Combinatorics, operations, and graded graphs

Samuele Giraudo

LIGM, Université Paris-Est Marne-la-Vallée

Visite du comité HCERES
Exposé scientifique de I’équipe COMBI

February 12,2019

@

Ecole des Ponts.

ParisTech



Outline

Combinatorics

Algebraic combinatorics

Operads and graded graphs

2/19



Outline

Combinatorics

3/19



Combinatorial collections

A combinatorial collection is a set (' endowed with a map
|-]:C—>N

such that forany n € N, C'(n) := {z € C : |z| = n} is finite.

For any = € C, we call |z the size of x.



Combinatorial collections

A combinatorial collection is a set (' endowed with a map
|-]:C—>N
such that forany n € N, C'(n) := {z € C : |z| = n} is finite.
For any = € C, we call |z the size of x.
— Classical questions —

1. Enumerate the objects of C' of size n.



Combinatorial collections

A combinatorial collection is a set (' endowed with a map
|-]:C—>N

such that forany n € N, C'(n) := {z € C : |z| = n} is finite.

For any = € C, we call |z the size of x.

— Classical questions —

1. Enumerate the objects of C' of size n.

2. Generate all the objects of C' of size n.



Combinatorial collections

A combinatorial collection is a set (' endowed with a map
|-]:C—>N

such that forany n € N, C'(n) := {z € C : |z| = n} is finite.

For any = € C, we call |z the size of x.

— Classical questions —

1. Enumerate the objects of C' of size n.
2. Generate all the objects of C' of size n.

3. Randomly generate an object of ' of size n.



Combinatorial collections

A combinatorial collection is a set (' endowed with a map
|-]:C—>N

such that forany n € N, C'(n) := {z € C : |z| = n} is finite.

For any = € C, we call |z the size of x.

— Classical questions —

1. Enumerate the objects of C' of size n.
2. Generate all the objects of C' of size n.
3. Randomly generate an object of ' of size n.

4. Establish transformations between C' and other combinatorial collections
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Some combinatorial collections

— Words —

Let A := {a, b} be an alphabet and let A* be the combinatorial collection of all
words on A where the size of a word is its length.

Then, A*(0) = {e}, A*(1) = {a, b}, and A*(2) = {aa, ab, ba,bb}.

— Permutations —

Let S be the combinatorial collection of all permutations where the size of a
permutation is its length as a word.

Then, G(0) = {e}, 5(1) = {1}, 5(2) = {12,21}, and

5(3) = {123,132,213,231, 312, 321}.

— Binary trees —

Let B'T" be the combinatorial collection of all binary trees where the size of a binary tree is its
number of internal nodes.
Then, BT(0) = {‘},B’l‘(l) = { : },BT(2) = { W } and

BTG) = { b % i P
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Generating series

The generating series of a combinatorial collection C' is

Go(t) =Y _#C(m)m = 1.

neN z€C
— Examples —

> Gar() =1+2 +42+83+164+325+--':1,12

> Ge(f) =1+ +22+63+244+1205"‘"':/000%@

> Gpr(l) =1+ +22+53+144+425+...:ﬁ

Generating series are very powerful tools for enumeration. They encode
sequences of numbers and support many operations.
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Operations and algebraic structures

— First idea —
Endow C' with operations to form an algebraic structure.
The algebraic study of C' helps to discover combinatorial properties.
In particular,
1. minimal generating families of C

~ highlighting of elementary pieces of assembly;

2. morphisms involving C'

~ transformation algorithms and revelation of symmetries.

Most important algebraic structures are

> lattices; > Hopf bialgebras;

> monoids; > operads.
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Formal power series

Generating series forget a lot of information about the underlying
combinatorial objects of C.

— Second idea —

Work with formal series of combinatorial objects of C'.

— Example —
We work with the formal power series wherein exponents are combinatorial objects:

for =5 +t0 4 ¢80 R4 + + + + SRoce

instead of the generating series G (/).

If C'is endowed with operations %, these operations extend as products *
on formal power series leading to expressions for fc.

— Example —

El
Il

+
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Operad structures

Endowing a combinatorial collection C' with the structure of an operad
consists in providing a map

0, : C(n) x C(m) = C(n+m—1), 1<i<n, 1<m,

satisfying some axioms.
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Operad structures

Endowing a combinatorial collection C' with the structure of an operad
consists in providing a map

0, : C(n) x C(m) = C(n+m—1), 1<i<n, 1<m,

satisfying some axioms.

Intuition: for any 2,y € C'and ¢ € [|z|], x o; y can be thought as the
insertion of y into the ith substitution place of . For instance,

@ ® ® ® ® ©

@ @ 1 @ 2 @ 3
®
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Some operads

— Operad on words —

Let A := Z/ 7 be an alphabet. We turn A* into an operad where u o; v is obtained by
replacing the ith letter of u by a copy of v obtained by incrementing (mod £) its letters by
u; . For instance, for £ := 3,

10 05 1022 = 21000.
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— Operad on words —

Let A := Z/ 7 be an alphabet. We turn A* into an operad where u o; v is obtained by
replacing the ith letter of u by a copy of v obtained by incrementing (mod £) its letters by
u; . For instance, for £ := 3,

10 05 1022 = 21000.

— Operad on permutations —

We turn & into an operad where o o; 1/ is the permutation whose permutation matrix is
obtained by replacing the ith point of the matrix of & by a copy of the matrix of »/
. For instance,

412 o3 132 = 3746512,
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Some operads

— Operad on trees —

Let GG be a set of nodes. We turn the set of trees on G into an operad ' (G) where t o; 5 is
obtained by grafting the root of a copy of s onto the ith leaf of t. For instance, for

G .= { y R ¢} , we have
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Some operads

Let GG be a set of nodes. We turn the set of trees on G into an operad ' (G) where t o; 5 is
obtained by grafting the root of a copy of s onto the ith leaf of t. For instance, for

G::{ , A, },wehave

o5 =

There exist many other (more or less complicated) operads involving
combinatorial objects:

> on various families of trees (binary trees, m-trees, Schroder trees,
rooted trees, etc.);

> on various families of paths (Dyck paths, Motzkin paths, etc.);

> on various families of graphs (cliques, drawn inside a polygon, with
labeled edges, etc.).
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Young lattice
One of the most famous graded graphs is the Hasse diagram of the Young

lattice.

The vertices of this graph are — Example —

integer partitions, nonincreas-
ing words of positive integers. 533111 W

The Young lattice admits as Hasse diagram the graph wherein there is an
arc A — p if p1 can be obtained by adding a box from A:

0

@]
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U is a linear map
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Graded graphs

A graded graph is a pair (C', U) where C' is a combinatorial collection and
U is a linear map

U:K(C(d) = K(C(d+1)), d>0.
This map sends any = € (' to its next vertices (with multiplicities).

Classical examples include
> the Young lattice ;
> the bracket tree ;
> the composition poset ;

» the Fibonacci lattice ,
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Graded graphs and duality

These graphs become very interesting if we consider two such structures
(C,U) and (C, V) at the same time, sharing the same underlying set C'.

We look for the following properties:

» duality if
VU -UV* =1,
» r-duality if
VU -UV*=r]
foranr € K;
> ¢-diagonal duality if

VAU - UV* = ¢

for a nonzero diagonal linear map (¢(x) = A,z where A, € K\ {0}).

— ldea —

Use operads as a source of dual pairs of graded graphs.
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Graded graphs from operads

For G = { o R} },the pair (1'(G), U, V) is
g/\)Q Q/‘\)Q
NN N VAR
M@%a@@% 25 R M%@%
LA A A A L 7 T A T T A I AV I |

17/19



Graded graphs from operads
— Example —

For G = { [o o) },the pair (1'(G), U, V) is

A — = k///// \\N A
YA /“\ s W‘LX
PRCNAY pAYR pTa AT ae 2 A4
[ Lo M V\V/V I S S S S L L SV

2 Q,QQ o Q‘?Q

General construction: given an operad (J (satisfying some conditions), let
the graphs (0, U) and ((7, V) defined by

U(z) = Z x 04 a, V(x):= Z Y.

aeG S
i€(]z] 3(s,0)€ev(z)xev (1)
(6,1 (5))£0
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Graded graphs from operads

— Theorem —

If O is an homogeneous operad, then ((7, U, V) is a pair of graded graphs.
Moreover, if (V is a free operad, this pair is ¢-diagonal dual.
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Graded graphs from operads

— Theorem —

If O is an homogeneous operad, then ((7, U, V) is a pair of graded graphs.

Moreover, if (V is a free operad, this pair is ¢-diagonal dual.
There are non-free operads leading to ¢-diagonal dual graphs.

— Example —

The pair (Comp, U, V) is 2-dual.
The graded graph (Comp, U7) is the
Hasse diagram of the composition

poset 5 '3

¢
P
P
P
& Y
P
P
‘oo
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Graded graphs from operads

If O is an homogeneous operad, then (
is a free operad, this pair is ¢-diagonal dual.

Moreover, if

There are non-free operads leading to ¢-diagonal dual graphs.

The pair (Comp, U, V) is 2-dual.
The graded graph (Comp, U7) is the
Hasse diagram of the composition

poset

The pair  (Motz, U, V) s

¢p-diagonal dual

’'d
000

— Example —

— Example —

/\

//\

N

&

\
M-

— Theorem

//V\

o Q
58% " oo & ooooo

o
Joane)
0

000"

/v

N
// x\

58% Foo & ooooo

o0

, U, V) is a pair of graded graphs.

5%
0
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Further reading on operads

) S. Giraudo. Nonsymmetric Op-
operg’gmemc erads in Combinatorics, Springer
Combinatorics monograph, viii+172 pages, 2018

(Jan. 2019).

M. Méndez. Set Operads in Com-

Eet%peradgn
and CoTteR binatorics and Computer Science,

Science

SpringerBriefs, xv 4+ 129, 2015.

J.-L. Loday and B. Vallette. Alge-
braic operads, Springer, xxiv+636
pages, 2012.

| Algebraic Operads

@ springer

19/19



