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Terms

A signature is a graded set G :=
⊔

n⩾0 G(n) wherein each g ∈ G(n) is an constant of arity n.

A G-term is either
a variable x from the set Xk := {x1, . . . , xk} for a k ⩾ 0;

or a pair (g, (t1, . . . , tn)) where g ∈ G(n) and each ti is a G-term.
This pair is denoted by g[t1, . . . , tn].

Let T(G) :=
⊔

n⩾0 T(G)(n) where T(G)(n) is the set of the G-terms having all variables in Xn.

– Example –

x2 x4

x1 c

x1

b

a

a

b

This is the tree representation of the G-term

a[b[x2, x4], b[a[x1, c[]], x1]]

of T(G)(6) where
G := G(0) ⊔ G(2) ⊔ G(3)

with G(0) := {c}, G(2) := {a, b}, and G(3) := {d}.
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Varieties

A variety is a pair (G,R) where G is a signature and R is an equivalence relation on T(G).

AnR-equation is a pair (t, t′) of G-terms such that t R t′.

– Examples –
The variety of idempotent semigroups is the pair (G,R) where G := G(2) := {⋆}, and R is the finest
equivalence relation satisfying

⋆[⋆[x1, x2], x3] R ⋆ [x1, ⋆[x2, x3]] and ⋆ [x1, x1] R x1.

The variety of distributive lattices is the pair (G,R) where G := G(2) := {∧,∨}, andR is the finest
equivalence relation satisfying

∧[∧[x1, x2], x3] R ∧ [x1,∧[x2, x3]], ∨ [∨[x1, x2], x3] R ∨ [x1,∨[x2, x3]],
∧[x1, x2] R ∧ [x2, x1], ∨ [x1, x2] R ∨ [x2, x1],

∧[x1,∨[x1, x2]] R x1, ∨ [x1,∧[x1, x2]] R x1,

∨[x1,∧[x2, x3]] R ∧ [∨[x1, x2],∨[x1, x3]], ∧ [x1,∨[x2, x3]] R ∨ [∧[x1, x2],∧[x1, x3]].
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Algebras over a variety

Let G be a signature and A be a set. An interpretation of G on A is a map

op : G(n) → (An → A).

Such map associates with each g ∈ G(n) an operation on A admitting n inputs.

– Example –
The map op defined by op(⋆)(x1, x2) := max{x1, x2} is an interpretation of the signature G := G(2) := {⋆} on the
setA := Z.

For any t ∈ T(G)(n), op(t) is the operation of arity n obtained by composing the operations
carried by the constants forming t.

– Example –
By considering the previous interpretation, for t := ⋆[x1, ⋆[⋆[x2, x3], x2]], op(t) is the operation of arity 3 satisfying
op(t)(x1, x2, x3) := max{x1,max{max{x2, x3}, x2}}.

An algebra over a variety (G,R) on a set A is a pair (A, op) such that op is an interpretation of G
on A, and, for any R-equation (t, t′), op(t) and op(t′) are the same operation.
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Equivalence of terms

Given a variety V := (G,R), let ≡R be the equivalence relation such that for any n ⩾ 0 and
t, t′ ∈ T(G)(n), t ≡R t′ if for any algebra (A, op) over V , op(t) and op(t′) are the same operations.

– Examples –
In the variety of idempotent semigroups,

⋆[x1, ⋆[⋆[x2, x1], x2]] ≡R ⋆[x1, x2].

In the variety of distributive lattices,

∧[∧[x1, x1], x2] ≡R ∧[x2, x1].

– Questions –
1. Is the ≡R-equivalence decidable in a variety V? This is the word problem [Baader, Nipkow, 1998].

2. If it is the case, design an (efficient) algorithm to decide if two terms are ≡R-equivalent.
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Idempotent semigroups

To decide the ≡R-equivalence in the variety of idempotent semigroups, consider the following
algorithm, associating with any term t a word P(t) on positive integers:
1. set u as the indexes of the variables appearing t, from left to right;
2. iteratively apply while possible the following transformations on u in any order:

a. replace a factor w.w by w;
b. replace a factor v.a.w by v.w if a ∈ Alph(v) and Alph(v) = Alph(w).

– Theorem [Siekmann, Szabó, 1982] [Klíma, Korbelář, Polák, 2011] –

Two terms t and t′ are ≡R-equivalent in the variety of the idempotent semigroups if and only if P(t) = P(t′).

– Example –
Let t := ⋆[⋆[x1, ⋆[x2, ⋆[x3, x3]]], ⋆[⋆[x2, x1], ⋆[x2, x3]]].
We have u = 12332123. Since 123.32123 ; 123.2.123 ; 123.123 ; 123, P(t) = 123.

Let t′ := ⋆[⋆[x1, ⋆[x2, x2]], x3].
We have and u′ = 1223. Since 12.23 ; 123, P(t′) = 123.

Therefore, t ≡R t′.
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Clones

Abstract clones provide an algebraic and combinatorial framework to study varieties.

An abstract clone [Cohn, 1965] is a triple (C, [ ],1i,n) where
C is a graded set C =

⊔
n⩾0 C(n);

[ ] is a map −[−, . . . ,−] : C(n)× C(m)n → C(m) called superposition map;

for each n ⩾ 1 and i ∈ [n], 1i,n is an element of C(n) called projection.

The following relations have to hold:
for all xi ∈ C(m),

1i,n[x1, . . . , xn] = xi;

for all x ∈ C(n),
x[11,n, . . . ,1n,n] = x;

for all x ∈ C(n), yi ∈ C(m), and zj ∈ C(k),

(x[y1, . . . , yn])[z1, . . . , zm] = x[y1[z1, . . . , zm], . . . , yn[z1, . . . , zm]].
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Free clones

Let G be a signature.

The free clone on G is the clone (T(G), [ ],1i,n) where

for any t ∈ T(G)(n), t[t′1, . . . , t′n] is the G-term obtained by replacing, for all i ∈ [n], the
occurrences of xi in t by a copy of t′i ;

1i,n is the G-term xi of arity n.

– Example –
By setting G := G(2) ⊔ G(3) where G(2) := {a, b} and G(3) := {d}, in the free clone T(G), we have

d[x3, x1, a[x3, x1]]

 a[a[x1, x2], x2], b[x2, x2], b[x2, x1]


= d[ b[x2, x1], a[a[x1, x2], x2], a[ b[x2, x1], a[a[x1, x2], x2] ] ].

The free clone satisfies the usual universal property of free structures in the category of clones.
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Clone realizations of varieties

A clone congruence of a clone C is an equivalence relation ≡ on C compatible with the
superposition map, that is, for any x, x′ ∈ C(n) and y1, y′1, . . . , yn, y′n ∈ C(m), if x ≡ x′ and y1 ≡ y′1,
. . . , yn ≡ y′n, then

x[y1, . . . , yn] ≡ x′[y′1, . . . , y
′
n].

– Proposition –

For any variety (G,R), the equivalence relation ≡R is a clone congruence of T(G).

A clone C is a clone realization [Neumann, 1970] of a variety V := (G,R) if

C ≃ T(G)/≡R .

In this case, V is a presentation of C, and a C-algebra is an algebra over the variety V .

– Main objective –

Build explicit clones which are clone realizations of algebraic varieties.
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Pigmented words

Let (M, ·, e) be a monoid.

An M-pigmented letter is a pair (i, α) denoted
by iα where i ⩾ 1 and α ∈ M.
AnM-pigmented word of arity n ⩾ 0 is aword
on M-pigmented letters iα such that i ∈ [n].

– Example –
Let A∗ the free monoid (A∗, ., ϵ) on A := {a, b, c}.

3aa 2ϵ 5ba 5bbaa is an A∗-pigmented word of arity 5.

Let P(M) :=
⊔

n⩾0 P(M)(n) where P(M)(n) is the set of theM-pigmented words of arity n.

For any iα1
1 . . . iαℓ

ℓ ∈ P(M) and α ∈ M, let α ·̄ iα1
1 . . . iαℓ

ℓ := iα·α1
1 . . . iα·αℓ

ℓ .

We endow P(M) with the superposition maps defined by

iα1
1 . . . iαℓ

ℓ [p1, . . . , pn] := (α1 ·̄ pi1) . . . . . (αℓ ·̄ piℓ).

– Example –
We have in P(A∗),

2ba2aa4baa3ϵ
[
2b1aa, 1bbb1ϵ2b, 2aa2a, ϵ

]
= 1babbb1ba2bab 1aabbb1aa2aab ϵ 2aa2a = 1babbb1ba2bab1aabbb1aa2aab2aa2a.
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Clone of pigmented words

– Theorem [G., 2020–] –

For any monoid M, P(M) is a clone.

– Theorem [G., 2020–] –
For any monoid (M, ·, e), P(M) admits the presentation (GM,RM) such that

GM := GM(0) ⊔ GM(1) ⊔ GM(2)

where GM(0) := {u}, GM(1) := {pα : α ∈ M}, and GM(2) := {⋆}, and RM is the finest equivalence relation
on T(GM) satisfying

⋆[⋆[x1, x2], x3] RM ⋆ [x1, ⋆[x2, x3]],

⋆[u, x1] RM x1 RM ⋆ [x1, u],

pα[⋆[x1, x2]] RM ⋆ [pα[x1], pα[x2]],

pα[u] RM u,

pα1 [pα2 [x1]] RM pα1·α2 [x1],

pe[x1] RM x1,

for any α, α1, α2 ∈ M.
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Varieties of pigmented monoids

We call VM := (GM,RM) the variety of M-pigmented monoids.

By the previous presentation, an algebra over VM is a set A endowed with a constant u, unary
maps pα, α ∈ M, and a binary product ⋆, such that, for any x1, x2, x3 ∈ A,

(x1 ⋆ x2) ⋆ x3 = x1 ⋆ (x2 ⋆ x3),

u ⋆ x1 = x1 = x1 ⋆ u,
pα(x1 ⋆ x2) = pα(x1) ⋆ pα(x2),

pα(u) = u,
pα1(pα2(x1)) = pα1·α2(x1),

pe(x1) = x1.

Therefore, given anM-pigmented monoid (A, ⋆, u, pα),
(A, ⋆, u) is a monoid,
each pα is a monoid endomorphism of (A, ⋆, u),
the map · : M×A → A defined by α · x := pα(x) is a left monoid action ofM on A.
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A quotient of P(M)

An occurrence of iα in p ∈ P(M) is a left witness if all letters
on the left of this occurrence are of the form jβ with j ̸= i.
Right witnesses are defined symmetrically.

– Example –

2a 2b 3a 1a 3a

Let left(p) (resp. right(p)) be the subword of p of the letters
which are left (resp. right) witnesses.
Let ≡ be the equivalence relation on P(M) such that
p ≡ p′ if (left(p), right(p)) = (left(p′), right(p′)).

– Example –
2a 2b 3b 1a ≡ 2a 3b 1a 2b 2b 3b 1a(

2a3b1a, 2b3b1a
)
=

(
2a3b1a, 2b3b1a

)

– Proposition [G., 2020–] –

For any monoid M, ≡ is a clone congruence of P(M).

Let us consider and study the clone
Magn(M) := P(M)/≡.

– Objectives –
1. Provide a combinatorial description ofMagn(M).

2. Provide a presentation ofMagn(M).
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Pigmented magnets

AnM-pigmented magnet is anM-pigmented word p such that

1. for any occurrence iα of a letter in p is a left witness, a right witness, or both;

2. for any factor iα1
1 iα2

2 of p, i1 = i2 and α1 ̸= α2.

– Examples –

1b 1a 2ab 1b is not anM-pigment magnet (it admits a letter which neither a left nor a right 1-witness).

2bb 3ba 2a 1a 3b is not anM-pigmented magnet (it admits the factor 3ba 2a ).

3a 2b 4bb 1a 2ba is an M-pigmented magnet.

2aa 1a 1b 2ba is anM-pigmented magnet.
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An algorithm to decide equivalence

Let P : P(M) → P(M) be the map defined by the algorithm. Given p ∈ P(M),

1. delete iteratively in p the leftmost letter which is not a witness;

2. replace iteratively in p the leftmost factor iα1
1 iα2

2 such that i1 ̸= i2 by iα2
2 iα1

1 ;

3. replace iteratively in p the leftmost factor iα iα by iα .

– Example –
For p := 2ϵ1ϵ2ϵ3ϵ1ϵ1ϵ3ϵ, by highlighting the left and right 1-witnesses, we have p = 2ϵ 1ϵ 2ϵ 3ϵ 1ϵ 1ϵ 3ϵ ,

and Step 1 produces p = 2ϵ 1ϵ 2ϵ 3ϵ 1ϵ 3ϵ , Step 2 produces p = 2ϵ 2ϵ 1ϵ 1ϵ 3ϵ 3ϵ , and Step 3 produces
p = 2ϵ 1ϵ 3ϵ , so that P(p) = 2ϵ1ϵ3ϵ.

– Proposition [G., 2020–] –
For any monoidM and p, p′ ∈ P(M),

p ≡ P(p);

p ≡ p′ iff P(p) = P(p′);

P(P(M)) is the set of theM-pigmented magnets.
19 / 22



Realization of regular bands

The previous description of Magn(M) in terms of M-pigmented magnets leads to the following
result.

– Theorem [G., 2020–] –
For anymonoidM, the cloneMagn(M) admits the presentation

(
GM,R′

M
)
whereR′

M is the setRM augmented
with the GM-equations

⋆[1α, 1α] R′
M 1α, α ∈ M,

⋆[1α1 , ⋆[2α2 , ⋆[1α3 , ⋆[3α4 , 1α5 ]]]] R′
M ⋆ [1α1 , ⋆[2α2 , ⋆[3α4 , 1α5 ]]], α1, α2, α3, α4, α5 ∈ M.

AnyMagn(M)-algebra is anM-pigmented monoid (A, ⋆, u, pα) where ⋆ is idempotent, and ⋆ and
pα satisfy

pα1(x1) ⋆ x2 ⋆ pα2(x1) ⋆ x3 ⋆ pα3(x1) = pα1(x1) ⋆ x2 ⋆ x3 ⋆ pα3(x1)

for any x1, x2, x3 ∈ A and α1, α2, α3 ∈ M.

In particular, Magn(E) is a clone realization of the variety of regular band monoids, where E is
the trivial monoid.
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A hierarchy of clones

By considering quotients of P(M) by some natu-
ral congruences≡sort,≡firstk , and≡r

firstk′
, and their

intersections and compositions, we obtain a hier-
archy of clones linked by surjective clone mor-
phisms.

For instance,
Inck := P(M)/≡sort◦≡firstk

,
WInc(M) = P(M)/≡sort ,
Arrak(M) = P(M)/≡firstk

,
Stalk(M) = P(M)/≡sort∩≡firstk

,
Magnk,k′(M) = P(M)/≡firstk∩≡r

firstk′
,

Pillk,k′(M) = P(M)/≡firstk∩≡sort∩≡r
firstk′

.

P(M)

Pillk,k′ (M)

Magnk,k′ (M)Stalk(M) Stalrk′ (M)

WInc(M)Arrak(M) Arrark′ (M)

Incmin{k,k′}

Inc0
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Conclusion and perspectives

Given a variety V := (G,R), deciding if two terms of V are ≡R-equivalent is an important
question.

Here, we proposed the construction P, producing clones from monoids. The constructed clones
are rich enough to contain as quotients some clones, generalizing some varieties of monoids.

In particular, we obtained a realization of the variety of regular band monoids in terms of
magnets.

As perspectives:

consider other clone congruences of P(M) in order to extend the previous hierarchy of
clones and capture other varieties of monoids;

consider variations of the variety of pigmented monoids, obtained by removing some
relations. Instead of pigmented words, this could give rise to particular trees or
configurations of chords in polygons.
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