Clones of pigmented words and realizations of varieties of monoids

Samuele Giraudo

LIGM, Université Gustave Eiffel

International Conference on Matrix Theory with Applications to Combinatorics, Optimization and Data Science

Seogwipo KAL Hotel Jeju

Korea

December 2, 2022

Outline

1. Varieties, clones, and realizations

2. Clones of pigmented words

3. Realizations of some varieties of monoids

Outline

1. Varieties, clones, and realizations

Terms

A <u>signature</u> is a graded set $\mathfrak{G} := \bigsqcup_{n \geqslant 0} \mathfrak{G}(n)$ wherein each $g \in \mathfrak{G}(n)$ is an <u>constant</u> of <u>arity</u> n.

A &-term is either

- a <u>variable</u> x from the set $X_k := \{x_1, \dots, x_k\}$ for a $k \ge 0$;
- or a pair $(g, (t_1, ..., t_n))$ where $g \in \mathfrak{G}(n)$ and each t_i is a \mathfrak{G} -term. This pair is denoted by $g[t_1, ..., t_n]$.

Let $\mathfrak{T}(\mathfrak{G}) := \bigsqcup_{n \geq 0} \mathfrak{T}(\mathfrak{G})(n)$ where $\mathfrak{T}(\mathfrak{G})(n)$ is the set of the \mathfrak{G} -terms having all variables in \mathbb{X}_n .

– Example –

b b b x2 x4 a x1 x1 c

This is the tree representation of the &-term

$$a[b[x_2, x_4], b[a[x_1, c[]], x_1]]$$

of $\mathfrak{T}(\mathfrak{G})(6)$ where

$$\mathfrak{G} := \mathfrak{G}(0) \sqcup \mathfrak{G}(2) \sqcup \mathfrak{G}(3)$$

with
$$\mathfrak{G}(0):=\{c\},$$
 $\mathfrak{G}(2):=\{a,b\},$ and $\mathfrak{G}(3):=\{d\}.$

Varieties

A <u>variety</u> is a pair $(\mathfrak{G}, \mathcal{R})$ where \mathfrak{G} is a signature and \mathcal{R} is an equivalence relation on $\mathfrak{T}(\mathfrak{G})$.

An $\underline{\mathcal{R}}$ -equation is a pair $(\mathfrak{t},\mathfrak{t}')$ of \mathfrak{G} -terms such that $\mathfrak{t} \, \mathcal{R} \, \mathfrak{t}'$.

- Examples -

■ The <u>variety of idempotent semigroups</u> is the pair $(\mathfrak{G}, \mathcal{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$, and \mathcal{R} is the finest equivalence relation satisfying

$$\star [\star [x_1, x_2], x_3] \mathcal{R} \star [x_1, \star [x_2, x_3]]$$
 and $\star [x_1, x_1] \mathcal{R} x_1$.

■ The <u>variety of distributive lattices</u> is the pair $(\mathfrak{G}, \mathcal{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\land, \lor\}$, and \mathcal{R} is the finest equivalence relation satisfying

$$\begin{split} & \wedge [\wedge [x_1, x_2], x_3] \, \mathcal{R} \ \wedge [x_1, \wedge [x_2, x_3]], & \vee [\vee [x_1, x_2], x_3] \, \mathcal{R} \ \vee [x_1, \vee [x_2, x_3]], \\ & \wedge [x_1, x_2] \, \mathcal{R} \ \wedge [x_2, x_1], & \vee [x_1, x_2] \, \mathcal{R} \ \vee [x_2, x_1], \\ & \wedge [x_1, \vee [x_1, x_2]] \, \mathcal{R} \, x_1, & \vee [x_1, \wedge [x_1, x_2]] \, \mathcal{R} \, x_1, \\ & \vee [x_1, \wedge [x_2, x_3]] \, \mathcal{R} \ \wedge [\vee [x_1, x_2], \vee [x_1, x_3]], & \wedge [x_1, \vee [x_2, x_3]] \, \mathcal{R} \ \vee [\wedge [x_1, x_2], \wedge [x_1, x_3]]. \end{split}$$

Algebras over a variety

Let $\mathfrak G$ be a signature and $\mathcal A$ be a set. An <u>interpretation</u> of $\mathfrak G$ on $\mathcal A$ is a map

$$\mathfrak{op}:\mathfrak{G}(n)\to(\mathcal{A}^n\to\mathcal{A}).$$

Such map associates with each $g \in \mathfrak{G}(n)$ an **operation** on \mathcal{A} admitting n inputs.

- Example -

The map op defined by $\mathfrak{op}(\star)(x_1, x_2) := \max\{x_1, x_2\}$ is an interpretation of the signature $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ on the set $\mathcal{A} := \mathbb{Z}$.

For any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})(n)$, $\mathfrak{op}(\mathfrak{t})$ is the operation of arity n obtained by **composing** the operations carried by the constants forming \mathfrak{t} .

- Example -

By considering the previous interpretation, for $\mathfrak{t} := \star[x_1, \star[\star[x_2, x_3], x_2]], \mathfrak{op}(\mathfrak{t})$ is the operation of arity 3 satisfying $\mathfrak{op}(\mathfrak{t})(x_1, x_2, x_3) := \max\{x_1, \max\{\max\{x_2, x_3\}, x_2\}\}.$

An <u>algebra</u> over a variety $(\mathfrak{G}, \mathcal{R})$ on a set \mathcal{A} is a pair $(\mathcal{A}, \mathfrak{op})$ such that \mathfrak{op} is an interpretation of \mathfrak{G} on \mathcal{A} , and, for any \mathcal{R} -equation $(\mathfrak{t}, \mathfrak{t}')$, $\mathfrak{op}(\mathfrak{t})$ and $\mathfrak{op}(\mathfrak{t}')$ are the **same operation**.

Equivalence of terms

Given a variety $\mathcal{V} := (\mathfrak{G}, \mathcal{R})$, let $\equiv_{\mathcal{R}}$ be the **equivalence relation** such that for any $n \geqslant 0$ and $\mathfrak{t}, \mathfrak{t}' \in \mathfrak{T}(\mathfrak{G})(n)$, $\mathfrak{t} \equiv_{\mathcal{R}} \mathfrak{t}'$ if for any algebra $(\mathcal{A}, \mathfrak{op})$ over \mathcal{V} , $\mathfrak{op}(\mathfrak{t})$ and $\mathfrak{op}(\mathfrak{t}')$ are the same operations.

- Examples -

■ In the variety of idempotent semigroups,

$$\star[x_1,\star[\star[x_2,x_1],x_2]] \equiv_{\mathcal{R}} \star[x_1,x_2].$$

■ In the variety of distributive lattices,

$$\wedge [\wedge [x_1,x_1],x_2] \equiv_{\mathcal{R}} \wedge [x_2,x_1].$$

- Questions -

- 1. Is the $\equiv_{\mathcal{R}}$ -equivalence decidable in a variety \mathcal{V} ? This is the <u>word problem</u> [Baader, Nipkow, 1998].
- 2. If it is the case, design an (efficient) **algorithm** to decide if two terms are $\equiv_{\mathcal{R}}$ -equivalent.

Idempotent semigroups

To decide the $\equiv_{\mathcal{R}}$ -equivalence in the **variety of idempotent semigroups**, consider the following algorithm, associating with any term \mathfrak{t} a word $\mathbb{P}(\mathfrak{t})$ on positive integers:

- 1. set *u* as the indexes of the variables appearing t, from left to right;
- 2. iteratively apply while possible the following transformations on u in any order:
 - a. replace a factor w.w by w;
 - b. replace a factor v.a.w by v.w if $a \in Alph(v)$ and Alph(v) = Alph(w).

- Theorem [Siekmann, Szabó, 1982] [Klíma, Korbelář, Polák, 2011] -

Two terms $\mathfrak t$ and $\mathfrak t'$ are $\equiv_{\mathcal R}$ -equivalent in the variety of the idempotent semigroups if and only if $\mathbb P(\mathfrak t)=\mathbb P(\mathfrak t')$.

- Example -

```
Let \mathfrak{t} := \star [\star [x_1, \star [x_2, \star [x_3, x_3]]], \star [\star [x_2, x_1], \star [x_2, x_3]]]. We have u = 12332123. Since 12\underline{3}.\underline{3}2123 \leadsto \underline{123.2.123} \leadsto \underline{123.123} \leadsto 123, \mathbb{P}(\mathfrak{t}) = 123. Let \mathfrak{t}' := \star [\star [x_1, \star [x_2, x_2]], x_3]. We have and u' = 1223. Since 1\underline{2.2}3 \leadsto 123, \mathbb{P}(\mathfrak{t}') = 123. Therefore, \mathfrak{t} \equiv_{\mathcal{P}} \mathfrak{t}'.
```

Clones

Abstract clones provide an **algebraic and combinatorial framework** to study varieties.

An <u>abstract clone</u> [Cohn, 1965] is a triple $(C, [], \mathbb{1}_{i,n})$ where

- lacksquare \mathcal{C} is a graded set $\mathcal{C} = \bigsqcup_{n \geqslant 0} \mathcal{C}(n)$;
- [] is a map $-[-,...,-]: \mathcal{C}(n) \times \mathcal{C}(m)^n \to \mathcal{C}(m)$ called <u>superposition map</u>;
- for each $n \ge 1$ and $i \in [n]$, $\mathbb{1}_{i,n}$ is an element of $\mathcal{C}(n)$ called <u>projection</u>.

The following relations have to hold:

• for all $x_i \in C(m)$,

$$\mathbb{1}_{i,n}[x_1,\ldots,x_n]=x_i;$$

• for all $x \in C(n)$,

$$x[\mathbb{1}_{1,n},\ldots,\mathbb{1}_{n,n}]=x;$$

• for all $x \in \mathcal{C}(n)$, $y_i \in \mathcal{C}(m)$, and $z_j \in \mathcal{C}(k)$,

$$(x[y_1,\ldots,y_n])[z_1,\ldots,z_m]=x[y_1[z_1,\ldots,z_m],\ldots,y_n[z_1,\ldots,z_m]].$$

Free clones

Let & be a signature.

The <u>free clone</u> on \mathfrak{G} is the clone $(\mathfrak{T}(\mathfrak{G}), [\], \mathbb{1}_{i,n})$ where

- for any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})(n)$, $\mathfrak{t}[\mathfrak{t}'_1, \ldots, \mathfrak{t}'_n]$ is the \mathfrak{G} -term obtained by replacing, for all $i \in [n]$, the occurrences of x_i in \mathfrak{t} by a copy of \mathfrak{t}'_i ;
- $\mathbb{1}_{i,n}$ is the \mathfrak{G} -term x_i of arity n.

- Example -

By setting $\mathfrak{G}:=\mathfrak{G}(2)\sqcup\mathfrak{G}(3)$ where $\mathfrak{G}(2):=\{a,b\}$ and $\mathfrak{G}(3):=\{d\}$, in the free clone $\mathfrak{T}(\mathfrak{G})$, we have

$$\begin{split} d[x_3,x_1,a[x_3,x_1]] & \left[& a[a[x_1,x_2],x_2], \quad b[x_2,x_2], \quad b[x_2,x_1] \\ \\ & = d[& b[x_2,x_1], \quad a[a[x_1,x_2],x_2], \quad a[& b[x_2,x_1], \quad a[a[x_1,x_2],x_2] \] \]. \end{split}$$

The free clone satisfies the usual **universal property** of free structures in the category of clones.

Clone realizations of varieties

A <u>clone congruence</u> of a clone C is an equivalence relation \equiv on C compatible with the superposition map, that is, for any $x, x' \in C(n)$ and $y_1, y'_1, \ldots, y_n, y'_n \in C(m)$, if $x \equiv x'$ and $y_1 \equiv y'_1, \ldots, y_n \equiv y'_n$, then

$$x[y_1,\ldots,y_n]\equiv x'[y'_1,\ldots,y'_n].$$

- Proposition -

For any variety $(\mathfrak{G}, \mathcal{R})$, the equivalence relation $\equiv_{\mathcal{R}}$ is a clone congruence of $\mathfrak{T}(\mathfrak{G})$.

A clone \mathcal{C} is a clone realization [Neumann, 1970] of a variety $\mathcal{V} := (\mathfrak{G}, \mathcal{R})$ if

$$\mathcal{C} \simeq \mathfrak{T}(\mathfrak{G})/_{\equiv_{\mathcal{R}}}$$
.

In this case, V is a <u>presentation</u> of C, and a C-<u>algebra</u> is an algebra over the variety V.

- Main objective -

Build explicit clones which are clone realizations of algebraic varieties.

Outline

2. Clones of pigmented words

Pigmented words

Let (\mathcal{M}, \cdot, e) be a monoid.

An \mathcal{M} -pigmented letter is a pair (i, α) denoted by i^{α} where $i \geqslant 1$ and $\alpha \in \mathcal{M}$.

An \mathcal{M} -pigmented word of arity $n \ge 0$ is a word on \mathcal{M} -pigmented letters i^{α} such that $i \in [n]$.

- Example -

Let A^* the **free monoid** $(A^*, ..., \epsilon)$ on $A := \{a, b, c\}$.

 $3^{aa}\ 2^{\epsilon}\ 5^{ba}\ 5^{bbaa}$ is an A^* -pigmented word of arity 5.

Let $\mathbf{P}(\mathcal{M}) := \bigsqcup_{n \geq 0} \mathbf{P}(\mathcal{M})(n)$ where $\mathbf{P}(\mathcal{M})(n)$ is the **set of the** \mathcal{M} -**pigmented words** of arity n.

For any $i_1^{\alpha_1} \dots i_\ell^{\alpha_\ell} \in \mathbf{P}(\mathcal{M})$ and $\alpha \in \mathcal{M}$, let $\alpha^- i_1^{\alpha_1} \dots i_\ell^{\alpha_\ell} := i_1^{\alpha \cdot \alpha_1} \dots i_\ell^{\alpha \cdot \alpha_\ell}$.

We endow $\mathbf{P}(\mathcal{M})$ with the **superposition maps** defined by

$$i_1^{\alpha_1} \dots i_\ell^{\alpha_\ell} [\mathfrak{p}_1, \dots, \mathfrak{p}_n] := (\alpha_1 \bar{\mathfrak{p}}_{i_1}) \dots (\alpha_\ell \bar{\mathfrak{p}}_{i_\ell}).$$

- Example -

We have in $P(A^*)$,

$$2^{ba}2^{aa}4^{baa}3^{\epsilon}\left[2^{b}1^{aa},1^{bbb}1^{\epsilon}2^{b},2^{aa}2^{a},\epsilon\right] \ = \ 1^{babbb}1^{ba}2^{bab} \ 1^{aabbb}1^{aa}2^{aab} \quad \epsilon \quad 2^{aa}2^{a} \ = \ 1^{babbb}1^{ba}2^{bab}1^{aabbb}1^{aa}2^{aab}2^{aa}2^{a}.$$

Clone of pigmented words

- Theorem [G., 2020-] -

For any monoid \mathcal{M} , $\mathbf{P}(\mathcal{M})$ is a clone.

- Theorem [G., 2020-] -

For any monoid (\mathcal{M}, \cdot, e) , $P(\mathcal{M})$ admits the presentation $(\mathfrak{G}_{\mathcal{M}}, \mathcal{R}_{\mathcal{M}})$ such that

$$\mathfrak{G}_{\mathcal{M}} := \mathfrak{G}_{\mathcal{M}}(0) \sqcup \mathfrak{G}_{\mathcal{M}}(1) \sqcup \mathfrak{G}_{\mathcal{M}}(2)$$

where $\mathfrak{G}_{\mathcal{M}}(0) := \{u\}$, $\mathfrak{G}_{\mathcal{M}}(1) := \{p_{\alpha} : \alpha \in \mathcal{M}\}$, and $\mathfrak{G}_{\mathcal{M}}(2) := \{\star\}$, and $\mathcal{R}_{\mathcal{M}}$ is the finest equivalence relation on $\mathfrak{T}(\mathfrak{G}_{\mathcal{M}})$ satisfying

$$\begin{split} \star [\star [x_1, x_2], x_3] \, \mathcal{R}_{\mathcal{M}} \, \star [x_1, \star [x_2, x_3]], \\ \star [u, x_1] \, \mathcal{R}_{\mathcal{M}} \, x_1 \, \mathcal{R}_{\mathcal{M}} \, \star [x_1, u], \\ p_{\alpha} [\star [x_1, x_2]] \, \mathcal{R}_{\mathcal{M}} \, \star [p_{\alpha} [x_1], p_{\alpha} [x_2]], \\ p_{\alpha} [u] \, \mathcal{R}_{\mathcal{M}} \, u, \\ p_{\alpha_1} [p_{\alpha_2} [x_1]] \, \mathcal{R}_{\mathcal{M}} \, p_{\alpha_1 \cdot \alpha_2} [x_1], \\ p_{e} [x_1] \, \mathcal{R}_{\mathcal{M}} \, x_1, \end{split}$$

for any $\alpha, \alpha_1, \alpha_2 \in \mathcal{M}$.

Varieties of pigmented monoids

We call $\mathcal{V}_{\mathcal{M}} := (\mathfrak{G}_{\mathcal{M}}, \mathcal{R}_{\mathcal{M}})$ the variety of \mathcal{M} -pigmented monoids.

By the previous presentation, an algebra over $\mathcal{V}_{\mathcal{M}}$ is a set \mathcal{A} endowed with a constant u, unary maps p_{α} , $\alpha \in \mathcal{M}$, and a binary product \star , such that, for any $x_1, x_2, x_3 \in \mathcal{A}$,

$$(x_1 \star x_2) \star x_3 = x_1 \star (x_2 \star x_3),$$

 $u \star x_1 = x_1 = x_1 \star u,$
 $p_{\alpha}(x_1 \star x_2) = p_{\alpha}(x_1) \star p_{\alpha}(x_2),$
 $p_{\alpha}(u) = u,$
 $p_{\alpha_1}(p_{\alpha_2}(x_1)) = p_{\alpha_1 \cdot \alpha_2}(x_1),$
 $p_{e}(x_1) = x_1.$

Therefore, given an \mathcal{M} -pigmented monoid $(\mathcal{A}, \star, \mathbf{u}, \mathbf{p}_{\alpha})$,

- \blacksquare ($\mathcal{A}, \star, \mathbf{u}$) is a **monoid**,
- **each** p_{α} is a **monoid endomorphism** of $(\mathcal{A}, \star, \mathbf{u})$,
- the map $\cdot : \mathcal{M} \times \mathcal{A} \to \mathcal{A}$ defined by $\alpha \cdot x := p_{\alpha}(x)$ is a **left monoid action** of \mathcal{M} on \mathcal{A} .

Outline

3. Realizations of some varieties of monoids

A quotient of P(M)

An occurrence of i^{α} in $\mathfrak{p} \in \mathbf{P}(\mathcal{M})$ is a <u>left witness</u> if all letters on the left of this occurrence are of the form j^{β} with $j \neq i$.

Right witnesses are defined symmetrically.

Let left(p) (resp. right(p)) be the subword of p of the letters which are left (resp. right) witnesses.

Let \equiv be the **equivalence relation** on $P(\mathcal{M})$ such that $\mathfrak{p} \equiv \mathfrak{p}'$ if $(\operatorname{left}(\mathfrak{p}), \operatorname{right}(\mathfrak{p})) = (\operatorname{left}(\mathfrak{p}'), \operatorname{right}(\mathfrak{p}'))$.

- **Proposition** [G., 2020-] -

For any monoid \mathcal{M} , \equiv is a **clone congruence** of $\mathbf{P}(\mathcal{M})$.

- Example -

 $2^a \ 2^b \ 3^a \ 1^a \ 3^a$

- Example -

Let us consider and study the clone $Magn(\mathcal{M}) := P(\mathcal{M})/_{\equiv}$.

Objectives -

- 1. Provide a **combinatorial description** of Magn(\mathcal{M}).
- **2**. Provide a **presentation** of Magn(\mathcal{M}).

Pigmented magnets

An \mathcal{M} -pigmented magnet is an \mathcal{M} -pigmented word \mathfrak{p} such that

- 1. for any occurrence i^{α} of a letter in \mathfrak{p} is a left witness, a right witness, or both;
- 2. for any factor $\underbrace{i_1^{\alpha_1}}_{2}$ $\underbrace{i_2^{\alpha_2}}_{2}$ of \mathfrak{p} , $i_1=i_2$ and $\alpha_1\neq\alpha_2$.

- Examples -

- 1^b 1^a 2^{ab} 1^b is not an \mathcal{M} -pigment magnet (it admits a letter which neither a left nor a right 1-witness).
- **a** 3^a 2^b 4^{bb} 1^a 2^{ba} is an \mathcal{M} -pigmented magnet.
- 2^{aa} 1^a 1^b 2^{ba} is an \mathcal{M} -pigmented magnet.

An algorithm to decide equivalence

Let $\mathbb{P}: P(\mathcal{M}) \to P(\mathcal{M})$ be the map defined by the algorithm. Given $\mathfrak{p} \in P(\mathcal{M})$,

- 1. delete iteratively in $\mathfrak p$ the leftmost letter which is not a witness;
- 2. replace iteratively in $\mathfrak p$ the leftmost factor $\underline{i_1^{\alpha_1}}$ $\underline{i_2^{\alpha_2}}$ such that $i_1 \neq i_2$ by $\underline{i_2^{\alpha_2}}$ $\underline{i_1^{\alpha_1}}$;
- 3. replace iteratively in $\mathfrak p$ the leftmost factor \underline{i}^{α} \underline{i}^{α} by \underline{i}^{α} .

- Example -

- **Proposition** [G., 2020-] -

For any monoid $\mathcal M$ and $\mathfrak p,\mathfrak p'\in P(\mathcal M),$

- $\mathfrak{p} \equiv \mathbb{P}(\mathfrak{p});$
- $\mathbb{P}(\mathbf{P}(\mathcal{M}))$ is the set of the \mathcal{M} -pigmented magnets.

Realization of regular bands

The previous description of $Magn(\mathcal{M})$ in terms of \mathcal{M} -pigmented magnets leads to the following result.

- Theorem [G., 2020-] -

For any monoid \mathcal{M} , the clone Magn(\mathcal{M}) admits the **presentation** ($\mathfrak{G}_{\mathcal{M}}, \mathcal{R}'_{\mathcal{M}}$) where $\mathcal{R}'_{\mathcal{M}}$ is the set $\mathcal{R}_{\mathcal{M}}$ augmented with the $\mathfrak{G}_{\mathcal{M}}$ -equations

$$\begin{split} \star [1^{\alpha}, 1^{\alpha}] \, \mathcal{R}'_{\mathcal{M}} \, \, 1^{\alpha}, \quad & \alpha \in \mathcal{M}, \\ \star [1^{\alpha_1}, \star [2^{\alpha_2}, \star [1^{\alpha_3}, \star [3^{\alpha_4}, 1^{\alpha_5}]]]] \, \mathcal{R}'_{\mathcal{M}} \, \star [1^{\alpha_1}, \star [2^{\alpha_2}, \star [3^{\alpha_4}, 1^{\alpha_5}]]], \quad & \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \in \mathcal{M}. \end{split}$$

Any Magn(\mathcal{M})-algebra is an \mathcal{M} -pigmented monoid (\mathcal{A} , \star , \mathbf{u} , \mathbf{p}_{α}) where \star is idempotent, and \star and \mathbf{p}_{α} satisfy

$$p_{\alpha_1}(x_1) \star x_2 \star p_{\alpha_2}(x_1) \star x_3 \star p_{\alpha_3}(x_1) = p_{\alpha_1}(x_1) \star x_2 \star x_3 \star p_{\alpha_3}(x_1)$$

for any $x_1, x_2, x_3 \in A$ and $\alpha_1, \alpha_2, \alpha_3 \in M$.

In particular, $Magn(\mathcal{E})$ is a **clone realization** of the variety of **regular band monoids**, where \mathcal{E} is the trivial monoid.

A hierarchy of clones

By considering quotients of $\mathbf{P}(\mathcal{M})$ by some natural congruences \equiv_{sort} , \equiv_{first_k} , and $\equiv_{first_{k'}}^r$, and their intersections and compositions, we obtain a **hierarchy of clones** linked by surjective clone morphisms.

For instance,

$$lacksquare$$
 $\operatorname{Inc}_k := \mathbf{P}(\mathcal{M})/_{\equiv_{\operatorname{sort}} \circ \equiv_{\operatorname{first}_k}}$,

$$ightharpoonup \operatorname{WInc}(\mathcal{M}) = \mathbf{P}(\mathcal{M})/_{\equiv_{\operatorname{sort}}},$$

$$lacksquare$$
 Arra $_k(\mathcal{M}) = \mathbf{P}(\mathcal{M})/_{\equiv_{\mathrm{first}_k}}$,

$$lacksquare$$
 Stal_k $(\mathcal{M}) = \mathbf{P}(\mathcal{M})/_{\equiv_{\text{sort}} \cap \equiv_{\text{first}_k}}$,

$$\blacksquare \ \mathsf{Magn}_{\mathbf{k},\mathbf{k}'}(\mathcal{M}) = \mathbf{P}(\mathcal{M})/_{\equiv_{\mathsf{first}_k} \cap \equiv_{\mathsf{first}_{k'}}^{\mathsf{r}}},$$

$$\quad \blacksquare \ \operatorname{Pill}_{k,k'}(\mathcal{M}) = \mathbf{P}(\mathcal{M})/_{\equiv_{\operatorname{first}_k} \cap \equiv_{\operatorname{sort}} \cap \equiv_{\operatorname{first}_{k'}}^r}.$$

Conclusion and perspectives

Given a variety $\mathcal{V}:=(\mathfrak{G},\mathcal{R})$, deciding if two terms of \mathcal{V} are $\equiv_{\mathcal{R}}$ -equivalent is an important question.

Here, we proposed the **construction P**, producing **clones from monoids**. The constructed clones are rich enough to contain as quotients some clones, generalizing some varieties of monoids.

In particular, we obtained a **realization of the variety of regular band monoids** in terms of magnets.

As perspectives:

- consider other clone congruences of $P(\mathcal{M})$ in order to **extend** the previous **hierarchy of clones** and capture other varieties of monoids;
- consider variations of the variety of pigmented monoids, obtained by removing some relations. Instead of pigmented words, this could give rise to particular trees or configurations of chords in polygons.