Three interacting families of Fuss-Catalan posets

Camille Combe[©] & Samuele Giraudo^{*}

⁽¹⁾ IRMA, Univ. de Strasbourg, CNRS UMR 7501, Strasbourg, France. [‡]LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France.

Motivations: associative algebras and posets

Weak order on permutations

Poset $(\mathfrak{S}(n), \preceq_{\mathbf{w}})$ where \preceq_{w} is the order relation with the covering relation < defined by $u \ ab \ v \lessdot u \ ba \ v \ \text{where}$ a < b, and u and v are any words.

Tamari order on 132-avoiding permutations

Poset $(\mathcal{B}(n), \preccurlyeq_t)$ where $\mathcal{B}(n)$ is the subset of $\mathfrak{S}(n)$ of permutations avoiding 132, and \leq_t is the restriction of $\leq_{\mathbf{w}}$ on $\mathcal{B}(n)$.

Malvenuto-Reutenauer algebra

Algebra FQSym on the linear span of $\{F_{\sigma} : \sigma \in \mathfrak{S}\}$, endowed with the shifted shuffle product, defined by

$$\mathsf{F}_{\sigma}\cdot\mathsf{F}_{
u}:=\sum_{\pi\in\sigma^{\square}
u}\mathsf{F}_{\pi}.$$

For instance,

$$\begin{aligned} F_{312} \cdot F_{21} &= F_{31254} + F_{31524} + F_{31542} + F_{35124} + F_{35142} + F_{35412} + F_{53124} \\ &+ F_{53142} + F_{53412} + F_{54312}. \end{aligned}$$

Loday-Ronco algebra

Algebra PBT, defined as the subalgebra of FQSym spanned by the elements

$$\mathsf{P}_{\mathfrak{t}} := \sum_{\substack{\sigma \in \mathfrak{S} \\ \mathsf{bst}(\sigma) = \mathfrak{t}}} \mathsf{F}$$

For instance,

$$P = F_{2143} + F_{2413} + F_{4213}$$

and

$$P \cdot P = P + P + P + P + P + P$$

Link between FQSym and the weak order

The product of FQSym rephrases as

$$\mathsf{F}_{
u} = \sum_{\pi \in [\sigma \diagup
u, \; \sigma \diagdown
u]_{\preccurlyeq_{\mathbf{w}}}} \mathsf{F}_{\pi},$$

where $\sigma \wedge \nu := \sigma \bar{\nu}$, $\sigma \setminus \nu = \bar{\nu} \sigma$, and $\bar{\nu}$ is obtained by incrementing by $|\sigma|$ each letter of ν .

Link between PBT and the Tamari order

A similar property holds for PBT: its product expresses as

$$\mathsf{P}_{\mathfrak{t}} \cdot \mathsf{P}_{\mathfrak{s}} = \sum_{\mathfrak{r} \in [\mathfrak{t}/\mathfrak{s}, \ \mathfrak{t} \setminus \mathfrak{s}]_{\preccurlyeq_{\mathfrak{t}}}} \mathsf{P}_{\mathfrak{r}},$$

where / and \ are some grafting operations on binary trees.

Motivations and main results

- * In what extent different orders on permutations lead to similar constructions and properties?
- * We construct a **generalization of** FQSym based on posets involving generalizations of Lehmer codes of permutations.
- We construct two analogues and generalizations of PBT in this context based on two Fuss-Catalan posets.

Cliff posets and three Fuss-Catalan posets

δ -cliffs

 \Re A range map is a map $\delta : \mathbb{N} \setminus \{0\} \to \mathbb{N}$.

 \Re A δ -cliff of size n is a word u of length n s.t. $u_i \in [0, \delta(i)]$, for all $i \in [n]$.

 \Re For any $m \in \mathbb{N}$, let **m** be the range map satisfying $\mathbf{m}(i) := m(i-1)$.

The set of **1**-cliffs of size n is in one-to-one correspondence with $\mathfrak{S}(n)$: a possible bijection sends any permutation to its Lehmer code, which is a **1**-cliff.

δ -cliff posets

Let Cl_{δ} be the set of δ -cliffs.

Let \leq be the partial order relation on each $Cl_{\delta}(n)$ s.t. $u \leq v$ if $u_i \leq v_i$ for all $i \in [n]$.

there is a Since bijective morphism $(\mathfrak{S}(n), \preceq_{\mathbf{w}})$ to $(Cl_1(n), \preccurlyeq)$, this last is an order extension of the first.

The poset $(Cl_1(4), \preceq)$.

Subposets and properties

Let S be a subset of Cl_{δ} . This subset is endowed with the restriction of \preceq on S.

The poset S is

- \Re *straight* if the covering relation of S changes exactly one letter;
- \Re coated if for any $u, v \in S$ such that $u \leq v$, for all $i \in [|u|]$, $u_1 \ldots u_i v_{i+1} \ldots v_{|v|} \in \mathcal{S};$
- \mathscr{R} closed by prefix if for any $u \in \mathcal{S}$, all prefixes of u belong to \mathcal{S} ;
- \Re minimally extendable if $\epsilon \in S$ and for any $u \in S$, $u0 \in S$;
- \Re maximally extendable if $\epsilon \in S$ and for any $u \in S$, $u \delta(|u| + 1) \in S$.

Order theoretic properties

- \mathscr{R} If \mathcal{S} is straight and coated, then $\mathcal{S}(n)$ admits an **EL-labeling**.
- \mathscr{R} If \mathcal{S} is minimally (resp. maximally) extendable, then $\mathcal{S}(n)$ is a **meet** (resp. join) semi-lattice.
- \mathscr{R} If \mathcal{S} is nested and closed by prefix, then \mathcal{S} is a lattice **constructible** by interval doubling.

Avalanche posets

Let Av_{δ} be the subset of Cl_{δ} containing all δ -cliffs u s.t. for all nonempty prefixes $u_1 \dots u_k$ of $u, u_1 + \dots + u_k \leq \delta(k)$, called δ -avalanches.

In general, these posets are

- ℜ graded;
- meet semi-sublattices of Cl_{δ} ;
- * admit EL-labelings.

The poset $(Av_1(4), \preccurlyeq)$.

Hill posets

Let Hi_{δ} be the subset of Cl_{δ} containing all weakly increasing δ -cliffs, called δ -hills.

In general, when δ is weakly increasing, these posets are

- \Re sublattices of Cl_{δ} ;
- ★ EL-shellable;
- * constructible by interval doubling.

When $\delta = 1$, these are Stanley lattices.

The poset $(Hi_1(4), \preccurlyeq)$.

Canyon lattices

Let Ca_{δ} be the subset of Cl_{δ} containing all δ -cliffs u s.t. $u_{i-j} \leq u_i - j$, for all $i \in [|u|]$ and $j \in [u_i]$ satisfying $i - j \ge 1$, called δ -canyons.

In general, when δ is increasing, these posets are

- * lattices (but not sublattices of Cl_{δ});
- **★** EL-shellable;
- * constructible by interval doubling.

When $\delta = 1$, these are Tamari lattices.

The poset $(Ca_1(4), \preceq)$.

Interactions and common properties

For any $m \ge 0$ and $n \ge 0$,

$$\#\mathsf{Av}_{\mathbf{m}}(n) = \#\mathsf{Hi}_{\mathbf{m}}(n) = \#\mathsf{Ca}_{\mathbf{m}}(n) = \frac{1}{mn+1} \binom{mn+n}{n}.$$

This is the *n*-th *m*-**Fuss-Catalan number**.

When δ is an increasing range map, the three posets fit into the diagram $\mathsf{Av}_\delta(n) \longrightarrow \mathsf{Ca}_\delta(n) \longrightarrow \mathsf{Hi}_\delta(n)$

of bijective poset morphisms, so that $Ca_{\delta}(n)$ is an **order extension** of $Av_{\delta}(n)$, and $Hi_{\delta}(n)$ is an **order extension** of $Ca_{\delta}(n)$.

For instance, for $\delta = 3$ and n = 3,

Besides, for any $m \ge 1$ and $n \ge 0$, there is a poset embedding $\mathsf{Hi}_{\mathbf{m}-1}(n) \longrightarrow \mathsf{Ca}_{\mathbf{m}}(n)$.

Algebras of cliffs

Associative algebras of δ -cliffs

The δ -reduction map

$$r_{\delta}: \mathbb{N}^n \to \mathsf{Cl}_{\delta}(n)$$

is defined for any word $u \in \mathbb{N}^n$ and any $i \in [n]$ by

$$\left(\mathbf{r}_{\delta}(u)
ight)_{i} := egin{cases} u_{i} & ext{if } u_{i} \leqslant \delta(i), \ \delta(i) & ext{otherwise}. \end{cases}$$

For instance, $r_1(212066) = 012045$ and $r_2(212066) = 012066$.

Let Cl_{δ} be the linear span of $\{F_u : u \in Cl_{\delta}\}$, endowed with the product $\mathsf{F}_u \cdot \mathsf{F}_v = \sum \mathsf{F}_{uv'},$

For instance, in **Cl**₁,

 $\mathsf{F}_{00} \cdot \mathsf{F}_{\mathbf{011}} = \mathsf{F}_{00\mathbf{011}} + \mathsf{F}_{00\mathbf{021}} + \mathsf{F}_{00\mathbf{031}} + \mathsf{F}_{00\mathbf{111}} + \mathsf{F}_{00\mathbf{121}} + \mathsf{F}_{00\mathbf{131}} + \mathsf{F}_{00\mathbf{211}}$ $+ F_{00221} + F_{00231}$ and in Cl₂,

FPSAC, July 15, 2020, Online

 $F_{00} \cdot F_{011} = F_{00011} + F_{00111} + F_{00211} + F_{00311} + F_{00411}$

Some properties

 ${\mathcal H}$ The product \cdot is **associative** iff δ is unimodal.

 \Re The δ -cliff poset plays for \mathbf{Cl}_{δ} the same role as the one played by the weak order for FQSym, that is

$$\mathsf{F}_u \cdot \mathsf{F}_v = \chi_\delta(u / v) \sum_{w \in [u / v, u \setminus v]_{\preccurlyeq}} \mathsf{F}_w,$$

where $\chi_{\delta}(w)$ is 1 if $w \in Cl_{\delta}$ and is 0 otherwise, and \backslash and \backslash are some concatenation operations on δ -cliffs.

 \Re The algebra Cl_{δ} is free as an associative algebra iff δ is weakly increasing.

Quotient algebras

Given a subset S of Cl_{δ} , let the quotient space $Cl_{S} := Cl_{\delta}/_{\mathcal{V}_{S}}$ where \mathcal{V}_{S} is the linear span of the set $\{F_u : u \in Cl_\delta \setminus S\}$.

A subset S of Cl_{δ} is *closed by suffix reduction* if for any $u \in S$, for all suffixes u' of u, $r_{\delta}(u') \in \mathcal{S}$.

When δ is unimodal and S is closed by prefix and closed by suffix reduction, Cl_S is a quotient associative algebra of Cl_{δ} .

Two Fuss-Catalan quotient algebras

Let \mathbf{Hi}_m and \mathbf{Ca}_m be respectively the quotients $\mathbf{Cl}_{\mathsf{Hi}_m}$ and $\mathbf{Cl}_{\mathsf{Ca}_m}$. For instance, in \mathbf{Hi}_1 ,

$$F_{01}\cdot F_{01}=F_{0111}+F_{0112}+F_{0113}+F_{0122}+F_{0123},\qquad F_{01}\cdot F_{00}=0,$$
 in $\textbf{Hi}_2,$

 $F_{02} \cdot F_{023} = F_{02223} + F_{02233} + F_{02333}, \qquad F_{011} \cdot F_{01} = F_{01111},$

in
$$\mathbf{Ca}_1$$
,

$$F_0 \cdot F_{01} = F_{001} + F_{002} + F_{012}, \qquad F_0 \cdot F_{002} = F_{0002} + F_{0003} + F_{0103}.$$
 and in \textbf{Ca}_2 ,

$$\mathsf{F}_{01} \cdot \mathsf{F}_{0014} = 0, \qquad \mathsf{F}_{01} \cdot \mathsf{F}_{0013} = \mathsf{F}_{010013}.$$

- * The dimensions of these associative algebras are provided by Fuss-Catalan numbers.
- \Re The support of any **product** in Ca_m or in Hi_m is an **interval** of a canyon poset or of a hill poset.
- \Re Ca₁ is isomorphic to PBT.
- \Re For all $m \ge 2$, \mathbf{Ca}_m is not free.
- \Re For all $m \ge 1$, \mathbf{Hi}_m is not free and is not isomorphic to \mathbf{Ca}_m .