mathsf{E}_{\stackrel{\bullet}{\downarrow}\stackrel{\bullet}{b}\stackrel{\bullet}{\downarrow}\stackrel{\bullet}{a}} \ = \ \sum_{\ell_1,\ell_2\in\mathbb{N}}\mathbf{a}_{0^{\ell_1}}^\mathsf{b} \ \mathbf{a}_{0^{\ell_2}}^\mathsf{a}$$

$$r_{\mathbb{A}_p(\mathcal{S})} \mathsf{E} \bigoplus_{\substack{b \\ \text{(a)}}} = \sum_{\ell_1,\ell_2 \in \mathbb{N}} \mathbf{a}^{\mathsf{b}}_{0^{\ell_1}} \; \mathbf{a}^{\mathsf{a}}_{0^{\ell_1} 10^{\ell_2}}$$

$$\mathsf{r}_{\mathbb{A}_p(\mathcal{S})}\mathsf{E} = \sum_{\substack{\ell_1,\ldots,\ell_6 \in \mathbb{N} \\ \text{a} \text{ a} \text{ a} \text{ a} \text{ a}}} \mathbf{a}_{0^{\ell_1}10^{\ell_2}}^\mathsf{c} \ \mathbf{a}_{0^{\ell_1}30^{\ell_3}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}30^{\ell_3}10^{\ell_4}}^\mathsf{c} \ \mathbf{a}_{0^{\ell_5}1^{\ell_6}}^\mathsf{b}$$

Let f be an S-forest.

The decoration $dec_i(\mathfrak{f})$ of a node i of \mathfrak{f} is the element of \mathcal{S} decorating it.

The address $\operatorname{adr}_i(\mathfrak{f})$ of a node i of \mathfrak{f} is the word specifying the positions of the edges to reach i from the root.

If f has n internal nodes, let the monomial

$$\mathrm{m}(\mathfrak{f}) := \mathbf{a}_{\mathrm{adr}_1(\mathfrak{f})}^{\mathrm{dec}_1(\mathfrak{f})} \dots \mathbf{a}_{\mathrm{adr}_n(\mathfrak{f})}^{\mathrm{dec}_n(\mathfrak{f})}.$$

Example — Decorations and addresses of a node in an S-forest

For this S-forest f, we have $dec_6(\mathfrak{f}) = \mathfrak{a}$ and $adr_6(\mathfrak{f}) = 213$.

We have also

$$m(\mathfrak{f}) = \mathbf{a}^{\mathsf{c}}_{\epsilon} \; \mathbf{a}^{\mathsf{a}}_{1} \; \mathbf{a}^{\mathsf{b}}_{11} \; \mathbf{a}^{\mathsf{b}}_{2} \; \mathbf{a}^{\mathsf{c}}_{21} \; \mathbf{a}^{\mathsf{a}}_{213} \; \mathbf{a}^{\mathsf{c}}_{2131} \; \mathbf{a}^{\mathsf{b}}_{3}.$$

The weight $\operatorname{wt}(u)$ of a monomial $u = \mathbf{a}_{v_1}^{\mathsf{s}_1} \dots \mathbf{a}_{v_n}^{\mathsf{s}_n}$ is $\ell(v_1) + \dots + \ell(v_n)$.

Lemma

For any signature S and any reduced S-forest f,

$$r_{\mathbb{A}_{p}(\mathcal{S})}(\mathsf{E}_{\mathfrak{f}}) = m(\mathfrak{f}) + \sum_{\substack{u \in \mathbb{A}_{p}(\mathcal{S})^{*} \\ u \Vdash^{\mathbb{A}_{p}(\mathcal{S})} \mathfrak{f} \\ \operatorname{wt}(u) > \operatorname{wt}(m(\mathfrak{f}))}} u$$

Lemma

For any signature \mathcal{S} , the map $r_{\mathbb{A}_p(\mathcal{S})}: \mathbf{N}(\mathfrak{T}(\mathcal{S})) \to \mathbb{K}(\mathbb{A}_p(\mathcal{S}))$ is injective.

Theorem [G., 2024+]

For any signature S, the map r_A is a polynomial realization of $N(\mathfrak{T}(S))$.

Case of non-free operads

A congruence \equiv of the free operad $\mathfrak{T}(S)$

- \square is compatible with the degree if $\mathfrak{t}_1 \equiv \mathfrak{t}_2$ implies $dg(\mathfrak{t}_1) = dg(\mathfrak{t}_2)$;
- □ is of finite type if the \equiv -equivalence class $[\mathfrak{t}]_{\equiv}$ of any \mathcal{S} -term \mathfrak{t} is finite.

Theorem [G., 2024+]

Let S be a signature and \equiv be a congruence of $\mathfrak{T}(S)$ which is compatible with the degree and of finite type.

The associative algebra morphism

$$\phi: \mathbf{N}(\mathfrak{T}(\mathcal{S})/_{\equiv}) \to \mathbf{N}(\mathfrak{T}(\mathcal{S}))$$

satisfying

$$\phi(\mathsf{E}_{[\mathfrak{t}]_{\equiv}}) = \sum_{\mathfrak{t} \in [\mathfrak{t}]_{\equiv}} \mathsf{E}_{\mathfrak{t}}$$

for any $[\mathfrak{t}]_{\equiv} \in \mathfrak{T}(\mathcal{S})/_{\equiv}$ is an injective Hopf algebra morphism.

We have As $\simeq \mathsf{Mag}/_\equiv$ where $\mathsf{Mag} := \mathfrak{T}(\mathcal{S})$, $\mathcal{S} := \mathcal{S}(2) = \{\mathsf{a}\}$, and \equiv satisfies $\mathfrak{t}_1 \equiv \mathfrak{t}_2$ whenever $\mathrm{dg}(\mathfrak{t}_1) = \mathrm{dg}(\mathfrak{t}_2)$.

Each \equiv -equivalence class $[t]_{\equiv}$ is represented by the element $\alpha_{dg(t)}$ of As.

The map

$$\phi: \mathbf{N}(\mathsf{Mag}/_{\equiv}) \simeq \mathbf{FdB} o \mathbf{N}(\mathsf{Mag})$$

satisfies

$$\phi(\mathsf{E}_{\alpha_n}) = \sum_{\substack{\mathfrak{t} \in \mathfrak{T}(\mathcal{S}) \\ \deg(\mathfrak{t}) = n}} \mathsf{E}_{\mathfrak{t}}.$$

Example — An image by ϕ

$$\phi \mathsf{E}_{\alpha_3} = \mathsf{E} \qquad + \mathsf{E}$$

By setting $\bar{r}_A := r_A \circ \phi$, we obtain a polynomial realization of FdB.

Example — The $\mathbb{A}_{p}(S)$ -polynomial of an element of FdB

$$\begin{split} \bar{r}_{\mathbb{A}_p(\mathcal{S})} \mathsf{E}_{\alpha_3} &= \sum_{\ell_1,\ell_2,\ell_3 \in \mathbb{N}} \mathbf{a}_{0^{\ell_1}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}10^{\ell_2}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}10^{\ell_2}10^{\ell_3}}^\mathsf{a} + \sum_{\ell_1,\ell_2,\ell_3 \in \mathbb{N}} \mathbf{a}_{0^{\ell_1}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}10^{\ell_2}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}10^{\ell_2}20^{\ell_3}}^\mathsf{a} \\ &+ \sum_{\ell_1,\ell_2,\ell_3 \in \mathbb{N}} \mathbf{a}_{0^{\ell_1}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}10^{\ell_2}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}20^{\ell_3}}^\mathsf{a} + \sum_{\ell_1,\ell_2,\ell_3 \in \mathbb{N}} \mathbf{a}_{0^{\ell_1}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}20^{\ell_2}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}20^{\ell_2}210^{\ell_3}}^\mathsf{a} \\ &+ \sum_{\ell_1,\ell_2,\ell_3 \in \mathbb{N}} \mathbf{a}_{0^{\ell_1}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}20^{\ell_2}}^\mathsf{a} \ \mathbf{a}_{0^{\ell_1}20^{\ell_2}20^{\ell_3}}^\mathsf{a} \end{split}$$

Using the specialization $\pi: \mathbf{a}_v^{\mathsf{a}} \mapsto \mathbf{a}_{\ell(v)}$, we obtain

$$\pi \bar{\mathsf{r}}_{\mathbb{A}_p(\mathcal{S})} \mathsf{E}_{\alpha_3} = 4 \sum_{\ell_1 < \ell_2 < \ell_3 \in \mathbb{N}} \mathbf{a}_{\ell_1} \mathbf{a}_{\ell_2} \mathbf{a}_{\ell_3} + \sum_{\substack{\ell_1, \ell_2, \ell_3 \in \mathbb{N} \\ \ell_1 < \ell_2, \ \ell_1 < \ell_3}} \mathbf{a}_{\ell_1} \mathbf{a}_{\ell_2} \mathbf{a}_{\ell_3}.$$

This map $\pi \circ \overline{r}_{\mathbb{A}_p(\mathcal{S})}$ is still injective and is hence another polynomial realization of FdB.

By using similar methods, it is possible to build a **polynomial realization of the double tensor CHA**, constructed in [Ebrahimi-Fard, Patras, 2015].

Preprint Polynomial realizations of Hopf algebras built from nonsymmetric operads available at

Grazie mille!