
Combinatorics, operations, and graded graphs

Samuele Giraudo
LIGM, Université Paris-Est Marne-la-Vallée

Visite du comité HCERES
Exposé scientifique de l’équipe COMBI

February 12, 2019

1 / 19



Outline

Combinatorics

Algebraic combinatorics

Operads and graded graphs

2 / 19



Outline

Combinatorics

3 / 19



Combinatorial collections

A combinatorial collection is a set C endowed with a map

| − | : C → N

such that for any n ∈ N, C(n) := {x ∈ C : |x| = n} is finite.

For any x ∈ C , we call |x| the size of x.

— Classical questions —

1. Enumerate the objects of C of size n.

2. Generate all the objects of C of size n.

3. Randomly generate an object of C of size n.

4. Establish transformations between C and other combinatorial collections D.
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Some combinatorial collections
— Words —

Let A := {a, b} be an alphabet and let A∗ be the combinatorial collection of all
words on A where the size of a word is its length.

Then, A∗(0) = {ε}, A∗(1) = {a, b}, and A∗(2) = {aa, ab, ba, bb}.

— Permutations —
Let S be the combinatorial collection of all permutations where the size of a
permutation is its length as a word.

Then, S(0) = {ε}, S(1) = {1}, S(2) = {12, 21}, and
S(3) = {123, 132, 213, 231, 312, 321}.

— Binary trees —
Let BT be the combinatorial collection of all binary trees where the size of a binary tree is its
number of internal nodes.

Then, BT(0) =
{ }

, BT(1) =
{ }

, BT(2) =
{

,
}

, and

BT(3) =

{
, , , ,

}
.
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Generating series

The generating series of a combinatorial collection C is

GC(t) :=
∑
n∈N

#C(n)tn =
∑
x∈C

t|x|.

— Examples —

I GA∗ (t) = 1 + 2t+ 4t2 + 8t3 + 16t4 + 32t5 + · · · =
1

1− 2t

I GS(t) = 1 + t+ 2t2 + 6t3 + 24t4 + 120t5 + · · · =
∫ ∞
0

exp(−x)
1− xt

dx

I GBT(t) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + · · · =
1−
√
1− 4t

2t

Generating series are very powerful tools for enumeration. They encode
sequences of numbers and support many operations.
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Operations and algebraic structures

— First idea —
Endow C with operations to form an algebraic structure.

The algebraic study of C helps to discover combinatorial properties.

In particular,

1. minimal generating families of C

; highlighting of elementary pieces of assembly;

2. morphisms involving C

; transformation algorithms and revelation of symmetries.

Most important algebraic structures are

I la�ices;

I monoids;

I Hopf bialgebras;

I operads.
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Formal power series
Generating series forget a lot of information about the underlying
combinatorial objects of C .

— Second idea —
Work with formal series of combinatorial objects of C .

— Example —
We work with the formal power series wherein exponents are combinatorial objects:

fBT = t + t + t + t + t + t + t + t + t + · · ·

instead of the generating series GBT(t).

If C is endowed with operations ?, these operations extend as products ?̄
on formal power series leading to expressions for fC .

— Example —

� = +
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Operad structures

Endowing a combinatorial collection C with the structure of an operad
consists in providing a map

◦i : C(n)× C(m)→ C(n+m− 1), 1 6 i 6 n, 1 6 m,

satisfying some axioms.

Intuition: for any x, y ∈ C and i ∈ [|x|], x ◦i y can be thought as the
insertion of y into the ith substitution place of x. For instance,

1 2

34

5

◦2
1

2
=

1
1

2

34

5

=
1

2

3

45

6

.
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Some operads

— Operad on words —
Let A := Z/`Z be an alphabet. We turn A∗ into an operad where u ◦i v is obtained by
replacing the ith le�er of u by a copy of v obtained by incrementing (mod `) its le�ers by
ui [Giraudo, 2015]. For instance, for ` := 3,

100210 ◦5 1022 = 100221000.

— Operad on permutations —
We turn S into an operad where σ ◦i ν is the permutation whose permutation matrix is
obtained by replacing the ith point of the matrix of σ by a copy of the matrix of ν [Aguiar,
Livernet, 2007]. For instance,

35412 ◦3 132 = 3746512,

•
•
•

•
•
◦3 •

•
• =

•

•

•
•
•

•
•
.
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Some operads

— Operad on trees —
Let G be a set of nodes. We turn the set of trees on G into an operad F(G) where t ◦i s is
obtained by gra�ing the root of a copy of s onto the ith leaf of t. For instance, for

G :=
{

, ,
}
, we have

◦5 = .

There exist many other (more or less complicated) operads involving
combinatorial objects:

I on various families of trees (binary trees, m-trees, Schröder trees,
rooted trees, etc.);

I on various families of paths (Dyck paths, Motzkin paths, etc.);

I on various families of graphs (cliques, drawn inside a polygon, with
labeled edges, etc.).
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Young la�ice
One of the most famous graded graphs is the Hasse diagram of the Young
la�ice.

The vertices of this graph are
integer partitions, nonincreas-
ing words of positive integers.

— Example —

533111 ↔

The Young la�ice admits as Hasse diagram the graph wherein there is an
arc λ→ µ if µ can be obtained by adding a box from λ:

∅
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Graded graphs

A graded graph is a pair (C,U) where C is a combinatorial collection and
U is a linear map

U : K 〈C(d)〉 → K 〈C(d+ 1)〉 , d > 0.

This map sends any x ∈ C to its next vertices (with multiplicities).

Classical examples include

I the Young la�ice [Stanley, 1988];

I the bracket tree [Fomin, 1994];

I the composition poset [Björner, Stanley, 2005];

I the Fibonacci la�ice [Fomin, 1988], [Stanley, 1988].
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Graded graphs and duality
These graphs become very interesting if we consider two such structures
(C,U) and (C,V) at the same time, sharing the same underlying set C .

We look for the following properties:
I duality [Stanley, 1988] if

V?U−UV? = I;

I r-duality [Fomin, 1994] if

V?U−UV? = rI

for an r ∈ K;

I φ-diagonal duality [Giraudo, 2018] if

V?U−UV? = φ

for a nonzero diagonal linear map (φ(x) = λxx where λx ∈ K \ {0}).

— Idea —
Use operads as a source of dual pairs of graded graphs.
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Graded graphs from operads

— Example —
For G =

{
,

}
, the pair (F(G),U,V) is

p p

General construction: given an operad O (satisfying some conditions), let
the graphs (O,U) and (O,V) defined by

U(x) :=
∑
a∈G
i∈[|x|]

x ◦i a, V(x) :=
∑
y∈O

∃(s,t)∈ev−1(x)×ev−1(y)
〈t,V(s)〉6=0

y.
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Graded graphs from operads
— Theorem [Giraudo, 2018] —

If O is an homogeneous operad, then (O,U,V) is a pair of graded graphs.
Moreover, if O is a free operad, this pair is φ-diagonal dual.

There are non-free operads leading to φ-diagonal dual graphs.

— Example —

The pair (Comp,U,V) is 2-dual.

The graded graph (Comp,U) is the

Hasse diagram of the composition

poset [Bjöner, Stanley, 2005].

2 2

3 2 2 2
2 3

— Example —

The pair (Motz,U,V) is

φ-diagonal dual 2 2
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If O is an homogeneous operad, then (O,U,V) is a pair of graded graphs.
Moreover, if O is a free operad, this pair is φ-diagonal dual.
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Further reading on operads

S. Giraudo. Nonsymmetric Op-
erads in Combinatorics, Springer
monograph, viii+172 pages, 2018
(Jan. 2019).

M. Méndez. Set Operads in Com-
binatorics and Computer Science,
SpringerBriefs, xv + 129, 2015.

J.-L. Loday and B. Valle�e. Alge-
braic operads, Springer, xxiv+636

pages, 2012.
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