
Combinatorial operads, rewrite systems,
and formal grammars

Samuele Giraudo
LIGM, Université Paris-Est Marne-la-Vallée

Computational Logic and Applications

July 1–2, 2019

1 / 40

Outline

Operads

Enumeration

Generation

2 / 40

Outline

Operads

3 / 40

Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:

I monoids;

I groups;

I la�ices;

I associative alg.;

I Hopf bialg.;

I Lie alg.;

I pre-Lie alg.;

I dendriform alg.;

I duplicial alg.

Such types of algebras are specified by

1. a collection of operations;

2. a collection of relations between operations.

— Example —
The type of monoids can be specified by

1. the operations ? (binary) and 1 (nullary);

2. the relations (x1 ? x2) ? x3 = x1 ? (x2 ? x3) and x ?1 = x = 1 ? x.

4 / 40

Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:

I monoids;

I groups;

I la�ices;

I associative alg.;

I Hopf bialg.;

I Lie alg.;

I pre-Lie alg.;

I dendriform alg.;

I duplicial alg.

Such types of algebras are specified by

1. a collection of operations;

2. a collection of relations between operations.

— Example —
The type of monoids can be specified by

1. the operations ? (binary) and 1 (nullary);

2. the relations (x1 ? x2) ? x3 = x1 ? (x2 ? x3) and x ?1 = x = 1 ? x.

4 / 40

Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:

I monoids;

I groups;

I la�ices;

I associative alg.;

I Hopf bialg.;

I Lie alg.;

I pre-Lie alg.;

I dendriform alg.;

I duplicial alg.

Such types of algebras are specified by

1. a collection of operations;

2. a collection of relations between operations.

— Example —
The type of monoids can be specified by

1. the operations ? (binary) and 1 (nullary);

2. the relations (x1 ? x2) ? x3 = x1 ? (x2 ? x3) and x ?1 = x = 1 ? x.

4 / 40

Working with operations
Strategy to study types of algebras ; add a level of indirection by
working with algebraic structures where

I elements are operations

x

1 n. . .

having n = |x| inputs and 1 output;

I the operation is the composition operation of operations. If x and y
are two operations,

1. by selecting an input of x specified by its position i;

2. and by gra�ing the output of y onto this input,

we obtain the new operation

x

1 |x|i.

◦i y

1 |y|. . .

=

x

1 |x|+|y|−1.y

i i+|y|−1. . .

.

5 / 40

Working with operations
Strategy to study types of algebras ; add a level of indirection by
working with algebraic structures where

I elements are operations

x

1 n. . .

having n = |x| inputs and 1 output;

I the operation is the composition operation of operations. If x and y
are two operations,

1. by selecting an input of x specified by its position i;

2. and by gra�ing the output of y onto this input,

we obtain the new operation

x

1 |x|i.

◦i y

1 |y|. . .

=

x

1 |x|+|y|−1.y

i i+|y|−1. . .

.

5 / 40

Working with operations
Strategy to study types of algebras ; add a level of indirection by
working with algebraic structures where

I elements are operations

x

1 n. . .

having n = |x| inputs and 1 output;

I the operation is the composition operation of operations.

If x and y
are two operations,

1. by selecting an input of x specified by its position i;

2. and by gra�ing the output of y onto this input,

we obtain the new operation

x

1 |x|i.

◦i y

1 |y|. . .

=

x

1 |x|+|y|−1.y

i i+|y|−1. . .

.

5 / 40

Working with operations
Strategy to study types of algebras ; add a level of indirection by
working with algebraic structures where

I elements are operations

x

1 n. . .

having n = |x| inputs and 1 output;

I the operation is the composition operation of operations. If x and y
are two operations,

1. by selecting an input of x specified by its position i;

2. and by gra�ing the output of y onto this input,

we obtain the new operation

x

1 |x|i.

◦i y

1 |y|. . .

=

x

1 |x|+|y|−1.y

i i+|y|−1. . .

.

5 / 40

Working with operations
Strategy to study types of algebras ; add a level of indirection by
working with algebraic structures where

I elements are operations

x

1 n. . .

having n = |x| inputs and 1 output;

I the operation is the composition operation of operations. If x and y
are two operations,

1. by selecting an input of x specified by its position i;

2. and by gra�ing the output of y onto this input,

we obtain the new operation

x

1 |x|i.

◦i y

1 |y|. . .

=

x

1 |x|+|y|−1.y

i i+|y|−1. . .

.

5 / 40

Operads

Operads are algebraic structures formalizing the notion of operations and
their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

6 / 40

Operads

Operads are algebraic structures formalizing the notion of operations and
their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

6 / 40

Operads

Operads are algebraic structures formalizing the notion of operations and
their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

6 / 40

Operads

Operads are algebraic structures formalizing the notion of operations and
their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

6 / 40

Operads

Operads are algebraic structures formalizing the notion of operations and
their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

6 / 40

Operad axioms
The associativity relation

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)

1 6 i 6 |x|, 1 6 j 6 |y|

says that the pictured operation can
be constructed from top to bo�om or
from bo�om to top.

x

1 |x|+|y|+|z|−2.y

i i+|y|+|z|−2.z

i+j−1 i+j+|z|−2. . .

The commutativity relation

(x ◦i y) ◦j+|y|−1 z = (x ◦j z) ◦i y

1 6 i < j 6 |x|

says that the pictured operation can
be constructed from le� to right or
from right to le�.

x

1 |x|+|y|+|z|−2.
. . .y

i i+|y|−1. . .

z

j+|y|+|z|−2j+|y|−1. . .

The unitality relation

1 ◦1 x = x = x ◦i 1
1 6 i 6 |x|

says that 1 is the identity map.

1 =

7 / 40

Operad axioms
The associativity relation

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)

1 6 i 6 |x|, 1 6 j 6 |y|

says that the pictured operation can
be constructed from top to bo�om or
from bo�om to top.

x

1 |x|+|y|+|z|−2.y

i i+|y|+|z|−2.z

i+j−1 i+j+|z|−2. . .

The commutativity relation

(x ◦i y) ◦j+|y|−1 z = (x ◦j z) ◦i y

1 6 i < j 6 |x|

says that the pictured operation can
be constructed from le� to right or
from right to le�.

x

1 |x|+|y|+|z|−2.
. . .y

i i+|y|−1. . .

z

j+|y|+|z|−2j+|y|−1. . .

The unitality relation

1 ◦1 x = x = x ◦i 1
1 6 i 6 |x|

says that 1 is the identity map.

1 =

7 / 40

Operad axioms
The associativity relation

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)

1 6 i 6 |x|, 1 6 j 6 |y|

says that the pictured operation can
be constructed from top to bo�om or
from bo�om to top.

x

1 |x|+|y|+|z|−2.y

i i+|y|+|z|−2.z

i+j−1 i+j+|z|−2. . .

The commutativity relation

(x ◦i y) ◦j+|y|−1 z = (x ◦j z) ◦i y

1 6 i < j 6 |x|

says that the pictured operation can
be constructed from le� to right or
from right to le�.

x

1 |x|+|y|+|z|−2.
. . .y

i i+|y|−1. . .

z

j+|y|+|z|−2j+|y|−1. . .

The unitality relation

1 ◦1 x = x = x ◦i 1
1 6 i 6 |x|

says that 1 is the identity map.

1 =

7 / 40

Operad on permutations
Let Per be the operad wherein:

I Per(n) is the set of all permutations of size n, seen through their
permutation matrices.

— Example —

•

•
•

•
•

•
•

•

•

has arity 9 and denotes the permutation
378651294.

I The partial composition σ ◦i ν is the permutation matrix obtained by
replacing the ith point of σ by a copy of ν.

— Example —

•
•
•

•
•
◦3 •

•
• =

•

•

•
•
•

•
•

I The unit is the unique permutation • of size 1.

8 / 40

Operad on permutations
Let Per be the operad wherein:

I Per(n) is the set of all permutations of size n, seen through their
permutation matrices.

— Example —

•

•
•

•
•

•
•

•

•

has arity 9 and denotes the permutation
378651294.

I The partial composition σ ◦i ν is the permutation matrix obtained by
replacing the ith point of σ by a copy of ν.

— Example —

•
•
•

•
•
◦3 •

•
• =

•

•

•
•
•

•
•

I The unit is the unique permutation • of size 1.

8 / 40

Operad on permutations
Let Per be the operad wherein:

I Per(n) is the set of all permutations of size n, seen through their
permutation matrices.

— Example —

•

•
•

•
•

•
•

•

•

has arity 9 and denotes the permutation
378651294.

I The partial composition σ ◦i ν is the permutation matrix obtained by
replacing the ith point of σ by a copy of ν.

— Example —

•
•
•

•
•
◦3 •

•
• =

•

•

•
•
•

•
•

I The unit is the unique permutation • of size 1.
8 / 40

Operad on paths
Let Path be the operad wherein:

I Path(n) is the set of all paths with n points, that are words u1 . . . un
of elements of N.

— Example —
has arity 13 and denotes the path
1212232100112.

I The partial composition u ◦i v is the path obtained by replacing the
ith point of u by a copy of v.

— Example —

◦4 =

011232101 ◦4 11224 = 0113344632101

I The unit is the unique path 0 of size 1, depicted as .

9 / 40

Operad on paths
Let Path be the operad wherein:

I Path(n) is the set of all paths with n points, that are words u1 . . . un
of elements of N.

— Example —
has arity 13 and denotes the path
1212232100112.

I The partial composition u ◦i v is the path obtained by replacing the
ith point of u by a copy of v.

— Example —

◦4 =

011232101 ◦4 11224 = 0113344632101

I The unit is the unique path 0 of size 1, depicted as .

9 / 40

Operad on paths
Let Path be the operad wherein:

I Path(n) is the set of all paths with n points, that are words u1 . . . un
of elements of N.

— Example —
has arity 13 and denotes the path
1212232100112.

I The partial composition u ◦i v is the path obtained by replacing the
ith point of u by a copy of v.

— Example —

◦4 =

011232101 ◦4 11224 = 0113344632101

I The unit is the unique path 0 of size 1, depicted as .
9 / 40

Some suboperads of Path
For any m > 0, an m-Dyck path is a path starting and ending with 0 and
made of steps

0

m

and .

— Example —
is a 2-Dyck path of size 10.

— Proposition —
For any m > 0, the set Dyck(m) of all m-Dyck paths is a suboperad of Path.

A Motzkin path is a path starting and ending with 0 and made of steps ,

, and .

— Example —
is a Motzkin path of size 16.

— Proposition —
The set Motz of all Motzkin paths is a suboperad of Path.

10 / 40

Some suboperads of Path
For any m > 0, an m-Dyck path is a path starting and ending with 0 and
made of steps

0

m

and .

— Example —
is a 2-Dyck path of size 10.

— Proposition —
For any m > 0, the set Dyck(m) of all m-Dyck paths is a suboperad of Path.

A Motzkin path is a path starting and ending with 0 and made of steps ,

, and .

— Example —
is a Motzkin path of size 16.

— Proposition —
The set Motz of all Motzkin paths is a suboperad of Path.

10 / 40

Some suboperads of Path
For any m > 0, an m-Dyck path is a path starting and ending with 0 and
made of steps

0

m

and .

— Example —
is a 2-Dyck path of size 10.

— Proposition —
For any m > 0, the set Dyck(m) of all m-Dyck paths is a suboperad of Path.

A Motzkin path is a path starting and ending with 0 and made of steps ,

, and .

— Example —
is a Motzkin path of size 16.

— Proposition —
The set Motz of all Motzkin paths is a suboperad of Path.

10 / 40

Some suboperads of Path
For any m > 0, an m-Dyck path is a path starting and ending with 0 and
made of steps

0

m

and .

— Example —
is a 2-Dyck path of size 10.

— Proposition —
For any m > 0, the set Dyck(m) of all m-Dyck paths is a suboperad of Path.

A Motzkin path is a path starting and ending with 0 and made of steps ,

, and .

— Example —
is a Motzkin path of size 16.

— Proposition —
The set Motz of all Motzkin paths is a suboperad of Path.

10 / 40

Algebras over operads

Let O be an operad. An algebra over O is a space V equipped, for all
x ∈ O(n), with linear maps

x : V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

→ V

such that 1 is the identity map on V and the compatibility relation

x

v1 v|x|+|y|−1.y

vi vi+|y|−1. . .

= x ◦i y

v1 v|x|+|y|−1. . .

holds for any x, y ∈ O, i ∈ [|x|], and v1, . . . , v|x|+|y|−1 ∈ V .

11 / 40

Algebras over operads

Let O be an operad. An algebra over O is a space V equipped, for all
x ∈ O(n), with linear maps

x : V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

→ V

such that 1 is the identity map on V

and the compatibility relation

x

v1 v|x|+|y|−1.y

vi vi+|y|−1. . .

= x ◦i y

v1 v|x|+|y|−1. . .

holds for any x, y ∈ O, i ∈ [|x|], and v1, . . . , v|x|+|y|−1 ∈ V .

11 / 40

Algebras over operads

Let O be an operad. An algebra over O is a space V equipped, for all
x ∈ O(n), with linear maps

x : V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

→ V

such that 1 is the identity map on V and the compatibility relation

x

v1 v|x|+|y|−1.y

vi vi+|y|−1. . .

= x ◦i y

v1 v|x|+|y|−1. . .

holds for any x, y ∈ O, i ∈ [|x|], and v1, . . . , v|x|+|y|−1 ∈ V .

11 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1.

This operad is minimally generated by ?2.
Any algebra over As is a space V endowed with linear operations ?n of arity n > 1 where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3) = ?2 (?2 (v1, v2) , v3)

‖ ‖
(?2 ◦2 ?2) (v1, v2, v3) = ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.

12 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1. This operad is minimally generated by ?2.

Any algebra over As is a space V endowed with linear operations ?n of arity n > 1 where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3) = ?2 (?2 (v1, v2) , v3)

‖ ‖
(?2 ◦2 ?2) (v1, v2, v3) = ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.

12 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1. This operad is minimally generated by ?2.
Any algebra over As is a space V endowed with linear operations ?n of arity n > 1

where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3) = ?2 (?2 (v1, v2) , v3)

‖ ‖
(?2 ◦2 ?2) (v1, v2, v3) = ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.

12 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1. This operad is minimally generated by ?2.
Any algebra over As is a space V endowed with linear operations ?n of arity n > 1 where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3)

= ?2 (?2 (v1, v2) , v3)

‖

‖

(?2 ◦2 ?2) (v1, v2, v3)

= ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.

12 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1. This operad is minimally generated by ?2.
Any algebra over As is a space V endowed with linear operations ?n of arity n > 1 where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3) = ?2 (?2 (v1, v2) , v3)

‖

‖

(?2 ◦2 ?2) (v1, v2, v3)

= ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.

12 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1. This operad is minimally generated by ?2.
Any algebra over As is a space V endowed with linear operations ?n of arity n > 1 where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3) = ?2 (?2 (v1, v2) , v3)

‖

‖

(?2 ◦2 ?2) (v1, v2, v3) = ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.

12 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1. This operad is minimally generated by ?2.
Any algebra over As is a space V endowed with linear operations ?n of arity n > 1 where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3) = ?2 (?2 (v1, v2) , v3)

‖ ‖
(?2 ◦2 ?2) (v1, v2, v3) = ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.

12 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1. This operad is minimally generated by ?2.
Any algebra over As is a space V endowed with linear operations ?n of arity n > 1 where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3) = ?2 (?2 (v1, v2) , v3)

‖ ‖
(?2 ◦2 ?2) (v1, v2, v3) = ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.

12 / 40

Algebras over operads

— Example —
Let As be the associative operad defined by As(n) := {?n} for all n > 1 and
?n ◦i ?m := ?n+m−1. This operad is minimally generated by ?2.
Any algebra over As is a space V endowed with linear operations ?n of arity n > 1 where ?2
satisfies, for all v1, v2, v3 ∈ V ,

(?2 ◦1 ?2) (v1, v2, v3) = ?2 (?2 (v1, v2) , v3)

‖ ‖
(?2 ◦2 ?2) (v1, v2, v3) = ?2 (v1, ?2 (v2, v3)) .

Using infix notation for the binary operation ?2, we obtain the relation

(v1 ?2 v2) ?2 v3 = v1 ?2 (v2 ?2 v3) ,

so that algebras over As are associative algebras.

In the same way, there are operads for
I Lie alg.;

I pre-Lie alg. [Chapoton, Livernet, 2001];

I dendriform alg. [Loday, 2001];

I duplicial alg. [Loday, 2008];

I diassociative alg. [Loday, 2001];

I brace alg.
12 / 40

Scope of operads

As main benefits, operads

I o�er a formalism to compute over operations;

I allow us to work virtually with all the structures of a type;

I lead to discover the underlying combinatorics of types of algebras.

Endowing a set of combinatorial objects with an operad structure helps to

I highlight elementary building block for the objects;

I build combinatorial structures (graded graphs, posets, la�ices, etc.);

I enumerative prospects and discovery of statistics.

13 / 40

Scope of operads

As main benefits, operads

I o�er a formalism to compute over operations;

I allow us to work virtually with all the structures of a type;

I lead to discover the underlying combinatorics of types of algebras.

Endowing a set of combinatorial objects with an operad structure helps to

I highlight elementary building block for the objects;

I build combinatorial structures (graded graphs, posets, la�ices, etc.);

I enumerative prospects and discovery of statistics.

13 / 40

Outline

Enumeration

14 / 40

Syntax trees
An alphabet is a graded set G :=

⊔
n>1 G(n).

Let S(G) be the set of G-syntax trees, defined recursively by
I ∈ S(G);
I if a ∈ G and t1, . . . , t|a| ∈ S(G), then a(t1, . . . , t|a|) ∈ S(G).

Let t ∈ S(G). Some definitions:
I is the leaf;
I the degree deg(t) of t is its number of internal nodes;
I the arity |t| of t is its number of leaves.

— Example —
Let G := G(2) t G(3) such that G(2) = {a, b} and G(3) = {c}.

c

b

c

b

ba

c

a

denotes the G-tree

c(, c(a(,), , b(a(,), c(, ,))), b(, b(,)))

having degree 8 and arity 12.

15 / 40

Syntax trees
An alphabet is a graded set G :=

⊔
n>1 G(n).

Let S(G) be the set of G-syntax trees, defined recursively by
I ∈ S(G);
I if a ∈ G and t1, . . . , t|a| ∈ S(G), then a(t1, . . . , t|a|) ∈ S(G).

Let t ∈ S(G). Some definitions:
I is the leaf;
I the degree deg(t) of t is its number of internal nodes;
I the arity |t| of t is its number of leaves.

— Example —
Let G := G(2) t G(3) such that G(2) = {a, b} and G(3) = {c}.

c

b

c

b

ba

c

a

denotes the G-tree

c(, c(a(,), , b(a(,), c(, ,))), b(, b(,)))

having degree 8 and arity 12.

15 / 40

Syntax trees
An alphabet is a graded set G :=

⊔
n>1 G(n).

Let S(G) be the set of G-syntax trees, defined recursively by
I ∈ S(G);
I if a ∈ G and t1, . . . , t|a| ∈ S(G), then a(t1, . . . , t|a|) ∈ S(G).

Let t ∈ S(G). Some definitions:
I is the leaf;
I the degree deg(t) of t is its number of internal nodes;
I the arity |t| of t is its number of leaves.

— Example —
Let G := G(2) t G(3) such that G(2) = {a, b} and G(3) = {c}.

c

b

c

b

ba

c

a

denotes the G-tree

c(, c(a(,), , b(a(,), c(, ,))), b(, b(,)))

having degree 8 and arity 12.

15 / 40

Compositions of syntax trees
Let t, s ∈ S(G). For each i ∈ [|t|], the partial composition t ◦i s is the tree
obtained by gra�ing the root of s onto the ith leaf of t.

— Example —

c

ba

c b ◦5
a

b

c
=

c

b

c

b

ba

c

a

Let t, s1, . . . , s|t| be G-trees. The full composition t ◦
[
s1, . . . , s|t|

]
is

obtained by gra�ing simultaneously the roots of each si onto the ith leaf
of t.

— Example —

b

a
◦


a

a

b
, , c

 =
a c

a

b

b

a

16 / 40

Compositions of syntax trees
Let t, s ∈ S(G). For each i ∈ [|t|], the partial composition t ◦i s is the tree
obtained by gra�ing the root of s onto the ith leaf of t.

— Example —

c

ba

c b ◦5
a

b

c
=

c

b

c

b

ba

c

a

Let t, s1, . . . , s|t| be G-trees. The full composition t ◦
[
s1, . . . , s|t|

]
is

obtained by gra�ing simultaneously the roots of each si onto the ith leaf
of t.

— Example —

b

a
◦


a

a

b
, , c

 =
a c

a

b

b

a

16 / 40

Free operads
Let G be an alphabet.

The free operad on G is the operad on the set S(G) wherein

I elements of arity n are the G-trees of arity n;

I the partial composition map ◦i is the one of the G-trees;

I the unit is .

Let c : G→ S(G) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any alphabet G, any operad O,
and any map f : G → O preserving
the arities, there exists a unique op-
erad morphism φ : S(G) → O such
that f = φ ◦ c.

G O

S(G)

f

c φ

17 / 40

Free operads
Let G be an alphabet.

The free operad on G is the operad on the set S(G) wherein

I elements of arity n are the G-trees of arity n;

I the partial composition map ◦i is the one of the G-trees;

I the unit is .

Let c : G→ S(G) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any alphabet G, any operad O,
and any map f : G → O preserving
the arities, there exists a unique op-
erad morphism φ : S(G) → O such
that f = φ ◦ c.

G O

S(G)

f

c φ

17 / 40

Free operads
Let G be an alphabet.

The free operad on G is the operad on the set S(G) wherein

I elements of arity n are the G-trees of arity n;

I the partial composition map ◦i is the one of the G-trees;

I the unit is .

Let c : G→ S(G) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any alphabet G, any operad O,
and any map f : G → O preserving
the arities, there exists a unique op-
erad morphism φ : S(G) → O such
that f = φ ◦ c.

G O

S(G)

f

c φ

17 / 40

Free operads
Let G be an alphabet.

The free operad on G is the operad on the set S(G) wherein

I elements of arity n are the G-trees of arity n;

I the partial composition map ◦i is the one of the G-trees;

I the unit is .

Let c : G→ S(G) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any alphabet G, any operad O,
and any map f : G → O preserving
the arities, there exists a unique op-
erad morphism φ : S(G) → O such
that f = φ ◦ c.

G O

S(G)

f

c φ

17 / 40

Free operads
Let G be an alphabet.

The free operad on G is the operad on the set S(G) wherein

I elements of arity n are the G-trees of arity n;

I the partial composition map ◦i is the one of the G-trees;

I the unit is .

Let c : G→ S(G) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any alphabet G, any operad O,
and any map f : G → O preserving
the arities, there exists a unique op-
erad morphism φ : S(G) → O such
that f = φ ◦ c.

G O

S(G)

f

c φ

17 / 40

Free operads
Let G be an alphabet.

The free operad on G is the operad on the set S(G) wherein

I elements of arity n are the G-trees of arity n;

I the partial composition map ◦i is the one of the G-trees;

I the unit is .

Let c : G→ S(G) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any alphabet G, any operad O,
and any map f : G → O preserving
the arities, there exists a unique op-
erad morphism φ : S(G) → O such
that f = φ ◦ c.

G O

S(G)

f

c φ

17 / 40

Factors and prefixes

Let t, s ∈ S(G).

If t decomposes as
t = r ◦i

(
s ◦
[
r1, . . . , r[s|

])
for some trees r, r1, . . . , r|s|, and i ∈ [|r|], then s is a factor of t.

This property is denoted by s 4f t.

If in the previous decomposition r = , then s is a prefix of t.

This property is denoted by s 4p t.

— Example —

c

b
4f

a

b

a

b

c

c

b

b c

b

b

4p
a

b

a

b

c

c

b

b

18 / 40

Factors and prefixes

Let t, s ∈ S(G).

If t decomposes as
t = r ◦i

(
s ◦
[
r1, . . . , r[s|

])
for some trees r, r1, . . . , r|s|, and i ∈ [|r|], then s is a factor of t.

This property is denoted by s 4f t.

If in the previous decomposition r = , then s is a prefix of t.

This property is denoted by s 4p t.

— Example —

c

b
4f

a

b

a

b

c

c

b

b

c

b

b

4p
a

b

a

b

c

c

b

b

18 / 40

Factors and prefixes

Let t, s ∈ S(G).

If t decomposes as
t = r ◦i

(
s ◦
[
r1, . . . , r[s|

])
for some trees r, r1, . . . , r|s|, and i ∈ [|r|], then s is a factor of t.

This property is denoted by s 4f t.

If in the previous decomposition r = , then s is a prefix of t.

This property is denoted by s 4p t.

— Example —

c

b
4f

a

b

a

b

c

c

b

b c

b

b

4p
a

b

a

b

c

c

b

b

18 / 40

Pa�ern avoidance and enumeration
A G-tree t avoids a G-tree s if s��4f t.

For any P ⊆ S(G), let

A(P) = {t ∈ S(G) : for all s ∈ P, s��4f t} .

— Example —

I A

(
a

a

b

a

a

b

b

b

)
is enumerated by 1, 2, 4, 8, 16, 32, 64, 128,

I A

(
a

a

c

a

a

c

c

c

)
is enumerated by 1, 1, 2, 4, 9, 21, 51, 127, . . . (A001006).

I A


a

a

a

b b

a

b

b

b

 is enumerated by 1,2,5,13,35,96,267,750,. . . (A005773).

— �estion —
Enumerate A(P) w.r.t. the arities of the trees.

19 / 40

http://oeis.org/A001006
http://oeis.org/A005773

Pa�ern avoidance and enumeration
A G-tree t avoids a G-tree s if s��4f t.

For any P ⊆ S(G), let

A(P) = {t ∈ S(G) : for all s ∈ P, s��4f t} .

— Example —

I A

(
a

a

b

a

a

b

b

b

)
is enumerated by 1, 2, 4, 8, 16, 32, 64, 128,

I A

(
a

a

c

a

a

c

c

c

)
is enumerated by 1, 1, 2, 4, 9, 21, 51, 127, . . . (A001006).

I A


a

a

a

b b

a

b

b

b

 is enumerated by 1,2,5,13,35,96,267,750,. . . (A005773).

— �estion —
Enumerate A(P) w.r.t. the arities of the trees.

19 / 40

http://oeis.org/A001006
http://oeis.org/A005773

Pa�ern avoidance and enumeration
A G-tree t avoids a G-tree s if s��4f t.

For any P ⊆ S(G), let

A(P) = {t ∈ S(G) : for all s ∈ P, s��4f t} .

— Example —

I A

(
a

a

b

a

a

b

b

b

)
is enumerated by 1, 2, 4, 8, 16, 32, 64, 128,

I A

(
a

a

c

a

a

c

c

c

)
is enumerated by 1, 1, 2, 4, 9, 21, 51, 127, . . . (A001006).

I A


a

a

a

b b

a

b

b

b

 is enumerated by 1,2,5,13,35,96,267,750,. . . (A005773).

— �estion —
Enumerate A(P) w.r.t. the arities of the trees.

19 / 40

http://oeis.org/A001006
http://oeis.org/A005773

Pa�ern avoidance and enumeration
A G-tree t avoids a G-tree s if s��4f t.

For any P ⊆ S(G), let

A(P) = {t ∈ S(G) : for all s ∈ P, s��4f t} .

— Example —

I A

(
a

a

b

a

a

b

b

b

)
is enumerated by 1, 2, 4, 8, 16, 32, 64, 128,

I A

(
a

a

c

a

a

c

c

c

)
is enumerated by 1, 1, 2, 4, 9, 21, 51, 127, . . . (A001006).

I A


a

a

a

b b

a

b

b

b

 is enumerated by 1,2,5,13,35,96,267,750,. . . (A005773).

— �estion —
Enumerate A(P) w.r.t. the arities of the trees.

19 / 40

http://oeis.org/A001006
http://oeis.org/A005773

Pa�ern avoidance and enumeration
A G-tree t avoids a G-tree s if s��4f t.

For any P ⊆ S(G), let

A(P) = {t ∈ S(G) : for all s ∈ P, s��4f t} .

— Example —

I A

(
a

a

b

a

a

b

b

b

)
is enumerated by 1, 2, 4, 8, 16, 32, 64, 128,

I A

(
a

a

c

a

a

c

c

c

)
is enumerated by 1, 1, 2, 4, 9, 21, 51, 127, . . . (A001006).

I A


a

a

a

b b

a

b

b

b

 is enumerated by 1,2,5,13,35,96,267,750,. . . (A005773).

— �estion —
Enumerate A(P) w.r.t. the arities of the trees.

19 / 40

http://oeis.org/A001006
http://oeis.org/A005773

Pa�ern avoidance and enumeration
A G-tree t avoids a G-tree s if s��4f t.

For any P ⊆ S(G), let

A(P) = {t ∈ S(G) : for all s ∈ P, s��4f t} .

— Example —

I A

(
a

a

b

a

a

b

b

b

)
is enumerated by 1, 2, 4, 8, 16, 32, 64, 128,

I A

(
a

a

c

a

a

c

c

c

)
is enumerated by 1, 1, 2, 4, 9, 21, 51, 127, . . . (A001006).

I A


a

a

a

b b

a

b

b

b

 is enumerated by 1,2,5,13,35,96,267,750,. . . (A005773).

— �estion —
Enumerate A(P) w.r.t. the arities of the trees.

19 / 40

http://oeis.org/A001006
http://oeis.org/A005773

Formal power series of trees

For any P,Q ⊆ S(G), let

F(P,Q) :=
∑

t∈S(G)
t∈A(P)
∀s∈Q,s��4pt

t.

This is the formal sum of all the G-trees avoiding as factors all pa�erns of
P and avoiding as prefixes all pa�erns of Q.

Since

I F(P, ∅) is the formal sum of all the trees of A(P);

I the linear map t 7→ z|t| sends F(P, ∅) to the generating series
of A(P);

the series F(P,Q) contains all the enumerative data about the trees
avoiding P .

20 / 40

Formal power series of trees

For any P,Q ⊆ S(G), let

F(P,Q) :=
∑

t∈S(G)
t∈A(P)
∀s∈Q,s��4pt

t.

This is the formal sum of all the G-trees avoiding as factors all pa�erns of
P and avoiding as prefixes all pa�erns of Q.

Since

I F(P, ∅) is the formal sum of all the trees of A(P);

I the linear map t 7→ z|t| sends F(P, ∅) to the generating series
of A(P);

the series F(P,Q) contains all the enumerative data about the trees
avoiding P .

20 / 40

Formal power series of trees

For any P,Q ⊆ S(G), let

F(P,Q) :=
∑

t∈S(G)
t∈A(P)
∀s∈Q,s��4pt

t.

This is the formal sum of all the G-trees avoiding as factors all pa�erns of
P and avoiding as prefixes all pa�erns of Q.

Since

I F(P, ∅) is the formal sum of all the trees of A(P);

I the linear map t 7→ z|t| sends F(P, ∅) to the generating series
of A(P);

the series F(P,Q) contains all the enumerative data about the trees
avoiding P .

20 / 40

Formal power series of trees

For any P,Q ⊆ S(G), let

F(P,Q) :=
∑

t∈S(G)
t∈A(P)
∀s∈Q,s��4pt

t.

This is the formal sum of all the G-trees avoiding as factors all pa�erns of
P and avoiding as prefixes all pa�erns of Q.

Since

I F(P, ∅) is the formal sum of all the trees of A(P);

I the linear map t 7→ z|t| sends F(P, ∅) to the generating series
of A(P);

the series F(P,Q) contains all the enumerative data about the trees
avoiding P .

20 / 40

System of equations

When G, P , and Q satisfy some conditions, F(P,Q) expresses as an
inclusion-exclusion formula involving simpler terms F (P,Si).

— Theorem —
The series F(P,Q) satisfies

F(P,Q) = +
∑
k>1

a∈G(k)

∑
`>1{

R(1),...,R(`)
}
⊆M((P∪Q)a)

(S1,...,Sk)=R(1)u···uR(`)

(−1)1+`a◦̄ [F (P,S1) , . . . ,F (P,Sk)] .

This leads to a system of equations for the generating series of A(P).
Indeed, the generating series of A(P) is the series F (P, ∅) where

F (P,Q) = z +
∑
k>1

a∈G(k)

∑
`>1{

R(1),...,R(`)
}
⊆M((P∪Q)a)

(S1,...,Sk)=R(1)u···uR(`)

(−1)1+`
∏
i∈[k]

F (P,Si) .

21 / 40

System of equations

When G, P , and Q satisfy some conditions, F(P,Q) expresses as an
inclusion-exclusion formula involving simpler terms F (P,Si).

— Theorem —
The series F(P,Q) satisfies

F(P,Q) = +
∑
k>1

a∈G(k)

∑
`>1{

R(1),...,R(`)
}
⊆M((P∪Q)a)

(S1,...,Sk)=R(1)u···uR(`)

(−1)1+`a◦̄ [F (P,S1) , . . . ,F (P,Sk)] .

This leads to a system of equations for the generating series of A(P).
Indeed, the generating series of A(P) is the series F (P, ∅) where

F (P,Q) = z +
∑
k>1

a∈G(k)

∑
`>1{

R(1),...,R(`)
}
⊆M((P∪Q)a)

(S1,...,Sk)=R(1)u···uR(`)

(−1)1+`
∏
i∈[k]

F (P,Si) .

21 / 40

System of equations
— Example —

For P :=

{
a

a

b

}
, we obtain the system of formal power series of trees

F(P, ∅) = + a◦̄ [F(P, {a}),F(P, ∅)] + a◦̄ [F(P, ∅),F(P, {b})]
− a◦̄ [F(P, {a}),F(P, {b})] + b◦̄ [F(P, ∅),F(P, ∅)] ,

F(P, {a}) = + b◦̄ [F(P, ∅),F(P, ∅)] ,
F(P, {b}) = + a◦̄ [F(P, {a}),F(P, ∅)] + a◦̄ [F(P, ∅),F(P, {b})]

− a◦̄ [F(P, {a}),F(P, {b})] .

This leads to the system of generating series

F (P, ∅) = z + F (P, {a})F (P, ∅) + F (P, ∅)F (P, {b})
− F (P, {a})F (P, {b}) + F (P, ∅)F (P, ∅),

F (P, {a}) = z + F (P, ∅)F (P, ∅),
F (P, {b}) = z + F (P, {a})F (P, ∅) + F (P, ∅)F (P, {b})

− F (P, {a})F (P, {b}).

As a consequence, F (P, ∅) satisfies

z − F (P, ∅) + (2 + z)F (P, ∅)2 − F (P, ∅)3 + F (P, ∅)4 = 0.

22 / 40

System of equations
— Example —

For P :=

{
a

a

b

}
, we obtain the system of formal power series of trees

F(P, ∅) = + a◦̄ [F(P, {a}),F(P, ∅)] + a◦̄ [F(P, ∅),F(P, {b})]
− a◦̄ [F(P, {a}),F(P, {b})] + b◦̄ [F(P, ∅),F(P, ∅)] ,

F(P, {a}) = + b◦̄ [F(P, ∅),F(P, ∅)] ,
F(P, {b}) = + a◦̄ [F(P, {a}),F(P, ∅)] + a◦̄ [F(P, ∅),F(P, {b})]

− a◦̄ [F(P, {a}),F(P, {b})] .

This leads to the system of generating series

F (P, ∅) = z + F (P, {a})F (P, ∅) + F (P, ∅)F (P, {b})
− F (P, {a})F (P, {b}) + F (P, ∅)F (P, ∅),

F (P, {a}) = z + F (P, ∅)F (P, ∅),
F (P, {b}) = z + F (P, {a})F (P, ∅) + F (P, ∅)F (P, {b})

− F (P, {a})F (P, {b}).

As a consequence, F (P, ∅) satisfies

z − F (P, ∅) + (2 + z)F (P, ∅)2 − F (P, ∅)3 + F (P, ∅)4 = 0.

22 / 40

System of equations
— Example —

For P :=

{
a

a

b

}
, we obtain the system of formal power series of trees

F(P, ∅) = + a◦̄ [F(P, {a}),F(P, ∅)] + a◦̄ [F(P, ∅),F(P, {b})]
− a◦̄ [F(P, {a}),F(P, {b})] + b◦̄ [F(P, ∅),F(P, ∅)] ,

F(P, {a}) = + b◦̄ [F(P, ∅),F(P, ∅)] ,
F(P, {b}) = + a◦̄ [F(P, {a}),F(P, ∅)] + a◦̄ [F(P, ∅),F(P, {b})]

− a◦̄ [F(P, {a}),F(P, {b})] .

This leads to the system of generating series

F (P, ∅) = z + F (P, {a})F (P, ∅) + F (P, ∅)F (P, {b})
− F (P, {a})F (P, {b}) + F (P, ∅)F (P, ∅),

F (P, {a}) = z + F (P, ∅)F (P, ∅),
F (P, {b}) = z + F (P, {a})F (P, ∅) + F (P, ∅)F (P, {b})

− F (P, {a})F (P, {b}).

As a consequence, F (P, ∅) satisfies

z − F (P, ∅) + (2 + z)F (P, ∅)2 − F (P, ∅)3 + F (P, ∅)4 = 0.
22 / 40

Operads and presentations
Let O be an operad. A congruence of O is an equivalence relation ≡ on O
preserving the arities and such that x ≡ x′ and y ≡ y′ imply
x ◦i y ≡ x′ ◦i y′ for all i ∈ [|x|].

A presentation of O is a pair (G,≡) such that G is an alphabet and ≡ is a
congruence of O satisfying

O ' S(G)/≡.

— Example —
The operad Motz admits the presentation (G,≡) where

G :=
{

,
}

and ≡ is the smallest operad congruence satisfying

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦3 ,

◦1 ≡ ◦3 .

23 / 40

Operads and presentations
Let O be an operad. A congruence of O is an equivalence relation ≡ on O
preserving the arities and such that x ≡ x′ and y ≡ y′ imply
x ◦i y ≡ x′ ◦i y′ for all i ∈ [|x|].

A presentation of O is a pair (G,≡) such that G is an alphabet and ≡ is a
congruence of O satisfying

O ' S(G)/≡.

— Example —
The operad Motz admits the presentation (G,≡) where

G :=
{

,
}

and ≡ is the smallest operad congruence satisfying

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦3 ,

◦1 ≡ ◦3 .

23 / 40

Operads and presentations
Let O be an operad. A congruence of O is an equivalence relation ≡ on O
preserving the arities and such that x ≡ x′ and y ≡ y′ imply
x ◦i y ≡ x′ ◦i y′ for all i ∈ [|x|].

A presentation of O is a pair (G,≡) such that G is an alphabet and ≡ is a
congruence of O satisfying

O ' S(G)/≡.

— Example —
The operad Motz admits the presentation (G,≡) where

G :=
{

,
}

and ≡ is the smallest operad congruence satisfying

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦3 ,

◦1 ≡ ◦3 .

23 / 40

Operads and presentations
Let O be an operad. A congruence of O is an equivalence relation ≡ on O
preserving the arities and such that x ≡ x′ and y ≡ y′ imply
x ◦i y ≡ x′ ◦i y′ for all i ∈ [|x|].

A presentation of O is a pair (G,≡) such that G is an alphabet and ≡ is a
congruence of O satisfying

O ' S(G)/≡.

— Example —
The operad Motz admits the presentation (G,≡) where

G :=
{

,
}

and ≡ is the smallest operad congruence satisfying

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦3 ,

◦1 ≡ ◦3 .

23 / 40

Operads and pa�erns

Let O be an operad admi�ing a presentation (G,≡).

A basis of O is a subset B of S(G) such that for any [t]≡ ∈ S(G)/≡, there
exists a unique s ∈ [t]≡ ∩ B.

In most cases, B can be described as set of G-trees avoiding a subset PB
of S(G).

— Example —
The set B, described as the set of G-trees avoiding

PB :=
{

◦1 , ◦1 , ◦1 , ◦1
}
,

is a basis of Motz.

Rewrite systems on G-trees are good tools to compute bases (we find
terminating and confluent orientations⇒ of ≡).

24 / 40

Operads and pa�erns

Let O be an operad admi�ing a presentation (G,≡).

A basis of O is a subset B of S(G) such that for any [t]≡ ∈ S(G)/≡, there
exists a unique s ∈ [t]≡ ∩ B.

In most cases, B can be described as set of G-trees avoiding a subset PB
of S(G).

— Example —
The set B, described as the set of G-trees avoiding

PB :=
{

◦1 , ◦1 , ◦1 , ◦1
}
,

is a basis of Motz.

Rewrite systems on G-trees are good tools to compute bases (we find
terminating and confluent orientations⇒ of ≡).

24 / 40

Operads and pa�erns

Let O be an operad admi�ing a presentation (G,≡).

A basis of O is a subset B of S(G) such that for any [t]≡ ∈ S(G)/≡, there
exists a unique s ∈ [t]≡ ∩ B.

In most cases, B can be described as set of G-trees avoiding a subset PB
of S(G).

— Example —
The set B, described as the set of G-trees avoiding

PB :=
{

◦1 , ◦1 , ◦1 , ◦1
}
,

is a basis of Motz.

Rewrite systems on G-trees are good tools to compute bases (we find
terminating and confluent orientations⇒ of ≡).

24 / 40

Operads and pa�erns

Let O be an operad admi�ing a presentation (G,≡).

A basis of O is a subset B of S(G) such that for any [t]≡ ∈ S(G)/≡, there
exists a unique s ∈ [t]≡ ∩ B.

In most cases, B can be described as set of G-trees avoiding a subset PB
of S(G).

— Example —
The set B, described as the set of G-trees avoiding

PB :=
{

◦1 , ◦1 , ◦1 , ◦1
}
,

is a basis of Motz.

Rewrite systems on G-trees are good tools to compute bases (we find
terminating and confluent orientations⇒ of ≡).

24 / 40

Operads and pa�erns

Let O be an operad admi�ing a presentation (G,≡).

A basis of O is a subset B of S(G) such that for any [t]≡ ∈ S(G)/≡, there
exists a unique s ∈ [t]≡ ∩ B.

In most cases, B can be described as set of G-trees avoiding a subset PB
of S(G).

— Example —
The set B, described as the set of G-trees avoiding

PB :=
{

◦1 , ◦1 , ◦1 , ◦1
}
,

is a basis of Motz.

Rewrite systems on G-trees are good tools to compute bases (we find
terminating and confluent orientations⇒ of ≡).

24 / 40

Operads and enumeration
Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad OX ;

2. exhibiting a presentation (G,≡) of OX and a basis B;
3. computing the series F (PB, ∅) where PB is a set of G-trees

satisfying A(PB) = B.

— Example —
To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let a := , c := , and P :=

{
a

a

c

a

a

c

c

c

}
.

We have

F(P, ∅) = + a◦̄ [F(P, {a, c}),F(P, ∅)] + c◦̄ [F(P, {a, c}),F(P, ∅),F(P, ∅)] ,
F(P, {a, c}) = ,

so that, the generating series of Motzkin paths satisfies

F (P, ∅) = z + zF (P, ∅) + zF (P, ∅)2.

25 / 40

Operads and enumeration
Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad OX ;
2. exhibiting a presentation (G,≡) of OX and a basis B;

3. computing the series F (PB, ∅) where PB is a set of G-trees
satisfying A(PB) = B.

— Example —
To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let a := , c := , and P :=

{
a

a

c

a

a

c

c

c

}
.

We have

F(P, ∅) = + a◦̄ [F(P, {a, c}),F(P, ∅)] + c◦̄ [F(P, {a, c}),F(P, ∅),F(P, ∅)] ,
F(P, {a, c}) = ,

so that, the generating series of Motzkin paths satisfies

F (P, ∅) = z + zF (P, ∅) + zF (P, ∅)2.

25 / 40

Operads and enumeration
Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad OX ;
2. exhibiting a presentation (G,≡) of OX and a basis B;
3. computing the series F (PB, ∅) where PB is a set of G-trees

satisfying A(PB) = B.

— Example —
To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let a := , c := , and P :=

{
a

a

c

a

a

c

c

c

}
.

We have

F(P, ∅) = + a◦̄ [F(P, {a, c}),F(P, ∅)] + c◦̄ [F(P, {a, c}),F(P, ∅),F(P, ∅)] ,
F(P, {a, c}) = ,

so that, the generating series of Motzkin paths satisfies

F (P, ∅) = z + zF (P, ∅) + zF (P, ∅)2.

25 / 40

Operads and enumeration
Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad OX ;
2. exhibiting a presentation (G,≡) of OX and a basis B;
3. computing the series F (PB, ∅) where PB is a set of G-trees

satisfying A(PB) = B.

— Example —
To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let a := , c := , and P :=

{
a

a

c

a

a

c

c

c

}
.

We have

F(P, ∅) = + a◦̄ [F(P, {a, c}),F(P, ∅)] + c◦̄ [F(P, {a, c}),F(P, ∅),F(P, ∅)] ,
F(P, {a, c}) = ,

so that, the generating series of Motzkin paths satisfies

F (P, ∅) = z + zF (P, ∅) + zF (P, ∅)2.

25 / 40

Operads and enumeration
Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad OX ;
2. exhibiting a presentation (G,≡) of OX and a basis B;
3. computing the series F (PB, ∅) where PB is a set of G-trees

satisfying A(PB) = B.

— Example —
To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let a := , c := , and P :=

{
a

a

c

a

a

c

c

c

}
.

We have

F(P, ∅) = + a◦̄ [F(P, {a, c}),F(P, ∅)] + c◦̄ [F(P, {a, c}),F(P, ∅),F(P, ∅)] ,
F(P, {a, c}) = ,

so that, the generating series of Motzkin paths satisfies

F (P, ∅) = z + zF (P, ∅) + zF (P, ∅)2.

25 / 40

Operads and enumeration
Let X be a family of combinatorial objects we want enumerate.

The approach using operads consists in
1. endowing X with the structure of an operad OX ;
2. exhibiting a presentation (G,≡) of OX and a basis B;
3. computing the series F (PB, ∅) where PB is a set of G-trees

satisfying A(PB) = B.

— Example —
To enumerate Motzkin paths (w.r.t. their sizes), we consider their operad structure Motz.

Let a := , c := , and P :=

{
a

a

c

a

a

c

c

c

}
.

We have

F(P, ∅) = + a◦̄ [F(P, {a, c}),F(P, ∅)] + c◦̄ [F(P, {a, c}),F(P, ∅),F(P, ∅)] ,
F(P, {a, c}) = ,

so that, the generating series of Motzkin paths satisfies

F (P, ∅) = z + zF (P, ∅) + zF (P, ∅)2.

25 / 40

Outline

Generation

26 / 40

Context-free grammars

Let A = V t T be a set where V is a set of variables and T is a set of
terminal symbols.

A rule is a pair (x, v) ∈ V ×A∗. A setR of rules specifies a rewrite rule→
on A∗ by se�ing

u x w → u v w

for any u,w ∈ A∗ provided that (x, v) ∈ R.

— Example —
Let V := {x, y}, T := {a, b, c}, andR := {(x, b) , (x, xay) , (y, ac)}.

We have
bxx→ bxayx→ bbayx→ bbaacx.

27 / 40

Context-free grammars

Let A = V t T be a set where V is a set of variables and T is a set of
terminal symbols.

A rule is a pair (x, v) ∈ V ×A∗. A setR of rules specifies a rewrite rule→
on A∗ by se�ing

u x w → u v w

for any u,w ∈ A∗ provided that (x, v) ∈ R.

— Example —
Let V := {x, y}, T := {a, b, c}, andR := {(x, b) , (x, xay) , (y, ac)}.

We have
bxx→ bxayx→ bbayx→ bbaacx.

27 / 40

Context-free grammars

Let A = V t T be a set where V is a set of variables and T is a set of
terminal symbols.

A rule is a pair (x, v) ∈ V ×A∗. A setR of rules specifies a rewrite rule→
on A∗ by se�ing

u x w → u v w

for any u,w ∈ A∗ provided that (x, v) ∈ R.

— Example —
Let V := {x, y}, T := {a, b, c}, andR := {(x, b) , (x, xay) , (y, ac)}.

We have
bxx→ bxayx→ bbayx→ bbaacx.

27 / 40

Regular tree grammars
Let V be a set of variables and T be an alphabet of terminal symbols.

A (V , T)-tree is a planar rooted tree where internal nodes are labeled on T
and leaves are labeled on V .

A rule is a pair (x, t) where x ∈ V and t is a (V , T)-tree. A setR of rules
specifies a rewrite rule→ on the set of all (V , T)-trees by se�ing

s

x

→ s

t

for any (V , T)-tree s having a leaf labeled by x, provided that (x, t) ∈ R.

— Example —

Let V := {x, y}, T := {a, b} where |a| := 1, |b| := 2, andR :=

{(
x,

y

a

)
,

(
y,

x y

xb

b

)}
.

We have

x

x

b

a
→

y x

a

b

a
→

x y

x

x

a

b

b

b

a

.

28 / 40

Regular tree grammars
Let V be a set of variables and T be an alphabet of terminal symbols.

A (V , T)-tree is a planar rooted tree where internal nodes are labeled on T
and leaves are labeled on V .

A rule is a pair (x, t) where x ∈ V and t is a (V , T)-tree. A setR of rules
specifies a rewrite rule→ on the set of all (V , T)-trees by se�ing

s

x

→ s

t

for any (V , T)-tree s having a leaf labeled by x, provided that (x, t) ∈ R.

— Example —

Let V := {x, y}, T := {a, b} where |a| := 1, |b| := 2, andR :=

{(
x,

y

a

)
,

(
y,

x y

xb

b

)}
.

We have

x

x

b

a
→

y x

a

b

a
→

x y

x

x

a

b

b

b

a

.

28 / 40

Regular tree grammars
Let V be a set of variables and T be an alphabet of terminal symbols.

A (V , T)-tree is a planar rooted tree where internal nodes are labeled on T
and leaves are labeled on V .

A rule is a pair (x, t) where x ∈ V and t is a (V , T)-tree. A setR of rules
specifies a rewrite rule→ on the set of all (V , T)-trees by se�ing

s

x

→ s

t

for any (V , T)-tree s having a leaf labeled by x, provided that (x, t) ∈ R.

— Example —

Let V := {x, y}, T := {a, b} where |a| := 1, |b| := 2, andR :=

{(
x,

y

a

)
,

(
y,

x y

xb

b

)}
.

We have

x

x

b

a
→

y x

a

b

a
→

x y

x

x

a

b

b

b

a

.

28 / 40

Regular tree grammars
Let V be a set of variables and T be an alphabet of terminal symbols.

A (V , T)-tree is a planar rooted tree where internal nodes are labeled on T
and leaves are labeled on V .

A rule is a pair (x, t) where x ∈ V and t is a (V , T)-tree. A setR of rules
specifies a rewrite rule→ on the set of all (V , T)-trees by se�ing

s

x

→ s

t

for any (V , T)-tree s having a leaf labeled by x, provided that (x, t) ∈ R.

— Example —

Let V := {x, y}, T := {a, b} where |a| := 1, |b| := 2, andR :=

{(
x,

y

a

)
,

(
y,

x y

xb

b

)}
.

We have

x

x

b

a
→

y x

a

b

a
→

x y

x

x

a

b

b

b

a

.

28 / 40

General generation

Objectives:

I Introduce generating systems for any kind of combinatorial objects;

I Retrieve the generation of words and of trees as special cases;

I Develop a toolbox for the enumeration of combinatorial objects.

— Key idea —
Use colored operads, where

I colors play the role of variables and terminal symbols;

I Formal series on colored operad and their operations support enumeration.

29 / 40

General generation

Objectives:

I Introduce generating systems for any kind of combinatorial objects;

I Retrieve the generation of words and of trees as special cases;

I Develop a toolbox for the enumeration of combinatorial objects.

— Key idea —
Use colored operads, where

I colors play the role of variables and terminal symbols;

I Formal series on colored operad and their operations support enumeration.

29 / 40

Colored operads
Colored operads are algebraic structures formalizing the notion of partial
operations and their composition.

A colored operad is a quadruplet (C, C, ◦i,1c) where

1. C is a finite set of colors;

2. C is a set of the form

C :=
⊔

(a,u)∈C×C+

C(a, u);

3. ◦i is a map, called partial composition map,

◦i : C(a, u)× C (ui, v)→ C (a, u ◦i v) , 1 6 i 6 |u|,

where u ◦i v is the word obtained by replacing the ith le�er of u by v;

4. for any c ∈ C, 1c is an element of C(c, c) called c-colored unit.

This data has to satisfy some axioms, similar to the ones of operads.

30 / 40

Colored operads
Colored operads are algebraic structures formalizing the notion of partial
operations and their composition.

A colored operad is a quadruplet (C, C, ◦i,1c) where

1. C is a finite set of colors;

2. C is a set of the form

C :=
⊔

(a,u)∈C×C+

C(a, u);

3. ◦i is a map, called partial composition map,

◦i : C(a, u)× C (ui, v)→ C (a, u ◦i v) , 1 6 i 6 |u|,

where u ◦i v is the word obtained by replacing the ith le�er of u by v;

4. for any c ∈ C, 1c is an element of C(c, c) called c-colored unit.

This data has to satisfy some axioms, similar to the ones of operads.

30 / 40

Colored operads
Colored operads are algebraic structures formalizing the notion of partial
operations and their composition.

A colored operad is a quadruplet (C, C, ◦i,1c) where

1. C is a finite set of colors;

2. C is a set of the form

C :=
⊔

(a,u)∈C×C+

C(a, u);

3. ◦i is a map, called partial composition map,

◦i : C(a, u)× C (ui, v)→ C (a, u ◦i v) , 1 6 i 6 |u|,

where u ◦i v is the word obtained by replacing the ith le�er of u by v;

4. for any c ∈ C, 1c is an element of C(c, c) called c-colored unit.

This data has to satisfy some axioms, similar to the ones of operads.

30 / 40

Colored operads
Colored operads are algebraic structures formalizing the notion of partial
operations and their composition.

A colored operad is a quadruplet (C, C, ◦i,1c) where

1. C is a finite set of colors;

2. C is a set of the form

C :=
⊔

(a,u)∈C×C+

C(a, u);

3. ◦i is a map, called partial composition map,

◦i : C(a, u)× C (ui, v)→ C (a, u ◦i v) , 1 6 i 6 |u|,

where u ◦i v is the word obtained by replacing the ith le�er of u by v;

4. for any c ∈ C, 1c is an element of C(c, c) called c-colored unit.

This data has to satisfy some axioms, similar to the ones of operads.

30 / 40

Colored operads
Colored operads are algebraic structures formalizing the notion of partial
operations and their composition.

A colored operad is a quadruplet (C, C, ◦i,1c) where

1. C is a finite set of colors;

2. C is a set of the form

C :=
⊔

(a,u)∈C×C+

C(a, u);

3. ◦i is a map, called partial composition map,

◦i : C(a, u)× C (ui, v)→ C (a, u ◦i v) , 1 6 i 6 |u|,

where u ◦i v is the word obtained by replacing the ith le�er of u by v;

4. for any c ∈ C, 1c is an element of C(c, c) called c-colored unit.

This data has to satisfy some axioms, similar to the ones of operads.

30 / 40

Colored operads
Colored operads are algebraic structures formalizing the notion of partial
operations and their composition.

A colored operad is a quadruplet (C, C, ◦i,1c) where

1. C is a finite set of colors;

2. C is a set of the form

C :=
⊔

(a,u)∈C×C+

C(a, u);

3. ◦i is a map, called partial composition map,

◦i : C(a, u)× C (ui, v)→ C (a, u ◦i v) , 1 6 i 6 |u|,

where u ◦i v is the word obtained by replacing the ith le�er of u by v;

4. for any c ∈ C, 1c is an element of C(c, c) called c-colored unit.

This data has to satisfy some axioms, similar to the ones of operads.
30 / 40

Colored operations
Any element x of C(a, u) can be seen as a colored operation

x

1 |x|

a

u1 u|x|

. . .

where a color is assigned to the output and to each input of x.

Moreover, the partial composition map requires a condition on the colors:

x

1 |x|i

a

u1 u|x|ui

.

◦i y

1 |y|

ui

v1 v|y|

. . .

=

x

1 |x| + |y| − 1.

a

u1 u|x|

y

i i + |y| − 1

v1 v|y|

. . .

ui

.

31 / 40

Colored operations
Any element x of C(a, u) can be seen as a colored operation

x

1 |x|

a

u1 u|x|

. . .

where a color is assigned to the output and to each input of x.

Moreover, the partial composition map requires a condition on the colors:

x

1 |x|i

a

u1 u|x|ui

.

◦i y

1 |y|

ui

v1 v|y|

. . .

=

x

1 |x| + |y| − 1.

a

u1 u|x|

y

i i + |y| − 1

v1 v|y|

. . .

ui

.

31 / 40

Bud operads
Let O be an operad and C be a set of colors.

The C-bud operad of O is the colored operad BC(O) wherein:

I BC(O)(a, u) is the set of all triples (a, x, u) where x ∈ O and
(a, u) ∈ C× C|x|.

I The partial composition map is defined by

(a, x, u) ◦i (ui, y, v) := (a, x ◦i y, u ◦i v)

where x ◦i y is the partial composition of O.

I The colored units are the triples (c,1, c) where 1 is the unit of O.

— Proposition —
For any set of colors C, the construction O 7→ BC(O) is a functor from the
category of operads to the category of colored operads.

32 / 40

Bud operads
Let O be an operad and C be a set of colors.

The C-bud operad of O is the colored operad BC(O) wherein:

I BC(O)(a, u) is the set of all triples (a, x, u) where x ∈ O and
(a, u) ∈ C× C|x|.

I The partial composition map is defined by

(a, x, u) ◦i (ui, y, v) := (a, x ◦i y, u ◦i v)

where x ◦i y is the partial composition of O.

I The colored units are the triples (c,1, c) where 1 is the unit of O.

— Proposition —
For any set of colors C, the construction O 7→ BC(O) is a functor from the
category of operads to the category of colored operads.

32 / 40

Bud operads
Let O be an operad and C be a set of colors.

The C-bud operad of O is the colored operad BC(O) wherein:

I BC(O)(a, u) is the set of all triples (a, x, u) where x ∈ O and
(a, u) ∈ C× C|x|.

I The partial composition map is defined by

(a, x, u) ◦i (ui, y, v) := (a, x ◦i y, u ◦i v)

where x ◦i y is the partial composition of O.

I The colored units are the triples (c,1, c) where 1 is the unit of O.

— Proposition —
For any set of colors C, the construction O 7→ BC(O) is a functor from the
category of operads to the category of colored operads.

32 / 40

Bud operads
Let O be an operad and C be a set of colors.

The C-bud operad of O is the colored operad BC(O) wherein:

I BC(O)(a, u) is the set of all triples (a, x, u) where x ∈ O and
(a, u) ∈ C× C|x|.

I The partial composition map is defined by

(a, x, u) ◦i (ui, y, v) := (a, x ◦i y, u ◦i v)

where x ◦i y is the partial composition of O.

I The colored units are the triples (c,1, c) where 1 is the unit of O.

— Proposition —
For any set of colors C, the construction O 7→ BC(O) is a functor from the
category of operads to the category of colored operads.

32 / 40

Bud operads
Let O be an operad and C be a set of colors.

The C-bud operad of O is the colored operad BC(O) wherein:

I BC(O)(a, u) is the set of all triples (a, x, u) where x ∈ O and
(a, u) ∈ C× C|x|.

I The partial composition map is defined by

(a, x, u) ◦i (ui, y, v) := (a, x ◦i y, u ◦i v)

where x ◦i y is the partial composition of O.

I The colored units are the triples (c,1, c) where 1 is the unit of O.

— Proposition —
For any set of colors C, the construction O 7→ BC(O) is a functor from the
category of operads to the category of colored operads.

32 / 40

Examples of bud operads
The elements of BC(As) are triples

(
a, ?|u|, u

)
where (a, u) ∈ C× C+.

— Example —
In B{1,2,3}(As), (2, ?4, 3112) ◦2 (1, ?3, 233) = (2, ?6, 323312) .

The elements of
BC(S(G)) are C-
typed G-syntax trees,
that are G-trees with
colors assigned with the
root and with each leaf.

— Example —2,
c

a

a
, 31122

 ∈ B{1,2,3,4}(S({a, c})).

This element is drawn as

3 1 1 2 2

c

a

a

2

.

The elements of
BC(Motz) are Motzkin
paths having a global
color and a color as-
signed with each point.

— Example —(
1, , 221222211

)
∈ BC(Motz).

This element is drawn as

2 2 1 2 2 2 2 1

1

.

33 / 40

Examples of bud operads
The elements of BC(As) are triples

(
a, ?|u|, u

)
where (a, u) ∈ C× C+.

— Example —
In B{1,2,3}(As), (2, ?4, 3112) ◦2 (1, ?3, 233) = (2, ?6, 323312) .

The elements of
BC(S(G)) are C-
typed G-syntax trees,
that are G-trees with
colors assigned with the
root and with each leaf.

— Example —2,
c

a

a
, 31122

 ∈ B{1,2,3,4}(S({a, c})).

This element is drawn as

3 1 1 2 2

c

a

a

2

.

The elements of
BC(Motz) are Motzkin
paths having a global
color and a color as-
signed with each point.

— Example —(
1, , 221222211

)
∈ BC(Motz).

This element is drawn as

2 2 1 2 2 2 2 1

1

.

33 / 40

Examples of bud operads
The elements of BC(As) are triples

(
a, ?|u|, u

)
where (a, u) ∈ C× C+.

— Example —
In B{1,2,3}(As), (2, ?4, 3112) ◦2 (1, ?3, 233) = (2, ?6, 323312) .

The elements of
BC(S(G)) are C-
typed G-syntax trees,
that are G-trees with
colors assigned with the
root and with each leaf.

— Example —2,
c

a

a
, 31122

 ∈ B{1,2,3,4}(S({a, c})).

This element is drawn as

3 1 1 2 2

c

a

a

2

.

The elements of
BC(Motz) are Motzkin
paths having a global
color and a color as-
signed with each point.

— Example —(
1, , 221222211

)
∈ BC(Motz).

This element is drawn as

2 2 1 2 2 2 2 1

1

.

33 / 40

Bud generating systems

A bud generating system is a quintuplet B := (O,C,R, a, T) where

1. O is an operad, the ground operad;

2. C is a set of colors;

3. R ⊆ BC(O) is a set of rules;

4. a ∈ C is the initial color;

5. T ⊆ C is the set of terminal colors.

Each element (c, x, u) ofR can be thought as rule having c as le� member
and u as right member.

34 / 40

Bud generating systems

A bud generating system is a quintuplet B := (O,C,R, a, T) where

1. O is an operad, the ground operad;

2. C is a set of colors;

3. R ⊆ BC(O) is a set of rules;

4. a ∈ C is the initial color;

5. T ⊆ C is the set of terminal colors.

Each element (c, x, u) ofR can be thought as rule having c as le� member
and u as right member.

34 / 40

Bud generating systems

A bud generating system is a quintuplet B := (O,C,R, a, T) where

1. O is an operad, the ground operad;

2. C is a set of colors;

3. R ⊆ BC(O) is a set of rules;

4. a ∈ C is the initial color;

5. T ⊆ C is the set of terminal colors.

Each element (c, x, u) ofR can be thought as rule having c as le� member
and u as right member.

34 / 40

Bud generating systems

A bud generating system is a quintuplet B := (O,C,R, a, T) where

1. O is an operad, the ground operad;

2. C is a set of colors;

3. R ⊆ BC(O) is a set of rules;

4. a ∈ C is the initial color;

5. T ⊆ C is the set of terminal colors.

Each element (c, x, u) ofR can be thought as rule having c as le� member
and u as right member.

34 / 40

Bud generating systems

A bud generating system is a quintuplet B := (O,C,R, a, T) where

1. O is an operad, the ground operad;

2. C is a set of colors;

3. R ⊆ BC(O) is a set of rules;

4. a ∈ C is the initial color;

5. T ⊆ C is the set of terminal colors.

Each element (c, x, u) ofR can be thought as rule having c as le� member
and u as right member.

34 / 40

Bud generating systems

A bud generating system is a quintuplet B := (O,C,R, a, T) where

1. O is an operad, the ground operad;

2. C is a set of colors;

3. R ⊆ BC(O) is a set of rules;

4. a ∈ C is the initial color;

5. T ⊆ C is the set of terminal colors.

Each element (c, x, u) ofR can be thought as rule having c as le� member
and u as right member.

34 / 40

Generation
The setR specifies the rewrite rule→ on BC(O) by se�ing

x→ x ◦i r

for any x ∈ BC(O), i ∈ [|x|], and r ∈ R. This is the derivation relation.

An element x of BC(O) is generated by B if

1a → · · · → x

and all input colors of x are in T . These elements form the language of B.

The setR specifies also the rewrite rule ; on BC(O) by se�ing

x ; x ◦
[
r1, . . . , r|x|

]
for any x ∈ BC(O) and r1, . . . , r|x| ∈ R. This is the synchronous
derivation relation.

An element x of BC(O) is synchronously generated by B if

1a ; · · ·; x

and all input colors of x are in T . These elements form the synchronous
language of B.

35 / 40

Generation
The setR specifies the rewrite rule→ on BC(O) by se�ing

x→ x ◦i r

for any x ∈ BC(O), i ∈ [|x|], and r ∈ R. This is the derivation relation.

An element x of BC(O) is generated by B if

1a → · · · → x

and all input colors of x are in T . These elements form the language of B.

The setR specifies also the rewrite rule ; on BC(O) by se�ing

x ; x ◦
[
r1, . . . , r|x|

]
for any x ∈ BC(O) and r1, . . . , r|x| ∈ R. This is the synchronous
derivation relation.

An element x of BC(O) is synchronously generated by B if

1a ; · · ·; x

and all input colors of x are in T . These elements form the synchronous
language of B.

35 / 40

Generation
The setR specifies the rewrite rule→ on BC(O) by se�ing

x→ x ◦i r

for any x ∈ BC(O), i ∈ [|x|], and r ∈ R. This is the derivation relation.

An element x of BC(O) is generated by B if

1a → · · · → x

and all input colors of x are in T . These elements form the language of B.

The setR specifies also the rewrite rule ; on BC(O) by se�ing

x ; x ◦
[
r1, . . . , r|x|

]
for any x ∈ BC(O) and r1, . . . , r|x| ∈ R. This is the synchronous
derivation relation.

An element x of BC(O) is synchronously generated by B if

1a ; · · ·; x

and all input colors of x are in T . These elements form the synchronous
language of B.

35 / 40

Generation
The setR specifies the rewrite rule→ on BC(O) by se�ing

x→ x ◦i r

for any x ∈ BC(O), i ∈ [|x|], and r ∈ R. This is the derivation relation.

An element x of BC(O) is generated by B if

1a → · · · → x

and all input colors of x are in T . These elements form the language of B.

The setR specifies also the rewrite rule ; on BC(O) by se�ing

x ; x ◦
[
r1, . . . , r|x|

]
for any x ∈ BC(O) and r1, . . . , r|x| ∈ R. This is the synchronous
derivation relation.

An element x of BC(O) is synchronously generated by B if

1a ; · · ·; x

and all input colors of x are in T . These elements form the synchronous
language of B.

35 / 40

Generation of particular Motzkin paths
Let the bud generating system B := (Motz, {1, 2},R, 1, {1, 2}) where

R :=
{
(1, , 22) ,

(
1, , 111

)}
.

— Example —
There are in B the derivations

11 →
1 1 1

1

→
2 2 1 1

1

→

2 2 1 1 1 1

1

→

2 2 1 2 2 1 1

1

→

2 2 1 2 2 2 2 1

1

.

— Proposition —
There is a one-to-one correspondence between the set of Motkzin paths without
consecutive steps and the language of B.

These paths are enumerated by

1, 1, 1, 3, 5, 11, 25, 55, 129, 303, 721, 1743, . . . (A104545).

36 / 40

http://oeis.org/A104545

Generation of particular Motzkin paths
Let the bud generating system B := (Motz, {1, 2},R, 1, {1, 2}) where

R :=
{
(1, , 22) ,

(
1, , 111

)}
.

— Example —
There are in B the derivations

11 →
1 1 1

1

→
2 2 1 1

1

→

2 2 1 1 1 1

1

→

2 2 1 2 2 1 1

1

→

2 2 1 2 2 2 2 1

1

.

— Proposition —
There is a one-to-one correspondence between the set of Motkzin paths without
consecutive steps and the language of B.

These paths are enumerated by

1, 1, 1, 3, 5, 11, 25, 55, 129, 303, 721, 1743, . . . (A104545).

36 / 40

http://oeis.org/A104545

Generation of particular Motzkin paths
Let the bud generating system B := (Motz, {1, 2},R, 1, {1, 2}) where

R :=
{
(1, , 22) ,

(
1, , 111

)}
.

— Example —
There are in B the derivations

11 →
1 1 1

1

→
2 2 1 1

1

→

2 2 1 1 1 1

1

→

2 2 1 2 2 1 1

1

→

2 2 1 2 2 2 2 1

1

.

— Proposition —
There is a one-to-one correspondence between the set of Motkzin paths without
consecutive steps and the language of B.

These paths are enumerated by

1, 1, 1, 3, 5, 11, 25, 55, 129, 303, 721, 1743, . . . (A104545).

36 / 40

http://oeis.org/A104545

Balanced binary trees
A balanced binary tree is a binary tree t such that, for any internal node u
of t, the height of the le� subtree and of the right subtree of u di�er by at
most 1.

The first balanced binary trees are

, a ,
a

a , a

a
,

a

a

a
,

a

a

a

a , a

a

a

a , a

a

a

a , a

a

a

a

.

These trees are enumerated by

1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, . . . (A006265).

Their generating series is the specialization F (x, 0) where

F (x, y) = x+ F
(
x2 + 2xy, x

)
.

37 / 40

http://oeis.org/A006265

Balanced binary trees
A balanced binary tree is a binary tree t such that, for any internal node u
of t, the height of the le� subtree and of the right subtree of u di�er by at
most 1.

The first balanced binary trees are

, a ,
a

a , a

a
,

a

a

a
,

a

a

a

a , a

a

a

a , a

a

a

a , a

a

a

a

.

These trees are enumerated by

1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, . . . (A006265).

Their generating series is the specialization F (x, 0) where

F (x, y) = x+ F
(
x2 + 2xy, x

)
.

37 / 40

http://oeis.org/A006265

Balanced binary trees
A balanced binary tree is a binary tree t such that, for any internal node u
of t, the height of the le� subtree and of the right subtree of u di�er by at
most 1.

The first balanced binary trees are

, a ,
a

a , a

a
,

a

a

a
,

a

a

a

a , a

a

a

a , a

a

a

a , a

a

a

a

.

These trees are enumerated by

1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, . . . (A006265).

Their generating series is the specialization F (x, 0) where

F (x, y) = x+ F
(
x2 + 2xy, x

)
.

37 / 40

http://oeis.org/A006265

Generation of balanced binary trees
Let the bud generating system B := (S(G), {1, 2},R, 1, {1}) where
G := G(2) := {a} and

R :=

{(
1, a , 11

)
,

(
1, a , 12

)
,

(
1, a , 21

)
, (2, , 1)

}
.

— Example —
There are in B the derivations

11 ;
1 2

a

1

;
2 1

1a

a

1

;
1

1 1

2 1

a

a

a

a

1

;
1

2

1

2 11

1 2 1

a

a

a

a

a

a

a

a

1

;

1 1

1 1 1 1

1

1 1 1

1 1

1

1 1

a

a

a

a

a

a

a

a

a

a

a

a

a

a

1

.

— Proposition —
There is a one-to-one correspondence between the set of balanced binary trees and
the synchronous language of B.

38 / 40

Generation of balanced binary trees
Let the bud generating system B := (S(G), {1, 2},R, 1, {1}) where
G := G(2) := {a} and

R :=

{(
1, a , 11

)
,

(
1, a , 12

)
,

(
1, a , 21

)
, (2, , 1)

}
.

— Example —
There are in B the derivations

11 ;
1 2

a

1

;
2 1

1a

a

1

;
1

1 1

2 1

a

a

a

a

1

;
1

2

1

2 11

1 2 1

a

a

a

a

a

a

a

a

1

;

1 1

1 1 1 1

1

1 1 1

1 1

1

1 1

a

a

a

a

a

a

a

a

a

a

a

a

a

a

1

.

— Proposition —
There is a one-to-one correspondence between the set of balanced binary trees and
the synchronous language of B.

38 / 40

Generation of balanced binary trees
Let the bud generating system B := (S(G), {1, 2},R, 1, {1}) where
G := G(2) := {a} and

R :=

{(
1, a , 11

)
,

(
1, a , 12

)
,

(
1, a , 21

)
, (2, , 1)

}
.

— Example —
There are in B the derivations

11 ;
1 2

a

1

;
2 1

1a

a

1

;
1

1 1

2 1

a

a

a

a

1

;
1

2

1

2 11

1 2 1

a

a

a

a

a

a

a

a

1

;

1 1

1 1 1 1

1

1 1 1

1 1

1

1 1

a

a

a

a

a

a

a

a

a

a

a

a

a

a

1

.

— Proposition —
There is a one-to-one correspondence between the set of balanced binary trees and
the synchronous language of B.

38 / 40

Some properties

— Proposition —
For any proper context-free grammar G, there exists a bud generating system
B := (As,C,R, a, T) such that the language generated by G is in one-to-one
correspondance with the language of B.

— Proposition —
For any regular tree grammar G, there exists a bud generating system
B := (S(G),C,R, a, T) such that the language generated by G is in one-to-one
correspondance with the language of B.

— Proposition —
For any bud generating system B, the synchronous language of B is a subset of the
language of B.

39 / 40

Some properties

— Proposition —
For any proper context-free grammar G, there exists a bud generating system
B := (As,C,R, a, T) such that the language generated by G is in one-to-one
correspondance with the language of B.

— Proposition —
For any regular tree grammar G, there exists a bud generating system
B := (S(G),C,R, a, T) such that the language generated by G is in one-to-one
correspondance with the language of B.

— Proposition —
For any bud generating system B, the synchronous language of B is a subset of the
language of B.

39 / 40

Some properties

— Proposition —
For any proper context-free grammar G, there exists a bud generating system
B := (As,C,R, a, T) such that the language generated by G is in one-to-one
correspondance with the language of B.

— Proposition —
For any regular tree grammar G, there exists a bud generating system
B := (S(G),C,R, a, T) such that the language generated by G is in one-to-one
correspondance with the language of B.

— Proposition —
For any bud generating system B, the synchronous language of B is a subset of the
language of B.

39 / 40

Random generation
For any c ∈ C, letRc be the subset ofR of the elements having c as
output color.

Algorithm RBS:
I Input:

1. a bud generating system B := (O,C,R, a, T);
2. An integer k > 0.

I Output: an element of the synchronous language of B.

1. Let x := 1a ;

2. Repeat k times:
2.1 For any i ∈ [|x|], pick yi uniformly at random inRc where c is the ith input color of x;
2.2 Set x := x ◦

[
y1, . . . , y|x|

]
;

3. If all input colors of x belong to T :
3.1 Return x;

4. Otherwise:
4.1 Return failure.

— Proposition —
If B = (O,C,R, a, T) is synchronously unambiguous, the RBS is a uniform
random generator of the elements of the synchronous language of B.

40 / 40

Random generation
For any c ∈ C, letRc be the subset ofR of the elements having c as
output color.

Algorithm RBS:
I Input:

1. a bud generating system B := (O,C,R, a, T);
2. An integer k > 0.

I Output: an element of the synchronous language of B.

1. Let x := 1a ;

2. Repeat k times:
2.1 For any i ∈ [|x|], pick yi uniformly at random inRc where c is the ith input color of x;
2.2 Set x := x ◦

[
y1, . . . , y|x|

]
;

3. If all input colors of x belong to T :
3.1 Return x;

4. Otherwise:
4.1 Return failure.

— Proposition —
If B = (O,C,R, a, T) is synchronously unambiguous, the RBS is a uniform
random generator of the elements of the synchronous language of B.

40 / 40

Random generation
For any c ∈ C, letRc be the subset ofR of the elements having c as
output color.

Algorithm RBS:
I Input:

1. a bud generating system B := (O,C,R, a, T);
2. An integer k > 0.

I Output: an element of the synchronous language of B.

1. Let x := 1a ;

2. Repeat k times:
2.1 For any i ∈ [|x|], pick yi uniformly at random inRc where c is the ith input color of x;
2.2 Set x := x ◦

[
y1, . . . , y|x|

]
;

3. If all input colors of x belong to T :
3.1 Return x;

4. Otherwise:
4.1 Return failure.

— Proposition —
If B = (O,C,R, a, T) is synchronously unambiguous, the RBS is a uniform
random generator of the elements of the synchronous language of B.

40 / 40

