Combinatorial operads, rewrite systems, and formal grammars

Samuele Giraudo
LIGM, Université Paris-Est Marne-la-Vallée

Computational Logic and Applications

July 1–2, 2019
Outline

Operads

Enumeration

Generation
Outline

Operads
Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:

- monoids;
- groups;
- lattices;
- associative alg.;
- Hopf bialg.;
- Lie alg.;
- pre-Lie alg.;
- dendriform alg.;
- duplicial alg.
Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:

- monoids;
- groups;
- lattices;
- associative alg.;
- Hopf bialg.;
- Lie alg.;
- pre-Lie alg.;
- dendriform alg.;
- duplicial alg.

Such types of algebras are specified by

1. a collection of operations;
2. a collection of relations between operations.
Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:

- monoids;
- groups;
- lattices;
- associative alg.;
- Hopf bialg.;
- Lie alg.;
- pre-Lie alg.;
- dendriform alg.;
- duplicial alg.

Such types of algebras are specified by

1. a collection of operations;
2. a collection of relations between operations.

— Example —

The type of monoids can be specified by

1. the operations \star (binary) and $\mathbb{1}$ (nullary);
2. the relations $(x_1 \star x_2) \star x_3 = x_1 \star (x_2 \star x_3)$ and $x \star \mathbb{1} = x = \mathbb{1} \star x$.
Working with operations

Strategy to study types of algebras → add a level of indirection by working with algebraic structures where

- elements are operations \(x_1 \ldots \)
- having \(n = |x| \) inputs and 1 output;
- the operation is the composition operation of operations. If \(x \) and \(y \) are two operations,
 1. by selecting an input of \(x \) specified by its position \(i \);
 2. and by grafting the output of \(y \) onto this input,
we obtain the new operation \(x_1 \mid x \mid i \ldots \ldots \circ i \mid y \mid 1 \ldots \ldots = x_1 \mid x \mid + \mid y \mid - 1 \ldots \ldots \).
Working with operations

Strategy to study types of algebras \(\rightsquigarrow \) add a level of indirection by working with algebraic structures where

- elements are operations

\[
\begin{array}{c}
x \\
1 \ldots n
\end{array}
\]

having \(n = |x| \) inputs and 1 output;
Working with operations

Strategy to study types of algebras → add a level of indirection by working with algebraic structures where

- elements are operations

 ▶ having $n = |x|$ inputs and 1 output;

- the operation is the \textit{composition} operation of operations.
Working with operations

Strategy to study types of algebras \sim add a level of indirection by working with algebraic structures where

- elements are operations

\[x \]

\[
\begin{array}{c}
1 \\
\ldots \\
n
\end{array}
\]

having \(n = |x| \) inputs and 1 output;

- the operation is the **composition** operation of operations. If \(x \) and \(y \) are two operations,

1. by selecting an input of \(x \) specified by its position \(i \);
2. and by grafting the output of \(y \) onto this input,
Working with operations

Strategy to study types of algebras \(\sim \) add a level of indirection by working with algebraic structures where

- elements are operations

\[
\begin{array}{c}
x \\
1 \ldots n
\end{array}
\]

having \(n = |x| \) inputs and 1 output;

- the operation is the composition operation of operations. If \(x \) and \(y \) are two operations,
 1. by selecting an input of \(x \) specified by its position \(i \);
 2. and by grafting the output of \(y \) onto this input,

we obtain the new operation

\[
\begin{array}{c}
x \\
1 \ldots i \ldots |x|
\end{array} \circ_i \begin{array}{c}
y \\
1 \ldots |y|
\end{array} = \begin{array}{c}
x \\
1 \ldots \ldots |x|+|y|-1
\end{array}
\]

\[
\begin{array}{c}
y \\
i \ldots i+|y|-1
\end{array}
\]
Operads

Operads are algebraic structures formalizing the notion of operations and their composition.
Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple \((\mathcal{O}, \circ_i, 1)\) where

1. \(\mathcal{O}\) is a graded set

\[
\mathcal{O} := \bigsqcup_{n \geq 1} \mathcal{O}(n);
\]
Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple \((\mathcal{O}, \circ_i, 1)\) where

1. \(\mathcal{O}\) is a graded set
 \[
 \mathcal{O} := \bigsqcup_{n \geq 1} \mathcal{O}(n);
 \]

2. \(\circ_i\) is a map, called partial composition map,
 \[
 \circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n + m - 1), \quad 1 \leq i \leq n, \ 1 \leq m;
 \]
Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple \((\mathcal{O}, \circ_i, 1)\) where

1. \(\mathcal{O}\) is a graded set

\[
\mathcal{O} := \bigsqcup_{n \geq 1} \mathcal{O}(n);
\]

2. \(\circ_i\) is a map, called partial composition map,

\[
\circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n + m - 1), \quad 1 \leq i \leq n, \; 1 \leq m;
\]

3. \(1\) is an element of \(\mathcal{O}(1)\) called unit.
Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple \((\mathcal{O}, \circ_i, \mathbb{1})\) where

1. \(\mathcal{O}\) is a graded set

\[
\mathcal{O} := \bigsqcup_{n \geq 1} \mathcal{O}(n);
\]

2. \(\circ_i\) is a map, called partial composition map,

\[
\circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n + m - 1), \quad 1 \leq i \leq n, \ 1 \leq m;
\]

3. \(\mathbb{1}\) is an element of \(\mathcal{O}(1)\) called unit.

This data has to satisfy some axioms.
Operad axioms

The **associativity** relation

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

says that the pictured operation can be constructed from top to bottom or from bottom to top.
Operad axioms

The associativity relation

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

says that the pictured operation can be constructed from top to bottom or from bottom to top.

The commutativity relation

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]

\[1 \leq i < j \leq |x|\]

says that the pictured operation can be constructed from left to right or from right to left.
Operad axioms

The **associativity** relation

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

\[1 \leq i \leq |x|, 1 \leq j \leq |y|\]

says that the pictured operation can be constructed from top to bottom or from bottom to top.

The **commutativity** relation

\[(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y\]

\[1 \leq i < j \leq |x|\]

says that the pictured operation can be constructed from left to right or from right to left.

The **unitality** relation

\[1 \circ_1 x = x = x \circ_i 1\]

\[1 \leq i \leq |x|\]

says that 1 is the identity map.
Operad on permutations

Let Per be the operad wherein:

- $\text{Per}(n)$ is the set of all permutations of size n, seen through their permutation matrices.

--- Example ---

The partial composition $\sigma \circ_i \nu$ is the permutation matrix obtained by replacing the ith point of σ by a copy of ν.

--- Example ---

The unit is the unique permutation of size 1.

--- Example ---

has arity 9 and denotes the permutation 378651294.
Operad on permutations

Let Per be the operad wherein:

- $\text{Per}(n)$ is the set of all permutations of size n, seen through their permutation matrices.

— Example —

- The partial composition $\sigma \circ_i \nu$ is the permutation matrix obtained by replacing the ith point of σ by a copy of ν.

— Example —

- The unit is the unique permutation of size 1.
Operad on permutations

Let Per be the operad wherein:

- $\text{Per}(n)$ is the set of all permutations of size n, seen through their permutation matrices.

--- Example ---

- The partial composition $\sigma \circ_i \nu$ is the permutation matrix obtained by replacing the ith point of σ by a copy of ν.

--- Example ---

- The unit is the unique permutation of size 1.
Operad on paths

Let Path be the operad wherein:

- $\text{Path}(n)$ is the set of all paths with n points, that are words $u_1 \ldots u_n$ of elements of \mathbb{N}.

— Example —

<table>
<thead>
<tr>
<th>has arity 13 and denotes the path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212232100112.</td>
</tr>
</tbody>
</table>
Operad on paths

Let **Path** be the operad wherein:

- **Path**\((n)\) is the set of all paths with \(n\) points, that are words \(u_1 \ldots u_n\) of elements of \(\mathbb{N}\).

Example

<table>
<thead>
<tr>
<th>Path (n)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has arity 13 and denotes the path 1212232100112.</td>
</tr>
</tbody>
</table>

- The partial composition \(u \circ_i v\) is the path obtained by replacing the \(i\)th point of \(u\) by a copy of \(v\).

Example

<table>
<thead>
<tr>
<th>Partial Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Operad on paths

Let \textbf{Path} be the operad wherein:

- \textbf{Path}(n) is the set of all paths with \(n \) points, that are words \(u_1 \ldots u_n \) of elements of \(\mathbb{N} \).

\[\text{Example} \]

\[\text{has arity 13 and denotes the path 1212232100112.} \]

- The partial composition \(u \circ_i v \) is the path obtained by replacing the \(i \)th point of \(u \) by a copy of \(v \).

\[\text{Example} \]

\[011232101 \circ_4 11224 = 0113344632101 \]

- The unit is the unique path \(0 \) of size 1, depicted as \(\circ \).
Some suboperads of Path

For any $m \geq 0$, an m-Dyck path is a path starting and ending with 0 and made of steps \(\binom{m}{0} \) and \(\circ \).

— Example —

\[\begin{array}{c}
\hline
\hline
\hline
\hline
\end{array}
\]

is a 2-Dyck path of size 10.
Some suboperads of Path

For any $m \geq 0$, an m-Dyck path is a path starting and ending with 0 and made of steps $\begin{array}{c} m \\ 0 \end{array}$ and \circ.

— Example —

is a 2-Dyck path of size 10.

— Proposition —

For any $m \geq 0$, the set $\text{Dyck}^{(m)}$ of all m-Dyck paths is a suboperad of Path.
Some suboperads of Path

For any $m \geq 0$, an m-Dyck path is a path starting and ending with 0 and made of steps $\begin{array}{c} m \\ 0 \end{array}$ and $\begin{array}{c} 0 \\ m \end{array}$.

--- Example ---

is a 2-Dyck path of size 10.

--- Proposition ---

For any $m \geq 0$, the set $\text{Dyck}^{(m)}$ of all m-Dyck paths is a suboperad of Path.

A Motzkin path is a path starting and ending with 0 and made of steps $\begin{array}{c} 0 \\ \circ \end{array}$, $\begin{array}{c} \circ \\ 0 \end{array}$, and $\begin{array}{c} \circ \circ \end{array}$.

--- Example ---

is a Motzkin path of size 16.
Some suboperads of Path

For any $m \geq 0$, an m-Dyck path is a path starting and ending with 0 and made of steps $\begin{array}{c} 0 \\ \vdots \\ \end{array}$ and $\begin{array}{c} \odot \\ \vdots \\ \end{array}$.

— Example —

is a 2-Dyck path of size 10.

— Proposition —

For any $m \geq 0$, the set $Dyck^{(m)}$ of all m-Dyck paths is a suboperad of Path.

A Motzkin path is a path starting and ending with 0 and made of steps \odot, \circ, and \odot.

— Example —

is a Motzkin path of size 16.

— Proposition —

The set Motz of all Motzkin paths is a suboperad of Path.
Algebras over operads

Let \mathcal{O} be an operad. An algebra over \mathcal{O} is a space \mathcal{V} equipped, for all $x \in \mathcal{O}(n)$, with linear maps

$$x : \mathcal{V} \otimes \cdots \otimes \mathcal{V} \to \mathcal{V}$$
Algebras over operads

Let \mathcal{O} be an operad. An algebra over \mathcal{O} is a space \mathcal{V} equipped, for all $x \in \mathcal{O}(n)$, with linear maps

$$x : \mathcal{V} \otimes \cdots \otimes \mathcal{V} \rightarrow \mathcal{V}$$

such that 1 is the identity map on \mathcal{V}
Algebras over operads

Let \mathcal{O} be an operad. An algebra over \mathcal{O} is a space \mathcal{V} equipped, for all $x \in \mathcal{O}(n)$, with linear maps

$$x : \mathcal{V} \otimes \cdots \otimes \mathcal{V} \to \mathcal{V}$$

such that 1 is the identity map on \mathcal{V} and the compatibility relation

$$x \circ_i y = x_{v_1 \cdots v_{|x|+|y|-1}}$$

holds for any $x, y \in \mathcal{O}$, $i \in [|x|]$, and $v_1, \ldots, v_{|x|+|y|-1} \in \mathcal{V}$.
Algebras over operads

— Example —

Let A_s be the associative operad defined by $A_s(n) := \{\ast_n\}$ for all $n \geq 1$ and $\ast_n \circ_i \ast_m := \ast_{n+m-1}$.
Algebras over operads

— Example —

Let \(\text{As} \) be the associative operad defined by \(\text{As}(n) := \{ \star_n \} \) for all \(n \geq 1 \) and \(\star_n \circ_i \star_m := \star_{n+m-1} \). This operad is minimally generated by \(\star_2 \).
Algebras over operads

— Example —

Let \(\mathbf{As} \) be the associative operad defined by \(\mathbf{As}(n) := \{\star_n\} \) for all \(n \geq 1 \) and \(\star_n \circ_i \star_m := \star_{n+m-1} \). This operad is minimally generated by \(\star_2 \).

Any algebra over \(\mathbf{As} \) is a space \(\mathcal{V} \) endowed with linear operations \(\star_n \) of arity \(n \geq 1 \).
Algebras over operads

— Example —

Let \textbf{As} be the associative operad defined by $\textbf{As}(n) := \{\star_n\}$ for all $n \geq 1$ and $\star_n \circ_i \star_m := \star_{n+m-1}$. This operad is minimally generated by \star_2.

Any algebra over \textbf{As} is a space \mathcal{V} endowed with linear operations \star_n of arity $n \geq 1$ where \star_2 satisfies, for all $v_1, v_2, v_3 \in \mathcal{V}$,

$$(\star_2 \circ_1 \star_2)(v_1, v_2, v_3) \quad \parallel \quad (\star_2 \circ_2 \star_2)(v_1, v_2, v_3)$$
Algebras over operads

— Example —

Let \textbf{As} be the associative operad defined by $\textbf{As}(n) := \{\star_n\}$ for all $n \geq 1$ and $\star_n \circ_i \star_m := \star_{n+m-1}$. This operad is minimally generated by \star_2.

Any algebra over \textbf{As} is a space \mathcal{V} endowed with linear operations \star_n of arity $n \geq 1$ where \star_2 satisfies, for all $v_1, v_2, v_3 \in \mathcal{V}$,

$$(\star_2 \circ_1 \star_2)(v_1, v_2, v_3) = \star_2(\star_2(v_1, v_2), v_3)$$

\parallel

$$(\star_2 \circ_2 \star_2)(v_1, v_2, v_3)$$

Using infix notation for the binary operation \star_2, we obtain the relation

$$(v_1 \star_2 v_2) \star_2 v_3 = v_1 \star_2 (v_2 \star_2 v_3),$$

so that algebras over \textbf{As} are associative algebras.

In the same way, there are operads for $\triangleright\text{Lie alg.}; \triangleright\text{pre-Lie alg.}$ [Chapoton, Livernet, 2001]; $\triangleright\text{dendriform alg.}$ [Loday, 2001]; $\triangleright\text{duplicial alg.}$ [Loday, 2008]; $\triangleright\text{diassociative alg.}$ [Loday, 2001]; $\triangleright\text{brace alg.}$
Algebras over operads

— Example —

Let A_s be the associative operad defined by $A_s(n) := \{\ast_n\}$ for all $n \geq 1$ and $\ast_n \circ_i \ast_m := \ast_{n+m-1}$. This operad is minimally generated by \ast_2.

Any algebra over A_s is a space \mathcal{V} endowed with linear operations \ast_n of arity $n \geq 1$ where \ast_2 satisfies, for all $v_1, v_2, v_3 \in \mathcal{V}$,

\[
(\ast_2 \circ_1 \ast_2) (v_1, v_2, v_3) = \ast_2 (\ast_2 (v_1, v_2), v_3)
\]

\[
\|
\]

\[
(\ast_2 \circ_2 \ast_2) (v_1, v_2, v_3) = \ast_2 (v_1, \ast_2 (v_2, v_3)).
\]
Let As be the associative operad defined by $\text{As}(n) := \{\star_n\}$ for all $n \geq 1$ and $\star_n \circ_i \star_m := \star_{n+m-1}$. This operad is minimally generated by \star_2.

Any algebra over As is a space \mathcal{V} endowed with linear operations \star_n of arity $n \geq 1$ where \star_2 satisfies, for all $v_1, v_2, v_3 \in \mathcal{V}$,

$$
(\star_2 \circ_1 \star_2) (v_1, v_2, v_3) = \star_2 (\star_2 (v_1, v_2), v_3)
$$

and

$$
(\star_2 \circ_2 \star_2) (v_1, v_2, v_3) = \star_2 (v_1, \star_2 (v_2, v_3)) .
$$
Algebras over operads

— Example —

Let \mathbf{As} be the associative operad defined by $\mathbf{As}(n) := \{\star_n\}$ for all $n \geq 1$ and $\star_n \circ_i \star_m := \star_{n+m-1}$. This operad is minimally generated by \star_2.

Any algebra over \mathbf{As} is a space \mathcal{V} endowed with linear operations \star_n of arity $n \geq 1$ where \star_2 satisfies, for all $v_1, v_2, v_3 \in \mathcal{V}$,

$$(\star_2 \circ_1 \star_2)(v_1, v_2, v_3) = \star_2(\star_2(v_1, v_2), v_3)$$

so that algebras over \mathbf{As} are associative algebras.
Algebras over operads

— Example —

Let As be the associative operad defined by $\mathsf{As}(n) := \{\star_n\}$ for all $n \geq 1$ and $\star_n \circ_i \star_m := \star_{n+m-1}$. This operad is minimally generated by \star_2.

Any algebra over As is a space \mathcal{V} endowed with linear operations \star_n of arity $n \geq 1$ where \star_2 satisfies, for all $v_1, v_2, v_3 \in \mathcal{V}$,

\[
(\star_2 \circ_1 \star_2) (v_1, v_2, v_3) = \star_2 (\star_2 (v_1, v_2), v_3)
\]

\[
(\star_2 \circ_2 \star_2) (v_1, v_2, v_3) = \star_2 (v_1, \star_2 (v_2, v_3)).
\]

Using infix notation for the binary operation \star_2, we obtain the relation

\[
(v_1 \star_2 v_2) \star_2 v_3 = v_1 \star_2 (v_2 \star_2 v_3),
\]

so that algebras over As are associative algebras.

In the same way, there are operads for

- Lie alg.;
- pre-Lie alg. [Chapoton, Livernet, 2001];
- dendriform alg. [Loday, 2001];
- duplicial alg. [Loday, 2008];
- diassociative alg. [Loday, 2001];
- brace alg.
Scope of operads

As main benefits, operads

- offer a formalism to compute over operations;
- allow us to work virtually with all the structures of a type;
- lead to discover the underlying combinatorics of types of algebras.
As main benefits, operads

- offer a formalism to compute over operations;
- allow us to work virtually with all the structures of a type;
- lead to discover the underlying combinatorics of types of algebras.

Endowing a set of combinatorial objects with an operad structure helps to

- highlight elementary building block for the objects;
- build combinatorial structures (graded graphs, posets, lattices, etc.);
- enumerative prospects and discovery of statistics.
Outline

 Enumeration
Syntax trees

An alphabet is a graded set $\mathcal{G} := \bigsqcup_{n \geq 1} \mathcal{G}(n)$.
Syntax trees

An alphabet is a graded set $\mathcal{G} := \bigsqcup_{n \geq 1} \mathcal{G}(n)$.

Let $S(\mathcal{G})$ be the set of \mathcal{G}-syntax trees, defined recursively by

- $\texttt{l} \in S(\mathcal{G})$;
- if $a \in \mathcal{G}$ and $t_1, \ldots, t_{|a|} \in S(\mathcal{G})$, then $a(t_1, \ldots, t_{|a|}) \in S(\mathcal{G})$.

Example

Let $\mathcal{G} := \mathcal{G}(2) \sqcup \mathcal{G}(3)$ such that $\mathcal{G}(2) = \{a, b\}$ and $\mathcal{G}(3) = \{c\}$.

![Syntax tree diagram](image)

denotes the \mathcal{G}-tree

$$c(\texttt{l}, c(a(\texttt{l}, \texttt{l}), \texttt{l}, b(a(\texttt{l}, \texttt{l}), c(\texttt{l}, \texttt{l}, \texttt{l}))), b(\texttt{l}, b(\texttt{l}, \texttt{l})))$$

having degree 8 and arity 12.
Syntax trees

An alphabet is a graded set \(\mathcal{G} := \bigsqcup_{n \geq 1} \mathcal{G}(n) \).

Let \(S(\mathcal{G}) \) be the set of \(\mathcal{G} \)-syntax trees, defined recursively by

1. \(\mathbf{l} \in S(\mathcal{G}) \);
2. if \(a \in \mathcal{G} \) and \(t_1, \ldots, t_{|a|} \in S(\mathcal{G}) \), then \(a(t_1, \ldots, t_{|a|}) \in S(\mathcal{G}) \).

Let \(t \in S(\mathcal{G}) \). Some definitions:

1. \(\mathbf{l} \) is the leaf;
2. the degree \(\text{deg}(t) \) of \(t \) is its number of internal nodes;
3. the arity \(|t| \) of \(t \) is its number of leaves.

— Example —

Let \(\mathcal{G} := \mathcal{G}(2) \sqcup \mathcal{G}(3) \) such that \(\mathcal{G}(2) = \{ a, b \} \) and \(\mathcal{G}(3) = \{ c \} \).

\[
c(\mathbf{l}, c(a(\mathbf{l})), b(a(\mathbf{l})), c(\mathbf{l}, \mathbf{l}, \mathbf{l})) , b(\mathbf{l}, b(\mathbf{l}, \mathbf{l}))
\]

denotes the \(\mathcal{G} \)-tree having degree 8 and arity 12.
Compositions of syntax trees

Let $t, s \in S(G)$. For each $i \in [|t|]$, the partial composition $t \circ_i s$ is the tree obtained by grafting the root of s onto the ith leaf of t.

— Example —

$$
\begin{align*}
\text{c} & \quad \text{b} \\
\text{c} & \quad \text{b} \\
\text{a} & \quad \text{b} \\
\text{c} & \quad \text{b} \\
\text{a} & \quad \text{b} \\
\text{a} & \quad \text{c} \\
\text{b} & \quad \text{b} \\
\text{a} & \quad \text{c} \\
\text{a} & \quad \text{c} \\
\text{a} & \quad \text{c} \\
\text{b} & \quad \text{b} \\
\end{align*}
$$
Compositions of syntax trees

Let \(t, s \in S(\mathcal{G}) \). For each \(i \in [|t|] \), the partial composition \(t \circ_i s \) is the tree obtained by grafting the root of \(s \) onto the \(i \)th leaf of \(t \).

— Example —

Let \(t, s_1, \ldots, s_{|t|} \) be \(\mathcal{G} \)-trees. The full composition \(t \circ [s_1, \ldots, s_{|t|}] \) is obtained by grafting simultaneously the roots of each \(s_i \) onto the \(i \)th leaf of \(t \).

— Example —
Free operads

Let \mathcal{G} be an alphabet.
Free operads

Let \mathcal{E} be an alphabet.

The free operad on \mathcal{E} is the operad on the set $S(\mathcal{E})$ wherein

- elements of arity n are the \mathcal{E}-trees of arity n;
Free operads

Let \mathcal{G} be an alphabet.

The free operad on \mathcal{G} is the operad on the set $\mathcal{S}(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
- the partial composition map \circ_i is the one of the \mathcal{G}-trees;
- let $c : \mathcal{G} \to \mathcal{S}(\mathcal{G})$ be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property. For any alphabet \mathcal{G}, any operad O, and any map $f : \mathcal{G} \to O$ preserving the arities, there exists a unique operad morphism $\phi : \mathcal{S}(\mathcal{G}) \to O$ such that $f = \phi \circ c$.
Free operads

Let \mathcal{G} be an alphabet.

The free operad on \mathcal{G} is the operad on the set $S(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
- the partial composition map \circ_i is the one of the \mathcal{G}-trees;
- the unit is I.

Let $c : \mathcal{G} \to S(\mathcal{G})$ be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property. For any alphabet \mathcal{G}, any operad O, and any map $f : \mathcal{G} \to O$ preserving the arities, there exists a unique operad morphism $\phi : S(\mathcal{G}) \to O$ such that $f = \phi \circ c$.

\[\xymatrix@+1pc{ \mathcal{G} \ar[r]^-{c} & S(\mathcal{G}) \ar[r]^-{\phi} & O } \]
Free operads

Let \mathcal{G} be an alphabet.

The free operad on \mathcal{G} is the operad on the set $S(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
- the partial composition map \circ_i is the one of the \mathcal{G}-trees;
- the unit is I.

Let $c : \mathcal{G} \to S(\mathcal{G})$ be the natural injection (made implicit in the sequel).
Free operads

Let \mathcal{G} be an alphabet.

The free operad on \mathcal{G} is the operad on the set $S(\mathcal{G})$ wherein

- elements of arity n are the \mathcal{G}-trees of arity n;
- the partial composition map \circ_i is the one of the \mathcal{G}-trees;
- the unit is I.

Let $c : \mathcal{G} \to S(\mathcal{G})$ be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any alphabet \mathcal{G}, any operad \mathcal{O}, and any map $f : \mathcal{G} \to \mathcal{O}$ preserving the arities, there exists a unique operad morphism $\phi : S(\mathcal{G}) \to \mathcal{O}$ such that $f = \phi \circ c$.
Factors and prefixes

Let \(t, s \in S(\mathcal{G}) \).
Factors and prefixes

Let $t, s \in S(\mathcal{G})$.

If t decomposes as

$$t = r \circ_i (s \circ [r_1, \ldots, r_{|s|}])$$

for some trees $r, r_1, \ldots, r_{|s|}$, and $i \in [|r|]$, then s is a factor of t.

This property is denoted by $s \preceq_f t$.

— Example —

[Diagram showing two trees with labels and relation \preceq_f.]
Factors and prefixes

Let \(t, s \in S(G) \).

If \(t \) decomposes as
\[
t = r \circ_i (s \circ [r_1, \ldots, r_{|s|}])
\]
for some trees \(r, r_1, \ldots, r_{|s|}, \) and \(i \in \|r\| \), then \(s \) is a factor of \(t \).
This property is denoted by \(s \preceq_f t \).

If in the previous decomposition \(r = t \), then \(s \) is a prefix of \(t \).
This property is denoted by \(s \preceq_p t \).
Pattern avoidance and enumeration

A G-tree t avoids a G-tree s if $s \preceq t$.

Example —

$A(a a b a a b b)$ is enumerated by $1, 2, 4, 8, 16, 32, 64, 128, \ldots$.

$A(a a c a a c c)$ is enumerated by $1, 1, 2, 4, 9, 21, 51, 127, \ldots$ ($A001006$).

$A\begin{array}{c} a \hline a \end{array}$ is enumerated by $1, 2, 5, 13, 35, 96, 267, 750, \ldots$ ($A005773$).
Pattern avoidance and enumeration

A \mathcal{G}-tree t avoids a \mathcal{G}-tree s if $s \not\succeq t$.

For any $\mathcal{P} \subseteq S(\mathcal{G})$, let

$$A(\mathcal{P}) = \{ t \in S(\mathcal{G}) : \text{ for all } s \in \mathcal{P}, s \not\succeq t \}.$$
Pattern avoidance and enumeration

A G-tree t avoids a G-tree s if $s \not<_{ft} t$.

For any $\mathcal{P} \subseteq S(G)$, let

$$A(\mathcal{P}) = \{t \in S(G) : \text{for all } s \in \mathcal{P}, s \not<_{ft} t\}.$$

— Question —

Enumerate $A(\mathcal{P})$ w.r.t. the arities of the trees.
Pattern avoidance and enumeration

A \mathcal{G}-tree t avoids a \mathcal{G}-tree s if $s \nleq_f t$.

For any $\mathcal{P} \subseteq S(\mathcal{G})$, let

$$A(\mathcal{P}) = \{ t \in S(\mathcal{G}) : \text{ for all } s \in \mathcal{P}, s \nleq_f t \}.$$

— Example —

$A \left(\begin{array}{c} a \\ a \\ a \\ a \\ b \\ a \\ b \\ b \\ b \end{array} \right)$

is enumerated by 1, 2, 4, 8, 16, 32, 64, 128,

— Question —

Enumerate $A(\mathcal{P})$ w.r.t. the arities of the trees.
Pattern avoidance and enumeration

A \(G \)-tree \(t \) avoids a \(G \)-tree \(s \) if \(s \not<_{f} t \).

For any \(\mathcal{P} \subseteq S(G) \), let

\[
A(\mathcal{P}) = \{ t \in S(G) : \text{ for all } s \in \mathcal{P}, s \not<_{f} t \}.
\]

— Example —

\[
\begin{align*}
&\text{\— Example —} \\
&\downarrow A \left(\begin{array}{c} a \\ a \\ b \\ a \\ b \\ b \\ b \\ b \\ \end{array} \right) \text{ is enumerated by } 1, 2, 4, 8, 16, 32, 64, 128, \ldots.
\end{align*}
\]

\[
\downarrow A \left(\begin{array}{c} a \\ a \\ c \\ a \\ a \\ c \\ c \\ \end{array} \right) \text{ is enumerated by } 1, 1, 2, 4, 9, 21, 51, 127, \ldots. \text{(A001006)}.
\]

— Question —

Enumerate \(A(\mathcal{P}) \) w.r.t. the arities of the trees.
Pattern avoidance and enumeration

A G-tree t avoids a G-tree s if $s \not<_{f} t$.

For any $P \subseteq S(G)$, let

$$A(P) = \{ t \in S(G) : \text{ for all } s \in P, s \not<_{f} t \}.$$

— Example —

$A(a a b a a b b)$ is enumerated by $1, 2, 4, 8, 16, 32, 64, 128, \ldots$.

$A(a a c a a c c)$ is enumerated by $1, 1, 2, 4, 9, 21, 51, 127, \ldots$ (A001006).

$A(a a a b b b)$ is enumerated by $1, 2, 5, 13, 35, 96, 267, 750, \ldots$ (A005773).

— Question —

Enumerate $A(P)$ w.r.t. the arities of the trees.
Formal power series of trees

For any $\mathcal{P}, \mathcal{Q} \subseteq S(\mathcal{G})$, let

$$F(\mathcal{P}, \mathcal{Q}) := \sum_{\substack{t \in S(\mathcal{G}) \\ t \in A(\mathcal{P}) \\ \forall s \in \mathcal{Q}, s \not\preceq_{\mathcal{P}} t}} t.$$

This is the formal sum of all the \mathcal{G}-trees avoiding as factors all patterns of \mathcal{P} and avoiding as prefixes all patterns of \mathcal{Q}.
Formal power series of trees

For any \(P, Q \subseteq S(\varnothing) \), let

\[
F(P, Q) := \sum_{\substack{t \in S(\varnothing) \\
t \in A(P) \\
\forall s \in Q, s \not\approx_P t}} t.
\]

This is the formal sum of all the \(\varnothing \)-trees avoiding as factors all patterns of \(P \) and avoiding as prefixes all patterns of \(Q \).

Since

- \(F(P, \emptyset) \) is the formal sum of all the trees of \(A(P) \);
Formal power series of trees

For any $\mathcal{P}, \mathcal{Q} \subseteq S(\mathcal{G})$, let

$$F(\mathcal{P}, \mathcal{Q}) := \sum_{\substack{t \in S(\mathcal{G}) \\cap \mathcal{A}(\mathcal{P}) \\forall s \in \mathcal{Q}, s \nleq_{\mathcal{P}} t}} t.$$

This is the formal sum of all the \mathcal{G}-trees avoiding as factors all patterns of \mathcal{P} and avoiding as prefixes all patterns of \mathcal{Q}.

Since

- $F(\mathcal{P}, \emptyset)$ is the formal sum of all the trees of $\mathcal{A}(\mathcal{P})$;
- the linear map $t \mapsto z^{|t|}$ sends $F(\mathcal{P}, \emptyset)$ to the generating series of $\mathcal{A}(\mathcal{P})$.

Formal power series of trees

For any $\mathcal{P}, \mathcal{Q} \subseteq S(\mathfrak{G})$, let

$$F(\mathcal{P}, \mathcal{Q}) := \sum_{\begin{subarray}{c} t \in S(\mathfrak{G}) \\ t \in A(\mathcal{P}) \\ \forall s \in \mathcal{Q}, s \not\triangleleft_p t \end{subarray}} t.$$

This is the formal sum of all the \mathfrak{G}-trees avoiding as factors all patterns of \mathcal{P} and avoiding as prefixes all patterns of \mathcal{Q}.

Since

- $F(\mathcal{P}, \emptyset)$ is the formal sum of all the trees of $A(\mathcal{P})$;
- the linear map $t \mapsto z^{|t|}$ sends $F(\mathcal{P}, \emptyset)$ to the generating series of $A(\mathcal{P})$;

the series $F(\mathcal{P}, \mathcal{Q})$ contains all the enumerative data about the trees avoiding \mathcal{P}.
When \(\emptyset, \mathcal{P}, \) and \(\mathcal{Q} \) satisfy some conditions, \(F(\mathcal{P}, \mathcal{Q}) \) expresses as an inclusion-exclusion formula involving simpler terms \(F(\mathcal{P}, S_i) \).

\[F(\mathcal{P}, \mathcal{Q}) = 1 + \sum_{k \geq 1} \sum_{\ell \geq 1} (-1)^{1+\ell} a \circ \left[F(\mathcal{P}, S_1), \ldots, F(\mathcal{P}, S_k) \right]. \]
System of equations

When \mathcal{G}, \mathcal{P}, and \mathcal{Q} satisfy some conditions, $F(\mathcal{P}, \mathcal{Q})$ expresses as an inclusion-exclusion formula involving simpler terms $F(\mathcal{P}, S_i)$.

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The series $F(\mathcal{P}, \mathcal{Q})$ satisfies</td>
</tr>
</tbody>
</table>

$$F(\mathcal{P}, \mathcal{Q}) = 1 + \sum_{k \geq 1}^{a \in \mathcal{G}(k)} \sum_{\ell \geq 1} (-1)^{1+\ell} a \overline{\circ} [F(\mathcal{P}, S_1), \ldots, F(\mathcal{P}, S_k)].$$

This leads to a system of equations for the generating series of $A(\mathcal{P})$.

Indeed, the generating series of $A(\mathcal{P})$ is the series $F(\mathcal{P}, \emptyset)$ where

$$F(\mathcal{P}, \mathcal{Q}) = z + \sum_{k \geq 1}^{a \in \mathcal{G}(k)} \sum_{\ell \geq 1} (-1)^{1+\ell} \prod_{i \in [k]} F(\mathcal{P}, S_i).$$
System of equations

— Example —

For \(\mathcal{P} := \{a, b\} \), we obtain the system of formal power series of trees

\[
\begin{align*}
F(\mathcal{P}, \emptyset) &= 1 + a \circ [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \emptyset)] + a \circ [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \{b\})] \\
&\quad - a \circ [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \{b\})] + b \circ [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \emptyset)], \\
F(\mathcal{P}, \{a\}) &= 1 + b \circ [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \emptyset)], \\
F(\mathcal{P}, \{b\}) &= 1 + a \circ [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \emptyset)] + a \circ [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \{b\})] \\
&\quad - a \circ [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \{b\})].
\end{align*}
\]
System of equations

— Example —

For $\mathcal{P} := \left\{ \begin{array}{c}
\begin{array}{c}
\vdots \\
\begin{array}{c}
\bar{a} \\
\bar{b} \\
\end{array}
\end{array}
\end{array} \right\}$, we obtain the system of formal power series of trees

$$F(\mathcal{P}, \emptyset) = 1 + a\bar{o} [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \emptyset)] + a\bar{o} [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \{b\})]$$
$$- a\bar{o} [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \{b\})] + b\bar{o} [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \emptyset)] ,$$

$$F(\mathcal{P}, \{a\}) = 1 + b\bar{o} [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \emptyset)] ,$$

$$F(\mathcal{P}, \{b\}) = 1 + a\bar{o} [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \emptyset)] + a\bar{o} [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \{b\})]$$
$$- a\bar{o} [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \{b\})] .$$

This leads to the system of generating series

$$F(\mathcal{P}, \emptyset) = z + F(\mathcal{P}, \{a\}) F(\mathcal{P}, \emptyset) + F(\mathcal{P}, \emptyset) F(\mathcal{P}, \{b\})$$
$$- F(\mathcal{P}, \{a\}) F(\mathcal{P}, \{b\}) + F(\mathcal{P}, \emptyset) F(\mathcal{P}, \emptyset) ,$$

$$F(\mathcal{P}, \{a\}) = z + F(\mathcal{P}, \emptyset) F(\mathcal{P}, \emptyset) ,$$

$$F(\mathcal{P}, \{b\}) = z + F(\mathcal{P}, \{a\}) F(\mathcal{P}, \emptyset) + F(\mathcal{P}, \emptyset) F(\mathcal{P}, \{b\})$$
$$- F(\mathcal{P}, \{a\}) F(\mathcal{P}, \{b\}) .$$
System of equations

— Example —

For $\mathcal{P} := \left\{ \begin{array}{c} \begin{array}{c} a \\ b \end{array} \end{array} \right\}$, we obtain the system of formal power series of trees

\[
F(\mathcal{P}, \emptyset) = 1 + a \circ [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \emptyset)] + a \circ [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \{b\})]
- a \circ [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \{b\})] + b \circ [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \emptyset)],
\]

\[
F(\mathcal{P}, \{a\}) = 1 + b \circ [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \emptyset)],
\]

\[
F(\mathcal{P}, \{b\}) = 1 + a \circ [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \emptyset)] + a \circ [F(\mathcal{P}, \emptyset), F(\mathcal{P}, \{b\})]
- a \circ [F(\mathcal{P}, \{a\}), F(\mathcal{P}, \{b\})].
\]

This leads to the system of generating series

\[
F(\mathcal{P}, \emptyset) = z + F(\mathcal{P}, \{a\})F(\mathcal{P}, \emptyset) + F(\mathcal{P}, \emptyset)F(\mathcal{P}, \{b\})
- F(\mathcal{P}, \{a\})F(\mathcal{P}, \{b\}) + F(\mathcal{P}, \emptyset)F(\mathcal{P}, \emptyset),
\]

\[
F(\mathcal{P}, \{a\}) = z + F(\mathcal{P}, \emptyset)F(\mathcal{P}, \emptyset),
\]

\[
F(\mathcal{P}, \{b\}) = z + F(\mathcal{P}, \{a\})F(\mathcal{P}, \emptyset) + F(\mathcal{P}, \emptyset)F(\mathcal{P}, \{b\})
- F(\mathcal{P}, \{a\})F(\mathcal{P}, \{b\}).
\]

As a consequence, $F(\mathcal{P}, \emptyset)$ satisfies

\[
z - F(\mathcal{P}, \emptyset) + (2 + z)F(\mathcal{P}, \emptyset)^2 - F(\mathcal{P}, \emptyset)^3 + F(\mathcal{P}, \emptyset)^4 = 0.
\]
Operads and presentations

Let \mathcal{O} be an operad. A congruence of \mathcal{O} is an equivalence relation \equiv on \mathcal{O} preserving the arities and such that $x \equiv x'$ and $y \equiv y'$ imply $x \circ_i y \equiv x' \circ_i y'$ for all $i \in [|x|]$.

— Example —

The operad Motz admits the presentation (G, \equiv) where $G := \{1, 2\}$ and \equiv is the smallest operad congruence satisfying $\circ_1 \equiv \circ_2$, $\circ_1 \equiv \circ_3$, $\circ_1 \equiv \circ_3$.
Operads and presentations

Let \mathcal{O} be an operad. A congruence of \mathcal{O} is an equivalence relation \equiv on \mathcal{O} preserving the arities and such that $x \equiv x'$ and $y \equiv y'$ imply $x \circ_i y \equiv x' \circ_i y'$ for all $i \in [\lvert x \rvert]$.

A presentation of \mathcal{O} is a pair (\mathcal{G}, \equiv) such that \mathcal{G} is an alphabet and \equiv is a congruence of \mathcal{O} satisfying

$$\mathcal{O} \simeq S(\mathcal{G})/\equiv.$$
Operads and presentations

Let \mathcal{O} be an operad. A congruence of \mathcal{O} is an equivalence relation \equiv on \mathcal{O} preserving the arities and such that $x \equiv x'$ and $y \equiv y'$ imply $x \circ_i y \equiv x' \circ_i y'$ for all $i \in [\lvert x \rvert]$.

A presentation of \mathcal{O} is a pair (\mathcal{G}, \equiv) such that \mathcal{G} is an alphabet and \equiv is a congruence of \mathcal{O} satisfying

$$\mathcal{O} \simeq S(\mathcal{G})/\equiv.$$

— Example —

The operad \textbf{Motz} admits the presentation (\mathcal{G}, \equiv) where

$$\mathcal{G} := \{ \begin{tikzpicture}[baseline=-0.5ex]
 \draw[thick] (-0.1,0) -- (0,0);
 \draw[thick] (0,0) -- (0.1,0);
\end{tikzpicture}, \begin{tikzpicture}[baseline=-0.5ex]
 \draw[thick] (-0.1,0) -- (0,0);
 \draw[thick] (0,0) -- (0.1,0);
 \draw[thick] (0,0) -- (0,-0.2);
\end{tikzpicture} \}.$$
Operads and presentations

Let O be an operad. A congruence of O is an equivalence relation \equiv on O preserving the arities and such that $x \equiv x'$ and $y \equiv y'$ imply $x \circ_i y \equiv x' \circ_i y'$ for all $i \in [|x|]$.

A presentation of O is a pair (G, \equiv) such that G is an alphabet and \equiv is a congruence of O satisfying

$$O \simeq S(G)/\equiv.$$

— Example —

The operad Motz admits the presentation (G, \equiv) where

$$G := \{ \circ \circ, \circ \circ \circ \circ \}$$

and \equiv is the smallest operad congruence satisfying

$$\begin{align*}
\circ \circ \circ \circ_1 \circ \circ & \equiv \circ \circ \circ \circ_2 \circ \circ, \\
\circ \circ_1 \circ \circ & \equiv \circ \circ_2 \circ \circ, \\
\circ \circ_1 \circ \circ_1 & \equiv \circ \circ_3 \circ \circ, \\
\circ \circ_1 \circ \circ_1 & \equiv \circ \circ_3 \circ \circ.
\end{align*}$$
Let \mathcal{O} be an operad admitting a presentation (\mathcal{G}, \equiv).

— Example — The set B, described as the set of G-trees avoiding $P_B := \{\circ 1, \circ 1, \circ 1, \circ 1\}$, is a basis of Motz.

Rewrite systems on G-trees are good tools to compute bases (\mathcal{G}, \equiv).
Operads and patterns

Let \(\mathcal{O} \) be an operad admitting a presentation \((\mathcal{G}, \equiv)\).

A basis of \(\mathcal{O} \) is a subset \(B \) of \(S(\mathcal{G}) \) such that for any \([t]_\equiv \in S(\mathcal{G})/\equiv \), there exists a unique \(s \in [t]_\equiv \cap B \).
Operads and patterns

Let \mathcal{O} be an operad admitting a presentation (\mathcal{G}, \equiv).

A basis of \mathcal{O} is a subset \mathcal{B} of $\mathcal{S}(\mathcal{G})$ such that for any $[t]_{\equiv} \in \mathcal{S}(\mathcal{G})/\equiv$, there exists a unique $s \in [t]_{\equiv} \cap \mathcal{B}$.

In most cases, \mathcal{B} can be described as set of \mathcal{G}-trees avoiding a subset $\mathcal{P}_\mathcal{B}$ of $\mathcal{S}(\mathcal{G})$.

— Example —

The set \mathcal{B}, described as the set of \mathcal{G}-trees avoiding $P_\mathcal{B} := \{ \circ_1, \circ_1, \circ_1, \circ_1 \}$, is a basis of Motz.

Rewrite systems on \mathcal{G}-trees are good tools to compute bases (we find terminating and confluent orientations \Rightarrow of \equiv).
Operads and patterns

Let \mathcal{O} be an operad admitting a presentation (\mathcal{G}, \equiv).

A **basis** of \mathcal{O} is a subset \mathcal{B} of $S(\mathcal{G})$ such that for any $[t]_\equiv \in S(\mathcal{G})/_\equiv$, there exists a unique $s \in [t]_\equiv \cap \mathcal{B}$.

In most cases, \mathcal{B} can be described as set of \mathcal{G}-trees avoiding a subset $\mathcal{P}_\mathcal{B}$ of $S(\mathcal{G})$.

--- Example ---

The set \mathcal{B}, described as the set of \mathcal{G}-trees avoiding

$$\mathcal{P}_\mathcal{B} := \left\{ \text{\includegraphics[width=2cm]{example1.png}, \includegraphics[width=2cm]{example2.png}, \includegraphics[width=2cm]{example3.png}, \includegraphics[width=2cm]{example4.png}} \right\},$$

is a basis of \textbf{Motz}.
Let \mathcal{O} be an operad admitting a presentation (\mathcal{G}, \equiv).

A basis of \mathcal{O} is a subset \mathcal{B} of $\mathcal{S}(\mathcal{G})$ such that for any $[t]_\equiv \in \mathcal{S}(\mathcal{G})/\equiv$, there exists a unique $s \in [t]_\equiv \cap \mathcal{B}$.

In most cases, \mathcal{B} can be described as set of \mathcal{G}-trees avoiding a subset $\mathcal{P}_\mathcal{B}$ of $\mathcal{S}(\mathcal{G})$.

— Example —

The set \mathcal{B}, described as the set of \mathcal{G}-trees avoiding

$$
\mathcal{P}_\mathcal{B} := \left\{ \begin{array}{c}
\circlearrowright_1 \circlearrowleft_1 \circlearrowright_1, \quad \circlearrowright_1 \circlearrowleft_1 \circlearrowright_1, \quad \circlearrowright_1 \circlearrowleft_1 \circlearrowright_1, \quad \circlearrowright_1 \circlearrowleft_1 \circlearrowright_1
\end{array} \right\},
$$

is a basis of \textbf{Motz}.

Rewrite systems on \mathcal{G}-trees are good tools to compute bases (we find terminating and confluent orientations \Rightarrow of \equiv).
Operads and enumeration

Let X be a family of combinatorial objects we want to enumerate.

The approach using operads consists in

1. endowing X with the structure of an operad O_X;

Example

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz. Let $a := \emptyset$, $c := \epsilon$, and $P := \{a, a, c, a, a, c, c\}$. We have $F(P, \emptyset) = z + zF(P, \{a, c\}) + zF(P, \emptyset)^2$, so that the generating series of Motzkin paths satisfies $F(P, \emptyset) = z + zF(P, \emptyset) + zF(P, \emptyset)^2$.

Operads and enumeration

Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in

1. endowing X with the structure of an operad O_X;
2. exhibiting a presentation (\mathcal{G}, \equiv) of O_X and a basis B;

— Example —

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let $a := \{\}$, $c := \{\}$, and $P := \{a, ca, aca, cac\}$.

We have $F(P, \emptyset) = \bar{a} \circ [F(P, \{a, c\}), F(P, \emptyset)] + \bar{c} \circ [F(P, \{a, c\}), F(P, \emptyset), F(P, \emptyset)]$,

so that the generating series of Motzkin paths satisfies

$$F(P, \emptyset) = z + z F(P, \emptyset) + z F(P, \emptyset)^2.$$
Operads and enumeration

Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in

1. endowing X with the structure of an operad O_X;
2. exhibiting a presentation (\mathcal{G}, \equiv) of O_X and a basis B;
3. computing the series $F(P_B, \emptyset)$ where P_B is a set of \mathcal{G}-trees satisfying $A(P_B) = B$.

— Example —

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let $a := a$, $c := c$, and $P := \{a a c a a c c\}$. We have

\[F(P_B, \emptyset) = a \bar{\phi} \circ \left[F(P_B, \{a, c\}) , F(P_B, \emptyset) \right] + c \bar{\phi} \circ \left[F(P_B, \{a, c\}) , F(P_B, \emptyset), F(P_B, \emptyset) \right] \]

so that, the generating series of Motzkin paths satisfies

\[F(P_B, \emptyset) = z + z F(P_B, \emptyset) + z F(P_B, \emptyset)^2. \]
Operads and enumeration

Let X be a family of combinatorial objects we want to enumerate.

The approach using operads consists in

1. endowing X with the structure of an operad O_X;
2. exhibiting a presentation (\mathcal{G}, \equiv) of O_X and a basis B;
3. computing the series $F(P_B, \emptyset)$ where P_B is a set of \mathcal{G}-trees satisfying $A(P_B) = B$.

— Example —

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let $a := $, $c := $, and $P := \{a, c, a, c, c\}$. We have $F(P, \emptyset) = \bar{a} \cdot [F(P, \{a, c\}), F(P, \emptyset)] + \bar{c} \cdot [F(P, \{a, c\}), F(P, \emptyset), F(P, \emptyset)]$, so that the generating series of Motzkin paths satisfies $F(P, \emptyset) = \bar{z} + \bar{z} F(P, \emptyset) + \bar{z} F(P, \emptyset)^2$.

25 / 40
Operads and enumeration

Let X be a family of combinatorial objects we want to enumerate.

The approach using operads consists in

1. endowing X with the structure of an operad O_X;
2. exhibiting a presentation (\mathcal{G}, \equiv) of O_X and a basis B;
3. computing the series $F(\mathcal{P}_B, \emptyset)$ where \mathcal{P}_B is a set of \mathcal{G}-trees satisfying $A(\mathcal{P}_B) = B$.

— Example —

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let $a := \circ\circ$, $c := \circ\circ\circ$, and $\mathcal{P} := \left\{ \begin{array}{c}
\begin{array}{c}
\text{a} \quad \text{a} \\
\text{c} \quad \text{c}
\end{array}
\end{array}\right\}$.
Operads and enumeration

Let X be a family of combinatorial objects we want to enumerate.

The approach using operads consists in

1. endowing X with the structure of an operad O_X;
2. exhibiting a presentation (G, \equiv) of O_X and a basis B;
3. computing the series $F(P_B, \emptyset)$ where P_B is a set of G-trees satisfying $A(P_B) = B$.

— Example —

To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let $a := \begin{array}{c}
\begin{array}{c}
\cdot \\
\cdot
\end{array}
\end{array}$, $c := \begin{array}{c}
\begin{array}{c}
\cdot \\
\cdot
\end{array}
\end{array}$, and $P := \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\cdot \\
\cdot
\end{array}
\end{array}
\end{array}\right\}$.

We have

$$F(P, \emptyset) = 1 + a \circ [F(P, \{a, c\}), F(P, \emptyset)] + c \circ [F(P, \{a, c\}), F(P, \emptyset), F(P, \emptyset)],$$

$$F(P, \{a, c\}) = 1,$$

so that, the generating series of Motzkin paths satisfies

$$F(P, \emptyset) = z + zF(P, \emptyset) + zF(P, \emptyset)^2.$$
Outline

Generation
Context-free grammars

Let $A = V \sqcup T$ be a set where V is a set of variables and T is a set of terminal symbols.
Context-free grammars

Let $A = V \sqcup T$ be a set where V is a set of variables and T is a set of terminal symbols.

A rule is a pair $(x, v) \in V \times A^*$. A set R of rules specifies a rewrite rule \rightarrow on A^* by setting

$$u x w \rightarrow u v w$$

for any $u, w \in A^*$ provided that $(x, v) \in R$.

Context-free grammars

Let $A = V \cup T$ be a set where V is a set of variables and T is a set of terminal symbols.

A rule is a pair $(x, v) \in V \times A^*$. A set R of rules specifies a rewrite rule \rightarrow on A^* by setting

$$u x w \rightarrow u v w$$

for any $u, w \in A^*$ provided that $(x, v) \in R$.

— Example —

Let $V := \{x, y\}$, $T := \{a, b, c\}$, and $R := \{(x, b), (x, xay), (y, ac)\}$.

We have

$$bxx \rightarrow bxayx \rightarrow bbayx \rightarrow bbaacx.$$
Regular tree grammars

Let V be a set of variables and T be an alphabet of terminal symbols.
Regular tree grammars

Let V be a set of variables and T be an alphabet of terminal symbols.

A (V, T)-tree is a planar rooted tree where internal nodes are labeled on T and leaves are labeled on V.
Regular tree grammars

Let V be a set of variables and T be an alphabet of terminal symbols.

A (V, T)-tree is a planar rooted tree where internal nodes are labeled on T and leaves are labeled on V.

A rule is a pair (x, t) where $x \in V$ and t is a (V, T)-tree. A set \mathcal{R} of rules specifies a rewrite rule \rightarrow on the set of all (V, T)-trees by setting

$$
\begin{array}{c}
\triangleleft \\
x
\end{array} \rightarrow
\begin{array}{c}
\triangleleft \\
t
\end{array}
$$

for any (V, T)-tree s having a leaf labeled by x, provided that $(x, t) \in \mathcal{R}$.

Regular tree grammars

Let V be a set of variables and T be an alphabet of terminal symbols.

A (V, T)-tree is a planar rooted tree where internal nodes are labeled on T and leaves are labeled on V.

A rule is a pair (x, t) where $x \in V$ and t is a (V, T)-tree. A set R of rules specifies a rewrite rule \rightarrow on the set of all (V, T)-trees by setting

$$
\begin{array}{c}
\textcircled{s} \\
\text{x}
\end{array}
\rightarrow
\begin{array}{c}
\textcircled{s} \\
\text{t}
\end{array}
$$

for any (V, T)-tree s having a leaf labeled by x, provided that $(x, t) \in R$.

— Example —

Let $V := \{x, y\}$, $T := \{a, b\}$ where $|a| := 1$, $|b| := 2$, and $R := \{ (x, a y), (y, b x y) \}$.

We have

$$
\begin{array}{c}
\text{x} \\
\text{a} \\
\text{x}
\end{array}
\rightarrow
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{a}
\end{array}
\rightarrow
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{a}
\end{array}
\rightarrow
\begin{array}{c}
\text{b} \\
\text{x} \\
\text{x}
\end{array}
\rightarrow
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{x}
\end{array}
\rightarrow
\begin{array}{c}
\text{b} \\
\text{x} \\
\text{x}
\end{array}
\rightarrow
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{x}
\end{array}.
$$
General generation

Objectives:

- Introduce generating systems for any kind of combinatorial objects;
- Retrieve the generation of words and of trees as special cases;
- Develop a toolbox for the enumeration of combinatorial objects.
General generation

Objectives:

▶ Introduce generating systems for any kind of combinatorial objects;
▶ Retrieve the generation of words and of trees as special cases;
▶ Develop a toolbox for the enumeration of combinatorial objects.

— Key idea —

Use colored operads, where

▶ colors play the role of variables and terminal symbols;
▶ Formal series on colored operad and their operations support enumeration.
Colored operads

Colored operads are algebraic structures formalizing the notion of partial operations and their composition.
Colored operads

Colored operads are algebraic structures formalizing the notion of partial operations and their composition.

A **colored operad** is a quadruplet $(\mathcal{C}, C, \circ_i, 1_c)$ where

1. \mathcal{C} is a finite set of **colors**;
Colored operads

Colored operads are algebraic structures formalizing the notion of partial operations and their composition.

A colored operad is a quadruplet \((\mathcal{C}, \mathcal{C}, \circ_i, 1_c)\) where

1. \(\mathcal{C}\) is a finite set of colors;

2. \(\mathcal{C}\) is a set of the form

\[
\mathcal{C} := \bigsqcup_{(a,u) \in \mathcal{C} \times \mathcal{C}^+} \mathcal{C}(a, u);
\]

where \(\mathcal{C}(a, u)\) is the set of operations obtained by replacing the \(i\)th letter of \(u\) by \(v\);
Colored operads

Colored operads are algebraic structures formalizing the notion of partial operations and their composition.

A colored operad is a quadruplet \((\mathcal{C}, C, \circ_i, 1_c)\) where

1. \(\mathcal{C}\) is a finite set of colors;
2. \(C\) is a set of the form

\[
C := \bigsqcup_{(a,u) \in \mathcal{C} \times \mathcal{C}^+} C(a, u);
\]

3. \(\circ_i\) is a map, called partial composition map,

\[
\circ_i : C(a, u) \times C(u_i, v) \to C(a, u \circ_i v), \quad 1 \leq i \leq |u|,
\]

where \(u \circ_i v\) is the word obtained by replacing the \(i\)th letter of \(u\) by \(v\);
Colored operads

Colored operads are algebraic structures formalizing the notion of partial operations and their composition.

A colored operad is a quadruplet \((\mathcal{C}, C, \circ_i, 1_c)\) where

1. \(\mathcal{C}\) is a finite set of colors;

2. \(C\) is a set of the form
 \[
 C := \bigsqcup_{(a,u) \in \mathcal{C} \times \mathcal{C}^+} C(a, u);
 \]

3. \(\circ_i\) is a map, called partial composition map,
 \[
 \circ_i : C(a, u) \times C(u_i, v) \to C(a, u \circ_i v), \quad 1 \leq i \leq |u|,
 \]
 where \(u \circ_i v\) is the word obtained by replacing the \(i\)th letter of \(u\) by \(v\);

4. for any \(c \in \mathcal{C}\), \(1_c\) is an element of \(C(c, c)\) called \(c\)-colored unit.
Colored operads

Colored operads are algebraic structures formalizing the notion of partial operations and their composition.

A colored operad is a quadruplet \((\mathcal{C}, \mathcal{C}, \circ_i, 1_c)\) where

1. \(\mathcal{C}\) is a finite set of colors;

2. \(\mathcal{C}\) is a set of the form

\[
\mathcal{C} := \bigsqcup_{(a, u) \in \mathcal{C} \times \mathcal{C}^+} C(a, u);
\]

3. \(\circ_i\) is a map, called partial composition map,

\[
\circ_i : C(a, u) \times C(u_i, v) \rightarrow C(a, u \circ_i v), \quad 1 \leq i \leq |u|,
\]

where \(u \circ_i v\) is the word obtained by replacing the \(i\)th letter of \(u\) by \(v\);

4. for any \(c \in \mathcal{C}\), \(1_c\) is an element of \(C(c, c)\) called \(c\)-colored unit.

This data has to satisfy some axioms, similar to the ones of operads.
Colored operations

Any element x of $C(a, u)$ can be seen as a colored operation

where a color is assigned to the output and to each input of x.
Colored operations

Any element x of $C(a, u)$ can be seen as a colored operation

where a color is assigned to the output and to each input of x.

Moreover, the partial composition map requires a condition on the colors:

$$
\circ_i \left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
a
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
x
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
u_1
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
i
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
u|x|
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
i
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
x
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
u_i
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
u|x|
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
\begin{array}{c}
i
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
x
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\right) =
\left(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
u_1
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
\begin{array}{c}
i
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
x
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
u_i
\end{array}
\begin{array}{c}
\begin{array}{c}
u|x|
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
\begin{array}{c}
i
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
x
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
v_1
\end{array}
\begin{array}{c}
\begin{array}{c}
v|y|
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
v|y|
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
i
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
i + |y| - 1
\end{array}
\right).
$$
Bud operads

Let O be an operad and C be a set of colors.
Bud operads

Let \mathcal{O} be an operad and \mathcal{C} be a set of colors.

The \mathcal{C}-bud operad of \mathcal{O} is the colored operad $\mathbb{B}_\mathcal{C}(\mathcal{O})$ wherein:

- $\mathbb{B}_\mathcal{C}(\mathcal{O})(a, u)$ is the set of all triples (a, x, u) where $x \in \mathcal{O}$ and $(a, u) \in \mathcal{C} \times \mathcal{C}^{\mid x\mid}$.

Proposition

For any set of colors \mathcal{C}, the construction $\mathcal{O} \mapsto \mathbb{B}_\mathcal{C}(\mathcal{O})$ is a functor from the category of operads to the category of colored operads.
Bud operads

Let \mathcal{O} be an operad and \mathcal{C} be a set of colors.

The \mathcal{C}-bud operad of \mathcal{O} is the colored operad $\mathbf{B}_\mathcal{C}(\mathcal{O})$ wherein:

- $\mathbf{B}_\mathcal{C}(\mathcal{O})(a, u)$ is the set of all triples (a, x, u) where $x \in \mathcal{O}$ and $(a, u) \in \mathcal{C} \times \mathcal{C}^{|x|}$.

- The partial composition map is defined by

 $$(a, x, u) \circ_i (u_i, y, v) := (a, x \circ_i y, u \circ_i v)$$

 where $x \circ_i y$ is the partial composition of \mathcal{O}.
Bud operads

Let \mathcal{O} be an operad and \mathcal{C} be a set of colors.

The \mathcal{C}-bud operad of \mathcal{O} is the colored operad $\mathcal{B}_C(\mathcal{O})$ wherein:

- $\mathcal{B}_C(\mathcal{O})(a, u)$ is the set of all triples (a, x, u) where $x \in \mathcal{O}$ and $(a, u) \in \mathcal{C} \times \mathcal{C}^{|x|}$.

- The partial composition map is defined by

 $$(a, x, u) \circ_i (u_i, y, v) := (a, x \circ_i y, u \circ_i v)$$

 where $x \circ_i y$ is the partial composition of \mathcal{O}.

- The colored units are the triples $(c, \mathbb{1}, c)$ where $\mathbb{1}$ is the unit of \mathcal{O}.

— Proposition —

For any set of colors \mathcal{C}, the construction $\mathcal{O} \mapsto \mathcal{B}_C(\mathcal{O})$ is a functor from the category of operads to the category of colored operads.
Bud operads

Let \mathcal{O} be an operad and \mathcal{C} be a set of colors.

The \mathcal{C}-bud operad of \mathcal{O} is the colored operad $\mathbf{B}_\mathcal{C}(\mathcal{O})$ wherein:

- $\mathbf{B}_\mathcal{C}(\mathcal{O})(a, u)$ is the set of all triples (a, x, u) where $x \in \mathcal{O}$ and $(a, u) \in \mathcal{C} \times \mathcal{C}^{|x|}$.

- The partial composition map is defined by

 $$(a, x, u) \circ_i (u_i, y, v) := (a, x \circ_i y, u \circ_i v)$$

 where $x \circ_i y$ is the partial composition of \mathcal{O}.

- The colored units are the triples $(c, 1, c)$ where 1 is the unit of \mathcal{O}.

— Proposition —

For any set of colors \mathcal{C}, the construction $\mathcal{O} \mapsto \mathbf{B}_\mathcal{C}(\mathcal{O})$ is a functor from the category of operads to the category of colored operads.
Examples of bud operads

The elements of $B_C(As)$ are triples (a, \star_μ, u) where $(a, u) \in C \times C^+$.

— Example —

In $B_{\{1,2,3\}}(As)$, $(2, \star_4, 3112) \circ_2 (1, \star_3, 233) = (2, \star_6, 323312)$.

Examples of bud operads

The elements of $\mathcal{B}_c(\mathcal{A}s)$ are triples $(a, \star|u|, u)$ where $(a, u) \in \mathcal{C} \times \mathcal{C}^+$.

— Example —

In $\mathcal{B}_{\{1,2,3\}}(\mathcal{A}s)$, $(2, \star_4, 3112) \circ_2 (1, \star_3, 233) = (2, \star_6, 323312)$.

The elements of $\mathcal{B}_c(\mathcal{S}(\mathcal{G}))$ are \mathcal{C}-typed \mathcal{G}-syntax trees, that are \mathcal{G}-trees with colors assigned with the root and with each leaf.

— Example —

$\begin{pmatrix} 2, c, a, 31122 \end{pmatrix} \in \mathcal{B}_{\{1,2,3,4\}}(\mathcal{S}(\{a, c\}))$.

This element is drawn as

```
    a  
   / \  
  a   c 
    / \  
   311 2
```
Examples of bud operads

The elements of $B_c(\mathsf{As})$ are triples $(a, u|_u, u)$ where $(a, u) \in \mathcal{C} \times \mathcal{C}^+$.

— Example —

$$\in B_{\{1,2,3\}}(\mathsf{As}), (2, 4, 3112) \circ_2 (1, 3, 233) = (2, 6, 323312).$$

The elements of $B_c(\mathsf{S}(\mathcal{G}))$ are \mathcal{C}-typed \mathcal{G}-syntax trees, that are \mathcal{G}-trees with colors assigned with the root and with each leaf.

— Example —

$$\left(2, \begin{array}{c} \text{c} \\ \text{a} \end{array}, 31122 \right) \in B_{\{1,2,3,4\}}(\mathsf{S}(\{\text{a, c}\})).$$

This element is drawn as

— Example —

$$\left(1, \begin{array}{c} \text{a} \\ \text{c} \end{array}, 221222211 \right) \in B_c(\mathsf{Motz}).$$

This element is drawn as

The elements of $B_c(\mathsf{Motz})$ are Motzkin paths having a global color and a color assigned with each point.
A **bud generating system** is a quintuplet $B := (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T)$ where

1. \mathcal{O} is an operad, the **ground operad**;
Bud generating systems

A bud generating system is a quintuplet \(B := (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T) \) where

1. \(\mathcal{O} \) is an operad, the ground operad;
2. \(\mathcal{C} \) is a set of colors;
Bud generating systems

A bud generating system is a quintuplet $\mathcal{B} := (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T)$ where

1. \mathcal{O} is an operad, the ground operad;
2. \mathcal{C} is a set of colors;
3. $\mathcal{R} \subseteq \mathcal{B}(\mathcal{O})$ is a set of rules;
Bud generating systems

A bud generating system is a quintuplet $B := (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T)$ where

1. \mathcal{O} is an operad, the ground operad;
2. \mathcal{C} is a set of colors;
3. $\mathcal{R} \subseteq B_\mathcal{C}(\mathcal{O})$ is a set of rules;
4. $a \in \mathcal{C}$ is the initial color;
A **bud generating system** is a quintuplet $B := (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T)$ where

1. \mathcal{O} is an operad, the **ground operad**;
2. \mathcal{C} is a set of **colors**;
3. $\mathcal{R} \subseteq \mathcal{B}_e(\mathcal{O})$ is a set of **rules**;
4. $a \in \mathcal{C}$ is the **initial color**;
5. $T \subseteq \mathcal{C}$ is the set of **terminal colors**.

"Bud generating systems"
A bud generating system is a quintuplet $B := (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T)$ where

1. \mathcal{O} is an operad, the ground operad;
2. \mathcal{C} is a set of colors;
3. $\mathcal{R} \subseteq B_c(\mathcal{O})$ is a set of rules;
4. $a \in \mathcal{C}$ is the initial color;
5. $T \subseteq \mathcal{C}$ is the set of terminal colors.

Each element (c, x, u) of \mathcal{R} can be thought as rule having c as left member and u as right member.
Generation

The set \mathcal{R} specifies the rewrite rule \rightarrow on $B_c(O)$ by setting

$$x \rightarrow x \circ_i r$$

for any $x \in B_c(O)$, $i \in [|x|]$, and $r \in \mathcal{R}$. This is the derivation relation.
Generation

The set \mathcal{R} specifies the rewrite rule \rightarrow on $\mathbf{B}_c(\mathcal{O})$ by setting

$$x \rightarrow x \circ_i r$$

for any $x \in \mathbf{B}_c(\mathcal{O})$, $i \in [|x|]$, and $r \in \mathcal{R}$. This is the derivation relation.

An element x of $\mathbf{B}_c(\mathcal{O})$ is generated by \mathcal{B} if

$$1_\alpha \rightarrow \cdots \rightarrow x$$

and all input colors of x are in T. These elements form the language of \mathcal{B}.
Generation

The set \mathcal{R} specifies the rewrite rule \rightarrow on $\mathcal{B}_C(O)$ by setting

$$x \rightarrow x \circ_i r$$

for any $x \in \mathcal{B}_C(O)$, $i \in [|x|]$, and $r \in \mathcal{R}$. This is the derivation relation.

An element x of $\mathcal{B}_C(O)$ is generated by \mathcal{B} if

$$1_a \rightarrow \cdots \rightarrow x$$

and all input colors of x are in T. These elements form the language of \mathcal{B}.

The set \mathcal{R} specifies also the rewrite rule \sim on $\mathcal{B}_C(O)$ by setting

$$x \sim x \circ [r_1, \ldots, r_{|x|}]$$

for any $x \in \mathcal{B}_C(O)$ and $r_1, \ldots, r_{|x|} \in \mathcal{R}$. This is the synchronous derivation relation.
Generation

The set \mathcal{R} specifies the rewrite rule \rightarrow on $\mathbb{B}_c(O)$ by setting

$$x \rightarrow x \circ_i r$$

for any $x \in \mathbb{B}_c(O)$, $i \in [|x|]$, and $r \in \mathcal{R}$. This is the derivation relation.

An element x of $\mathbb{B}_c(O)$ is generated by \mathcal{B} if

$$1_a \rightarrow \cdots \rightarrow x$$

and all input colors of x are in T. These elements form the language of \mathcal{B}.

The set \mathcal{R} specifies also the rewrite rule \rightsquigarrow on $\mathbb{B}_c(O)$ by setting

$$x \rightsquigarrow x \circ [r_1, \ldots, r_{|x|}]$$

for any $x \in \mathbb{B}_c(O)$ and $r_1, \ldots, r_{|x|} \in \mathcal{R}$. This is the synchronous derivation relation.

An element x of $\mathbb{B}_c(O)$ is synchronously generated by \mathcal{B} if

$$1_a \rightsquigarrow \cdots \rightsquigarrow x$$

and all input colors of x are in T. These elements form the synchronous language of \mathcal{B}.
Generation of particular Motzkin paths

Let the bud generating system $\mathcal{B} := (\text{Motz}, \{1, 2\}, \mathcal{R}, 1, \{1, 2\})$ where

$$\mathcal{R} := \{(1, \circ \circ, 22), (1, \circ \circ \circ, 111)\}.$$
Generation of particular Motzkin paths

Let the bud generating system $\mathcal{B} := (\text{Motz}, \{1, 2\}, \mathcal{R}, 1, \{1, 2\})$ where

$$\mathcal{R} := \{(1, \infty, 22), (1, \circ, 111)\}.$$

— Example —

There are in \mathcal{B} the derivations

1. $1 \rightarrow 1$
2. $1 \rightarrow 2$
3. $1 \rightarrow 2$
4. $1 \rightarrow 2$
5. $1 \rightarrow 2$

— Proposition —

There is a one-to-one correspondence between the set of Motzkin paths without consecutive steps and the language of \mathcal{B}. These paths are enumerated by $1, 1, 1, 3, 5, 11, 25, 55, 129, 303, 721, 1743, \ldots$ (A104545).
Generation of particular Motzkin paths

Let the bud generating system $B := (\text{Motz}, \{1, 2\}, \mathcal{R}, 1, \{1, 2\})$ where

$$\mathcal{R} := \{(1, \bigcirc, 2), (1, \bigcirc, 111)\}.$$

— Example —

There are in B the derivations

$$1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1.$$

— Proposition —

There is a one-to-one correspondence between the set of Motkzin paths without consecutive $\bigcirc \bigcirc$ steps and the language of B.

These paths are enumerated by

$$1, 1, 1, 3, 5, 11, 25, 55, 129, 303, 721, 1743, \ldots (A104545).$$
Balanced binary trees

A balanced binary tree is a binary tree t such that, for any internal node u of t, the height of the left subtree and of the right subtree of u differ by at most 1.

The first balanced binary trees are

```
   ,   a   ,   a   ,   a   ,   a   ,
   \   \   \   \   \   \   \   \   \   \
    ,   a   ,   a   ,   a   ,   a   ,   a   ,   a
    \   \   \   \   \   \   \   \   \   \   \
     ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a
     \   \   \   \   \   \   \   \   \   \   \   \   \   \   \   \   \
      ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a
      \   \   \   \   \   \   \   \   \   \   \   \   \   \   \   \   \   \   \   \
       ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a   ,   a
```

(Ans: $A006265$)
Balanced binary trees

A balanced binary tree is a binary tree t such that, for any internal node u of t, the height of the left subtree and of the right subtree of u differ by at most 1.

The first balanced binary trees are

```
   ,   ,   ,   ,   ,
  / \ / \ / \ / \ / \ \
 /   /   /   /   /   \
\     \     \     \     \
|     |     |     |     |
```

These trees are enumerated by

$$1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, \ldots (A006265).$$
Balanced binary trees

A balanced binary tree is a binary tree t such that, for any internal node u of t, the height of the left subtree and of the right subtree of u differ by at most 1.

The first balanced binary trees are

These trees are enumerated by

$$1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, \ldots \text{(A006265)}.$$

Their generating series is the specialization $F(x, 0)$ where

$$F(x, y) = x + F\left(x^2 + 2xy, x\right).$$
Generation of balanced binary trees

Let the bud generating system $\mathcal{B} := (\mathcal{S}(\mathcal{G}), \{1, 2\}, \mathcal{R}, 1, \{1\})$ where $\mathcal{G} := \mathcal{G}(2) := \{a\}$ and

$$\mathcal{R} := \left\{ \left(1, \begin{array}{c} a \\ a \end{array}, 11\right), \left(1, \begin{array}{c} a \\ a \end{array}, 12\right), \left(1, \begin{array}{c} a \\ a \end{array}, 21\right), (2, 1) \right\}.$$
Generation of balanced binary trees

Let the bud generating system $\mathcal{B} := (S(\mathcal{G}), \{1, 2\}, \mathcal{R}, 1, \{1\})$ where $\mathcal{G} := \mathcal{G}(2) := \{a\}$ and

$$\mathcal{R} := \left\{ \begin{pmatrix} 1, & a, & 11 \end{pmatrix}, \begin{pmatrix} 1, & a, & 12 \end{pmatrix}, \begin{pmatrix} 1, & a, & 21 \end{pmatrix}, (2, 1, 1) \right\}.$$
Generation of balanced binary trees

Let the bud generating system $\mathcal{B} := (S(\mathcal{G}), \{1, 2\}, \mathcal{R}, 1, \{1\})$ where $\mathcal{G} := \mathcal{G}(2) := \{a\}$ and

$$\mathcal{R} := \left\{ \left(1, a, 11\right), \left(1, a, 12\right), \left(1, a, 21\right), (2, 1, 1) \right\}. $$

— Example —

There are in \mathcal{B} the derivations

$$1 \xrightarrow{1} a \xrightarrow{11}. $$

— Proposition —

There is a one-to-one correspondence between the set of balanced binary trees and the synchronous language of \mathcal{B}.
Some properties

— Proposition —

For any proper context-free grammar G, there exists a bud generating system $B := (A, C, R, a, T)$ such that the language generated by G is in one-to-one correspondence with the language of B.
Some properties

— Proposition —

For any proper context-free grammar G, there exists a bud generating system $\mathcal{B} := (\text{As}, \mathcal{C}, \mathcal{R}, a, T)$ such that the language generated by G is in one-to-one correspondence with the language of \mathcal{B}.

— Proposition —

For any regular tree grammar G, there exists a bud generating system $\mathcal{B} := (S(\mathcal{G}), \mathcal{C}, \mathcal{R}, a, T)$ such that the language generated by G is in one-to-one correspondence with the language of \mathcal{B}.
Some properties

— Proposition —
For any proper context-free grammar G, there exists a bud generating system $B := (A, S, C, R, a, T)$ such that the language generated by G is in one-to-one correspondence with the language of B.

— Proposition —
For any regular tree grammar G, there exists a bud generating system $B := (S(G), S, C, R, a, T)$ such that the language generated by G is in one-to-one correspondence with the language of B.

— Proposition —
For any bud generating system B, the synchronous language of B is a subset of the language of B.
Random generation

For any $c \in C$, let R_c be the subset of R of the elements having c as output color.
Random generation

For any $c \in \mathcal{C}$, let \mathcal{R}_c be the subset of \mathcal{R} of the elements having c as output color.

Algorithm **RBS**:

1. **Input:**
 1. a bud generating system $\mathcal{B} := (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T)$;
 2. An integer $k \geq 0$.

2. **Output:** an element of the synchronous language of \mathcal{B}.

1. Let $x := 1_a$;

2. Repeat k times:
 2.1 For any $i \in [|x|]$, pick y_i uniformly at random in \mathcal{R}_c where c is the ith input color of x;
 2.2 Set $x := x \circ [y_1, \ldots, y_{|x|}]$;

3. If all input colors of x belong to T:
 3.1 Return x;

4. Otherwise:
 4.1 Return failure.

Proposition

If $\mathcal{B} = (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T)$ is synchronously unambiguous, the RBS is a uniform random generator of the elements of the synchronous language of \mathcal{B}.
Random generation

For any \(c \in \mathcal{C} \), let \(\mathcal{R}_c \) be the subset of \(\mathcal{R} \) of the elements having \(c \) as output color.

Algorithm RBS:

- **Input:**
 1. a bud generating system \(B := (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T) \);
 2. An integer \(k \geq 0 \).

- **Output:** an element of the synchronous language of \(B \).

1. Let \(x := 1_a \);
2. Repeat \(k \) times:
 2.1 For any \(i \in [|x|] \), pick \(y_i \) uniformly at random in \(\mathcal{R}_c \) where \(c \) is the \(i \)th input color of \(x \);
 2.2 Set \(x := x \circ [y_1, \ldots, y_{|x|}] \);
3. If all input colors of \(x \) belong to \(T \):
 3.1 Return \(x \);
4. Otherwise:
 4.1 Return failure.

--- Proposition ---

If \(B = (\mathcal{O}, \mathcal{C}, \mathcal{R}, a, T) \) is synchronously unambiguous, the RBS is a uniform random random generator of the elements of the synchronous language of \(B \).