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Abstract. The natural Hopf algebra N·O of an operad O is a Hopf algebra whose
bases are indexed by some words on O. We construct polynomial realizations of N·O by
using alphabets of noncommutative variables endowed with unary and binary relations.
By using particular alphabets, we establish links between N·O and some other Hopf
algebras including the Hopf algebra of word quasi-symmetric functions of Hivert, the
decorated versions of the noncommutative Connes-Kreimer Hopf algebra of Foissy, the
noncommutative Faà di Bruno Hopf algebra and its deformations, the noncommutative
multi-symmetric functions Hopf algebras of Novelli and Thibon, and the double tensor
Hopf algebra of Ebrahimi-Fard and Patras.
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1 Introduction

1 Introduction

A polynomial realization of a Hopf algebra consists of interpreting its elements as polynomials,
either commutative or not, in such a way that its product translates as a polynomial multiplication
and its coproduct translates as a simple transformation of the alphabet of variables. A great portion
of combinatorial Hopf algebras appearing in combinatorics admit polynomial realizations [DHT02;
NT06; Mau13; FNT14; Foi20]. It is striking to note that Hopf algebras involving a variety of
different families of combinatorial objects and operations on them can be translated and understood
in a common manner through adequate polynomial realizations.

Such realizations are crucial for several reasons. First, they allow us to prove easily that the Hopf
algebra axioms (like associativity, coassociativity, and the Hopf compatibility between the product
and the coproduct) are satisfied. Indeed, if a Hopf algebra admits a polynomial realization, such
properties are almost immediate on polynomials [Hiv07]. Second, given a polynomial realization
of a Hopf algebra, it is in most cases fruitful to specialize the associated polynomials (for instance
by letting the variables commute) in order to get Hopf algebra morphisms to other Hopf algebras.
This leads to the construction of new Hopf algebras or establishes links between already existing
ones [FNT14]. Finally, such families of polynomials realizing a Hopf algebra lead to the definition
of new classes of special functions, analogous to Schur or Macdonald functions [DHT02].

Under right conditions, an operad O produces a Hopf algebra N·O, called the natural Hopf
algebra of O. The bases of N·O are indexed by some words on O, and its coproduct is inherited
from the composition map of O. This construction is considered in [Laa04; CL07; BG16], and we
focus here on a noncommutative variation for nonsymmetric operads, appearing first in [ML14].
In contrast to many examples of Hopf algebras having polynomial realizations, none are known
for N·O. The main contribution of this work is to provide a polynomial realization for this family
of Hopf algebras built from nonsymmetric operads. The particularity of our approach is that we
consider a polynomial realization based on variables belonging to alphabets endowed with several
unary and binary relations in order to capture the particularities of the coproduct of N·O. This
approach, using what we call related alphabets, generalizes the previous approaches using totally
ordered alphabets [DHT02; NT06; Hiv07], quasi-ordered alphabets [Foi20], or alphabets endowed
with a single binary relation [FNT14; Gir11].

This work is presented as follows.

In Section 2, the main notions about natural Hopf algebras of operads, related alphabets,
and polynomial realizations are provided. We also present elementary but important definitions
concerning free operads and terms that constitute their elements. We conclude with forests, which
are finite sequences of terms.

In Section 3, we provide some properties of the natural Hopf algebra N·T·S of the free operad
T·S generated by a signature S. This Hopf algebra is defined on the linear span of forests decorated
on S. We offer an alternative expression for the coproduct of N·T·S (Proposition 3.1.5.A) which is
useful for its subsequent polynomial realization. We also describe an injection of N·O into N·T·S
when O is an operad quotient of T·S subject to specific properties (Theorem 3.2.2.A).

Section 4 is the principal part of this work. Here, we introduce forest-like alphabets, a type of
alphabet endowed with certain unary and binary relations. Next, we define a map rA that sends
any element of N·T·S to a polynomial on A, where A is a forest-like alphabet, and we show that
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2 Natural Hopf algebras of operads

it forms a polynomial realization of N·T·S (Theorem 4.3.3.A). A key component to establish this
property is a particular forest-like alphabet Ap·S that encodes the shape and the decorations of
a forest, ensuring that rAp·S is injective. We also show that the previous injection of N·O into
N·T·S can be used to obtain a polynomial realization of N·O.

In the final Section 5, we establish links between N·O and other Hopf algebras by using the
previous polynomial realization. First, we introduce a generalization of word quasi-symmetric
functions [Hiv99; NT06] on alphabets with decorated letters, similar to what is considered in [NT10]
for different classes of polynomials derived from polynomial realizations of Hopf algebras. We
then show that N·T·S admits, as a quotient, a space of decorated word quasi-symmetric functions
(Theorem 5.1.2.A). Next, we show that this quotient is isomorphic to a Hopf subalgebra of a
decorated version of the noncommutative Connes-Kreimer Hopf algebra [CK98; Foi02a; Foi02b]
(Theorem 5.2.3.C). Finally, we consider polynomial realizations of natural Hopf algebras of two
families of not necessarily free operads. Among these, as an application of the results of the
previous section, we propose two polynomial realizations of the noncommutative Faà di Bruno
Hopf algebra [FG05; BFK06; Foi08; Bul11] (Theorem 5.3.4.A). We also propose a polynomial
realization of the double tensor Hopf algebra [EP15].

General notations and conventions. For any “X-C” concept that depends on an X entity,
if in some circumstance X is either known or insignificant, we may simply denote it by “C”. For
instance, we shall write simply “forest” instead of “S-forest” when S is known or insignificant. If
f is an entity parameterized by an input x, we write f ·x for f(x). By definition, · associates from
right to left so that f ·g·x denotes f ·(g·x). Moreover, · is defined as having higher priority than
any other operator. For a statement P , the Iverson bracket [[[P ]]] takes 1 as value if P is true and 0
otherwise. For an integer i, [i] (resp. Ji]) denotes the set {1, . . . , i} (resp. {0, . . . , i}). For a set
A, A∗ is the set of words on A. For w ∈ A∗, ℓ·w is the length of w, and for i ∈ [ℓ·w], w·i is the
i-th letter of w. The only word of length 0 is the empty word ϵ. For a subset A′ of A, w|A′ is the
subword of w made of letters of A′. Let moreover PosA′ ·w be the set of positions of the letters
of w which belong to A′. Given two words w and w′, the concatenation of w and w′ is denoted
by w ■ w′ or by ww′.

2 Natural Hopf algebras of operads

In this preliminary section, we recall the concept of a natural Hopf algebra of an operad. We also
review the essential concepts about polynomial realizations of Hopf algebras and introduce the
notion of related alphabet. This section concludes with definitions concerning terms, forests, and
free operads.

In the entirety of this article, all algebraic structures defined on a vector space assume that
this vector space is over a field K of characteristic zero.

2.1 Natural Hopf algebras of nonsymmetric operads

We provide here some basic definitions about operads and natural Hopf algebras of operads.

2.1.1 Signatures. A signature is a set S endowed with a map ar : S → N. Given s ∈ S,
ar·s is the arity of s. For any n ∈ N, let S·n := {s ∈ S : ar·s = n}. The signature S is positive if
S·0 = ∅. When all S·n are finite, the profile of S is the infinite word w such that for any i ⩾ 1,
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2 Natural Hopf algebras of operads 2.1 Natural Hopf algebras of nonsymmetric operads

w·i is the cardinality of S·(i − 1). To write profiles, we shall use the notation aω, a ∈ N, to specify
an infinite sequence of letters a. For instance, the infinite word 1020ω is the profile of a signature
S such that #S·0 = 1, #S·1 = 0, #S·2 = 2, and #S·n = 0 for all n ⩾ 3. A signature S is binary
if its profile is of the form 00r0ω where r ∈ N.

For the examples that will follow throughout the article, we shall consider the signature
Se := {a, b, c} of profile 01110ω where ar·a = 1, ar·b = 2, and ar·c = 3.

2.1.2 Nonsymmetric operads. We follow the usual notations about nonsymmetric oper-
ads [Gir18] (called simply operads here). An operad O is above all considered to be a signature.
We denote by −[−, . . . , −] : O·n × O·m1 × · · · × O·mn → O·(m1 + · · · + mn) the composition map
of O and by 1 the unit of O. The partial composition map of O is denoted by ◦i.

Let us introduce two properties an operad O can satisfy. When each x ∈ O admits finitely
many factorizations x = y

[
y′

1, . . . , y′
ar·y
]

where y, y′
1, . . . , y′

ar·y ∈ O, O is finitely factorizable.
When there exists a map dg : O → N such that dg−1·0 = {1} and, for any y, y′

1, . . . , y′
ar·y ∈ O,

dg·
(
y
[
y′

1, . . . , y′
ar·y
])

= dg·y + dg·y′
1 + · · · + dg·y′

ar·y, the map dg is a grading of O.

2.1.3 Natural Hopf algebras. The natural Hopf algebra [Laa04; CL07; ML14; BG16] of a
finitely factorizable operad O admitting a grading dg is the Hopf algebra N·O defined as follows.
Let rd : O∗ → (O \ {1})∗ be the map such that rd·w is the subword of w ∈ O∗ consisting of its
letters different from 1. A word w on O is reduced if rd·w = w. Let N·O be the K-linear span of
the set rd·O∗. The bases of N·O are thus indexed by rd·O∗, and the elementary basis (or E-basis
for short) of N·O is the set {Ew : w ∈ rd·O∗}. This vector space is endowed with an associative
algebra structure through the product ⋆ satisfying, for any w1, w2 ∈ rd·O∗,

Ew1 ⋆ Ew2 = Ew1■w2 . (2.1.3.A)

Moreover, N·O is endowed with the coproduct ∆ defined as the unique associative algebra
morphism satisfying, for any x ∈ O,

∆·Ex =
∑
y∈O

∑
w∈Oar·y

[[[x = y[w·1, . . . , w·ℓ·w]]]] Erd·y ⊗ Erd·w, (2.1.3.B)

where the outer [[[ − ]]] denotes the Iverson bracket. Due to the fact that O is finitely factorizable,
(2.1.3.B) is a finite sum. This coproduct endows N·O with the structure of a bialgebra. By
extending additively dg on O∗, the map dg defines a grading of N·O. Thus, N·O admits an
antipode and becomes a Hopf algebra.

2.1.4 Noncommutative Faà di Bruno Hopf algebra. An important example of a natural
Hopf algebra of an operad is the following. Let us consider the associative operad As, defined
by As := {αn : n ∈ N}, for any αn ∈ As, ar·αn := n + 1, for any αn, αm1 , . . . , αmn+1 ∈ As,
αn

[
αm1 , . . . , αmn+1

]
:= αn+m1+···+mn+1 , and 1 := α0. The map dg satisfying, for any αn ∈ As,

dg·αn = n is a grading of As. The bases of N·As are indexed by rd·As∗. We have for instance

∆·Eα3 = Eϵ ⊗ Eα3 + 2Eα1 ⊗ Eα2 + Eα1 ⊗ Eα1α1 + 3Eα2 ⊗ Eα1 + Eα3 ⊗ Eϵ. (2.1.4.A)

It is shown in [BG16] that N·As is isomorphic to the noncommutative Faà di Bruno Hopf algebra
FdB (see [FG05; BFK06; Foi08]).
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2 Natural Hopf algebras of operads 2.2 Polynomial realizations

2.2 Polynomial realizations

We establish here our framework to work with polynomial realizations of Hopf algebras.

2.2.1 Related alphabets. A related alphabet signature is a positive signature R. An R-
related alphabet is a set A endowed with an n-ary relation RA for each R ∈ R where n = ar·R. As
usual, an n-ary relation RA on A is a subset of An. We denote by RA(a1, . . . , an) the fact that
(a1, . . . , an) ∈ RA. When n = 2, we write a1 R

A a2 instead of RA(a1, a2).

Let A1 and A2 be two R-related alphabets. An R-related alphabet morphism is a map
ϕ : A1 → A2 such that for any R ∈ R, by denoting by n the arity of R, for any a1, . . . , an ∈ A1,
RA1(a1, . . . , an) implies RA2(ϕ·a1, . . . , ϕ·an). An R-related alphabet congruence of an R-related
alphabet A is an equivalence relation ≡ on A. For any a ∈ A, we denote by [a]≡ the ≡-equivalence
class of a. The quotient of A by ≡ is the R-related alphabet A/≡ on the set of ≡-equivalence
classes such that, for any R ∈ R, by denoting by n the arity of R, for any a1, . . . , an ∈ A, if
RA(a1, . . . , an) then RA/≡([a1]≡, . . . , [an]≡).

We shall consider classes of R-related alphabets satisfying possibly some additional conditions.
For instance, the class of totally ordered alphabets is the class O of R-related alphabets where R
contains a binary element ⩽ and such that for any alphabet A of O, ⩽A is a total order relation
on A.

2.2.2 Noncommutative polynomials. For any alphabet A, K⟨A⟩ is the K-vector space of
A-polynomials, which are noncommutative polynomials with variables in A, having a possibly
infinite support but a finite degree. For instance, for A := {ai : i ∈ N}, the infinite sum∑

i1,i2∈N
[[[ i1 ⩽ i2 ]]] ai1ai2 (2.2.2.A)

is an element of K⟨A⟩, which is also homogeneous of degree 2. In contrast, the infinite sum∑
n∈N an

0 has no finite degree and is not in K⟨A⟩. The vector space K⟨A⟩ is a graded unital
associative algebra for the usual product of polynomials.

Besides, given two alphabets A1 and A2, let θA1,A2 : K⟨A1 ⊔ A2⟩ → K⟨A1⟩ ⊗ K⟨A2⟩ be the
linear map such that θA1,A2 ·w = w|A1 ⊗ w|A2 for any w ∈ (A1 ⊔ A2)∗.

2.2.3 Polynomial realizations. A polynomial realization of a Hopf algebra H is a quadruple
(A, ++, rA,A) such that

(i) A is a class of related alphabets;

(ii) ++ is an associative operation on A which is a disjoint sum on the underlying sets of the
related alphabets;

(iii) for any related alphabet A of A, rA : H → K⟨A⟩ is a graded unital associative algebra
morphism;

(iv) for any alphabets A1 and A2 of A and any x ∈ H, θA1,A2 ·rA1++A2 ·x = (rA1 ⊗ rA2)·∆·x;

(v) A is an alphabet of A such that the map rA is injective.

By a slight abuse of terminology, we shall write that rA itself is a polynomial realization when all
components A, ++, rA, and A are known.
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2 Natural Hopf algebras of operads 2.3 Terms, forests, and free operads

Property (iv) is known as the alphabet doubling trick. This property, enjoyed by polynomial
realizations of a large number of Hopf algebras, allows us to rephrase their coproduct via such
alphabet transformations [DHT02; NT06; Hiv07; Gir11; FNT14; Foi20].

An interesting point about polynomial realizations is based on the elementary fact that if
ϕ : V1 → V2 is a linear map between two vector spaces V1 and V2, then V1/Ker·ϕ is isomorphic to
Im·ϕ, where Ker·ϕ is the kernel of ϕ and Im·ϕ is the image of ϕ. Using this, if rA is a polynomial
realization of a Hopf algebra H, any alphabet A of A gives rise to a quotient H/Ker·rA which is
isomorphic to the subspace Im·rA of K⟨A⟩.

2.3 Terms, forests, and free operads

We end this preliminary section with some combinatorial notions about terms and forests, and
also on free operads.

2.3.1 Terms. Let S be a signature. An S-term is either the leaf or a pair (s, (t1, . . . , tn))
where n ∈ N, s ∈ S·n, and t1, . . . , tn are S-terms. For convenience, we write s(t1, . . . , tn) for
(s, (t1, . . . , tn)). By definition, an S-term is therefore a planar rooted tree where each internal node
having n children is decorated on S·n. The set of S-terms is denoted by T·S. Let t ∈ T·S. The
degree dg·t of t is the number of internal nodes of t. The arity ar·t of t is the number of occurrences
of leaves of t.

For instance, c( , b( , a( )), b( , )) in an Se-term. This Se-term t writes as the planar rooted
tree

c

b
a

b (2.3.1.A)

and is such that dg·t = 4 and ar·t = 5.

2.3.2 Free operads. The free operad on a signature S is the set T·S considered as a signature
through the arity map ar, with the composition map such that for any t, t′1, . . . , t′ar·t ∈ T·S,
t[t′1, . . . , t′ar·t] is the S-term obtained by grafting the root of each t′i, i ∈ [ar·t], onto the i-th leaf
of t, and with the unit . Moreover, the partial composition map of T·S admits the following
description. For any t, t′ ∈ T·S and i ∈ [ar·t], t ◦i t

′ is the S-term obtained by grafting the root of
t′ onto the i-th leaf of t, where the numbering of leaves is from left to right.

For instance, in T·Se, we have

b
a c

 b , ,
a

a
, b

c

 =
b

a

b

c

a

a
b

c

(2.3.2.A)

and

b
a c

◦2
b

c
=

b
a c

b
c

. (2.3.2.B)

Observe that T·S is finitely factorizable and that the map dg is a grading of T·S.
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3 Natural Hopf algebras of free operads

2.3.3 Forests. Let S be a signature. An S-forest is any element of F·S := T·S∗. Let f ∈ F·S.
The degree dg·f of f is the sum of the degrees of the terms forming it. The arity ar·f of f is the
sum of the arities of the terms forming it. We identify each internal node of an S-forest f with
its position, starting by 1, according to the left to right preorder traversal of f. The decoration
map of f is the map df sending each internal node of f to its decoration. The height map of f
is the map htf sending each internal node i of f to the length of the path connecting the i to
the root of the S-term to which i belongs. In particular, if i is a root of f, then htf·i = 0. Let
moreover for any j ⩾ 1 the binary relation f→j on the set of internal nodes of f such that i

f→j i′

holds if i′ is the j-th child of i in f. Let i be an internal node of f and i0 be the root of the
S-term to which i belongs. The position of i in f is the word pf·i = j1j2 . . . jℓ−1jℓ provided that
i0

f→j1 i1
f→j2 · · · f→jℓ−1 iℓ−1

f→jℓ
i for some internal nodes i1, . . . , iℓ−1 of f and positive integers

j1, j2, . . . , jℓ−1, jℓ.

Let us give some examples of the previous notions. For this, let

f :=
c

a b

a

b

b

a

1
2 3

4

5
6

7
(2.3.3.A)

be an Se-forest where internal nodes are identified by the integers close to them. The degree of
f is 7, its arity is 10, and we have for instance df·1 = c, df·3 = b, 1 f→1 2, 1 f→3 3, and 5 f→2 6.
Moreover, we have pf·1 = ϵ, pf·5 = ϵ, pf·4 = 31, and pf·7 = 21. Notice that the internal nodes 1
and 5 of f have the same position.

3 Natural Hopf algebras of free operads

In this section, we begin by focusing specifically on the natural Hopf algebras of free operads and
derive some of their properties. Next, we consider the natural Hopf algebras of not necessarily
free operads and interpret them as Hopf subalgebras of natural Hopf algebras of free operads.

3.1 First properties

Here, we give a description of the basis elements of N·T·S where S is a signature, its Hilbert
series, and necessary and sufficient conditions for the commutativity and the cocommutativity of
this Hopf algebra. We end this section by providing an alternative description for its coproduct,
useful later to establish a polynomial realization of N·T·S.

3.1.1 Basis elements, product, and coproduct. By construction, for any signature S,
the Hopf algebra N·T·S is graded by dg and its bases are indexed by the set rd·F·S of reduced
S-forests. By definition, a reduced S-forest is a word on the alphabet T·S \ { }.

On the E-basis, the product of N·T·S works by concatenating the reduced forests. For instance,
in N·T·Se,

E
a

b

c

a

⋆ E
b

a

= E
a

b

c

a
b

a

. (3.1.1.A)

On the other hand, on the E-basis the coproduct of N·T·S works by summing on all ways to cut a
reduced S-forest into a upper part and a lower part, and then, by removing the obtained S-terms
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3 Natural Hopf algebras of free operads 3.1 First properties

equal to the leaf in both parts. For instance, in N·T·Se,

∆·E
c

a
b

= Eϵ ⊗ E
c

a
b

+ E
c

⊗ E
a b

+ E
b

⊗ E
c

a

(3.1.1.B)

+ E
c

a

⊗ E
b

+ E
c b

⊗ E
a

+ E
c

a
b

⊗ Eϵ.

3.1.2 Hilbert series. Here is a description of the Hilbert series FN·T·S of N·T·S when S is
a finite signature.

▶ Proposition 3.1.2.A — For any finite signature S, the Hilbert series of N·T·S satisfies

FN·T·S = 1
2 − T

(3.1.2.A)

where T is the generating series satisfying T = 1 + z S[z := T ], and S is the polynomial defined
by S :=

∑
n∈N #S·n zn.

◀ Proof — From the functional equation defining T , this series is the generating series of
S-terms enumerated w.r.t. their degrees. By construction, since N·T·S is the linear span of
reduced S-forests, its Hilbert series is 1/(1 − T ′), where T ′ is the generating series of the S-terms
different from the leaf. Since T ′ = T − 1, the statement of the proposition follows. □□□

3.1.3 Commutativity and cocommutativity. Here is a necessary and sufficient condition
for the commutativity and cocommutativity of N·T·S for any signature S.

▶ Proposition 3.1.3.A — Let S be a signature of profile w. The Hopf algebra N·T·S is

(i) commutative if and only if w = 0ω or w = 10ω;

(ii) cocommutative if and only if w = k0ω, k ∈ N, or w = 010ω.

◀ Proof — Assume that w = 0ω. In this case, each reduced S-forest is necessarily empty. Hence,
N·T·S is the linear span of {Eϵ} and is commutative. When w = 10ω, each reduced S-forest is a
concatenation of S-terms which are themselves made of a single node of arity 0 and decorated
by the same s ∈ S·0. From the definition of the product ⋆ of N·T·S, it follows that N·T·S is
commutative. Conversely, if S is such that #S·0 ⩾ 2 or #S·n ⩾ 1 for an n ⩾ 1, then it is possible
to build two different S-terms t1 and t2 which are both different from the leaf. Since in this case,
Et1 ⋆ Et2 = Et1■t2 ̸= Et2■t1 = Et2 ⋆ Et1 , it follows that N·T·S is not commutative and proves (i).

Assume that w = k0ω, k ∈ N. When k = 0, each reduced S-forest is necessarily empty. In this
case, N·T·S is the linear span of {Eϵ} and is cocommutative. When w = k0ω, k ⩾ 1, each S-term t

is made of a single node of arity 0 and decorated by an s ∈ S·0. From the definition of the coproduct
∆ of N·T·S, Et is a primitive element, implying that this Hopf algebra is cocommutative. Assume
that w = 010ω. In this case, each S-term t is of the form s(s(. . . s( ) . . .)) where s ∈ S·1. Moreover,
if there are two such S-terms t1 and t2 such that t = t1[t2], then we have also t = t2[t1]. From
the definition of the coproduct ∆ of N·T·S, this implies that this Hopf algebra is cocommutative.
Conversely, assume that w ̸= k0ω, k ∈ N, and w ̸= 010ω. By an elementary logical reasoning, we
obtain that the signature S can take exactly three different forms, leading to the following cases.

(1) If #S·0 ⩾ 1 and #S·1 = 1, let s0 ∈ S·0 and s1 ∈ S·1. We have

∆·E
s1

s0

= Eϵ ⊗ E
s1

s0

+ E
s1

⊗ E
s0

+ E
s1

s0

⊗ Eϵ. (3.1.3.A)
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(2) If #S·1 ⩾ 2, let s, s′ ∈ S·1 such that s ̸= s′. We have

∆·E
s

s′

= Eϵ ⊗ E
s

s′

+ E
s

⊗ E
s′

+ E
s

s′

⊗ Eϵ. (3.1.3.B)

(3) Otherwise, there is an n ⩾ 2 such that #S·n ⩾ 1. By taking s ∈ S·n, we have

∆·E
s

s s

. . . . . .

. . .

= Eϵ ⊗ E
s

s s

. . . . . .

. . .

+ E
s

. . .

⊗ E
s s

. . . . . .

+ E
s

s

. . .

. . .

⊗ E
s

. . .

+ E
s

s

. . .

. . .

⊗ E
s

. . .

+ E
s

s s

. . . . . .

. . .

⊗ Eϵ. (3.1.3.C)

In all these cases, we observe that ∆ is not cocommutative, proving (ii). □□□

By using Proposition 3.1.3.A, we have exactly the following possibilities:

(1) N·T·S is commutative and cocommutative. This happens if and only if the profile of S
is k0ω with k ⩽ 1;

(2) N·T·S is noncommutative and cocommutative. This happens if and only the profile of S is
k0ω with k ⩾ 2 or is 010ω;

(3) N·T·S is noncommutative and non-cocommutative. This happens for all other possible
profiles of S.

There is no natural Hopf algebra of a free operad which is commutative and non-cocommutative.

3.1.4 Some examples. We give three classes of examples of natural Hopf algebras of free
operads and present some of their properties by using Propositions 3.1.2.A and 3.1.3.A. Let S be a
finite signature of profile w.

(1) If w = k0ω, k ⩾ 1, then N·T·S is the free associative algebra on k generators, endowed with
the unshuffling cocommutative coproduct.

(2) If w = 0k0ω, k ⩾ 1, then the bases of N·T·S are indexed by the set of words whose letters are
themselves nonempty words on [k]. For any n ⩾ 1, the dimension of the n-th homogeneous
component of N·T·S is kn2n−1. Moreover, when k = 1, N·T·S is the Hopf algebra of
noncommutative symmetric functions Sym [Gel+95]. Observe that N·T·S is cocommutative
only if k = 1.

(3) If w = 00k0ω, k ⩾ 1, then the bases of N·T·S are indexed by the set of words whose letters
are binary trees different from the leaf and such that internal nodes are decorated on [k].
For any n ⩾ 1, the dimension of the n-th homogeneous component of N·T·S is kn

(2n−1
n

)
.

The particular case for k = 1 is studied in [Gir11, Chapter 6, Section 3].

3.1.5 Coproduct description. We now introduce an alternative way to describe the co-
product of N·T·S for any signature S.

Let f be a reduced S-forest. Given a set I of nodes of f, the restriction f·Iof f on I is the
reduced S-forest obtained by keeping only the nodes of f which are in I and their adjacent edges.
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For instance,
b

a c

b

a

c

b

·{1, 2, 4, 7} = b
a

b b . (3.1.5.A)

As a particular case, observe that f·∅ = ϵ. A pair (I1, I2) of sets is f-admissible if I1 ⊔ I2 = [dg·f],
for any i1 ∈ I1, all ancestors of the internal node i1 of f belong to I1, and for any i2 ∈ I2, all
descendants of the internal node i2 of f belong to I2. This property is denoted by (I1, I2) ⊢ f.
For instance, by denoting by f the reduced forest of the left-hand side of (3.1.5.A), the pair
({1, 2, 4, 7}, {3, 5, 6}) is not f-admissible, while the pair ({1, 3, 5}, {2, 4, 6, 7}) is.

▶ Proposition 3.1.5.A — For any signature S and any reduced S-forest f, the coproduct of N·T·S
satisfies

∆·Ef =
∑

I1,I2⊆[dg·f]

[[[ (I1, I2) ⊢ f]]] Ef·I1 ⊗ Ef·I2 . (3.1.5.B)

◀ Proof — Let us denote by ∆′ the coproduct defined by (3.1.5.B). Let t ∈ T·S and (I1, I2) be a t-
admissible pair of sets. By the fact that I1 (resp. I2) is closed w.r.t. the ancestor (resp. descendant)
relation of t, and by the definition of the composition map of free operads, this last property
is equivalent to the fact that t decomposes as t = t′[t′1, . . . , t′ℓ] with ℓ ∈ N, t′, t′1, . . . , t′ℓ ∈ T·S,
rd·t′ = t·I1, and rd·(t′1 ■ · · · ■ t′ℓ) = t·I2. This shows that ∆·Et = ∆′·Et and hence, shows that ∆
and ∆′ coincide on the elements of the E-basis indexed by S-terms.

Now, let f, f′ ∈ rd·F·S and (I1, I2) be a pair of sets such that (I1, I2) ⊢ f ■ f′. This is equivalent
to the fact that there exist a unique partition {I ′

1, I ′′
1 } of I1 and a unique partition {I ′

2, I ′′
2 } of I2

such that (I ′
1, I ′

2) ⊢ f and (I ′′′
1 , I ′′′

2 ) ⊢ f′, where I ′′′
1 and I ′′′

2 are the sets obtained by respectively
decrementing by dg·f each element of I ′′

1 and I ′′
2 . This observation leads to the fact that ∆′ is a

morphism of associative algebras. Moreover, as shown before, ∆ and ∆′ coincide on the elements
of the E-basis indexed by S-terms. Since these elements are the algebraic generators of N·T·S,
the coproducts ∆ and ∆′ are the same. □□□

3.2 Quotients of free operads and Hopf subalgebras

We show here that under some conditions, the natural Hopf algebra of an operad can be realized
as a Hopf subalgebra of the natural Hopf algebra of a free operad.

3.2.1 Equivalence relations on reduced forests. Let S be a signature and ≡ be an
operad congruence of the free operad T·S. Let us denote by π≡ : T·S → T·S/≡ the canonical
projection map associated with ≡. The map π≡ is extended as a map from F·S to T·S/≡

∗ by
setting π≡·f := (π≡·f·1) . . . (π≡·f·ℓ·f) for any f ∈ F·S.

The following two properties on operad congruences play an important role here. The operad
congruence ≡ is compatible with the degree if t ≡ t′ implies dg·t = dg·t′ for any t, t′ ∈ T·S. The
operad congruence ≡ is of finite type if for any t ∈ T·S, the ≡-equivalence class [t]≡ of t is finite.

▶ Proposition 3.2.1.A — Let S be a signature and ≡ be an operad congruence of T·S compatible
with the degree and of finite type. The quotient operad T·S/≡ is finitely factorizable. Moreover,
the map dg sending each ≡-equivalence class [t]≡ to the degree of any S-term belonging to it is a
grading of T·S/≡.

◀ Proof — Let x ∈ T·S/≡. Since ≡ is of finite type, there are finitely many S-terms t such
that π≡·t = x. Moreover, due to the fact that T·S is finitely factorizable, the number of pairs
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(t′, (t′1, . . . , t′ar·t′)) ∈ T·S × (T·S)∗ such that t = t′[t′1, . . . , t′ar·t′ ] is finite. Therefore, x admits finitely
many factorizations x = y

[
y′

1, . . . , y′
ar·y
]

where y, y′
1, . . . , y′

ar·y ∈ T·S/≡. This shows that T·S/≡ is
finitely factorizable.

Finally, since ≡ is compatible with the degree, for any x ∈ T·S/≡, all t ∈ T·S such that
π≡·t = x have the same degree as S-terms. Since by definition of dg, dg·x = dg·t where t is any
S-term satisfying π≡·t = x, dg is a grading of T·S/≡. □□□

3.2.2 Hopf subalgebras of natural Hopf algebras of a free operad. Let S be a
signature and ≡ be an operad congruence of T·S of finite type. Let ϕ : N·(T·S/≡) → N·T·S be
the linear map defined, for any x ∈ rd·

(
T·S/≡

∗), by

ϕ·Ex :=
∑

f∈rd·F·S

[[[π≡·f = x]]] Ef. (3.2.2.A)

Due to the fact that ≡ is of finite type, ϕ is a well-defined linear map. Moreover, observe that
when ≡ is compatible with the degree, ϕ·Ex is a homogeneous element of N·T·S.

▶ Theorem 3.2.2.A — Let S be a signature and ≡ be an operad congruence of T·S compatible
with the degree and of finite type. The map ϕ is an injective Hopf algebra morphism.

◀ Proof — First, since ≡ is compatible with the degrees and is of finite type, by Proposition 3.2.1.A,
the operad T·S/≡ is finitely factorizable and graded. Hence, N·(T·S/≡) is a well-defined Hopf
algebra.

Observe that by definition of the extension of π≡ on F·S, for any f ∈ F·S, ℓ·f = ℓ·π≡·f. For
this reason, ϕ·Eϵ = Eϵ. Moreover, for any x1, x2 ∈ rd·

(
T·S/≡

∗), the fact that ϕ·(Ex1 ⋆ Ex2) =
ϕ·Ex1 ⋆ ϕ·Ex2 follows from a straightforward computation. Therefore, ϕ is a unital associative
algebra morphism.

Let us show that ϕ is a coalgebra morphism. For any x ∈ T·S/≡, we have

∆·ϕ·Ex =
∑

t∈T·S
t1,...,tar·t∈T·S

[[[π≡·(t[t1, . . . , tar·t]) = x]]] Erd·t ⊗ Erd·t1...tar·t . (3.2.2.B)

Since ≡ is an operad congruence, the right-hand side of (3.2.2.B) rewrites as∑
y∈T·S/≡

y1,...,yar·y∈T·S/≡

[[[y[y1, . . . , yar·y] = x]]]
∑

f,f′∈F·S

[[[π≡·f = y ]]][[[π≡·f′ = yi . . . yar·y ]]] Erd·f ⊗ Erd·f′ . (3.2.2.C)

Now, observe that since ≡ is compatible with the degree, [ ]≡ = { }. By the definition of the
extension of π≡ on F·S, this leads to the fact that for any f ∈ F·S and z ∈ T·S/≡

∗, π≡·f = z implies
π≡·rd·f = rd·z. Moreover, for the same reason, for any f ∈ rd·F·S and z ∈ T·S/≡

∗, π≡·f = rd·z
implies that there exists a unique f′ ∈ F·S such that rd·f′ = f and π≡·f′ = z. For these reasons,
(3.2.2.C) is equal to∑

y∈T·S/≡
y1,...,yar·y∈T·S/≡

[[[y[y1, . . . , yar·y] = x]]]
∑

f,f′∈rd·F·S

[[[π≡·f = rd·y ]]][[[π≡·f′ = rd·y1 . . . yar·y ]]] Ef ⊗ Ef′ .

(3.2.2.D)

It follows now by a straightforward computation that (3.2.2.D) is equal to (ϕ ⊗ ϕ)·∆·Ex. We have
shown that for any x ∈ T·S/≡, ∆·ϕ·Ex = (ϕ ⊗ ϕ)·∆·Ex. Now, the fact that ∆ and ϕ are associative
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algebra morphisms implies that for any z ∈ T·S/≡
∗, ∆·ϕ·Ez = (ϕ ⊗ ϕ)·∆·Ez. This shows that ϕ is

a coalgebra morphism.

Finally, ϕ is injective because for any f ∈ rd·F·S, there is exactly one x ∈ rd·
(
T·S/≡

∗) such
that Ef appears in ϕ·Ex. This establishes the statement of the theorem. □□□

A consequence of Theorem 3.2.2.A is that, for any operad congruence ≡ of T·S compatible with
the degree and of finite type, the Hopf algebra N·(T·S/≡) can be realized as a Hopf subalgebra
of N·T·S. This result is analogous to [BG16, Theorem 3.13], which is within the context of
pros [Lan65] rather than operads.

Let us consider the following example. Recall from Section 2.1.4 that the noncommutative Faà
di Bruno Hopf algebra FdB can be built as the natural Hopf algebra of the associative operad
As. This operad is isomorphic to the quotient of T·S by the operad congruence ≡ satisfying
a ◦1 a ≡ a ◦2 a, where S is the binary signature {a}. The Hopf algebra FdB can be realized as a
Hopf subalgebra of N·T·S through the injection ϕ satisfying, for any n ⩾ 1,

ϕ·Eαn
=
∑

t∈T·S

[[[dg·t = n]]] Et. (3.2.2.E)

This is due to the fact that the canonical projection map π≡ satisfies π≡·t = αdg·t for any t ∈ T·S.
For instance,

ϕ·Eα3 = E
a

a
a

+ E
a

a
a

+ E
a

a a

+ E
a

a
a

+ E
a

a
a

. (3.2.2.F)

4 Forest-like alphabets and polynomial realization

This section is the central part of this work. We first introduce the class of forest-like alphabets.
This particular class of related alphabet is required to build a polynomial realization of N·T·S
where S is any signature. We also present two particular forest-like alphabets that are useful for
establishing connections between N·T·S and some known Hopf algebras in the subsequent section.

4.1 Forest-like alphabets and realizing map

We begin here by defining the realizing map rA of our polynomial realization of N·T·S. We then
prove some initial properties of this map.

4.1.1 Forest-like alphabets. Let S be a set and let R·S be the related alphabet signature
containing

(i) a unary element R;

(ii) for any s ∈ S, a unary element Ds;

(iii) for any j ⩾ 1, a binary element ≺j .

An S-forest-like alphabet is an R·S-related alphabet A. We call RA the root relation of A, DA
s ,

s ∈ S, the s-decoration relation of A, and ≺j
A, j ⩾ 1, the j-edge relation of A. No conditions are

required on these relations. We denote by F·S the class of S-forest-like alphabets. In the sequel,
we shall mainly consider S-forest-like alphabets where S is a signature.
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4 Forest-like alphabets and polynomial realization 4.1 Forest-like alphabets and realizing map

4.1.2 Realizing map. Let S be a signature and A be an S-forest-like alphabet. Given a
reduced S-forest f, a word w ∈ A∗ is A-compatible with f if the following four assertions are
satisfied:

(C1) ℓ·w = dg·f;

(C2) for any internal node i of f, if i is a root of f, then w·i ∈ RA;

(C3) for any internal node i of f, w·i ∈ DA
df·i;

(C4) for any internal nodes i and i′ of f, if i
f→j i′ for a j ⩾ 1, then w·i ≺j

A w·i′.

This property is denoted by w ⊩A f.

For instance, by setting

f :=
b

c

a

a

b

c

a b , (4.1.2.A)

any A-compatible word w ∈ A∗ with f satisfies ℓ·w = 8, w·1, w·6 ∈ RA, w·3, w·4, w·7 ∈ DA
a ,

w·1, w·5, w·8 ∈ DA
b , w·2, w·6 ∈ DA

c , w·1 ≺1
A w·2, w·1 ≺2

A w·4, w·2 ≺3
A w·3, w·4 ≺1

A w·5,
w·6 ≺2

A w·7, and w·6 ≺3
A w·8.

Let rA : N·T·S → K⟨A⟩ be the linear map defined for any reduced S-forest f by

rA·Ef :=
∑

w∈A∗

[[[
w ⊩A f

]]]
w. (4.1.2.B)

The A-polynomial rA·Ef is the A-realization of f on the E-basis.

▶ Proposition 4.1.2.A — For any signature S and any S-forest-like alphabet A, the map rA is a
graded unital associative algebra morphism.

◀ Proof — Let f1, f2 ∈ rd·F·S. Observe that all nodes of f1 are visited before all nodes of f2
according to the left to right preorder traversal of the S-forest f1 ■ f2. Therefore, from the definition
of the A-compatibility, it follows that for any w ∈ A∗, w ⊩A f1 ■ f2 if and only if by setting w1 as
the prefix of w of length dg·f1 and w2 as the suffix of w of length dg·f2, w1 ⊩A f1 and w2 ⊩A f2.
This shows that rA is an associative algebra morphism. Since moreover rA·Eϵ = 1, rA is a unital
associative algebra morphism. Finally, Condition (C1) of the definition of compatibility implies
that this morphism is graded. □□□

4.1.3 Realizing maps on quotients of forest-like alphabets. Let S be a signature,
A be an S-forest-like alphabet, and ≡ be a related alphabet congruence of A. Let us denote by
π≡ : A → A/≡ the canonical projection map associated with ≡. The map π≡ is extended as
a linear map from K⟨A⟩ to K⟨A/≡⟩ by setting π≡·a1 . . . an := (π≡·a1) . . . (π≡·an) for any word
a1 . . . an, n ⩾ 0, on A.

Let us state a result useful to compute the A/≡-realization of a reduced S-forest f on the
E-basis from its A-realization, where ≡ is a related alphabet congruence of A.

▶ Proposition 4.1.3.A — Let S be a signature, A be an S-forest-like alphabet, and ≡ be a related
alphabet congruence of A. If for any reduced S-forest f, the map π≡ is a bijection when restricted
on the domain of the words on A which are A-compatible with f and on the codomain of the words
of A/≡ which are A/≡-compatible with f, then rA/≡ = π≡ ◦ rA.
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◀ Proof — Let f ∈ rd·F·S and let us assume that the map π≡ is a bijection when restricted on
the domain X :=

{
w ∈ A∗ : w ⊩A f

}
and on the codomain X ′ :=

{
w′ ∈ A/≡

∗ : w′ ⊩A/≡ f
}

. We
have first

π≡·rA·Ef =
∑

w∈A∗

[[[
w ⊩A f

]]]
π≡·w (4.1.3.A)

=
∑

w∈A∗

[[[
w ⊩A f

]]] ∑
w′∈A/≡

∗

[[[π≡·w = w′ ]]] w′

=
∑

w′∈A/≡
∗

∑
w∈A∗

[[[
w ⊩A f

]]]
[[[π≡·w = w′ ]]] w′.

Now, since ≡ is a related alphabet congruence of A and π≡ : X → X ′ is a bijection, the last term
of (4.1.3.A) is equal to∑

w′∈A/≡
∗

∑
w∈A∗

[[[
w ⊩A f

]]]
[[[π≡·w = w′ ]]]

[[[
w′ ⊩A/≡ f

]]]
w′ (4.1.3.B)

=
∑

w′∈A/≡
∗

[[[
w′ ⊩A/≡ f

]]] ( ∑
w∈A∗

[[[
w ⊩A f

]]]
[[[π≡·w = w′ ]]]

)
w′

=
∑

w′∈A/≡
∗

[[[
w′ ⊩A/≡ f

]]]
#{w ∈ X : π≡·w = w′} w′

=
∑

w′∈A/≡
∗

[[[
w′ ⊩A/≡ f

]]]
w′.

The last term of (4.1.3.B) is equal to rA/≡ ·Ef, which shows the stated property. □□□

It is possible to confer greater generality to the statement of Proposition 4.1.3.A so that it
essentially works for any polynomial realization whose realizing map admits an expression analogous
to (4.1.2.B). We did not, however, write it in these terms since this degree of generality is not
necessary for this work.

4.2 Compatibility with the coproduct

We define now a disjoint sum operation on the class F·S of S-forest-like alphabets in order to
prove that rA is compatible with the coproduct of N·T·S.

4.2.1 Disjoint sum of forest-like alphabets. Let S be a signature. The disjoint sum
of two S-forest-like alphabets A1 and A2 is the S-forest-like alphabet A1 ++ A2 defined as the set
A1 ⊔ A2 and such that

(i) RA1++A2 := RA1 ⊔ RA2 ;

(ii) for any s ∈ S, DA1++A2
s := DA1

s ⊔ DA2
s ;

(iii) for any a, a′ ∈ A, a ≺j
A1++A2 a′ holds if

(a) a, a′ ∈ A1 and a ≺j
A1 a′,

(b) or a, a′ ∈ A2 and a ≺j
A2 a′,

(c) or a ∈ A1, a′ ∈ A2, and a ∈ RA2 .

This operation ++ on F is clearly associative and admits the empty S-forest-like alphabet ∅ as unit.
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4.2.2 Compatibility with the coproduct. We shall prove here that the realizing map
rA is compatible with the coproduct of N·T·S. To establish this property, we need the following
lemma.

▶ Lemma 4.2.2.A — Let S be a signature, A1 and A2 be two S-forest-like alphabets, f be a reduced
S-forest, and w be a word on A1 ++ A2. By setting I1 := PosA1 ·w and I2 := PosA2 ·w, the following
two assertions are equivalent:

(i) the word w is A1 ++ A2-compatible with f;

(ii) the pair (I1, I2) is f-admissible, the word w|I1 is A1-compatible with f·I1, and the word w|I2

is A2-compatible with f·I2.

◀ Proof — For any k ∈ [2], let π(k) : Ik → [#Ik] be the map such that π(k)·i is the position in
w|Ik

of the letter of position i of w.

Assume first that (i) holds. Let i′ ∈ I1 such that there is an internal node i of f satisfying
i

f→j i′ for a j ⩾ 1. Since w ⊩A1++A2 f, we have w·i ≺j
A1++A2 w·i′. Since w·i′ ∈ A1, by definition

of the operation ++, we necessarily have w·i ≺j
A1 w·i′ with w·i ∈ A1. This shows that i ∈ I1 and

that I1 is closed w.r.t. the ancestor relation of f. Therefore, I2 is closed w.r.t. the descendant
relation of f, which shows that (I1, I2) ⊢ f. Now, by definition of the disjoint sum operation ++ on
S-forest-like alphabets, we have the following properties.

(1) For any k ∈ [2], since ℓ·w|Ik
= #Ik and dg·f·Ik = #Ik, we have ℓ·w|Ik

= dg·f·Ik.

(2) Let i ∈ Ik, k ∈ [2], such that i is a root of f·Ik.

(a) Assume that k = 1. Since (I1, I2) ⊢ f, i is also a root of f. Therefore, since w·i ∈ RA1++A2 ,
we have w|I1 ·π(1)·i ∈ RA1 .

(b) Assume that k = 2. Since (I1, I2) ⊢ f, we have two possibilities: either i is a root of f,
or i is a child of an internal node i′ of f such that i′ ∈ I1. In the first case, we have
w·i ∈ RA1++A2 and thus, w|I2 ·π(2)·i ∈ RA2 . In the second case, we have i′ f→j i for a
j ⩾ 1, so that w·i′ ≺j

A1++A2 w·i. Since w·i′ ∈ A1 and w·i ∈ A2, we have w·i ∈ RA2 and
thus, w|I2 ·π(2)·i ∈ RA2 .

(3) For any k ∈ [2], let i ∈ Ik such that the internal node i of f is decorated by s ∈ S. Since
w·i ∈ DA1++A2

s , we have w|Ik
·π(k)·i ∈ DAk

s .

(4) For any k ∈ [2], let i, i′ ∈ Ik such that i
f→j i′ for a j ⩾ 1. Since w·i ≺j

A1++A2 w·i′, we have
w|Ik

·π(k)·i ≺j
Ak w|Ik

·π(k)·i′.

These properties together imply that (ii) holds.

Assume conversely that (ii) holds. Again by definition of the disjoint sum operation ++ on
S-forest-like alphabets, we have the following properties.

(1) Let i be a root of f. For any k ∈ [2], if i ∈ Ik, since w|Ik
⊩Ak f·Ik, we have w|Ik

·π(k)·i ∈ RAk ,
so that w·i ∈ RAk and w·i ∈ RA1++A2 .

(2) For any k ∈ [2], let i be an internal node of f decorated by s ∈ S. Since w|Ik
⊩Ak f·Ik, we

have w|Ik
·π(k)·i ∈ DAk

s , so that w·i ∈ DAk
s and w·i ∈ DA1++A2

s .

(3) Let i and i′ be two internal nodes of f such that i
f→j i′ for a j ⩾ 1. We have four possibilities,

factored into three, depending on the set I1 or I2 to which each i and i′ belong.

(a) If i, i′ ∈ Ik for a k ∈ [2], since w|Ik
⊩Ak f·Ik, we have w|Ik

·π(k)·i ≺j
Ak w|Ik

·π(k)·i′, so
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that w·i ≺j
Ak w·i′ and w·i ≺j

A1++A2 w·i′.

(b) If i ∈ I1 and i′ ∈ I2, then, since (I1, I2) is f-admissible, π(k)·i′ is a root of f·I2.
Therefore, since w|I2 ⊩A2 f·I2, we have w|I2 ·π(k)·i′ ∈ RA2 and w·i′ ∈ RA2 . Since
moreover w·i ∈ A1, we have w·i ≺j

A1++A2 w·i′.

(c) If i ∈ I2 and i′ ∈ I1, the node i′ of f is such that its parent is not in I1. This is
contradictory to the fact that (I1, I2) is f-admissible so that this case cannot occur.

These properties together imply that (i) holds. □□□

▶ Proposition 4.2.2.B — For any signature S, any S-forest-like alphabets A1 and A2, and any
reduced S-forest f,

θA1,A2 ·rA1++A2 ·Ef = (rA1 ⊗ rA2)·∆·Ef. (4.2.2.A)

◀ Proof — First, by definition of the map rA1++A2 , we have

θA1,A2 ·rA1++A2 ·Ef =
∑

w∈(A1++A2)∗

[[[
w ⊩A1++A2 f

]]]
θA1,A2 ·w. (4.2.2.B)

By decomposing the sum intervening in the right-hand side of (4.2.2.B) following the occurrences
of the letters of w which belong to A1 and to A2, this polynomial is equal to∑

I1,I2⊆[dg·f]

∑
w∈(A1++A2)∗

[[[PosA1 ·w = I1 ]]][[[PosA2 ·w = I2 ]]]
[[[

w ⊩A1++A2 f
]]]

θA1,A2 ·w. (4.2.2.C)

Now, by Lemma 4.2.2.A, (4.2.2.C) is equal to∑
I1,I2⊆[dg·f]

[[[ (I1, I2) ⊢ f]]]

∑
w∈(A1++A2)∗

[[[PosA1 ·w = I1 ]]][[[PosA2 ·w = I2 ]]]
[[[

w|A1 ⊩A1 f·I1
]]][[[

w|A2 ⊩A2 f·I2
]]]

θA1,A2 ·w. (4.2.2.D)

By expressing the second sum of (4.2.2.D) by summing instead on w1 and w2 which are respectively
the subwords w|A1 and w|A2 of w where, additionally, I1 (resp. I2) virtually specifies the positions
of the letters of w1 (resp. w2) in w, this polynomial is equal to∑

I1,I2⊆[dg·f]

[[[ (I1, I2) ⊢ f]]]
∑

w1∈A∗
1

w2∈A∗
2

[[[
w1 ⊩A1 f·I1

]]][[[
w2 ⊩A2 f·I2

]]]
w1 ⊗ w2. (4.2.2.E)

Finally, (4.2.2.E) rewrites as

∑
I1,I2⊆[dg·f]

[[[ (I1, I2) ⊢ f]]]

 ∑
w1∈A∗

1

[[[
w1 ⊩A1 f·I1

]]]
w1

⊗

 ∑
w2∈A∗

2

[[[
w2 ⊩A2 f·I2

]]]
w2

 (4.2.2.F)

and, by Proposition 3.1.5.A, as∑
I1,I2⊆[dg·f]

[[[ (I1, I2) ⊢ f]]] rA1 ·Ef·I1 ⊗ rA2 ·Ef·I2 = (rA1 ⊗ rA2)·∆·Ef. (4.2.2.G)

This shows the expected property. □□□

4.3 Forest-like alphabet of positions and injectivity

We introduce now a particular S-forest-like alphabet Ap·S for which the realizing map rAp·S

is injective. We also introduce and study a related alphabet quotient Al·S of this S-forest-like
alphabet.
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4.3.1 Forest-like alphabet of positions. For any signature S, the S-forest-like alphabet
of positions is the S-forest-like alphabet

Ap·S := {as
u : s ∈ S and u ∈ N∗} (4.3.1.A)

such that

(i) the root relation RAp·S satisfies as
0ℓ ∈ RAp·S for any ℓ ∈ N;

(ii) for any s ∈ S, the s-decoration relation DAp·S
s satisfies as

u ∈ DAp·S
s for any u ∈ N∗;

(iii) for any j ⩾ 1, the j-edge relation ≺j
Ap·S satisfies as

u ≺j
Ap·S as′

u■j■0ℓ for any s, s′ ∈ S, u ∈ N∗,
and ℓ ∈ N.

Here is an example of the Ap·Se-realization of an Se-forest on the E-basis:

rAp·S ·E
c

b a

c

b
a

=
∑

ℓ1,...,ℓ6∈N
ac

0ℓ1 ab
0ℓ1 10ℓ2 aa

0ℓ1 30ℓ3 ac
0ℓ1 30ℓ3 10ℓ4 ab

0ℓ5 aa
0ℓ5 1ℓ6 . (4.3.1.B)

4.3.2 Injectivity. Let pos : F·S → Ap·S∗ be the map defined for any S-forest f of degree
n ⩾ 0 by

pos·f := adf·1
pf·1 . . . adf·n

pf·n. (4.3.2.A)

For instance,

pos·
b

c

a

a

b

c

a b = ab
ϵ ac

1 aa
13 aa

2 ab
21 ac

ϵ aa
2 ab

3. (4.3.2.B)

▶ Lemma 4.3.2.A — For any signature S and any reduced S-forest f, the word pos·f is Ap·S-
compatible with f.

◀ Proof — Let us show that w := pos·f satisfies the four conditions to be Ap·S-compatible with
f. First, since ℓ·w = dg·f, Condition (C1) holds. Moreover, for any root i of f, we have w·i = adf·i

ϵ .
Therefore, w·i ∈ RAp·S , showing that (C2) holds. Let i be an internal node of f. Since w·i = adf·i

pf·i,
we have that w·i ∈ DAp·S

df·i . Hence, (C3) checks out. Assume that i and i′ are two internal nodes

of f such that i
f→j i′ for a j ⩾ 1. By definition of internal node positions, this implies that

pf·i′ = pf·i ■ j. Now, since w·i = adf·i
pf·i and w·i′ = adf·i′

pf·i′ , we have adf·i
pf·i ≺j adf·i′

pf·i′ . Therefore, (C4)
holds, showing that w ⊩Ap·S f. □□□

Given a word w := as1
u1

. . . asn
un

, n ⩾ 0, on Ap·S, the weight w·w of w is ℓ·u1 + · · · + ℓ·un. For
instance, the weight of the word appearing in the right-hand side of (4.3.2.B) is 8.

▶ Lemma 4.3.2.B — For any signature S and any reduced S-forest f,

rAp·S ·Ef = pos·f +
∑

w∈Ap·S∗

[[[
w ⊩Ap·S f

]]]
[[[w·w > w·pos·f]]] w. (4.3.2.C)

◀ Proof — Let w := as1
u1

. . . asn
un

, n ⩾ 0, be a word on Ap·S such that w ⊩Ap·S f. Since w

is Ap·S-compatible with f, n = dg·f and for any internal node i of f, si = df·i. Let us show
that for any i ∈ [n], ui|N\{0} = pf·i. Since w is Ap·S-compatible with f, if i and i′ are two
internal nodes of f such that i

f→j i′ for a j ⩾ 1, then ui′ = ui ■ j ■ 0ℓ for an ℓ ∈ N. This implies
that, for any internal node i of f, by denoting by i0 the root of the S-term to which i belongs
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and by i1, . . . , ik−1 the internal nodes of f such that i0
f→j1 i1

f→j2 · · · f→jk−1 ik−1
f→jk

i for
some positive integers j1, j2, . . . , jk−1, jk, we have ui = 0ℓ0j10ℓ1j20ℓ2 . . . jk−10ℓk−1jk0ℓk for some
ℓ0, ℓ1, ℓ2, . . . , ℓk−1, ℓk ∈ N. Therefore, since ui|N\{0} = j1j2 . . . jk−1jk = pf·i, the expected property
is established.

This property together with Lemma 4.3.2.A show that all monomials appearing in rAp·S ·Ef

are of the form w := adf·1
u1 . . . adf·n

un where n := dg·f and ui|N\{0} = pf·i for all i ∈ [n]. Hence,
w·pos·f ⩽ w·w. The property of the statement follows. □□□

We can now state the next property required to establish that rA is a polynomial realization
of N·T·S.

▶ Proposition 4.3.2.C — For any signature S, the map rAp·S is injective.

◀ Proof — By Lemma 4.3.2.A, rAp·S sends any basis element Ef of N·T·S to an Ap·S-polynomial
in which the monomial pos·f appears. This monomial encodes the decoration and the position of
each internal node of f, from the first to the last one. It is thus possible to reconstruct f from
pos·f. Moreover, by Lemma 4.3.2.B, it is possible to reconstruct f from rAp·S ·Ef. This shows the
stated property. □□□

4.3.3 Polynomial realizations of natural Hopf algebras of free operads. We are
now in position to state the main result of this work, namely a polynomial realization of natural
Hopf algebras of free operads.

▶ Theorem 4.3.3.A — For any signature S, the class of S-forest-like alphabets, together with
the alphabet disjoint sum operation ++, the map rA, and the alphabet Ap·S, form a polynomial
realization of the Hopf algebra N·T·S.

◀ Proof — This is a consequence of Propositions 4.1.2.A, 4.2.2.B, and 4.3.2.C. □□□

4.3.4 Polynomial realizations of natural Hopf algebras of operads. Recall from
Section 3.2 that when O is a quotient of a free operad T·S where S is a signature, the map ϕ

defined by (3.2.2.A) is a Hopf algebra injection from N·O to N·T·S. For any S-forest-like alphabet
A, let r̄A : N·O → K⟨A⟩ be the map rA ◦ ϕ. The A-polynomial r̄A·Ex is the A-realization of x ∈ O
on the E-basis.

▶ Proposition 4.3.4.A — Let S be a signature and O be the quotient of the free operad T·S
by an operad congruence ≡ which is compatible with the degree and of finite type. The class of
S-forest-like alphabets, together with the alphabet disjoint sum operation ++, the map r̄A, and the
alphabet Ap·S, form a polynomial realization of the Hopf algebra N·O.

◀ Proof — This is a consequence of the fact that, by Theorem 3.2.2.A, ϕ is an injective Hopf
algebra morphism from N·O to N·T·S and of the fact that, by Theorem 4.3.3.A, (F·S, ++, rA,Ap·S)
is a polynomial realization of N·T·S. From this, it follows straightforwardly that r̄A satisfies the
required conditions to form a polynomial realization of N·O. □□□

Let us consider an example of application of Proposition 4.3.4.A to build a polynomial realization
of the noncommutative Faà du Bruno Hopf algebra FdB. The injection of N·As, which is
isomorphic to FdB (see Section 2.1.4), is presented in Section 3.2.2. By denoting by S the binary
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signature {a}, for any S-forest-like alphabet A and n ⩾ 1,

r̄A·Eαn =
∑

t∈T·S

[[[dg·t = n]]] rA·Et. (4.3.4.A)

In particular, we have
r̄Ap·S ·Eα1 = rAp·S ·E

a
=
∑
ℓ1∈N

aa
0ℓ1 , (4.3.4.B)

r̄Ap·S ·Eα2 = rAp·S ·E
a

a

+ rAp·S ·E
a

a

=
∑

ℓ1,ℓ2∈N
aa

0ℓ1 aa
0ℓ1 10ℓ2 +

∑
ℓ1,ℓ2∈N

aa
0ℓ1 aa

0ℓ1 20ℓ2 , (4.3.4.C)

r̄Ap·S ·Eα3 = rAp·S ·E
a

a
a

+ rAp·S ·E
a

a
a

+ rAp·S ·E
a

a a

+ rAp·S ·E
a

a
a

+ rAp·S ·E
a

a
a

=
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 10ℓ2 aa

0ℓ1 10ℓ2 10ℓ3 +
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 10ℓ2 aa

0ℓ1 10ℓ2 20ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 10ℓ2 aa

0ℓ1 20ℓ3 +
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 20ℓ2 aa

0ℓ1 20ℓ2 10ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 20ℓ2 aa

0ℓ1 20ℓ2 20ℓ3 . (4.3.4.D)

4.3.5 Forest-like alphabet of lengths. Let S be a set and ≡ be the related alphabet
congruence of Ap·S satisfying as

u ≡ as
u′ if ℓ·u = ℓ·u′ for all s ∈ S and u, u′ ∈ N∗. The S-forest-like

alphabet of lengths is the S-forest-like alphabet Al·S := Ap·S/≡. Since each ≡-equivalence class
contains a unique letter as

0ℓ with ℓ ∈ N, we identify Al·S with the set {as
ℓ : s ∈ S and ℓ ∈ N}. By

construction of Al·S, and by using this identification,

(i) the root relation RAl·S satisfies RAl·S = Al·S;

(ii) for any s ∈ S, the s-decoration relation DAl·S
s satisfies as

ℓ ∈ DAl·S
s for any ℓ ∈ N;

(iii) for any j ⩾ 1, the j-edge relation ≺j
Al·S satisfies as

ℓ ≺j as′

ℓ′ for any s, s′ ∈ S and ℓ, ℓ′ ∈ N
whenever ℓ < ℓ′.

Let πl : Ap·S → Al·S be the canonical projection map associated with ≡. Under the previous
identification, this map satisfies πl·as

u = as
ℓ·u for any as

u ∈ Ap·S. As explained in Section 4.1.3,
this map is extended as linear map from K⟨Ap·S⟩ to K⟨Al·S⟩.

▶ Proposition 4.3.5.A — For any signature S, rAl·S = πl ◦ rAp·S .

◀ Proof — Let f ∈ rd·F·S and n := dg·f. Let also the sets X :=
{

w ∈ A∗
p : w ⊩Ap·S f

}
and

X ′ :=
{

w′ ∈ A∗
l : w′ ⊩Al·S f

}
. We begin by proving that the map πl with domain X and codomain

X ′ is a bijection.

First, let w ∈ X. We have thus w ⊩Ap·S f, so that w = adf·1
u1 . . . adf·n

un where each ui, i ∈ [n], is
a word on N. Let w′ := πl·w = adf·1

ℓ·u1
. . . adf·n

ℓ·un
. Since all letters of Al·S belong to RAl·S , if i is a

root of f, then w′·i ∈ RAl·S . Moreover, for any internal node i of f, w′·i ∈ DAl·S
df·i . Finally, for all

internal nodes i and i′ of f, i
f→j i′ for a j ⩾ 1 implies that adf·i

ui ≺j
Ap·S adf·i′

ui′ . Hence, there is an
ℓ ⩾ 0 such that ui′ = ui ■ j ■ 0ℓ, so that ℓ·ui < ℓ·ui′ . This shows that w′·i ≺j

Al·S w′·i′. All these
properties imply that w′ ⊩Al·S f, so that πl is a well-defined map from X to X ′.

Let w′ ∈ X ′. We have thus w′ ⊩Al·S f, so that w′ = adf·1
ℓ1

. . . adf·n
ℓn

where ℓi ∈ N for any i ∈ [n].
In particular, for all internal nodes i and i′ of f, i

f→j i′ implies that adf·i
ℓi

≺j
Al·S adf·i′

ℓi′ so that
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ℓi < ℓi′ . Now, let w := adf·1
u1 . . . adf·n

un be the word on Ap·S defined as follows. For any i′ ∈ [n], if i′

is a root of f, then we set ui′ := 0ℓi′ . Otherwise, there is an internal node i of f and a j ⩾ 1 such
that i

f→j i′. In this case, we set ui′ := ui ■ j ■ 0ℓi′ −ℓi−1. Note that this is well-defined since as just
established, ℓi′ − ℓi − 1 ⩾ 0. By definition of the alphabet Ap·S, we have w ⊩Ap·S f. Moreover, we
have also πl·w = w′. Therefore, πl as a map from X to X ′, is surjective. Observe also that by
construction, w is the only element of X having w′ as image by πl. Hence, πl as a map from X to
X ′ is injective.

The statement of the proposition follows now by Proposition 4.1.3.A. □□□

▶ Lemma 4.3.5.B — For any signature S and any reduced S-forest f,

rAl·S ·Ef = πl·pos·f +
∑

w∈Ap·S∗

[[[
w ⊩Ap·S f

]]]
[[[w·w > w·pos·f]]] πl·w. (4.3.5.A)

◀ Proof — This is a direct consequence of Lemma 4.3.2.B and Proposition 4.3.5.A. □□□

Here is an example of the Al·Se-realization of an Se-forest on the E-basis:

rAl·S ·E
c

b a

c

b
a

=
∑

ℓ1,...,ℓ6∈N
[[[ℓ1 < ℓ2 ]]][[[ℓ1 < ℓ3 < ℓ4 ]]][[[ℓ5 < ℓ6 ]]] ac

ℓ1
ab

ℓ2
aa

ℓ3
ac

ℓ4
ab

ℓ5
aa

ℓ6
. (4.3.5.B)

Observe in particular that since

rAl·S ·E
c

b a

c

b
a

= rAl·S ·E
c

b a

c

b
a

, (4.3.5.C)

the map rAl·S is not injective. Nevertheless, this map has interesting properties. The quotient
N·T·S/Ker·rAl·S will be studied in Section 5.2.3 and is linked with decorated versions of noncom-
mutative Connes-Kreimer Hopf algebras. In the same vein, we shall see in Section 5.3.4 that r̄Al·S

is a polynomial realization of FdB.

5 Links with other Hopf algebras

In this last section, we establish links between natural Hopf algebras of some operads and other
Hopf algebras by using the polynomial realization of natural Hopf algebras of operads introduced
in Section 4.

5.1 Decorated word quasi-symmetric functions

We show in this part that the Al·S-realizations of reduced S-forests on the E-basis span certain
generalized word quasi-symmetric functions.

5.1.1 Packed decorated words. Let D be a set. A D-decorated letter is a pair (k, d),
denoted by kd, where d ∈ D and k is a positive integer. We call k (resp. d) the value (resp. the
decoration) of kd. The set of D-decorated letters is denoted by L·D. Each word on L·D is a
D-decorated word. Given a D-decorated word u ∈ L·D∗, for any i ∈ [ℓ·u], we denote by vu·i the
value of u·i and by du·i the decoration of u·i. The packing of u is the D-decorated word pck·u
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obtained by replacing each D-decorated letter kd
1 of u by kd

2 where k2 is the number of different
values less than or equal to k1 among the D-decorated letters of u. When u is a D-decorated
word such that pck·u = u, u is packed.

For instance, for D := {a, b, c}, u := 4b2b3a4b4c6c3a is a D-decorated word of length 7 satisfying
vu·5 = 4, du·5 = c, and pck·u = 3b1b2a3b3c4c2a.

5.1.2 Decorated word quasi-symmetric functions. Let D be a set and m : L·D∗ →
Al·D∗ be the map defined for any u ∈ L·D∗ by m·u := adu·1

vu·1 . . . adu·ℓ·u
vu·ℓ·u . For instance, for

D := {a, b, c}, we have m·2a1a1b4c2b = aa
2 aa

1 ab
1 ac

4 ab
2. Moreover, for any packed D-decorated

word u, let Mu be the Al·D-polynomial defined by

Mu :=
∑

v∈L·D∗

[[[pck·v = u]]] m·v. (5.1.2.A)

For instance, for the same set D as in the previous example,

M2b1c1c3a =
∑

ℓ1,ℓ2,ℓ3,ℓ4∈N
[[[ℓ2 = ℓ3 < ℓ1 < ℓ4 ]]] ab

ℓ1
ac

ℓ2
ac

ℓ3
aa

ℓ4
. (5.1.2.B)

Let WQSym·D be the K-linear span of the set {Mu : u ∈ pck·(L·D∗)}. We call D-decorated
word quasi-symmetric function each element of WQSym·D. When D is a singleton, WQSym·D
is isomorphic to WQSym, the Hopf algebra of word quasi-symmetric functions introduced
in [Hiv99; NT06]. This space WQSym·D, enriching WQSym with colors (called “decorations”
here), is analogous to some similar constructions presented in [NT10], enriching the Hopf algebra
Sym of noncommutative symmetric functions [Gel+95], the Hopf algebra FQSym of free quasi-
symmetric functions [MR95; DHT02], and the Hopf algebra PQSym of parking quasi-symmetric
functions [NT07] in a similar way.

▶ Theorem 5.1.2.A — For any signature S and any reduced S-forest f, rAl·S ·Ef is an S-decorated
word quasi-symmetric function. More precisely,

rAl·S ·Ef =
∑

u∈pck·(L·S∗)

[[[
m·u ⊩Al·S f

]]]
Mu. (5.1.2.C)

◀ Proof — First of all, observe that, by the general definition (4.1.2.B) of the map rA : N·T·S →
K⟨A⟩, each monomial appearing in the left-hand side of (5.1.2.C) admits 1 as coefficient. Besides,
by the definition (5.1.2.A), for any u ∈ pck·(L·S∗), each monomial appearing in Mu admits 1 as
coefficient. Moreover, it is clear that if u and u′ are different packed D-decorated words, then,
by definition of the map pck, the supports of Mu and Mu′ are disjoint, For these reasons, to
establish (5.1.2.C), it is enough to prove that the supports of its left-hand side and of its right-hand
side are equal.

Assume that w = as1
ℓ1

. . . asn

ℓn
is a monomial appearing in the left-hand side of (5.1.2.C), where

n := dg·f and for any i ∈ [n], si ∈ S and ℓi ∈ N. Let the packed D-decorated word u :=
pck·ℓs1

1 . . . ℓsn
n . Since w ⊩Al·S f, and since the map pck preserves the decorations of the letters

and preserves the relative order between the values of the letters, we have m·u ⊩Al·S f. Now, by
construction of u and by definition of Mu, the monomial w appears in Mu. Hence, w appears in
the right-hand side of (5.1.2.C). The inverse property, consisting in the fact that any monomial
appearing in the right-hand side of (5.1.2.C) appears also in its left-hand side is shown by a similar
reasoning carried out in the opposite direction. □□□
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For instance, in N·T·Se,

rAl·Se ·E
c

a b

= M1c2a2b + M1c2a3b + M1c3a2b . (5.1.2.D)

5.2 Connes-Kreimer Hopf algebras of trimmed forests

We establish in this section a link between natural Hopf algebras N·T·S of free operads and
decorated versions of noncommutative Connes-Kreimer Hopf algebras.

5.2.1 Trimmed forests. For any signature S, an S-trimmed forest is a word of nonempty
planar rooted trees such that each node is decorated by an element s of S and has at most ar·s
children. By definition, in such forests there are no leaves and thus, each node is internal. For
instance,

c

a c

c b b

b a

b (5.2.1.A)

is an Se-trimmed forest. Moreover, for any S-forest f, let tr·f be the S-trimmed forest obtained by
removing the leaves of f. For instance, on the signature Se,

tr ·
b

a

c

b
a c

=
b

a

c

b

a c

. (5.2.1.B)

Most definitions and properties concerning S-forests introduced mainly in Sections 2.3.1, 2.3.3,
and 3.1.5 apply to S-trimmed forests by stipulating that an S-trimmed forest f satisfies a property
P if all reduced S-forests f such that tr·f = f satisfy P . For instance, the Se-trimmed forest
of (5.2.1.A) has degree 9, its node 1 is decorated by c, its node 5 is decorated by b, and htf ·5 = 2.

The charge ch·f of an S-trimmed forest f is the positive integer defined recursively as follows.
If ℓ·f ̸= 1, then

ch·f :=
∏

i∈[ℓ·f ]

ch·f ·i. (5.2.1.C)

Otherwise, f decomposes into a single root decorated by s ∈ S which is attached to an S-trimmed
forest f ′. In this case,

ch·f :=
(

ar·s
ℓ·f ′

)
ch·f ′. (5.2.1.D)

For instance, by denoting by f1 (resp. f2) the S-trimmed forest of (5.2.1.A) (resp. the right-hand
side of (5.2.1.B)), we have ch·f1 = 3 (resp. ch·f2 = 6).

▶ Lemma 5.2.1.A — For any signature S and any S-trimmed forest f , the charge of f is the
cardinality of the set of reduced S-forests f such that tr·f = f .

◀ Proof — We proceed by structural induction on the set of S-trimmed forests. Let f be an
S-trimmed forest and f be a reduced S-forest such that tr·f = f .

If ℓ·f ̸= 1, by definition of the map tr, f is such that ℓ·f = ℓ·f and tr·f·i = f ·i for any i ∈ [ℓ·f].
By induction hypothesis, there are exactly ch·f ·i different reduced S-forests f·i satisfying the
previous property. For this reason, by (5.2.1.C), the total number of such reduced S-forests f

is ch·f .
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Otherwise, ℓ·f = 1. In this case, f decomposes into a single root decorated by s ∈ S which
is attached to an S-trimmed forest f ′. By definition of the map tr, f is such that ℓ·f = 1 and f

decomposes into a single root decorated by s which is attached to an S-forest f′ such that tr·f′ = f ′.
Since f′ is not necessarily reduced, f′ is obtained by shuffling the reduced S-forest rd·f′ with the
S-forest made of ℓ·f′ − ℓ·rd·f′ occurrences of . The number of such configurations is the binomial
of ℓ·f′ = ar·s choose ℓ·f′ − ℓ·rd·f′ = ar·s − ℓ·f ′. Moreover, by induction hypothesis, there are exactly
ch·f ′ different possibilities for the S-forest f′. For these reasons, by (5.2.1.D), the total number of
such reduced S-forests f is ch·f . □□□

5.2.2 Connes-Kreimer Hopf algebras. For any signature S, let NCK·S be the K-linear
span of the set tr·F·S. The elementary basis of NCK·S is the set {Ef : f ∈ tr·F·S}. This vector
space is endowed with the product ⋆ defined, for any f1, f2 ∈ tr·F·S, by Ef1 ⋆ Ef2 := Ef1■f2 and
with the coproduct ∆ defined, for any f ∈ tr·F·S by

∆·Ef :=
∑

I1,I2⊆[dg·f ]

[[[ (I1, I2) ⊢ f ]]] Ef ·I1 ⊗ Ef ·I2 . (5.2.2.A)

Note that we use in (5.2.2.A) the notion of restriction of an S-trimmed forest on a set of nodes and
the notion of f -admissible pair of sets, both introduced in Section 3.1.5. For instance,

∆·E c

b a

= Eϵ ⊗ E c

b a

+ E c ⊗ E b a + E c

b

⊗ E a + E c

a

⊗ E b + E c

b a

⊗ Eϵ. (5.2.2.B)

This Hopf algebra NCK·S is, in fact, a Hopf subalgebra of the noncommutative Connes-Kreimer
Hopf algebra of decorated forests introduced in [Foi02a] and [Foi02b]. In the latter Hopf algebra,
there are no restrictions on the arities of the internal nodes of the forests, unlike in NCK·S. Note
that the first instance of such Hopf algebras, involving non-decorated forests, appears in [CK98].

5.2.3 A quotient of N·T·S. Let S be a signature. We now study the kernel of the map
rAl·S on the domain N·T·S. We shall show that the image of this map is isomorphic to NCK·S.

▶ Lemma 5.2.3.A — For any signature S and any reduced S-forests f1 and f2, we have rAl·S ·Ef1 =
rAl·S ·Ef2 if and only if tr·f1 = tr·f2.

◀ Proof — Let us first prove the sufficient condition of the statement by induction on n, the
common degree of both f1 and f2. If n = 0, the property is immediate since f1 = ϵ = f2. Otherwise,
n ⩾ 1, and let f′1 (resp. f′2) be the S-forest obtained by replacing the greatest internal node of
f1 (resp. f2) by a leaf. Since by hypothesis, rAl·S ·Ef1 = rAl·S ·Ef2 , by Lemma 4.3.5.B, we have in
particular that πl·pos·f1 = πl·pos·f2. Therefore,

πl·pos·f1 = πl·pos·f′1 ■ adf1 ·n
htf1 ·n = πl·pos·f′2 ■ adf2 ·n

htf2 ·n = πl·pos·f2. (5.2.3.A)

From these observations, we deduce that df1 ·n = df2 ·n and htf1 ·n = htf2 ·n. Moreover, by induction
hypothesis, tr·f′1 = tr·f′2. Since the internal node n is the last one of both f1 and f2, this implies
that tr·f1 = tr·f2 as expected.

Conversely, assume that tr·f1 = tr·f2. In particular, this implies that f1 and f2 have a same
degree n, for any i ∈ [n], df1 ·i = df2 ·i, and htf1 ·i = htf2 ·i. Therefore, πl·pos·f1 = πl·pos·f2. Now,
again by Lemma 4.3.5.B, rAl·S ·Ef1 = rAl·S ·Ef2 . □□□

▶ Lemma 5.2.3.B — For any signature S, the kernel of the map rAl·S is the subspace of N·T·S
generated by the elements Ef1 − Ef2 such that f1 and f2 are reduced S-forests satisfying tr·f1 = tr·f2.
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◀ Proof — This is a direct consequence of Lemma 5.2.3.A and of the triangularity property of
the map rAl·S exhibited by Lemma 4.3.5.B. □□□

Let π : N·T·S → N·T·S/Ker·rAl·S be the quotient map associated with rAl·S .

▶ Theorem 5.2.3.C — For any signature S, the linear map ϕ : N·T·S/Ker·rAl·S → NCK·S
satisfying ϕ·π·Ef = Etr·f for any reduced S-forest f is a Hopf algebra isomorphism.

◀ Proof — By Lemma 5.2.3.B, as a vector space, N·T·S/Ker·rAl·S is isomorphic to the linear
span of the set tr·F·S. Therefore, ϕ is an isomorphism of vector spaces. Moreover, due to
the definition of the product of N·T·S and the description of the coproduct of N·T·S provided
by Proposition 3.1.5.A, straightforward computations lead to the fact that ϕ is a Hopf algebra
morphism from N·T·S/Ker·rAl·S to NCK·S. □□□

Let the linear map r : NCK·S → K⟨Al·S⟩ defined, for any S-trimmed forest f , by r·Ef :=
rAl·S ·Ef where f is a reduced S-forest such that tr·f = f . By Lemma 5.2.3.A, this map is well-defined.
We call r·Ef the length polynomial of f on the E-basis. For instance, we have

r·E c

a c

c b b

b =
∑

ℓ1,...,ℓ7∈N
[[[ℓ1 < ℓ2 ]]][[[ℓ1 < ℓ3 ]]][[[ℓ3 < ℓ4 ]]][[[ℓ3 < ℓ5 ]]][[[ℓ3 < ℓ6 ]]] ac

ℓ1
aa

ℓ2
ac

ℓ3
ac

ℓ4
ab

ℓ5
ab

ℓ6
ab

ℓ7
.

(5.2.3.B)

5.3 Natural Hopf algebras of multiassociative operads

We study here polynomial realizations of natural Hopf algebras of multiassociative operads. Such
operads are parameterized by a signature S and, depending on S, they lead to known Hopf
algebras. We obtain in this way polynomial realizations of the Hopf algebra of noncommutative
symmetric functions, of the Hopf algebra of noncommutative multi-symmetric functions, and of
the noncommutative Faà di Bruno Hopf algebra.

5.3.1 Multiassociative operads. Let S be a signature. An S-multiset is a multiset
*s1, . . . , sℓ+ of elements of S. Given an S-term t of degree n ⩾ 0, the content ct·t of t is the
S-multiset *dt·1, . . . , dt·n+. For instance,

ct·
b

a

b

c

a b

= *a, a, b, b, b, c + . (5.3.1.A)

Let ≡MAs·S be the equivalence relation on T·S satisfying t ≡MAs·S t′ for any S-terms t and t′ such
that ct·t = ct·t′.

▶ Proposition 5.3.1.A — For any signature S, the equivalence relation ≡MAs·S is an operad
congruence of T·S.

◀ Proof — Directly from the definition of ≡MAs·S , for any t, t′ ∈ T·S, if t ≡MAs·S t′, then the
number of internal nodes decorated by any s ∈ S is the same in t and t′. Therefore, ar·t = ar·t′.
Besides, let t, t′, s ∈ T·S such that t ≡MAs·S t′. Hence, ct·t = ct·t′, so that, for any i ∈ [ar·t], from
the definition of the partial composition of T·S, ct·(t ◦i s) = ct·(t′ ◦i s). For the same reasons, for
any i ∈ [ar·s], ct·(s ◦i t) = ct·(s ◦i t

′). Therefore, we have t◦i s ≡MAs·S t′ ◦i s and s◦i t ≡MAs·S s◦i t
′.

This establishes the statement of the proposition. □□□
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By Proposition 5.3.1.A, the quotient of T·S by ≡MAs·S is a well-defined operad, denoted by
MAs·S. This operad MAs·S is a generalization of the γ-multiassociative operad, introduced
in [Gir16c] (see also [Gir16a]), which contains originally only γ ⩾ 0 binary generators. For this
reason, we call MAs·S the S-multiassociative operad. Observe in particular that when the profile
of S is 010ω, MAs·S is the free operad on a single generator of arity 1 and when the profile of S is
0010ω, MAs·S is the associative operad As.

The equivalence relation ≡MAs·S is, directly from its definition, compatible with the degree.
Moreover, since there are finitely many S-terms having a given content, ≡MAs·S is of finite type.
Therefore, by Proposition 3.2.1.A, MAs·S is finitely factorizable and graded by the map dg.

To describe a combinatorial realization of MAs·S, let us introduce some additional definitions
about S-multisets. Let m := *s1, . . . , sℓ+ be an S-multiset. The arity ar·m of m is ar·s1 + · · · +
ar·sℓ − ℓ + 1. Note that the empty S-multiset ∅ has arity 1. The degree dg·m of m is ℓ. The union
m ∪ m′ of two S-multisets m and m′ is the usual union of multisets.

▶ Proposition 5.3.1.B — For any signature S, the operad MAs·S admits the following combinatorial
realization. For any n ⩾ 0, MAs·S·n is the set of S-multisets of arity n. Moreover, for any
m,m′ ∈ MAs·S and i ∈ [ar·m], m ◦i m

′ is the union of m and m′.

◀ Proof — First of all, by definition of ≡MAs·S , the set ct·T·S is a system of representatives of
the quotient operad T·S/≡MAs·S . By Proposition 5.3.1.A, this quotient is well-defined and is the
operad MAs·S. Moreover, observe that for any t ∈ T·S, by definition of the arity of S-multisets, we
have ar·t = ar·ct·t. Therefore, for any n ⩾ 0, MAs·S·n can be identified with the set of S-multisets
of arity n. Finally, since for any t, t′ ∈ T·S and i ∈ [ar·t], we have ct·(t ◦i t

′) = ct·t ∪ ct·t′, the rule
for the partial composition of MAs·S given in the statement of the proposition follows. □□□

In the sequel, we shall identify MAs·S with its combinatorial realization provided by Proposi-
tion 5.3.1.B.

By Proposition 5.3.1.B, the Se-multiset *a, a, b, c, c, c+ is an element of arity 8 of the operad
MAs·Se. Moreover, in this operad, we have the partial composition

*a, b, b, b, c + ◦4 * b, c, c+ = *a, b, b, b, b, c, c, c + . (5.3.1.B)

5.3.2 Natural Hopf algebras. Since by Proposition 3.2.1.A, MAs·S is finitely factorizable
and graded by the map dg, N·MAs·S is a well-defined Hopf algebra. By construction of N·MAs·S,
the bases of this Hopf algebra are indexed by reduced words on MAs·S. Moreover, by construction,
the coproduct of N·MAs·S satisfies, for any nonempty S-multiset m ∈ MAs·S,

∆·Em =
∑

m′∈MAs·S
u∈MAs·S∗

[[[ ar·m′ = ℓ·u]]] [[[m = m′ ∪ u·1 ∪ · · · ∪ u·ℓ·u]]] Erd·m′ ⊗ Erd·u. (5.3.2.A)

For instance, in N·MAs·Se, we have

∆·E*a,b,b+ = E∅ ⊗ E*a,b,b+ + E*a+ ⊗ E*b,b+ + 2E*b+ ⊗ E*a,b+ + E*b+ ⊗ E*a+*b+ (5.3.2.B)

+ E*b+ ⊗ E*b+*a+ + 2E*a,b+ ⊗ E*b+ + 3E*b,b+ ⊗ E*a+ + E*a,b,b+ ⊗ E∅.

5.3.3 Multi-symmetric functions and Faà di Bruno Hopf algebras. Let S be a
signature of profile 00rs0ω where r, s ∈ N and let FdB(s)

r := N·MAs·S. Let us consider the
following particular cases.
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(1) When r = 0, FdB(s)
r is the Hopf algebra Sym(s) of noncommutative multi-symmetric

functions of level s [NT10]. In particular, Sym(1) is the noncommutative symmetric functions
Hopf algebra Sym [Gel+95]. Let us denote by a1, . . . , as the elements of S and by the word
u of length s on N the S-multiset having u·i occurrences of ai for any i ∈ [s]. By (5.3.2.A),
for any u ∈ Ns, we have

∆·Eu =
∑

u1,u2∈Ns

[[[u1·i + u2·i = u·i for all i ∈ [s]]]] Eu1 ⊗ Eu2 . (5.3.3.A)

For instance, for s = 3,

∆·E120 = E000⊗E120+E010⊗E110+E020⊗E100+E100⊗E020+E110⊗E010+E020⊗E000. (5.3.3.B)

(2) When s = 0, FdB(s)
r is the r-deformation FdBr of FdB [Foi08] (see also [Bul11]). This is a

consequence of a result of [BG16], which provides a generalization of the construction N,
but taking at input pros [Lan65] instead of operads. For some pros and some operads, the
two constructions coincide. Let us denote by a the unique element of S and by the integer d

the S-multiset made of d occurrences of a. Observe that ar·d = dr + 1. By (5.3.2.A), for any
d ∈ N, we have

∆·Ed =
∑

d′∈Jd]

∑
ℓ⩾0

d′
1,...,d′

ℓ⩾1

[[[d′ + d′
1 + · · · + d′

ℓ = d]]]
(

d′r + 1
ℓ

)
Ed′ ⊗ Ed′

1...d′
ℓ
. (5.3.3.C)

For instance, for s = 2, we have

∆·E3 = Eϵ ⊗ E3 + 3E1 ⊗ E2 + 3E1 ⊗ E11 + 5E2 ⊗ E1 + E3 ⊗ Eϵ. (5.3.3.D)

Observe that the Hopf algebra FdB1 is the noncommutative Faà di Bruno Hopf algebra
FdB [FG05; BFK06; Foi08]. The construction of this Hopf algebra is detailed in Section 2.1.4.

From these two particular cases, we call FdB(s)
r the noncommutative multi-Faà di Bruno Hopf

algebra. This Hopf algebra FdB(s)
r is to FdBr what Sym(s) is to Sym.

5.3.4 Polynomial realization. Let A be an S-forest-like alphabet and m ∈ MAs·S be a
nonempty S-multiset. By using Theorem 3.2.2.A, we obtain that the A-realization of m on the
E-basis of N·MAs·S satisfies

r̄A·Em =
∑

t∈T·S

[[[ ct·t = m]]] rA·Et. (5.3.4.A)

By Proposition 4.3.4.A, r̄Ap·S is a polynomial realization of N·MAs·S. On the other hand, the map
r̄Al·S exhibits an interesting property, as stated in the following result.

▶ Theorem 5.3.4.A — For any signature S and any nonempty S-multiset m ∈ MAs·S, the
map r̄Al·S : N·MAs·S → K⟨Al·S⟩ satisfies

r̄Al·S ·Em =
∑

t∈tr·T·S

[[[ ct·t = m]]] ch·t r·Et. (5.3.4.B)

Moreover, this map r̄Al·S is injective.

◀ Proof — By using successively (5.3.4.A), Lemma 5.2.1.A, Proposition 4.3.5.A, and the notion of
length polynomial of S-trimmed forests introduced at the end of Section 5.2.3, we have

r̄Al·S ·Em =
∑

t∈T·S

[[[ ct·t = m]]] rAl·S ·Et (5.3.4.C)
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=
∑

t∈tr·T·S

[[[ ct·t = m]]]
∑

t∈T·S

[[[ tr·t = t]]] rAl·S ·Et

=
∑

t∈tr·T·S

[[[ ct·t = m]]] ch·t r·Et.

This establishes the first part of the statement.

Let us prove the injectivity of r̄Al·S . First of all, observe from (5.3.4.B) that for any nonempty
S-multiset m of MAs·S of degree n ⩾ 1, all monomials w appearing in r̄Al·S ·Em are such that
w = as1

ℓ1
. . . asn

ℓn
where ℓ1, . . . , ℓn ∈ N, s1, . . . , sn ∈ S, and m = *s1, . . . , sn+. Therefore, for

any nonempty S-multisets m1,m2 of MAs·S, r̄Al·S ·Em1 = r̄Al·S ·Em2 implies m1 = m2. Now,
Expression (5.3.4.B) together with the fact that, by Theorem 3.2.2.A, r̄Al·S is an algebra morphism,
lead to the following property. For any x ∈ rd·(MAs·S∗), there exist w ∈ Al·S∗ and i ∈ [ℓ·w] such
that w appears in r̄Al·S ·Ex and w·i = as

0, s ∈ S if and only if the word x decomposes as x = x1 ■ x2

for some x1, x2 ∈ rd·(MAs·S∗) such that i = dg·x1 + 1. These two properties imply together that
for any x1, x2 ∈ rd·(MAs·S∗), if r̄Al·S ·Ex1 = r̄Al·S ·Ex2 , then there are some nonempty S-multisets
m1, . . . , mn, n ⩾ 0, of MAs·S such that x1 = m1 ■ · · · ■ mn = x2. Hence, r̄Al·S is injective. □□□

By Theorem 5.3.4.A, r̄Al·S is an additional polynomial realization of N·MAs·S. This realization
is simpler than the previous one since it uses the S-forest-like alphabet Al·S which is a quotient
of Ap·S.

For instance, in N·MAs·Se, we have

r̄Al·S ·E*a,b,b+ =
∑

ℓ1,ℓ2,ℓ3∈N
[[[ℓ1 < ℓ2 < ℓ3 ]]] 2aa

ℓ1
ab

ℓ2
ab

ℓ3
(5.3.4.D)

+
∑

ℓ1,ℓ2,ℓ3∈N
[[[ℓ1 < ℓ2 < ℓ3 ]]] 2ab

ℓ1
aa

ℓ2
ab

ℓ3
+

∑
ℓ1,ℓ2,ℓ3∈N

[[[ℓ1 < ℓ2 ]]][[[ℓ1 < ℓ3 ]]] ab
ℓ1

aa
ℓ2

ab
ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
[[[ℓ1 < ℓ2 < ℓ3 ]]] 4ab

ℓ1
ab

ℓ2
aa

ℓ3
+

∑
ℓ1,ℓ2,ℓ3∈N

[[[ℓ1 < ℓ2 ]]][[[ℓ1 < ℓ3 ]]] ab
ℓ1

ab
ℓ2

aa
ℓ3

=
∑

ℓ1,ℓ2,ℓ3∈N
[[[ℓ1 < ℓ2 < ℓ3 ]]] 2aa

ℓ1
ab

ℓ2
ab

ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
(3 [[[ℓ1 < ℓ2 < ℓ3 ]]] + [[[ℓ1 < ℓ3 ⩽ ℓ2 ]]]) ab

ℓ1
aa

ℓ2
ab

ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
(5 [[[ℓ1 < ℓ2 < ℓ3 ]]] + [[[ℓ1 < ℓ3 ⩽ ℓ2 ]]]) ab

ℓ1
ab

ℓ2
aa

ℓ3
.

Remark that by Theorem 5.3.4.A and by using the construction of the noncommutative multi-Faà
du Bruno Hopf algebra FdB(s)

r presented in Section 5.3.3, r̄Al·S is a polynomial realization of this
Hopf algebra and also of Sym(s) and FdBr.

5.4 Natural Hopf algebras of interstice operads

We study finally here polynomial realizations of natural Hopf algebras of interstice operads. These
Hopf algebras are known as double tensor Hopf algebras.

5.4.1 Interstice operads. Let S be a binary signature. An S-word is a word on S. Given
an S-term t of degree n ⩾ 0, the infix reading in·t of t is the S-word u of length n obtained by
reading the decorations of the internal nodes of t according to its left to right infix traversal. Note
that this traversal is well-defined since, because S is binary, each internal node of t has exactly
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two children. For instance, if S is the binary signature containing a, b, and c,

in·
b

a

b

c

c a

= abbcca. (5.4.1.A)

Let ≡Int·S be the equivalence relation on T·S satisfying t ≡Int·S t′ for any S-terms t and t′ such
that in·t = in·t′.

▶ Proposition 5.4.1.A — For any binary signature S, the equivalence relation ≡Int·S is an operad
congruence of T·S.

◀ Proof — Directly from the definition of ≡Int·S , for any t, t′ ∈ T·S, if t ≡Int·S t′, then the
number of internal nodes decorated by any s ∈ S is the same in t and t′. Therefore, ar·t = ar·t′.
Besides, let t, t′, s ∈ T·S such that t ≡Int·S t′. Hence, in·t = in·t′, so that, for any i ∈ [ar·t], from
the definition of the partial composition of T·S, in·(t ◦i s) = in·(t′ ◦i s). For the same reasons, for
any i ∈ [ar·s], in·(s ◦i t) = in·(s ◦i t

′). Therefore, we have t ◦i s ≡Int·S t′ ◦i s and s ◦i t ≡Int·S s ◦i t
′.

This establishes the statement of the proposition. □□□

By Proposition 5.4.1.A, the quotient of T·S by ≡Int·S is a well-defined operad, denoted by Int·S.
This operad Int·S is in fact the interstice operad introduced in [CG22]. Observe in particular
that when the profile of S is 0010ω, Int·S is the associative operad As and when the profile of
S is 0020ω, Int·S is the operad whose algebras are equipped with two associative and mutually
associative operations [Pir03].

The equivalence relation ≡Int·S is, directly from its definition, compatible with the degree.
Moreover, since there are finitely many S-terms having a given infix reading, ≡Int·S is of finite
type. Therefore, by Proposition 3.2.1.A, Int·S is finitely factorizable and graded by the map dg.
Observe that since for any S-terms t and t′, in·t = int′ implies ct·t = ct·t′, the operad MAs·S is a
quotient of Int·S.

To describe a combinatorial realization of Int·S, let us introduce some additional definitions
about S-words. Let u be an S-word. The arity ar·u of u is ℓ·u + 1. Note that the empty S-word ϵ

is the unique S-word of arity 1 and that there is no S-word of arity 0. The degree dg·u of u is ℓ·u.
Given i1, i2 ∈ [ℓ·u] such that i1 ⩽ i2, let u(i1,i2) be the factor u·i1 . . . u·i2 of u.

The operad Int·S admits the following combinatorial realization described in [CG22]. For
any n ⩾ 0, Int·S·n is the set of S-words on S of arity n. Moreover, for any u, u′ ∈ Int·S and
i ∈ [ar·u], u ◦i u′ is the S-word u(1,i−1) ■ u′

■ u(i,ℓ·u). In the sequel, we shall identify Int·S with this
combinatorial realization. For instance, if S is the binary signature containing a and b,

bbaba ◦3 aab = bbaababa. (5.4.1.B)

5.4.2 Hopf algebra of phrases. Let S be a binary signature. Since by Proposition 3.2.1.A,
Int·S is finitely factorizable and graded by the map dg, Phr·S := N·Int·S is a well-defined Hopf
algebra. By construction, the bases of Phr·S are indexed by reduced words on Int·S. Following the
terminology of [Man97], such elements are called S-phrases. An S-phrase is denoted by separating
the S-words forming it by commas. For instance, if S is the binary signature containing a and b,
then aa, bab, b, b is an S-phrase made of the S-words aa, bab, b, and b. Moreover, by construction,
the coproduct of Phr·S satisfies, for any nonempty S-word u,

∆·Eu =
∑

v∈Int·S
w1,...,wℓ·v+1∈Int·S

[[[w1 ■ v·1 ■ · · · ■ wℓ·v ■ v·ℓ·v ■ wℓ·v+1 = u]]] Erd·v ⊗ Erd·w1...wℓ·v+1 . (5.4.2.A)
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For instance, in Phr·S where S is the binary signature of the previous example, we have

∆·Eaab = Eϵ ⊗ Eaab + Ea ⊗ Ea,b + Ea ⊗ Eab + Eb ⊗ Eaa + Eaa ⊗ Eb + 2Eab ⊗ Ea + Eaab ⊗ Eϵ. (5.4.2.B)

As noticed in [CV24], this Hopf algebra Phr·S is isomorphic to the double tensor Hopf algebra
built in [EP15].

5.4.3 Polynomial realization. Let S be a binary signature, A be an S-forest-like alphabet,
and u be a nonempty S-word. By using Theorem 3.2.2.A, we obtain that the A-realization of u on
the E-basis of Phr·S satisfies

r̄A·Eu =
∑

t∈T·S

[[[ in·t = u]]] rA·Et. (5.4.3.A)

By Proposition 4.3.4.A, r̄Ap·S is a polynomial realization of Phr·S.

For instance, in Phr·S where S is the binary signature of the examples of Section 5.4.2, we
have

r̄Ap·S ·Eaab =
∑

ℓ1,ℓ2,ℓ3∈N
ab

0ℓ1 aa
0ℓ1 10ℓ2 aa

0ℓ1 10ℓ2 10ℓ3 +
∑

ℓ1,ℓ2,ℓ3∈N
ab

0ℓ1 aa
0ℓ1 10ℓ2 aa

0ℓ1 10ℓ2 20ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 10ℓ2 ab

0ℓ1 20ℓ3 +
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 ab
0ℓ1 20ℓ2 aa

0ℓ1 20ℓ2 10ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 20ℓ2 ab

0ℓ1 20ℓ2 20ℓ3 . (5.4.3.B)

Observe that the map r̄Al·S is not injective. Indeed, we have for instance

r̄Al·S ·Eab =
∑

ℓ1,ℓ2∈N
[[[ℓ1 < ℓ2 ]]]

(
ab

ℓ1
aa

ℓ2
+ aa

ℓ1
ab

ℓ2

)
= r̄Al·S ·Eba. (5.4.3.C)

For this reason, unlike the case of the Hopf algebra N·MAs·S presented in Section 5.3.4, r̄Al·S is
not a polynomial realization of Phr·S.

6 Conclusion and future work

We have introduced a polynomial realization of the natural Hopf algebra N·T·S of a free operad
T·S (Theorem 4.3.3.A) and, additionally, of the natural Hopf algebra N·O of an operad O in
the case where O can be described as a quotient of a free operad satisfying certain properties
(Proposition 4.3.4.A). At the heart of these realizations lies the notion of the position of internal
nodes of a forest. Another important tool is that of related alphabets, which provides a framework
for working with polynomial realizations. Although this has not been developed in this work, related
alphabets allow for a unified treatment of already known polynomial realizations. Applications of
this polynomial realization of N·T·S are proposed. We have seen for instance that N·T·S can be
sent to a space of a decorated version of word quasi-symmetric functions (Theorem 5.1.2.A) and that
it contains a Hopf subalgebra of a decorated version of the noncommutative Connes-Kreimer Hopf
algebra (Theorem 5.2.3.C). As another consequence, we have also provided polynomial realizations
of the noncommutative Faà di Bruno Hopf algebra (Theorem 5.3.4.A) and of the double tensor
Hopf algebra (Section 5.4.3). Here are some open questions in this context as well as some avenues
for future research.
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In [Gir15] and [Gir16b; Gir16c], a family of operads based on various families of combinatorial
objects is constructed. This family includes the operad FCatm involving m-Fuss-Catalan objects,
the operad Schr involving Schröder trees, the operad Motz involving Motzkin paths, the operad
Comp involving integer compositions, the operad DA involving directed animals, the operad
SComp involving segmented integer compositions, the pluriassociative operad Diasγ involving some
words of integers, and the polydendriform Dendrγ involving binary trees with decorated edges.
These operads, when considered as quotients of free operads by an operad congruence, satisfy the
conditions listed in Section 3.2. Therefore, their natural Hopf algebras can be seen as natural
Hopf subalgebras of natural Hopf algebras of free operads (see Theorem 3.2.2.A). The question
here consists in applying the results of this work to obtain polynomial realizations of these Hopf
algebras. As a consequence, we can hope to obtain new families of polynomials, generalizing
symmetric functions.

A second question is the following. We have established the fact that a family of polynomials
on the alphabet Ap·S of positions provides a polynomial realization of natural Hopf algebras
of operads. However, a similar family of polynomials on the alphabet Al·S of lengths admits
some interesting properties. For instance, the image of the map rAl·S is linked with a decorated
version of word quasi-symmetric functions (see Section 5.1) and with a decorated version of the
noncommutative Connes-Kreimer Hopf algebra (see Section 5.2). Moreover, this map remains
a polynomial realization of natural Hopf algebras of multiassociative operads, including the
noncommutative Faà di Bruno Hopf algebra and the Hopf algebra of multi-symmetric functions
(see Section 5.3). In contrast, this map is not injective in the case of the natural Hopf algebra of
interstice operads (see Section 5.4). The question here is first to describe the kernel of this map in
the previous particular case. Next, one question is to look for necessary and sufficient conditions
on the operad O to ensure that the map rAl·S is a polynomial realization of N·O.

A last research focus addressed here involves the suitable definition of a Cartesian product ××
on the class of S-forest-like alphabets, leading to the definition of an internal coproduct on N·T·S.
When this alphabet product operation ×× is associative, this would endow N·T·S with a different
coalgebra structure (see for instance [NT10; FNT14; Foi20] for examples of such constructions).
The main difficulty here is to propose a coherent way to define the root relation, the s-decoration
relations, s ∈ S, and the j-edge relations, j ⩾ 1, of A1 ×× A2 in order to get a coalgebra that
exhibits properties such as coassociativity and results in a pair of bialgebras in interaction [Foi20].
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