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Motivations: associative algebras and posets
Weak order on permutations

Poset (S(n),4w) where
4w is the order rela-
tion with the covering
relation l de�ned by
u ab vl u ba v where
a < b, and u and v are
any words.
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Tamari order on 132-avoiding permutations

Poset (B(n),4t) where
B(n) is the subset ofS(n)

of permutations avoiding
132, and 4t is the restric-
tion of 4w on B(n).
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Malvenuto-Reutenauer algebra

Algebra FQSym on the linear span of {Fσ : σ ∈ S}, endowed with the
shifted shu�le product, de�ned by

Fσ · Fν :=
∑
π∈σ�ν

Fπ.

For instance,
F312 · F21 = F31254 + F31524 + F31542 + F35124 + F35142 + F35412 + F53124

+ F53142 + F53412 + F54312.

Loday-Ronco algebra

Algebra PBT, de�ned as the subalgebra of FQSym spanned by the ele-
ments

Pt :=
∑
σ∈S

bst(σ)=t

Fσ

For instance,
P = F2143 + F2413 + F4213

and
P ·P = P + P + P + P + P + P .

Link between FQSym and the weak order

The product of FQSym rephrases as
Fσ · Fν =

∑
π∈[σ ν, σ ν]4w

Fπ,

where σ ν := σν̄, σ ν = ν̄σ, and ν̄ is obtained by incrementing by |σ|
each letter of ν.

Link between PBT and the Tamari order

A similar property holds for PBT: its product expresses as
Pt ·Ps =

∑
r∈[t s, t s]4t

Pr,

where and are some grafting operations on binary trees.

Motivations and main results

` In what extent di�erent orders on permutations lead to similar
constructions and properties?

` We construct a generalization of FQSym based on posets involving
generalizations of Lehmer codes of permutations.

` We construct two analogues and generalizations of PBT in this
context based on two Fuss-Catalan posets.

Cli� posets and three Fuss-Catalan posets
δ-cli�s

` A range map is a map δ : N \ {0} → N.
` A δ-cli� of size n is a word u of length n s.t. ui ∈ [0, δ(i)], for all

i ∈ [n].
` For any m ∈ N, let m be the range map satisfying m(i) := m(i− 1).

The set of 1-cli�s of size n is in one-to-one correspondence with S(n): a
possible bijection sends any permutation to its Lehmer code, which is
a 1-cli�.

δ-cli� posets

Let Clδ be the set of δ-cli�s.

Let 4 be the partial order relation on each Clδ(n) s.t. u 4 v if ui 6 vi for
all i ∈ [n].

Since there is a
bijective morphism
from (S(n),4w) to
(Cl1(n),4), this last is an
order extension of the
�rst.
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The poset (Cl1(4),4).

Subposets and properties

Let S be a subset of Clδ. This subset is endowed with the restriction of
4 on S .

The poset S is
` straight if the covering relation of S changes exactly one letter;
` coated if for any u, v ∈ S such that u 4 v, for all i ∈ [|u|],

u1 . . . uivi+1 . . . v|v| ∈ S ;
` closed by pre�x if for any u ∈ S , all pre�xes of u belong to S ;
` minimally extendable if ε ∈ S and for any u ∈ S , u0 ∈ S ;
` maximally extendable if ε ∈ S and for any u ∈ S , u δ(|u| + 1) ∈ S .

Order theoretic properties

` If S is straight and coated, then S(n) admits an EL-labeling.
` If S is minimally (resp. maximally) extendable, then S(n) is a meet

(resp. join) semi-lattice.
` If S is nested and closed by pre�x, then S is a lattice constructible

by interval doubling.

Avalanche posets

Let Avδ be the subset of Clδ containing all δ-cli�s u s.t. for all nonempty
pre�xes u1 . . . uk of u, u1 + · · · + uk 6 δ(k), called δ-avalanches.

In general, these posets
are
` graded;
` meet semi-sublatti-

ces of Clδ;
` admit EL-labelings.
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The poset (Av1(4),4).

Hill posets

Let Hiδ be the subset of Clδ containing all weakly increasing δ-cli�s,
called δ-hills.

In general, when δ is
weakly increasing, these
posets are
` sublattices of Clδ;
` EL-shellable;
` constructible by in-

terval doubling.

When δ = 1, these are
Stanley lattices.
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The poset (Hi1(4),4).

Canyon lattices

Let Caδ be the subset of Clδ containing all δ-cli�s u s.t. ui−j 6 ui − j, for
all i ∈ [|u|] and j ∈ [ui] satisfying i − j > 1, called δ-canyons.

In general, when δ is in-
creasing, these posets are
` lattices (but not sub-

lattices of Clδ);
` EL-shellable;
` constructible by in-

terval doubling.

When δ = 1, these are
Tamari lattices.
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The poset (Ca1(4),4).

Interactions and common properties

For any m > 0 and n > 0,

#Avm(n) = #Him(n) = #Cam(n) =
1

mn + 1

(
mn + n

n

)
.

This is the n-th m-Fuss-Catalan number.

When δ is an increasing range map, the three posets �t into the diagram
Avδ(n) Caδ(n) Hiδ(n)

of bijective poset morphisms, so that Caδ(n) is an order extension of
Avδ(n), and Hiδ(n) is an order extension of Caδ(n).

For instance, for δ = 3 and n = 3,
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Besides, for any m > 1 and n > 0, there is a poset embedding
Him−1(n) Cam(n) .

Algebras of cli�s
Associative algebras of δ-cli�s

The δ-reduction map
rδ : Nn→ Clδ(n)

is de�ned for any word u ∈ Nn and any i ∈ [n] by

(rδ(u))i :=

{
ui if ui 6 δ(i),

δ(i) otherwise.

For instance, r1(212066) = 012045 and r2(212066) = 012066.

Let Clδ be the linear span of {Fu : u ∈ Clδ}, endowed with the product
Fu · Fv =

∑
v′∈r−1

δ (v)
uv′∈Clδ

Fuv′,

For instance, in Cl1,

F00 · F011 = F00011 + F00021 + F00031 + F00111 + F00121 + F00131 + F00211

+ F00221 + F00231,

and in Cl2,

F00 · F011 = F00011 + F00111 + F00211 + F00311 + F00411.

Some properties

` The product · is associative i� δ is unimodal.
` The δ-cli� poset plays for Clδ the same role as the one played by the

weak order for FQSym, that is
Fu · Fv = χδ(u v)

∑
w∈[u v,u v]4

Fw,

where χδ(w) is 1 if w ∈ Clδ and is 0 otherwise, and and are some
concatenation operations on δ-cli�s.

` The algebra Clδ is free as an associative algebra i� δ is weakly
increasing.

Quotient algebras

Given a subset S of Clδ, let the quotient space ClS := Clδ/VS where VS
is the linear span of the set {Fu : u ∈ Clδ \ S}.
A subset S of Clδ is closed by su�x reduction if for any u ∈ S , for all
su�xes u′ of u, rδ(u′) ∈ S .
When δ is unimodal and S is closed by pre�x and closed by su�x reduc-
tion, ClS is a quotient associative algebra of Clδ.

Two Fuss-Catalan quotient algebras

Let Him and Cam be respectively the quotients ClHim and ClCam.
For instance, in Hi1,

F01 · F01 = F0111 + F0112 + F0113 + F0122 + F0123, F01 · F00 = 0,
in Hi2,

F02 · F023 = F02223 + F02233 + F02333, F011 · F01 = F01111,

in Ca1,
F0 · F01 = F001 + F002 + F012, F0 · F002 = F0002 + F0003 + F0103.

and in Ca2,
F01 · F0014 = 0, F01 · F0013 = F010013.

` The dimensions of these associative algebras are provided by Fuss-
Catalan numbers.

` The support of any product in Cam or in Him is an interval of a
canyon poset or of a hill poset.

` Ca1 is isomorphic to PBT.
` For all m > 2, Cam is not free.
` For all m > 1, Him is not free and is not isomorphic to Cam.
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