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Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:
» monoids; > associative alg.; > pre-Lie alg.;
> groups; > Hopf bialg,; > dendriform alg.;
> lattices; > Liealg; > duplicial alg.
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Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:

» monoids; > associative alg.; > pre-Lie alg.;
> groups; > Hopf bialg,; > dendriform alg.;
> lattices; > Liealg; > duplicial alg.

Such types of algebras are specified by
1. a collection of operations;

2. a collection of relations between operations.

— Example —
The type of monoids can be specified by
1. the operations  (binary) and 1 (nullary);

2. therelations (11 x22) xx3 = 21 % (rg*z3)and zx1 =2z = L xx.
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Working with operations

Strategy to study types of algebras ~» add a level of indirection by
working with algebraic structures where

> elements are operations

having n = |2| inputs and 1 output;
> the operation is the composition operation of operations. If z and y
are two operations,
1. by selecting an input of = specified by its position i;
2. and by grafting the output of v onto this input,

we obtain the new operation

// \\ v // AN 1 s y) - [z]+|y[=1 "

. PRI
R I I ] S AN
i itlyl—1
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Operads

Operads are algebraic structures formalizing the notion of operations and
their composition.

A (nonsymmetric set-theoretic) operad is a triple ({7, 0;, 1) where

1. Ois a graded set

=] o)

n>1

2. o; is a map, called partial composition map,
0, : O(n) x O(m) = O(n+m—1), 1<i<n, 1<m
3. 1is an element of ((1) called unit.

This data has to satisfy some axioms.
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Operad axioms

The associativity relation
(z0iy)0iyj—12=1w0i(y052)
1<i< e, 1< <yl

says that the pictured operation can

be constructed from top to bottom or
from bottom to top.

el lyl+lzl -2

itlyl+lz] -2
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The associativity relation

(05 y) 0itj—12=1x0;(yo;2)
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Operad axioms

The associativity relation
(ro;y)oipj_12=m0;(yoj2)
1<i< e, 1< <yl

says that the pictured operation can
be constructed from top to bottom or
from bottom to top.

The commutativity relation
(T 05 y) 0jyjy|—12 = (r0j2) 0y
1<i<j< |z

says that the pictured operation can
be constructed from left to right or
from right to left.

The unitality relation

lojz=xz=x0;1
1<i< |z

says that 1 is the identity map.

el v+l -2

itlul+

iti—1 e itz -2

it |yl =1 g4yl -1

|2]—2

Jtlul+lzl—2



Operad on permutations

Let Per be the operad wherein:

> Per(n) is the set of all permutations of size n, seen through their
permutation matrices.

— Example —

has arity 9 and denotes the permutation
378651294.
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Operad on permutations

Let Per be the operad wherein:

> Per(n) is the set of all permutations of size n, seen through their
permutation matrices.

— Example —

has arity 9 and denotes the permutation
378651294.

> The partial composition o o; 1 is the permutation matrix obtained by
replacing the ith point of o by a copy of v.

— Example —

> The unit is the unique permutation e of size 1.
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Operad on paths

Let Path be the operad wherein:

» Path(n) is the set of all paths with n points, that are words u; . ..

of elements of N.
— Example —

has arity 13 and denotes the path
1212232100112.
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Operad on paths

Let Path be the operad wherein:

» Path(n) is the set of all paths with n points, that are words u; ... uy,
of elements of N.

— Example —
has arity 13 and denotes the path
1212232100112.
> The partial composition u o; v is the path obtained by replacing the
ith point of u by a copy of v.

— Example —

O o4 =

2 04 11224 33446
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Operad on paths

Let Path be the operad wherein:

» Path(n) is the set of all paths with n points, that are words u; ... uy,
of elements of N.

— Example —

has arity 13 and denotes the path
1212232100112.

> The partial composition u o; v is the path obtained by replacing the
ith point of u by a copy of v.

— Example —
(e¥} ==

% 04 11224

33446

» The unit is the unique path 0 of size 1, depicted as
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Some suboperads of Path

For any m > 0, an m-Dyck path is a path starting and ending with 0 and
made of steps ~  and

— Example —

is a 2-Dyck path of size 10.
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— Example —

is a 2-Dyck path of size 10.

— Proposition —
For any m > 0, the set Dyck'" of all m-Dyck paths is a suboperad of Path.
A Motzkin path is a path starting and ending with 0 and made of steps .,
, and
— Example —

is a Motzkin path of size 16.

— Proposition —

The set Motz of all Motzkin paths is a suboperad of Path.
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Algebras over operads

Let () be an operad. An algebra over (7 is a space ) equipped, for all
x € O(n), with linear maps

VR -V =V
—_———
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Algebras over operads
Let (U be an operad. An algebra over (J is a space V equipped, for all
x € O(n), with linear maps

VR -V =V
—_———

n

such that 1 is the identity map on )V and the compatibility relation

-
Ulz|+yl—1

U1

Yy

/ v e Ulel4lyl-1
Uy ..

© Vitlyl—1

holds for any =,y € O, i € [[z|],and v1,..., v, 4y =1 € V.
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Algebras over operads

— Example —

Let As be the associative operad defined by As(n) := {*n} foralln > 1 and

*n Of *m 1= *ntm—1.
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— Example —

Let As be the associative operad defined by As(n) := {*n} foralln > 1 and

*n Oj *m = *p+m—1. This operad is minimally generated by *2.

Any algebra over As is a space ) endowed with linear operations %, of arity n > 1 where *2
satisfies, for all vy, v9,v3 € V),

(*2 01 x2) (v1,v2,v3) = *2 (x2 (v1,v2),v3)
I I
(*2 09 *2) (1‘1, v2, 1‘3) = %2 (1,'17*2 (7,‘27 173)) 5
Using infix notation for the binary operation x2, we obtain the relation
('{,‘1 *2 1‘2) *92 V3 = VU1 *2 ('{,‘2 *2 1‘3) 5
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Algebras over operads

— Example —

Let As be the associative operad defined by As(n) := {*n} foralln > 1 and

*n Oj *m = *p+m—1. This operad is minimally generated by *2.

Any algebra over As is a space ) endowed with linear operations %, of arity n > 1 where *2
satisfies, for all vy, v2,v3 € V,

(*2 01 x2) (v1,v2,v3) = *2 (x2 (v1,v2),v3)
I I
(*2 09 *2) (1'17 v2, 1‘3) = %2 (Z,‘h*g (1,‘27 1'3)) 5
Using infix notation for the binary operation x2, we obtain the relation
(v1 *2v2) *2v3 = v1 *2 (V2 *2v3),

so that algebras over As are associative algebras.

In the same way, there are operads for

> Liealg; > duplicial alg. ;
> pre-Lie alg. ; > diassociative alg. ;
» dendriform alg. ; > brace alg.
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> offer a formalism to compute over operations;
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Scope of operads

As main benefits, operads
> offer a formalism to compute over operations;
> allow us to work virtually with all the structures of a type;

> lead to discover the underlying combinatorics of types of algebras.

Endowing a set of combinatorial objects with an operad structure helps to
> highlight elementary building block for the objects;
» build combinatorial structures (graded graphs, posets, lattices, etc.);

> enumerative prospects and discovery of statistics.
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Syntax trees
An alphabet is a graded set © :=| |, -, ©(n).

Let S(®) be the set of ®-syntax trees, defined recursively by
> | e S(®);
> ifac Oandty,... € S(0), thena(ty,..., .)€ S(V).

Let t € S(®). Some definitions:
> |is the leaf;

> the degree deg(t) of tis its number of internal nodes;

> the arity || of t is its number of leaves.
— Example —
Let & := 5(2) U ©(3) such that ©(2) = {a,b} and ©(3) = {c}.

denotes the ¢-tree

/T ,b\b c(l,cCadll),LoCad), (L)), o0, b))
a’ ¢ o having degree 8 and arity 12.
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Compositions of syntax trees

Let t,5 € S(®). For each i € [|t|], the partial composition t o; 5 is the tree
obtained by grafting the root of s onto the ith leaf of t.

— Example —
|
®
I
i ‘ o,
7 % b o5 PN = 71N /N
AN /N a @ a b b
b /N /1N /\ /N /\
/ N\ 7N\ a

c
/N /N
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Compositions of syntax trees

Let t,5 € S(®). For each i € [|t|], the partial composition t o; 5 is the tree
obtained by grafting the root of s onto the ith leaf of t.

— Example —
:
| - —
¢~ ‘ =
-~ e >y o5 ZLN = 71 N /N
AN AN a @ a b b
b /N AN /N /\
/ N\ a c]
//‘\\
Let t, 51, ..., 5¢ be ©-trees. The full composition to [s1,..., 5] is

obtained by grafting simultaneously the roots of each s; onto the ith leaf
of t.

— Example —

a
Il
)
)

16/40



Free operads
Let © be an alphabet.

17/40



Free operads
Let © be an alphabet.

The free operad on & is the operad on the set S(®) wherein

» elements of arity n are the ®-trees of arity n;

17/40



Free operads
Let © be an alphabet.

The free operad on & is the operad on the set S(®) wherein
» elements of arity n are the ®-trees of arity n;

> the partial composition map o, is the one of the ©-trees;

17/40



Free operads
Let © be an alphabet.

The free operad on & is the operad on the set S(®) wherein
» elements of arity n are the ®-trees of arity n;
> the partial composition map o, is the one of the ©-trees;

» the unit isl.

17/40



Free operads
Let © be an alphabet.

The free operad on & is the operad on the set S(®) wherein
» elements of arity n are the ®-trees of arity n;
> the partial composition map o, is the one of the ©-trees;

» the unit isl.

Let ¢ : & — S(®) be the natural injection (made implicit in the sequel).

17/40



Free operads
Let © be an alphabet.

The free operad on & is the operad on the set S(®) wherein
» elements of arity n are the ®-trees of arity n;
> the partial composition map o, is the one of the ©-trees;

> the unit isl.
Let ¢ : & — S(®) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any alphabet 5, any operad (/, f

: : — >
and any map f : & — () preserving o
the arities, there exists a unique op- N
erad morphism ¢ : S(®) — ) such 7 ¢
that f = ¢o .

17/40
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Factors and prefixes

Let t,5 € S(®).

If t decomposes as
t = T o; (50 I:tla"'7t[5|:|)

for some trees t, ty, ..., t|;, and i € [[t[], then s is a factor of t.

This property is denoted by 5 < t.

— Example —
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Factors and prefixes

Let t,5 € S(®).
If t decomposes as
t=r1o; (so [tl,...,t[5|])
for some trees t, ty, ..., t|;, and i € [[t[], then s is a factor of t.
This property is denoted by 5 < t.
If in the previous decomposition v =|, then s is a prefix of t.

This property is denoted by 5 <, t.

— Example —
|
b |
| N [ b
c c/ b /b C/ \b
/\\b =<f a/\\b a/ \C c \ <p AN L
/A IN NI N 205 2 L 8 €
b /\ 2NV AR\
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A G-tree t avoids a G-tree s if 55t

For any P C S(®), let
(P)={te S(¥): foralls € P,sxft}.

— Example —

> ( A A ) is enumerated by 1,2,4,8,16,32,64,128, ... .

> ( NN C/’T ) is enumerated by 1,1,2,4,9,21,51,127, ... (A001006).

— Question —
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Pattern avoidance and enumeration
A G-tree t avoids a G-tree s if 55t

For any P C S(®), let
(P)={tes(®): foralls € P,sxft}.

— Example —

> ( A A ) is enumerated by 1,2,4,8,16,32,64,128, ... .

> ( AR T ) is enumerated by 1,1,2,4,9,21,51,127,... (A001006).
|

> ( a,,a a," "~a ’ b ) is enumerated by 1,2,5,13,35,96,267,750,... (A005773).
b

— Question —
Enumerate A (P) w.r.t. the arities of the trees.

19/40
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Formal power series of trees

Forany P, O C S(®), let

F(P,Q) := Z t.
tes(v)
teA(P)

VsGQ,s%l

This is the formal sum of all the -trees avoiding as factors all patterns of
P and avoiding as prefixes all patterns of O.
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Formal power series of trees

Forany P, O C S(®), let

F(P,Q) := Z {.
tes(®)
teA(P)

VsGQ,s%l

This is the formal sum of all the ®-trees avoiding as factors all patterns of
‘P and avoiding as prefixes all patterns of O.

Since
> F(P,0) is the formal sum of all the trees of A (P);
> the linear map t — 2!l sends (P, () to the generating series
of A(P);

the series (P, Q) contains all the enumerative data about the trees
avoiding P.

20/40



System of equations

When @, P, and O satisfy some conditions, F(P, O) expresses as an
inclusion-exclusion formula involving simpler terms F (P, 5;).

— Theorem —
The series F'(P, O) satisfies
F(P,Q)=I+ Y > (—1)'+as[F (P, S51),...,F (P, Sk)]-
k> >1

>1
2€0(k) [RrM), . RO LcmM(PUQ).)
(S1,.00SE)=RM {.. 1RO
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System of equations

When @, P, and O satisfy some conditions, F(P, O) expresses as an
inclusion-exclusion formula involving simpler terms F (P, 5;).

— Theorem —
The series F'(P, O) satisfies
F(P7 Q) :I+ Z Z (_1)1+[aa [F (7:’7 1)7"’7F(737 k)}
k> >1

>1
2€0(k) {RM), RO Com((PUQ).)
(S1,.00SE)=RM {.. 1RO

This leads to a system of equations for the generating series of /A (P).

Indeed, the generating series of A\ (P) is the series '(P, () where

F(P,Q)=z+ > > CORMN | REGAEDE

k>1 0>1 i€lk]
ac (k) {R(l) ..... R(“}gsﬁ((v:ug)a)
(S515000,55)=RMW 1. .FRE)
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System of equations

— Example —
For P := { a,/l‘\ . }, we obtain the system of formal power series of trees

F(P,0) =+ as [F(P,{a}), F(P,0)] + a5 [F(P,0), F(P, {bv})]
—ad [F(P, {a}), F(P, {b})] + b3 [F(P,0), F(P,0)],
F(P,{a}) =I+ b5 [F(P,0), F(P,0)],
F(P,{b}) =+ as [F(P,{a}), F(P,0)] + as [F(P, D), F(P,{b})]
—ad [F(P, {a}), F(P, {p})].
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For P := { a,fl‘n . }, we obtain the system of formal power series of trees

F(P,0) =+ as [F(P,{a}), F(P,0)] + a5 [F(P,0), F(P, {bv})]
— a8 [F(P,{a}), F(P,{p})] + b3 [F(P,0),F(P,0)],
F(P,{a}) =|+ b5 [F(P,0),F(P,0)],
F(P,{b}) =+ as [F(P,{a}), F(P,0)] + as [F(P, D), F(P,{b})]
—ac [F(P,{a}), F(P, {p})].
This leads to the system of generating series
F(P,0) = z+ F(P,{a})F(P,0) + F(P,0)F(P,{v})
— F(P,{ah) F'(P,{p}) + F(P,0) (P, 0),
F(P,{a}) =z + F(P,0)F(P,0),
F(P,{v}) = z+ F(P,{a}) F(P,0) + F(P,0)F(P,{b})
— F(P,{ahF(P,{p}).
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System of equations

— Example —
For P := { a,fl‘n . }, we obtain the system of formal power series of trees

F(P,0) =+ a5 [F(P, {a}), F(P,0)] + as [F(P, D), F(P, {b})]
—as [F(P,{a}), F(P, {p})] + b5 [F(P, 0), F(P,0)],
F(P,{a}) =|+ b5 [F(P,0),F(P,0)],
F(P,{v}) =1+ as [F(P, {a}), F(P,0)] + as [F(P, D), F(P, {b})]
—ac [F(P,{a}), F(P, {p})].
This leads to the system of generating series
F(P,0) = z+ F(P,{a})F(P,0) + F(P,0)F(P,{v})
— F(P,{ah) F'(P,{p}) + F(P,0) (P, 0),
F(P,{a}) = z+ F(P,0)F(P,0),
F(P,{v}) = z+ F(P,{a}) F(P,0) + F(P,0)F(P,{b})
- F(P,{ah) (P, {p}).
As a consequence, (P, D) satisfies

2= F(P,0)+ 2+ ) F(P,0)° = F(P,0) + F(P,0) = 0.
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Operads and presentations

Let J be an operad. A congruence of (7 is an equivalence relation = on
preserving the arities and such that = = 2/ and y = ¢/ imply
zo;y=a'o;y foralli € [|z]].
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Let () be an operad. A congruence of (U is an equivalence relation = on
preserving the arities and such that = = 2/ and y = ¢/ imply
xo;y=a'o;y foralli e [|z].

A presentation of (7 is a pair (¢, =) such that @ is an alphabet and = is a

congruence of (J satisfying
~ 5(6)/=.

— Example —

The operad Motz admits the presentation (¢, =) where

={ood%}
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Operads and presentations

Let () be an operad. A congruence of (U is an equivalence relation = on
preserving the arities and such that = = 2/ and y = ¢/ imply
zo;y=a'o;y foralli € [|z]].

A presentation of (7 is a pair (¢, =) such that @ is an alphabet and = is a
congruence of (J satisfying

~ 5(0)/=.

— Example —

The operad Motz admits the presentation (¢, =) where

- foorste)

and = is the smallest operad congruence satisfying

o1 = 092 y

o1 = 09 )
o1 =] o3 9
o1 = 03
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Operads and patterns

Let () be an operad admitting a presentation (¢, =).
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Let (J be an operad admitting a presentation (©, =).

A basis of ( is a subset /7 of S(®) such that for any [t]= € S(®)/=, there
exists a unique s € [t]= N

In most cases, /7 can be described as set of “-trees avoiding a subset P
of S(®).
— Example —
The set /7, described as the set of ¢-trees avoiding
Pi = { 01 b o1 , 01 , o1 }7

is a basis of Motz.
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Operads and patterns

Let (J be an operad admitting a presentation (©, =).

A basis of ( is a subset /7 of S(®) such that for any [t]= € S(®)/=, there
exists a unique s € [t]= N

In most cases, /7 can be described as set of “-trees avoiding a subset P
of S(®).

— Example —
The set /7, described as the set of ¢-trees avoiding

Pri = { 01 ) o1 ) o1 ) o1 }7

is a basis of Motz.

Rewrite systems on -trees are good tools to compute bases (we find
terminating and confluent orientations = of =).
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Operads and enumeration

Let X' be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad  x;

25/40



Operads and enumeration

Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad  x;
2. exhibiting a presentation (¢, =) of () y and a basis /7;

25/40



Operads and enumeration

Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad  x;
2. exhibiting a presentation (¢, =) of () y and a basis /7;
3. computing the series ' (P, 0) where P - is a set of -trees
satisfying A (Pr) =

25/40



Operads and enumeration

Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad  x;
2. exhibiting a presentation (¢, =) of () y and a basis /7;
3. computing the series ' (P, 0) where P - is a set of -trees
satisfying A (Pr) =

— Example —

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

25/40



Operads and enumeration

Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad  x;
2. exhibiting a presentation (¢, =) of () y and a basis /7;
3. computing the series ' (P, 0) where P - is a set of -trees
satisfying A (Pr) =

— Example —

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let a := Nk

,andP:{da c; aé C:}.
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Operads and enumeration
Let X be a family of combinatorial objects we want enumerate.
The approach using operads consists in
1. endowing X with the structure of an operad  x;
2. exhibiting a presentation (¢, =) of () y and a basis /7;
3. computing the series ' (P, 0) where P - is a set of -trees
satisfying A (Pr) =

— Example —

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let a := 0O, c := ,andP:{ AN Cc}.
I

We have
F(P,0) =1+ ad [F(P,{a,c}), F(P,0)] + 3 [F(P,{a, c}), F(P,0), F(P,0)],
F(P,{a,c}) =|,
so that, the generating series of Motzkin paths satisfies

F(P,0) =z + zF(P,0) + zF (P, 0)2.
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Context-free grammars

Let A =117 be aset where | is a set of variables and 7 is a set of
terminal symbols.
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Context-free grammars

Let A =1 U7 be aset where | is a set of variables and / is a set of

terminal symbols.

A rule is a pair (,0) € V' x A*. Aset R of rules specifies a rewrite rule —
on A* by setting
UT WUV W

for any u,w € A* provided that (z,v) € R.

— Example —
Let V := {xz,y},7 := {a,b,c},and R := {(z,b) , (z, zay), (v, ac) }.

We have
bxxr — brayr — bbayx — bbaacz.
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Regular tree grammars

Let |/ be a set of variables and / be an alphabet of terminal symbols.
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Regular tree grammars

Let | be a set of variables and /" be an alphabet of terminal symbols.

A (V') 7)-tree is a planar rooted tree where internal nodes are labeled on
and leaves are labeled on
Arule is a pair (z,t) where z € IV and tisa (1, 7)-tree. A set R of rules
specifies a rewrite rule — on the set of all (17, 7')-trees by setting

%

\ A
T /e\

JALIAN

for any (17, 7)-tree s having a leaf labeled by z, provided that (z,t) € R.
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Regular tree grammars

Let | be a set of variables and /" be an alphabet of terminal symbols.

A (V') 7)-tree is a planar rooted tree where internal nodes are labeled on
and leaves are labeled on

Arule is a pair (z,t) where z € IV and tisa (1, 7)-tree. A set R of rules
specifies a rewrite rule — on the set of all (17, 7')-trees by setting
%

! /\\
T /
/ N\

for any (17, 7)-tree s having a leaf labeled by z, provided that (z,t) € R.

— Example —
Let V' := {z,y}, T := {a,b} where |a| := 1, |b| := 2,and R := {(;r,, a) , (y, i ,) } .
Yy )
We have : b
b b a a
g a @ dha = b :

28/40



General generation

Objectives:
> Introduce generating systems for any kind of combinatorial objects;
> Retrieve the generation of words and of trees as special cases;

> Develop a toolbox for the enumeration of combinatorial objects.
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General generation

Objectives:
> Introduce generating systems for any kind of combinatorial objects;
> Retrieve the generation of words and of trees as special cases;

> Develop a toolbox for the enumeration of combinatorial objects.

— Key idea —
Use colored operads, where

> colors play the role of variables and terminal symbols;

> Formal series on colored operad and their operations support enumeration.
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Colored operads

Colored operads are algebraic structures formalizing the notion of partial
operations and their composition.
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Colored operads

Colored operads are algebraic structures formalizing the notion of partial
operations and their composition.

A colored operad is a quadruplet (¢, C, 0;, 1) where
1. @ is a finite set of colors;

2. Cis a set of the form

C:= |_| Cla,u);

(a,u)eCxct
3. o; is a map, called partial composition map,
0; : Cla,u) X C(uz,v) = C(a,uo0;v), 1< < ul,
where v o; v is the word obtained by replacing the ith letter of u by v;

4. forany ¢ € ¢, 1. is an element of C(c, ¢) called c-colored unit.

This data has to satisfy some axioms, similar to the ones of operads.
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Colored operations

Any element « of C(a, u) can be seen as a colored operation

where a color is assigned to the output and to each input of z.
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Colored operations

Any element « of C(a, u) can be seen as a colored operation

where a color is assigned to the output and to each input of z.

Moreover, the partial composition map requires a condition on the colors:

O; Y =
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Bud operads

Let () be an operad and ¢ be a set of colors.
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Bud operads
Let () be an operad and ¢ be a set of colors.

The ¢-bud operad of (V is the colored operad B¢ (V) wherein:

» By () (a,u) is the set of all triples (a, x, 1) where = € () and
(a,u) € € x ¢lel,

> The partial composition map is defined by
(ayx,u) 05 (U, y,v) := (a,2 05 1,105 V)
where = o; i is the partial composition of

» The colored units are the triples (¢, 1, ¢) where 1 is the unit of

— Proposition —

For any set of colors €, the construction () — B¢ () is a functor from the
category of operads to the category of colored operads.
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Examples of bud operads
The elements of B (As) are triples (a, x|, 1) where (a,u) € ¢ x ¢,

— Example —

In By,2,3) (As), (2,%4,3112) 02 (1,%3,233) = (2, %6, 323312) .

33/40



Examples of bud operads
The elements of B (As) are triples (,%|,[, 1) where (a,u) € ¢ x ¢,
— Example —

In B{172’3}(AS),( ,%*4,3112) o2 (1, *3,233) = (2, %6, 323312) .

The elements of _ Example —
Be(S(®)) are - ‘
typed -syntax trees, 9 & ‘a? € B{1,2,3,4}(S({a7c}))'

that are (-trees with

colors assigned with the ) ) :
X This element is drawn as .

root and with each leaf. < e
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Examples of bud operads
The elements of B (As) are triples (,%|,[, 1) where (a,u) € ¢ x ¢,

InByy o3} (As), (2, *4,31

The elements of
Be(S(®)) are -
typed &-syntax trees,
that are (-trees with
colors assigned with the
root and with each leaf.

The elements of
B¢ (Motz) are Motzkin
paths having a global
color and a color as-
signed with each point.

— Example —

) oz (1,%3,233) = (2, %6, 3233

).

— Example —

This element is drawn as

( , c,,l“:a, ) € B{1,2,3,4}(S({a, c})).

— Example —

(1 gon,

This element is drawn as

)eBde@
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Bud generating systems

A bud generating system is a quintuplet 5 := (), ¢, R, a, ") where

1. (U is an operad, the ground operad;
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Bud generating systems

A bud generating system is a quintuplet 5 := (), ¢, R, a, ") where
1. (Jis an operad, the ground operad;
2. ¢ is aset of colors;
3. R C Be(0) is a set of rules;
4. a € Cis the initial color;

5. 1 C € is the set of terminal colors.

Each element (¢, z, 1) of R can be thought as rule having ¢ as left member
and u as right member.
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Generation
The set R specifies the rewrite rule — on B¢ () by setting

T —=ro;r

forany © € B¢ (), ¢ € [|z|], and r € R. This is the derivation relation.
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An element x of B¢ (()) is generated by B if
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and all input colors of x are in /. These elements form the language of 5.
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Generation
The set R specifies the rewrite rule — on B¢ () by setting

r = wor
forany © € B¢ (), ¢ € [|z|], and r € R. This is the derivation relation.
An element x of B¢ (()) is generated by B if

]l(/—>"'—>.”17

and all input colors of x are in /. These elements form the language of 5.

The set R specifies also the rewrite rule ~ on B¢ (V) by setting
T 0 [y,

forany » € Be((V) and rq,...,7,| € R. This is the synchronous
derivation relation.

An element = of By (V) is synchronously generated by B if
1(1 S I N

and all input colors of = are in /. These elements form the synchronous
language of B.
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Generation of particular Motzkin paths
Let the bud generating system 5 := (Motz, {1,2}, R, |,{l,2}) where

R:={(1,00,22),(1,5%,111)}.
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Generation of particular Motzkin paths
Let the bud generating system 5 := (Motz, {1,2}, R, |,{l,2}) where

R:={(1,00,22),(1,5%,111)}.

— Example —

There are in 3 the derivations

1 1
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Generation of particular Motzkin paths
Let the bud generating system 13 := (Motz, {1,2}, R, |, {l,2}) where

R={(1,00,22), (1, 6%, 111) } -

— Example —
There are in I3 the derivations
1, — — — — —
— Proposition —

There is a one-to-one correspondence between the set of Motkzin paths without
consecutive OO steps and the language of 5.

These paths are enumerated by

1,1,1,3,5,11,25, 55,129,303, 721, 1743, . .. (A 104545).
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Balanced binary trees

A balanced binary tree is a binary tree t such that, for any internal node u

of {, the height of the left subtree and of the right subtree of u differ by at
most 1.

The first balanced binary trees are
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Balanced binary trees

A balanced binary tree is a binary tree t such that, for any internal node u
of {, the height of the left subtree and of the right subtree of u differ by at
most 1.

The first balanced binary trees are

These trees are enumerated by

1,1,2,1,4,6,4,17,32,44,60,70,... (A006265).
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Balanced binary trees

A balanced binary tree is a binary tree t such that, for any internal node u
of {, the height of the left subtree and of the right subtree of u differ by at
most 1.

The first balanced binary trees are

These trees are enumerated by

1,1,2,1,4,6,4,17,32,44,60,70,... (A006265).

Their generating series is the specialization F(x,0) where

F(z,y)=2+F (;1,'2 + 2y, :1:) )
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Generation of balanced binary trees

Let the bud generating system 3 := (S(®),{1,2}, R, 1, {1}) where
= 0(2) :={a} and

{0 (o) ()
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Generation of balanced binary trees

Let the bud generating system 3 := (S(®),{1,2}, R, 1, {1}) where
= 0(2) :={a} and

e (G B CRR A GRS

— Example —

There are in 3 the derivations
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Generation of balanced binary trees
Let the bud generating system 3 := (S(®),{1,2}, R, 1, {1}) where

= 5(2) :={a} and
RZ:{(a/a\a )7(7/3\7 >7<7/a\7 ))(7') )}
— Example —
There are in 3 the derivations
I

| g . ~,

1~ a2 ~» ~ . L~ ° 7 ~ a a a’ a
— Proposition —

There is a one-to-one correspondence between the set of balanced binary trees and
the synchronous language of 5.
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Some properties

— Proposition —

For any proper context-free grammar G, there exists a bud generating system
B := (As, ¢, R, a, ') such that the language generated by G is in one-to-one
correspondance with the language of 5.
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Some properties

— Proposition —

For any proper context-free grammar G, there exists a bud generating system
B := (As, ¢, R, a, ') such that the language generated by G is in one-to-one
correspondance with the language of 5.

— Proposition —

For any regular tree grammar G, there exists a bud generating system
B = (S(¥),¢, R, a, ) such that the language generated by G is in one-to-one
correspondance with the language of /5.

— Proposition —

For any bud generating system /3, the synchronous language of 5 is a subset of the
language of 5.
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Random generation

For any ¢ € ¢, let R, be the subset of R of the elements having ¢ as
output color.
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Random generation

For any c € ¢, let R, be the subset of R of the elements having c as
output color.

Algorithm RBS:

> Input:
1. abud generating system 13 := (00, ¢, R, a,1);
2. Aninteger k > 0.

P Output: an element of the synchronous language of /5.
1. Letx :=1,;

2. Repeat k times:
2.1 Forany i € [|x|], pick y; uniformly at random in R . where ¢ is the ith input color of z;
22 Setx:=xo [,z/l,,‘,,!/‘_,“];

3. If all input colors of x belong to
3.1 Return z;

4. Otherwise:
4.1 Return failure.
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Random generation

For any c € ¢, let R, be the subset of R of the elements having c as
output color.

Algorithm RBS:

> Input:
1. abud generating system 13 := (00, ¢, R, a,1);
2. Aninteger k > 0.

P Output: an element of the synchronous language of /5.

1. Letx :=1,;

2. Repeat k times:
2.1 Forany i € [|x|], pick y; uniformly at random in R . where ¢ is the ith input color of z;
22 Setx:=xo [,1/1,,‘,,!/‘_,.‘];

3. If all input colors of x belong to
3.1 Return z;

4. Otherwise:
4.1 Return failure.

— Proposition —

If B=(0,¢,R,a, ) issynchronously unambiguous, the RBS is a uniform
random generator of the elements of the synchronous language of 5.
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