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Operads (1/2)

A (non-symmetric set-)operad is a triple (P, ◦i , 1) where

I P is a set of the form
P :=

⊎
n>1
P(n);

I ◦i is a grafting application

◦i : P(n)× P(m)→ P(n + m − 1),

defined for all n,m > 1 and i ∈ [n];

I 1 is an element of P(1), called unit.

These data has to satisfy some associativity, commutativity, and unitarity
relations.
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Operads (2/2)
For all x ∈ P(n), y ∈ P(m), and z ∈ P(k), following relations must be
satisfied.

1. Associativity relation:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z),

for all i ∈ [n] and j ∈ [m].

2. Commutativity relation:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y ,

for all 1 6 i < j 6 n.

3. Unitarity relation:
1 ◦1 x = x = x ◦i 1,

for all i ∈ [n].
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Intuition (1/2)
Element of P(n)  operator of arity n:

x...

n inputs
1 output

Operator of arity n  planar rooted tree (parse trees) with n leaves:

x
1 n. . .

Grafting application  grafting of trees:

x
1 ni. . . . . . ◦i

y
1 m. . .

=

x

y
1 n. . . . . .

1 m

i

. . .
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Intuition (2/2)
1. Associativity relation:

x

y
1 n. . . . . .

1 m

i

j. . . . . .

z
1 k. . .

=
y

1 m. . . . . .j

z
1 k. . .

x
1 n. . . . . .i

2. Commutativity relation:
x

y
1 n. . . i

1 m. . .

j . . .

z
1 k. . .

. . .

=

x
1 nj . . .

z
1 k. . .

y
. . . . . .i

1 m. . .

3. Unitarity relation:
1

x
1 n. . .

1

=
x

1 n. . . =

x

1
1 i. . . n. . .

1
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Some definitions

Let
(
P, ◦Pi , 1P

)
and

(
Q, ◦Qi , 1Q

)
be two operads.

The arity |x | of an element x of P is n if x ∈ P(n).

An operad morphism is a map φ : P → Q mapping elements of arity n of
P to elements of arity n of Q, and such that, for all x , y ∈ P and
i ∈ [|x |],

φ
(
x ◦Pi y

)
= φ(x) ◦Qi φ(y).

The operad Q is a suboperad of P if for all n > 1, Q(n) ⊆ P(n).

Let G be a set of elements of P. The operad generated by G is the
smallest suboperad of P which contains G .
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Example: The associative operad
Let (Assoc, ◦i , a1) be the operad defined for all n > 1 by

Assoc(n) := {an},

and for all n,m > 1 and i ∈ [n] by
an ◦i am := an+m−1.

I Dimensions: 1, 1, 1, 1, 1, 1, ...
I Assoc is generated by a2:

a1, a2, a3 = a2 ◦1 a2, a4 = a3 ◦1 a2, a5 = a4 ◦1 a2, . . .

I The generator a2 is subject to the relation
a2 ◦1 a2 = a2 ◦2 a2,

which translates into parse trees by

a2
a2

=

a2
a2 .

I Presentation by generators and relations:
Assoc = 〈a2 | a2 ◦1 a2 = a2 ◦2 a2〉 .
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Example: The magmatic operad
Let (Mag, ◦i , ) be the operad defined for all n > 1 by

Mag(n) := {T : T binary tree with n leaves},

and for all n,m > 1 and i ∈ [n] by

S ◦i T := tree obtained by grafting T on the i-th leaf of S.

Example

◦4 =

I Dimensions : 1, 1, 2, 5, 14, 42, ... (Catalan numbers).
I Mag is generated by (proof by induction on the arities).
I Presentation by generators and relations:

Mag = 〈 | 〉 .

 Mag is the free operad on one generator of arity 2.
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The T construction (1/2)

Let us start with a monoid (M, •, 1).

Let TM be the set TM := ]n>1TM(n) where

TM(n) := {(x1, . . . , xn) : x i ∈ M for all i ∈ [n]} .

Let ◦i be a grafting application

◦i : TM(n)× TM(m)→ TM(n + m − 1),

defined for all x ∈ TM(n), y ∈ TM(m), and i ∈ [n] by

x ◦i y := (x1, . . . , x i−1, x i • y1, . . . , x i • ym, x i+1, . . . , xn).
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The T construction (2/2)

Let M and N be two monoids and θ : M → N be a monoid morphism.

Let Tθ be the application

Tθ : TM → TN,

defined for all (x1, . . . , xn) ∈ TM(n) by

Tθ (x1, . . . , xn) := (θ(x1), . . . , θ(xn)) .
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Some examples
M := (N,+). Elements of TM: words on the alphabet N.

Example
2123 ◦2 30313 = 24142423

N := {a, b}∗. Elements of TN: multiwords on the alphabet {a, b}.

Example
b a a ε b

b b
a

◦3
ε a ε b

b =
b a a a a a ε b

b a b b
a b

Let θ : N → M be the monoid morphism defined by θ(u) := |u|.

Example

Tθ

(b a a ε a a
b a
a

)
= 131021
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Properties of the T construction (1/2)

Theorem
If M is a monoid, TM is an operad.
If θ : M → N is a monoid morphism, Tθ is an operad morphism.
Moreover, T preserves injections and surjections.

Hence, T is an exact functor from the category of monoids with monoid
morphisms to the category of operads with operad morphisms.

If N is a quotient monoid of M, then TN is an quotient operad of TM.
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Properties of the T construction (2/2)
The sets TM(n) are finite if and only if M is finite. In this case, the
dimensions of TM are

m,m2,m3,m4, ...

where m := #M.

TM is generated by the family

{(1, 1)} ] {(g) : g ∈ G(M)} ,

where G(M) is a set of generators of M.

The T construction coincides in some cases with a former and different
construction [Berger, Moerdijk, 2003] which associates to any commutative
bialgebra a cooperad.
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Objectives and goals

Main motivations:

1. Give alternative constructions of some well-known operads;

2. Construct new operads.

The general line is as following:
We pick a monoid M, a subset G of generators of TM, and we consider
the suboperad P of TM generated by G . Typical questions:

1. Give a description of the elements of P;

2. Find the dimensions of P;

3. Find a bijection between elements of P and combinatorial objects;

4. Give an interpretation of the grafting application of P in terms of
operations on combinatorial objects;

5. Give a presentation of P by generators and relations.
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Survey of some obtained operads (1/2)
Here is a list of the obtained suboperads or quotients of T(N,+):

Operad Generators First dimensions Combinatorial objects
End — 1, 4, 27, 256, 3125 Endofunctions
PF — 1, 3, 16, 125, 1296 Parking functions
PW — 1, 3, 13, 75, 541 Packed words
Per — 1, 2, 6, 24, 120 Permutations
PRT 01 1, 1, 2, 5, 14, 42 Planar rooted trees
FCat(k) 00, ..., 0k Fuß-Catalan numbers Trees of arity k
Schr 00, 01, 10 1, 3, 11, 45, 197 Schröder trees
Motz 00, 010 1, 1, 2, 4, 9, 21, 51 Motzkin paths
Comp 00, 01 1, 2, 4, 8, 16, 32 Int. compo.
DA 00, 01 1, 2, 5, 13, 35, 96 Directed animals

SComp 00, 01, 02 1, 3, 27, 81, 243 Segmented int. compo.

We also obtain already known operads as suboperads of T(N,×):

Operad Generators First dimensions Combinatorial objects
Dias 01, 10 1, 2, 3, 4, 5, 6 Bin. words with exactly one 1
Trias 01, 10, 11 1, 3, 7, 15, 31, 63 Bin. words with at least one 1
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Survey of some obtained operads (2/2)
These operads fit into following diagram.
� (resp. �) stands for an injective (resp. surjective) operad morphism.

T(N,+)

TN2 TN3End

PF

PW

Per Schr

FCat(1)

FCat(2)

FCat(3)

SComp

DAPRTMotzComp

FCat(0)

T(N,×)

Trias

Dias

22 / 46



Contents

Application of the construction
Survey of the constructed operads
The operad of planar rooted trees
The operad of integer compositions
The operad of directed animals
The diassociative and triassociative operads

23 / 46



Experimenting with Sage

Let PRT be the suboperad of T(N,+) generated by 01.

sage: M = AdditiveMonoid()
sage: P = TConstruction(M)
sage: G = [Word(M, [0, 1])]
sage: PRT = SubOperad(P, G)
sage: print [PRT.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 5, 14, 42, 132, 429, 1430]

sage: print PRT.elements(5)
[01111, 01112, 01121, 01122, 01123, 01211, 01212, 01221,
01222, 01223, 01231, 01232, 01233, 01234]
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Elements and dimensions of PRT
Proposition
The elements of PRT are exactly the words x of the alphabet N
satisfying x1 = 0 and 1 6 xi+1 6 xi + 1 for all i ∈ [|x | − 1].

The bijection between elements of PRT and planar rooted trees is
computed by a depth-first traversal reading depths of nodes.

Example

←→

0

1 1

2

3 3 3

2

1

2 ←→ 0112333212

Thus, PRT defines an operad structure on planar rooted trees, and

dimPRT(n) =
1
n

(
2n − 2
n − 1

)
.
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Interpretation of the grafting of PRT

Thanks to the bijection between elements of PRT and planar rooted
trees, we obtain the following grafting operation on planar rooted trees:

Proposition
Let S and T be two planar rooted trees and s be the i-th node of S (for
the depth-first traversal). The grafting S ◦i T in PRT returns to graft the
subtrees of the root of T as leftmost sons of s.

Example

s ◦2 =
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Presentation of PRT

Proposition
The operad PRT is isomorphic to the magmatic operad through the
operad isomorphism φ : Mag→ PRT defined by

φ
( )

:= .

Hence,
PRT =

〈
|
〉
.

The operad PRT can be thought as a planar version of the Non
Associative Permutative operad NAP [Livernet, 2006].
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Experimenting with Sage

Let Comp be the suboperad of TN2 generated by 00 and 01.

sage: M = CyclicMonoid(2)
sage: P = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1])]
sage: Comp = SubOperad(P, G)
sage: print [Comp.dimension(n) for n in xrange(1, 10)]
[1, 2, 4, 8, 16, 32, 64, 128, 256]

sage: print Comp.elements(5)
[00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111,
01000, 01001, 01010, 01011, 01100, 01101, 01110, 01111]
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Elements and dimensions of Comp

Proposition
The elements of Comp are exactly the words on the alphabet {0, 1}
which begin by 0.

There is a classical bijection between such words and ribbon diagrams.

Example

←→

0
1 0 0 0 0

1 0
1
1 0

1
1

←→ 0100001011011

Thus, Comp defines an operad structure on ribbon diagrams, and

dimComp(n) = 2n−1.
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Interpretation of the grafting of Comp
Thanks to the bijection between elements of Comp and ribbon diagrams,
we obtain the following grafting operation on ribbon diagrams:

Proposition
Let C and D be two ribbon diagrams and c be the i-th box of C. The
grafting C ◦i D in Comp returns to replace c by D if c is the upper box
of its column, or to replace c by the transpose of D otherwise.

Example

◦4 =

◦5 =
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Presentation of Comp
Theorem
The operad Comp admits the following presentation:

Comp = 〈 , | ◦1 = ◦2 , ◦1 = ◦2 ,

◦1 = ◦2 , ◦1 = ◦2 〉.

This implies that any algebra over the operad Comp is a set S with two
applications , : S × S → S which satisfy, for all x , y , z ∈ S, the
relations

(x y) z = x (y z) ,

(x y) z = x
(
y z

)
,

(
x y

)
z = x (y z) ,(

x y
)

z = x
(
y z

)
.

The free Comp-algebra on one generator is the set C of ribbon diagrams
endowed with the applications , : C × C → C, where x y is the
concatenation of y to right of x , and x y is the concatenation of the
transpose of y below x .
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Proof of the presentation of Comp (1/2)
Let P be the operad defined by

P := 〈a, b | a ◦1 a = a ◦2 a, b ◦1 a = a ◦2 b,

b ◦1 b = b ◦2 a, a ◦1 b = b ◦2 b〉.

Let the application φ : P → Comp defined by

φ(a) := and φ(b) := .

Since the relations between generators of P also hold in Comp by
replacing a by and b by , φ is an operad morphism and is
surjective.

The idea is now to show that for all n > 1,

#P(n) 6 #Comp(n),

so that φ will turn to be an operad isomorphism.
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Proof of the presentation of Comp (2/2)

Let us orient the relations of P in the following way:
a ◦1 a→ a ◦2 a,

b ◦1 a→ a ◦2 b,

b ◦1 b→ b ◦2 a,

a ◦1 b→ b ◦2 b.

→ is a rewriting rule on the elements of the free operad generated by a
and b. It exchanges in the parse trees a left oriented edge into a right
oriented one, with a relabeling.

Moreover, → is terminating and its normal forms are all right comb
binary trees, where each node is labeled by a or b.

Hence, there are 2n−1 normal forms of arity n for →. That implies that
there are at most 2n−1 elements of arity n in P.

Finally, since there are 2n−1 elements of arity n in Comp and φ is
surjective, φ also is an isomorphism.
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Experimenting with Sage

Let DA be the suboperad of TN3 generated by 00 and 01.

sage: M = CyclicMonoid(3)
sage: P = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1])]
sage: DA = SubOperad(P, G)
sage: print [DA.dimension(n) for n in xrange(1, 10)]
[1, 2, 5, 13, 35, 96, 267, 750, 2123]

sage: print DA.elements(5)
[00000, 00001, 00010, 00011, 00012, 00100, 00101, 00110,
00111, 00112, 00120, 00121, 00122, 01000, 01001, 01010,
01011, 01012, 01100, 01101, 01110, 01111, 01112, 01120,
01121, 01122, 01200, 01201, 01202, 01210, 01211, 01212,
01220, 01221, 01222]
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Directed animals

Directed animal: subset A of N2 such that (0, 0) ∈ A and

(i , j) ∈ A with i > 1 or j > 1 implies (i − 1, j) ∈ A or (i , j − 1) ∈ A.

Example
A directed animal of size 21 (size is the number of points):
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Prefixes of Motzkin paths

Prefix of Motzkin path: word x on {1̄ := −1, 0, 1} such that for all
k ∈ [|x |], x1 + · · ·+ xk > 0.

Example
011̄101̄1 is a prefix of Motzkin path;

101̄1̄1111 is not a prefix of Motzkin path.

Theorem ( [Gouyou-Beauchamps, Viennot, 1988])
Prefixes of Motzkin paths of length n − 1 are in bijection with directed
animals of size n.
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Prefixes of Motzkin and elements of DA

Proposition
The application φ : DA(n)→ {1̄, 0, 1}n−1 defined for all x ∈ DA(n) by

φ(x) :=

{
ε if |x | = 1,
u1 . . . un−1 otherwise,

where for all i ∈ [n − 1],

ui :=


x i+1 − x i if |x i+1 − x i | 6 1,
1 if x ix i+1 = 20,
1̄ otherwise (x ix i+1 = 02),

is a bijection between the elements of arity n of DA and prefixes of
Motzkin paths of length n − 1.

Example
φ(011220201) = 101011̄11
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Elements, dimensions, and grafting of DA

Thus, DA defines an operad structure on prefixes of Motzkin paths.

By composing our bijection with the one of Gouyou-Beauchamps and
Viennot, we can see elements of DA(n) as directed animals of size n.

Question
What is the interpretation of the grafting in DA in terms of directed
animals?
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Presentation of DA

Theorem
The operad DA admits the following presentation:

DA = 〈 , | ◦1 = ◦2 ,

◦1 = ◦2 ,

◦1 = ◦2 ,

( ◦2 ) ◦3 = ( ◦1 ) ◦2 〉.

The proof of this presentation follows same pattern as the one of Comp.

DA is binary (its generators are of arity 2) but is not quadratic (there is a
nontrivial relation involving more than two generators).
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Experimenting with Sage

Let D be the suboperad of T(N,×) generated by 01 and 10.

sage: M = MultiplicativeMonoid()
sage: P = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0])]
sage: D = SubOperad(P, G)
sage: print [D.dimension(n) for n in xrange(1, 10)]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

sage: print D.elements(8)
[00000001, 00000010, 00000100, 00001000, 00010000,
00100000, 01000000, 10000000]
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Elements and dimensions of D

Proposition
The elements of D are exactly the words on the alphabet {0, 1} which
have exactly one occurrence of 1.

Thus,
dimD(n) = n.
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The diassociative operad

The diassociative operad Dias [Loday, 2001] is defined by

Dias := 〈a,` | a ◦1 ` = ` ◦2 a,
a ◦1 a = a ◦2 a = a ◦2 `,
` ◦2 ` = ` ◦1 ` = ` ◦1 a〉.

Proposition
The operad D is isomorphic to the operad Dias through the operad
isomorphism φ : Dias→ D defined by

φ(a) := 10 and φ(`) := 01.

Hence, D is a realization of Dias.
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The triassociative operad
The triassociative operad Trias [Loday, Ronco, 2004] is defined by

Trias := 〈a,⊥,` | a ◦1 ` = ` ◦2 a,
⊥ ◦1 ⊥ = ⊥ ◦2 ⊥,
a ◦1 ⊥ = ⊥ ◦2 a,
⊥ ◦1 a = ⊥ ◦2 `,
⊥ ◦1 ` = ` ◦2 ⊥,

a ◦1 a = a ◦2 a = a ◦2 ` = a ◦2 ⊥,
` ◦2 ` = ` ◦1 ` = ` ◦1 a = ` ◦1 ⊥〉.

Proposition
The suboperad P of T(N,×) generated by the elements 01, 10, and 11 is
isomorphic to the operad Trias through the operad isomorphism
φ : Trias→ P defined by

φ(a) := 10, φ(`) := 01, and φ(⊥) := 11.

Hence, P is a realization of Trias.
46 / 46


	Non-symmetric set-operads
	Definitions
	Examples

	From monoids to operads
	The construction
	Properties of the construction

	Application of the construction
	Survey of the constructed operads
	The operad of planar rooted trees
	The operad of integer compositions
	The operad of directed animals
	The diassociative and triassociative operads


