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Combinatorics and combinatorial sets
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Combinatorics is the art of studying concrete objects subject to construction rules.

Example — Fibonacci words
Let C be the set of words made of letters 1 or 2 such that there is no consecutive 2.
Some elements of C are

ϵ, 1, 2, 11, 12, 21, 111, 112, 121, 211, 212, 1111, 1112, 1121, 1211, 1212, 2111, 2112, 2121.

Given a set C of combinatorial objects, a size function is a map | − | : C → N.

If |x| = n, then the size of x is n.

For any n ∈ N, C(n) is the set of objects of size n of C.

Definition — Combinatorial sets
A combinatorial set is a set C endowed with a size function such that C(n) is finite for any n ∈ N.
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Example — Permutations
A permutation of size n is a word on [n] := {1, . . . , n} such that each element of [n] appears exactly once.
By denoting by S this combinatorial set, we have

S(3) = {123, 132, 213, 231, 312, 321}.

Example — Integer compositions
An integer composition of size n is a word of positive integers such that the sum of its letters is n.
By denoting by C this combinatorial set, we have

C(4) = {1111, 112, 121, 211, 22, 13, 31, 4}.

Example — Integer partitions
An integer partition of size n is a weakly decreasing integer composition.
By denoting by P this combinatorial set, we have

P(4) = {1111, 211, 22, 31, 4}.
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Main questions in combinatorics
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Given a combinatorial set C, a main objective is to enumerate the elements of C.

We are looking for formulas depending on n and giving the number of elements of C(n).

Example — Permutations
For any n ∈ N,

#S(n) = n!.

This is a consequence of the fact that there are n choices for the first letter, n− 1 for the second, and so on.

Example — Integer compositions
For any n ⩾ 1,

#C(n) = 2n−1.

This is a consequence of the encoding of an integer composition using sticks and balls.
For instance, 21132 is encoded by •• | • | • | • • • | • • . Indeed, given a sequence of n balls, there are exactly
n− 1 places between two boxes wherein a stick is positioned or is absent (2 choices for each).
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Another important objective about a combinatorial set C concerns the generation of the elements of C.

We are looking for algorithms that take n as input and construct the list of the elements of C(n).

Example — Permutations
To generate the permutations of size n, consider the recursive algorithm G(n) defined as follows:

□ if n = 0, then G(n) is the set {ϵ};

□ otherwise, G(n) is the set obtained by considering each permutation σ of G(n− 1) and by inserting the
letter n in all possible ways.

The efficiency in time and space are crucial for such algorithms.

For the case of permutations, there is a much more efficient algorithm than this one: the Steinhaus–Johnson–Trotter
algorithm [Johnson, 1963] [Trotter, 1962].
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A last (for the moment) important question question about a combinatorial set C concerns the relationships
between C and other combinatorial sets C ′.

We are looking for morphisms that send objects of size n of C to objects of size n of C ′.

Example — Permutations and integer compositions
Let ϕ : S→ C be the map such that for any σ ∈ S(n), ϕ(σ) is the integer composition whose balls and sticks
representation is such that there is a stick between the i-th and i + 1-st balls whenever σ(i) > σ(i + 1).
For instance,

ϕ(34276158) = •• | •• | • | • • • = 2213.

This morphism is surjective (easy exercise).

Bijective morphisms are very interesting since they provide equivalent ways to see a combinatorial set.

In general, nice morphisms between combinatorial sets have connections with algebra (they are morphisms of
algebraic structures). This is the case for the previous morphism between S and C.

Samuele Giraudo 8/47 Computing with trees



Subfields of combinatorics
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Combinatorics gather different domains, each approaching the previous questions with different methods:

□ enumerative combinatorics, based on the understanding of combinatorial sets through their inherent
properties and on generating series;

□ analytic combinatorics, based on the use of analytical methods to understand the asymptotic behavior of
large objects;

□ geometric combinatorics, studying polytopes whose vertices are combinatorial objects;

□ algebraic combinatorics, where combinatorial sets are studied through operations on objects.
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Applications of combinatorics
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Combinatorics intervenes in a lot of domains:

□ in algorithms, since data structures can be seen as combinatorial objects (strings, lists, trees, etc.);

□ in theory of computation, where treelike structures and substitution operations play a significant role;

□ in quantum field theory, linked with Hopf algebras on trees [Connes, Kreimer, 2000];

□ in statistical physics, and mainly in percolation theory [Broadbent, Hammersley, 1957];

□ in algebra, since operations on combinatorial objects are useful to realize types of algebraic structures.
There are also important connections with representation theory of finite groups.
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Treelike structures
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Trees are known at least since Cayley [Cayley, 1857].

Definition — Trees
A tree is a connected acyclic graph.

Example — A tree

From this very general definition, many different variations exist. The main enrichments concern

□ the presence of a special node (rooted trees);

□ the presence of an ordering of the nodes adjacent to another one (ordered or planar trees);

□ the presence of decorations on nodes (decorated trees);

□ the presence of a total order on the nodes (standard or labeled trees).

Samuele Giraudo 14/47 Computing with trees



Tree variations
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Let T be the combinatorial set of trees where the size of a tree is its number of nodes.

Example — Some trees

= ̸= =

The sequence of the numbers of trees size by size is Sequence A000055 and starts by

1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551.

Some important references on trees:

□ Combinatorial Species and Tree-Like Structures [Bergeron, Labelle, Leroux, 1998];

□ Enumerative Combinatorics, Vol. 2 [Stanley, 1999].
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Let LT be the combinatorial set of labeled trees where the size of a labeled tree is its number of nodes.

Example — Some labeled trees
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Theorem [Borchardt, 1860] [Cayley, 1889]

The number #LT(n) of labeled trees of size n ⩾ 1 satisfies

#RT(n) = nn−2.

The sequence of these numbers is Sequence A000272 and starts by

1, 1, 3, 16, 125, 1296, 16807, 262144, 4782969, 100000000, 2357947691, 61917364224.
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This enumeration formula admits the following very elegant interpretation.

Take a labeled tree t and choose a head node x and
a tail node y.

This is a vertebrate labeled tree.

Let VLT be the combinatorial set of vertebrate
labeled trees.

Example — A vertebrate labeled tree
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Theorem [Joyal, 1981]

There is a one-to-one correspondence between vertebrate labeled trees of size n and maps e : [n]→ [n].

Given this result, for any n ⩾ 1, observe that

□ since the choice of the head and the tail are independent, #VLT(n) = n2#LT(n);

□ there are nn maps e : [n]→ [n].

Therefore, as expected we obtain #LT(n) = nn

n2 .
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Let t be a vertebrate labeled tree. The map e is constructed as a word on [n] of length n such that

□ the labels of the spine of t are put from the head to the tail as letters of indices being labels of the spine;

□ the value of the letter at each remaining position z is the label of the node of t which is adjacent to the
node labeled by z and closest to the spine.

Example — A vertebrate labeled tree and its endofunction

t =
1

2

7

4

5 6

3

8

9

A

x
y

←→

1 2 3 4 5 6 7 8 9 A

2 2 7 2 7 7 3 8 3 9

 = e

There are many other proofs for the enumeration of labeled trees:

□ by using species of structures [Joyal, 1981] [Bergeron, Labelle, Leroux, 1998];

□ by a double counting method [Pitman, 1999];

□ by Prüfer codes [Prüfer, 1918].
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Let RT be the combinatorial set of rooted trees where the size of a rooted tree is its number of nodes.

Example — A rooted tree

= ̸=

Theorem [Polya, 1937] [Otter, 1948]

The number #RT(n) of rooted trees of size n satisfies #RT(1) = 1 and, for any n ⩾ 1, the recurrence

#RT(n + 1) = 1
n

∑
k∈[n]

∑
d|k

d #RT(d)

#RT(n− k + 1).

The sequence of these numbers is Sequence A000081 and starts by

1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766.
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Let LRT be the combinatorial set of labeled rooted trees where the size of a labeled rooted tree is its number
of nodes.

Example — A labeled rooted tree
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Theorem [Cayley, 1889]

The number #RT(n) of labeled rooted trees of size n ⩾ 1 satisfies

#RT(n) = nn−1.

The sequence of these numbers is Sequence A000169 and starts by

1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688.
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Let B be the combinatorial set of binary trees where the size of a binary tree is its number of internal nodes.

Example — Some binary trees

̸=

Theorem
The number #B(n) of binary trees of size n ⩾ 0 satisfies

#B(n) = 1
n + 1

(
2n

n

)
.

The sequence of these numbers is Sequence A000108 and starts by

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786.

These are the Catalan numbers.
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A signature is a set S decomposing as S =
⊔

n⩾0 S(n).

An S-planar term is defined recursively to be

□ either the leaf ⊥;

□ or an internal node decorated by g ∈ S(n) attached to n children S-terms.

Let T⊥
PS (resp. T•

PS) be the set of S-planar terms where the size of an S-planar term is its number of leaves
(resp. internal nodes).

Exercise
Find a necessary and sufficient condition on S for the fact that T⊥

PS (resp. T•
PS) is combinatorial.

Example — An S-planar term

Let the signature S := S(1)⊔ S(3) with S(1) := {a} and S(3) := {b, c}.

This S-planar term has size 7 in T⊥
PS and size 5 in T•

PS.

b
a c

a c
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Let m ⩾ 0 and Sm be the signature such that Sm := Sm(m + 1) := {a}.

Any Sm-planar term is a planar term such that each
internal node has exactly m + 1 children.

Such trees are m-terms.

In particular, as sets, T•
PS1 = B.

Example — A planar 2-term
a

a

a

a

a a

Theorem
For any m, n ⩾ 0,

#T•
PSm(n) = 1

mn + 1

(
mn + n

n

)
.

The sequence of these numbers for m = 2 is Sequence A001764 and starts by

1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, 8414640.

These are the m-Fuss-Catalan numbers.
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Let Ssch be the signature such that Ssch(0) := Ssch(1) := ∅ and for any n ⩾ 2, Ssch(n) := {an}.

Any Ssch-planar term is a term such that each internal node has two
or more children.

Such trees are Schröder trees.

Example — A Schröder tree
a2

a2

a3

a4

a3

a3 a2

Theorem
The number T⊥

PSsch(n) of Schröder trees of size n satisfies T⊥
PSsch(1) = 1 and, for any n ⩾ 1 the recurrence

#T⊥
PSsch(n + 1) = 2

∑
k∈[n]

#T⊥
PSsch(k) #T⊥

PSsch(n + 1− k)−#T⊥
PSsch(n).

The sequence of these numbers is Sequence A001003 and starts by

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723.

These are the super-Catalan numbers.
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Universal algebra
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An algebraic structure is a set endowed with some operations. The arity of an operation says how many inputs
this operation has.

Example — The group of integers
The set Z of integers endowed with the operation of addition x1, x2 7→ x1 + x2 and the operation of opposite
x1 7→ −x1 is an algebraic structure.

Example — The magma of binary trees
The set B endowed with the operation t1, t2 7→ t1 ∧ t2 such
that t1 ∧ t2 is the binary tree admitting t1 as left subtree and
t2 as right subtree is an algebraic structure.

∧ =

Algebraic structures are central objects in algebraic combinatorics. In this field,

□ algebraic structures on combinatorial sets are constructed.

; In this direction, algebra serves as a tool to obtain combinatorial results;

□ algebraic structures are studied by using methods coming from combinatorics.

; In this direction, combinatorics serves as a tool to obtain algebraic results.
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Let us introduce particular ordered rooted trees.

Definition — S-terms
Let S be a signature.

An S-term is an S-planar term such that each leaf is decorated on the set X := {x1, x2, x3, . . .} of variables.

The set of S-terms is denoted by TS.

Example — An S-term

Here is an S-term for S := S(2) ⊔ S(3) with S(2) := {a, b}
and S(3) := {c}:

a

b

x2 x5

c

b

x4 x2

x3 x1
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Terms are used to represent compound operations.

Example — A compound operation
On the signature S := S(1) ⊔ S(2) where S(1) := {−} and S(2) := {+}, the S-term

+

−

+

x1 x3

+

x2 x1

represents the compound operation x1, x2, x3 7→ −(x1 + x3) + (x2 + x1).

An algebraic structure is specified by its operations brought by a signature and by relations between some
compound operations. Formally, we have the following definition.

Definition — Varieties
A variety is a pair (S,R) where S is a signature and R is an equivalence relation on TS.

Universal algebra studies algebraic structures through varieties.
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Example — The variety of monoids
The variety of monoids is the pair (S,R) such that S := S(0) ⊔ S(2) where S(0) := {1}, S(2) := {⋆}, and R

is the equivalence relation satisfying

⋆

⋆

x1 x2

x3
R

⋆

x1 ⋆

x2 x3

, ⋆

x1 1

R
x1

R ⋆

1 x1

.

□ The first relation says that for any x1, x2, and x3, the compound operations x1, x2, x3 7→ (x1 ⋆ x2) ⋆ x3
and x1, x2, x3 7→ x1 ⋆ (x2 ⋆ x3) are the same. Hence, ⋆ is an associative operation.

□ The second relations say that for any x1, the compound operations x1 7→ x1 ⋆1, x1 7→ x1, and x1 7→ 1⋆x1
are the same. Hence, 1 is a unit w.r.t. ⋆.

Definition — Algebras over a variety
Let V := (S,R) be a variety. A V-algebra is a set A endowed with the operations of S preserving the relations
prescribed by R.
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Equivalent compound operations
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Given a variety (S,R), it is possible that there exist compound operations t1 and t2 such that t1 and t2 behave
in the same way. This property is denoted by t1 ≡R t2.

Example — Two equivalent operations in the variety of groups
The variety of groups is the pair (S,R) such that S := S(0) ⊔ S(1) ⊔ S(2) where S(0) := {1}, S(1) := {i},
S(2) := {⋆}, and R is the equivalence relation satisfying

⋆

⋆

x1 x2

x3
R

⋆

x1 ⋆

x2 x3

, ⋆

x1 1

R x1
R ⋆

1 x1

,
⋆

x1 i

x1

R
1

R
⋆

i

x1

x1
.

We have

i

⋆

x1 x2

≡R

⋆

i

x2

i

x1

This says that for any group G and any x1, x2 ∈ G,

i(x1 ⋆ x2) = i(x2) ⋆ i(x1).
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Definition — Word problem
The word problem is the decision problem taking as input two terms t1 and t2 of a variety (S,R) and outputting
whether t1 ≡R t2.

This problem is undecidable in general [Baader, Nipkow, 1998].

Nevertheless, for particular varieties, this problem may be decidable.

Definition — Combinatorial realizations of varieties
A combinatorial realization of a variety (S,R) is a set X in one-to-one correspondence with the set of ≡R-
equivalence classes of S-terms together with a composition operation on X compatible with the composition of
compound operations.

Several (possibly overlapping) tools intervene here:

□ term rewrite systems [Bezem, Klop, de Vrijer, Terese, 2003];

□ operad theory [Loday, Vallete, 2012] [Méndez, 2015] [Giraudo, 2018];

□ clone theory [Taylor, 1993] [Giraudo, 2023+].
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Definition — Variety of idempotent semigroups
The variety of idempotent semigroups is the pair (S,R) such that S := S(2) := {⋆} and R is the equivalence
relation satisfying

⋆

⋆

x1 x2

x3
R

⋆

x1 ⋆

x2 x3

, ⋆

x1 x1

R x1
.

Example — Two equivalent terms of the variety of idempotent semigroups
Let the two compound operations

t1 :=

⋆

⋆

x1 ⋆

x2 ⋆

x3 x3

⋆

⋆

x2 x1

⋆

x2 x3

, t2 :=
⋆

⋆

x1 ⋆

x2 x2

x3

of the variety of idempotent semigroups. We have t1 ≡R t2.

Exercise: try to prove this by rewriting these two terms as a same one by using R.
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To decide the ≡R-equivalence in the variety of idempotent semigroups, consider the following algorithm,
associating with any term t a word P(t) on positive integers:

1. set u as the indexes of the variables appearing t, from left to right;

2. iteratively apply while possible the following transformations on u in any order:

1. replace a factor w ■ w by w;

2. replace a factor v ■ a ■ w by v ■ w if a ∈ Alph(v) and Alph(v) = Alph(w).

Theorem [Siekmann, Szabó, 1982] [Klíma, Korbelář, Polák, 2011]

Two terms t1 and t2 are ≡R-equivalent in the variety of idempotent semigroups if and only if P(t1) = P(t2).

Example
Consider the two terms t1 and t2 of the previous page.

□ We have u1 = 12332123. Since 123 ■ 32123 ; 123 ■ 2 ■ 123 ; 123 ■ 123 ; 123, we have P(t1) = 123.

□ We have u2 = 1223. Since 12 ■ 23 ; 123, we have P(t2) = 123.

Therefore, t1 ≡R t2.
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Algebraic structures on trees
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Definition — Decorated rooted trees
Let D be a nonempty set.
Let RTD be the set of D-decorated rooted trees, which are rooted trees whose nodes are decorated on D.

Definition — Butcher product
The Butcher product is the binary product ↖: RTD × RTD → RTD such that for any t1 ∈ RTD and
t2 ∈ RTD, t1 ↖ t2 is the D-decorated rooted tree obtained by putting the root of t2 as a child of the root
of t1.

Example — A Butcher product
Let D := {a, b, c}. We have the following Butcher product on D-decorated rooted trees:

b

b

b

a ↖ a

c b
=

b

b

b

a a

c b

.
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The Butcher product is not associative:

( a ↖ a )↖ a = a

a a
̸=

a

a

a
= a ↖ ( a ↖ a )

The Butcher product is not commutative:

a

a
↖ a = a

a a
̸=

a

a

a
= a ↖ a

a

Nevertheless, this product satisfies the universal relation

(t1 ↖ t2)↖ t3 = (t1 ↖ t3)↖ t2.

This is the nonassociative permutative (NAP) relation.
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Definition — Variety of NAP algebras
The variety of NAP algebras is the pair (S,R) such that S := S(2) := {↖} and R is the equivalence relation
satisfying

↖

↖

x1 x2

x3
R

↖

↖

x1 x3

x2
.

A NAP algebra is an algebra over the variety of NAP algebras.

Theorem [Dzhumadil’daev, Löfwall, 2002] [Livernet, 2006]

Let D be a nonempty set. The set of RTD of D-decorated rooted trees endowed with the Butcher product ↖
is the free NAP algebra generated by D.
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Definition — Variety of duplicial algebras [Brouder, Frabetti, 2003]

The variety of duplicial algebras is the pair (S,R) such that S := S(2) := { , } and R is the equivalence
relation satisfying

x1 x2

x3
R

x1

x2 x3

,

x1 x2

x3
R

x1

x2 x3

,

x1 x2

x3
R

x1

x2 x3

.

A duplicial algebra is an algebra over the variety of duplicial algebras.

By definition, this is a set A endowed with two operations : A×A→ A and : A×A→ A such that

□ is associative;

□ is associative;

□ for any x1, x2, x3 ∈ A, the relation (x1 x2) x3 = x1 (x2 x3) holds.
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Definition — Decorated binary trees
Let D be a nonempty set.
Let BD be the set of D-decorated binary trees, which are binary trees having at least one internal node and
whose internal nodes are decorated on D.

Definition — Over and under products
The over product is the binary product : BD ×BD → BD such that for any t1, t2 ∈ BD, t1 t2 is the
D-decorated binary tree obtained by grafting the root of t1 on the leftmost leaf of t2.
The under product is defined in the same way, by considering instead the rightmost leaf.

Examples — Over and under products
Let D := {a, b, c}. We have the following over and under products on D-decorated binary trees:

a

a

b

c

c

c b
a

=

c

c

a

a

b

c

b
a ,

a

a

b

c

c

c b
a

=

a

a

b

c

c

c b
a

.
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Theorem [Loday, 2008]

Let D be a nonempty set. The set of BD of D-decorated binary trees endowed with the over product and the
under product is the free duplicial algebra generated by D.

Exercise — A duplicial algebra on words
Let N+ be the set of nonempty words of nonnegative integers.

Let ≪ and ≫ be the binary products on N+ defined by

u≪ v := u
(
v ↑max(u)

)
, u≫ v := u

(
v ↑ℓ(u)

)
.

For instance,
0211≪ 14 = 021136, 0211≫ 14 = 021158.

1. Show that N+ endowed with the products ≪ and ≫ is a duplicial algebra [Novelli, Thibon, 2013].

2. Describe a minimal generating set of this duplicial algebra.

3. Exhibit the nontrivial relations satisfied by these generators or prove that this duplicial algebra is free.
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Definition — Variety of Fuss-Catalan algebras [Giraudo, 2015]

For any m ∈ N, the variety of m-Fuss-Catalan algebras is the pair (S,R) such that S := S(2) := {|0, |1, . . . , |m}
and R is the equivalence relation satisfying

|α+β

|α

x1 x2

x3
R

|α

x1 |β

x2 x3

for any α, β ∈ Jm] such that α + β ⩽ m.

An m-Fuss-Catalan algebra is an algebra over the variety of m-Fuss-Catalan algebras.

In particular, a 1-Fuss-Catalan algebra is a set A endowed with two operations |0: A×A→ A and |1: A×A→ A

such that for any x1, x2, x3 ∈ A,

(x1 |0 x2) |0 x3 = x1 |0 (x2 |0 x3), (x1 |0 x2) |1 x3 = x1 |0 (x2 |1 x3), (x1 |1 x2) |0 x3 = x1 |1 (x2 |0 x3).
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Definition — Decorated m-terms
Let D be a nonempty set.
Let TPSmD be the set of D-decorated m-terms, which are m-terms having at least one internal nodes and
whose internal nodes are decorated on D.

Definition — Grafting products
The α-th grafting product is the binary product |α: TPSmD × TPSmD → TPSmD such that for any t1, t2 ∈
TPSmD, t1 |α t2 is the D-decorated m-term obtained by grafting t2 on the α-th rightmost leaf of t1.

Exemples — Grafting products
Let D := {a, b, c}. We have the following over and under products on D-decorated 2-terms:

a

b |0
b

c =
a

b b
c

,
a

b |1
b

c =
a

b

b
c

,
a

b |2
b

c =
a

b

b
c

.
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Theorem [Giraudo, 2015]

Let m ∈ N and D be a nonempty set. The set of TPSmD of D-decorated m-terms endowed with the products
|α, α ∈ Jm], is the free m-Fuss-Catalan algebra generated by D.

Exercises

□ Interpret the operations |α, α ∈ Jm], on other combinatorial sets in one-to-one correspondence with
TPSmD (like dissections of polygons into m + 2-gons or m-Dyck paths).

□ Propose analog operations |α on other treelike structures (rooted trees, ordered rooted trees, terms, etc.)
and study the relations these operations satisfy.
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Conclusion
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We have reviewed here several aspects of trees and some of their variations.

They are central in universal algebra since compound operations can be manipulated by terms.

We have seen some algebraic structures involving trees.

There are a lot of other such algebraic structures:

□ pre-Lie algebras, involving decorated rooted trees [Chapoton, Livernet, 2001];

□ Connes-Kreimer Hopf algebras, involving forests of rooted trees [Connes, Kreimer, 1998] [Foissy, 2002].

There are also important links with models of computation:

□ with λ-calculus, since expressions of this model are particular trees [Church, 1936];

□ with combinatory logic, since expressions of this model are particular terms endowed with rewrite rules
[Schönfinkel, 1924].
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