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ABSTRACT. We introduce new partial order structures on the underlying sets of free nonsym-
metric operads. These posets involve decorated ordered rooted trees, and their terminal intervals
are lattices. These lattices are not graded, not self-dual, and not semi-distributive, but they
are EL-shellable, and their Mdbius functions take values in {—1,0,1}. They admit sublattices
on the families of m-Fuss-Catalan objects and of forests of trees. This latter order structure is
used to construct two new bases for the natural Hopf algebras of free nonsymmetric operads: a
fundamental basis and a homogeneous basis. Along with the already known elementary basis
of these Hopf algebras, this yields a triple of bases. The situation is similar to what is observed
in the Hopf algebras of Malvenuto-Reutenauer, Loday-Ronco, and noncommutative symmetric
functions, each of which presents such triples of bases and basis changes involving, respectively,

the right weak partial order, the Tamari partial order, and the Boolean lattice partial order.
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[_ 1 INTRODUCTION _]

INTRODUCTION

Since the advent of modern Hopf algebra theory around the 1990s, most Hopf algebras defined on

the linear spans of sets X of combinatorial objects are equipped with multiple bases. This is the

case, as main examples, for the Malvenuto-Reutenauer Hopf algebra FQSym | ; | of
permutations, the Loday-Ronco Hopf algebra PBT | ; ; ] of binary trees, and
the Hopf algebra of noncommutative symmetric functions Sym | ] of integer compositions.

Each of these structures is equipped with bases {F.},c v, {Ez},cx, and {H.}, .. A notable fact

is that, in each case, there is a partial order relation < on X such that

E, = Z F,, and H, = Z Fa, (1.0.0.A)
z'eX z'eX
r<xz’ ' Lz

and two binary operations / and \ on X such that

Eey *Es, =E,, s, and Hg xHyy =H, \4» (1.0.0.B)
and
Fo, * Fa, = > Fu, (1.0.0.0)
zeX

1/ T2 ST <71 \ T2
where x is the product of the Hopf algebra. For FQSym, < is the right weak partial order, for
PBT, < is the Tamari partial order | ], and for Sym, < is the Boolean lattice partial order.
The case of Sym is prototypical and, by analogy with the theory of symmetric functions, the
F-basis is termed the fundamental basis, while the E-basis (resp. H-basis) is termed the elementary
(resp. homogeneous) basis. There are a lot of other known examples of Hopf algebras or associative

algebras sharing these properties | ; ; ; ; ]

Besides all this, the natural Hopf algebra of an operad O is a Hopf algebra IN-O whose bases are
indexed by some words on O, where the coproduct is inherited from the composition map of O.
This construction is considered for instance in | ; ; ; ], and a noncommutative
variation for nonsymmetric operads is introduced in | | and already employed in | ].
However, surprisingly, no alternative bases are known in general for N-O. In this work, we focus
on natural Hopf algebras N-Z-Sj of free nonsymmetric operads ¥-S generated by a signature
S. These Hopf algebras are defined on the linear span of certain forests and come, through the

construction N, with an E-basis.

Our main contribution consists in the introduction of a general partial order, the S-easterly
wind partial order, defined on some treelike structures decorated on a signature S (called S-terms).
This poset exhibits notable properties and specializes as a poset on forests as well as on various
other families of combinatorial objects. This structure leads to the definition of fundamental and
homogeneous bases satisfying (1.0.0.A) for N Z-S). We also introduce two binary operations /
and \ on forests, such that the triple formed by the elementary, fundamental, and homogeneous

bases of N-Z-S] satisfies (1.0.0.8) and (1.0.0.C).
The contents and the results of this work are presented as follows.

Section 2, after presenting preliminary notions about signatures and S-terms, introduces the
easterly wind partial order relation < on the set of S-terms. This partial order relation is defined

via connection words, which are some sequences of rational numbers associated with S-terms. In
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[_ 1 INTRODUCTION _]

parallel, we define a rewrite rule — on S-terms, and establish, through Theorem 2.2.3.F, that —
is the covering relation of <. We then introduce a map tlt-X, called the X-tilting map, on the
easterly wind poset which turns out to be a closure operator [ | of this poset, as stated by
Theorem 2.3.2.B. This will allow us to consider subposets of easterly wind posets on closed terms
w.r.t. tlt-X, called tilted terms.

In Section 3, we prove via Theorem 3.1.1.E that the easterly wind posets are EL-shellable | ;

] and that their Mo6bius functions take values in the set {—1,0,1}. Using connections words,

we also propose geometric realizations of these posets. We end this section with Theorem 3.2.2.A,
which shows that any terminal interval |-t from a term t in the easterly wind poset is a lattice.
This property also holds for its subposets on tilted terms. As a side remark, these lattices |-t are

not always join semi-distributive.

Section 4 focuses on special cases of easterly wind posets. We begin by defining a notion of
forest as a particular kind of term. To each word w on a signature S, we associate an interval
[fﬂw, £t 'w} of the S-easterly wind poset. Theorem 4.1.2.A shows that such intervals are maximal.
We then study these maximal intervals to construct posets on forests that are in bijection with
objects from the Fuss-Catalan family. This is established in Theorem 4.2.1.D. These resulting
posets, which are also lattices, are distinct from the already known posets on this combinatorial
family [ ; ], and to our knowledge, have not appeared before in the literature. Through
a separate construction involving tilted terms, we realize the Tamari poset | ] as a maximal
interval of a particular easterly wind poset of tilted terms. Proposition 4.2.2.B provides an explicit
poset isomorphism with the Tamari poset using the Knuth realization | ] involving ordered
rooted trees and scope sequences. We conclude this section by introducing leaning forests, a
specific subclass of forests (and thus, of terms), which form the bases of the natural Hopf algebras
of free nonsymmetric operads. We endow this set with two concatenation operations / and \,
and define a shuffle operation [ on leaning forests. The properties and concepts established in

this section are crucial for the final one.

In the final part, Section 5, we use the easterly wind partial order on leaning forests to build
a fundamental and a homogeneous basis of the natural Hopf algebra of a free nonsymmetric
operad. Theorem 5.3.1.A shows that the product of two elements of the fundamental basis can be
expressed as an interval of the easterly wind poset, or equivalently as a shuffle of leaning forests.
Theorem 5.3.2.A shows in a similar way that the product of two elements of the homogenous basis

expresses through the \ operation on leaning forests.

We conclude in Section 6 with some open questions raised by this work.

GENERAL NOTATIONS AND CONVENTIONS. All functions are written in curried form: given a
function f : A; x---x A, — A, we denote its application by f-ai-...-a, rather than f(a1,...,a,).
Accordingly, the function type of f is Ay — .-+ — A,, — A; the arrow — is taken to be right-
associative. Rather than enclosing sub-expressions in parentheses, we use underlining to distinguish
these parts within expressions®. For a statement P, the Iverson bracket [ P] takes the value 1 if P
is true and 0 otherwise. For two integers ¢ and j, [, j] denotes the interval {i,...,j}, [¢{] denotes
the set [1,7] and [n] denotes the set [0,]. For a set A, A* is the set of words on A. For w € A*,
the length of w is £-w. The only word of length 0 is the empty word e. For any i € [¢-w], w-i is the

2These two notational conventions are particularly useful when working with treelike structures and operads, as
they simplify the handling of compositions and nested applications.
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[_2 EASTERLY WIND PARTIAL ORDERS _]

i-th letter of w. For a € A and n € N, o™ is the word of length n such that a™-i = a for all i € [n].
Given two words w and w’, the concatenation of w and w’ is denoted by w.w’. In graphical

representations of Hasse diagrams of posets, the order relation progresses from top to bottom.

EASTERLY WIND PARTIAL ORDERS

This first section is devoted to introducing a partial order on the set of S-terms, which are treelike
structures that realize the free nonsymmetric operad on the generating set S. We establish several

properties of this partial order.

SIGNATURES AND TERMS

We begin with some preliminary definitions concerning particular treelike structures, called terms,

which are defined from a set of allowed decorations, called signatures.

2Pl SIGNATURES. A signature is a set S endowed with a map ar : § — N. For any s € S,
ar-s is the arity of s. For any n € N, let S'n := {s € S : ar's = n}. For the examples that will
follow, we shall consider the signature S, := {a; ; : {,j € N} where for any a; ; € S., ar-a; j = i.

To lighten the notations, we shall write simply a; for a; o.

In what follows, we define several concepts “C” parameterized by a signature S, denoted by

“S-C”. To streamline the phrasing, whenever there is no ambiguity, we simply write “C”.

vzl TerMS. Given a signature S, an S-ferm is either the leaf o or a pair (s, (t1,. .., tars))
where s € S, and ty, ..., ti.s are S-terms. For brevity, we write sty ... tar.s for (s, (t1, ..., tars))-
By definition, an S-term is therefore a decorated ordered rooted tree where each internal node
having n children is decorated on S-n. The set of S-terms is denoted by ¥-S. For instance,

azjaie@2ageazagaiele, is an Se-term and it writes as the decorated ordered rooted tree

(2.1.2.A)

A subterm of an S-term t := sty ...t is either t itself, or recursively a subterm of t; where
i € [ar-s]. For any s € S, the s-corolla is the S-term ¢-s :=so...o. In other words, ¢'s is the S-term
consisting in one single internal node decorated by s and in ar-s leaves. Let us now introduce some

additional definitions about S-terms. Below, t is an S-term.

The preorder traversal of t is defined recursively as follows. If t = o, then the leaf forming t
is visited. Otherwise, we have t = stity...t,.s where s € S and ty, t9, ..., and t,,.s are S-terms.
In this case, the root of t is visited first, and then, t;, t5, ..., and t,,.s are visited from left to
right according to their respective preorder traversals. This procedure induces a total order on the
leaves and internal nodes of t where the first visited element is the smallest one. Note that the
symbolic notation of an S-term already lists its leaves and internal nodes in this order (see (2.1.2.A)

and its symbolic notation given just before).
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The arity ar-t of t is the number of occurrences of leaves of t. The leaves of t are numbered
consecutively, starting with 1, according to their positions in the preorder traversal of t. Given
i € [ar-t], the i-th leaf of t is extreme if all internal nodes of t are visited before the i-th leaf in the

preorder traversal of t.

The degree dg-t of t is the number of internal nodes of t. The internal nodes of t are numbered
consecutively, starting with 1, according to their positions in the preorder traversal of t. Henceforth,
we identify each internal node of t with the index assigned to it. When dg-t > 1, the contraction
of t is the S-term 0-t obtained by replacing the last internal node dg-t of t by a leaf. We denote
by N-t the set [dg-t] of internal nodes of t. The decoration word of t is the word de-t on S such
that for any ¢ € N-t, dc-t-i is the decoration of 7 in t. By a slight abuse of notation, let us denote

by ar-t-i the arity ar-dc-t-7 of the decoration of 7 € N-t.

An edge of t is a triple (i1, 7, 42) such that i1,i2 € N-t and 45 is the j-th child of i1, where the
children of i; are numbered from left to right, starting by 1. For convenience, when dg-t > 1, we
consider that (1,0,1) is an edge of t. This edge can be seen as a loop on the root of t. We denote
by E-t the set of edges of t. For any internal node iy of t, there is a unique edge of t of the form
(41, 7,12), called the parent edge of i5. Under these definitions, the parent pa-t-is of ig is the node
i1, and the local position lp-t-ig of io is the integer j. With the previous convention, the internal

node 1 is the parent of itself and its local position is 0.

Let us give some examples of the previous definitions. The integers near each internal node
of the Se-term t in (2.1.2.A) are the integers with which they are identified. Moreover, we have

dg'f = 7, ar-t = 4, dct = dsadjadgapagzdpadil,
Et={(1,0,1),(1,1,2),(1,2,3),(3,1,4),(1,3,5),(5,1,6), (5,2, 7)}, (212.B)

and the extreme leaves of t are the 3-rd and the 4-th ones. Besides, the contraction of t is the

Se—terrn dg|diej@2dgeazdgee|.

BEEN PosETS ON TERMS

The purpose of this section is to define a partial order relation < on the set of S-terms. This
partial order is defined by comparing, letter by letter, certain sequences of rational numbers
obtained from S-terms, called connection words. We show that < admits, as its covering relation,
a rewrite rule — on the set of S-terms, which consists of pruning and grafting subterms in an

appropriate way. We begin this section by introducing this rewrite rule.

2222 A REWRITE RULE ON TERMS. For any i € N\ {0}, let —; be the binary relation on ¥-S
defined as follows. Let t; be an S-term of degree at least 7 and such that its internal node 7 is
visited immediately after a leaf in the preorder traversal of t;. Then, t; —; t5 holds if {5 is the

S-term obtained from t; by moving to this leaf the subterm rooted at ¢. For instance, we have

) (2.2.1.A)
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—\

a3 dgoe,dg|dqoejo, |A2ed(pdle 3 a3 dg ,ddqeje 0 d2edpdle

and

, (2.2.1.B)

/%

3 a3|ago dg(die|dgedq ‘o dje

—

d3 dge dg|dje|o, | dgedgd]e
(Bl ==

In these examples, in accordance with the previous definition of —;, each surrounded area shows
the moved subterm rooted at an internal node i, and each arrow shows the leaf which is visited
immediately before i in the preorder traversal, target of the moved subterm. Observe that these
transformations become particularly transparent when the terms are displayed in their symbolic
notation: the subterm rooted at i, written in bold, is relocated on the leaf appearing immediately
to its left. Remark that by setting t; as the Se-term appearing in the left-hand sides in (2.2.1.A)
and (2.2.1.B), there is no Se-term ts such that t; —1 tz nor t; —5 ta because there are no leaves
which are visited before the internal nodes 1 and 2 in the preorder traversal of t;. Moreover, there
is no Se-term t; such that t; —7 t5 because an internal node, in this case the internal node 6, is

visited just before visiting the internal node 7 in the preorder traversal of t;.

From now on, except at some places in Section 4.2.1, we will exclusively use the symbolic
notation for S-terms. However, readers are invited to convert these into their graphical notation

if they feel more comfortable doing so.

It follows immediately from the definition of —; that —; is the empty relation. Another
immediate property is that for any ¢ € N\ {0} and any S-term t;, there is at most one S-term ty

such that t; —; t5. Let us also denote by X, the reflexive and transitive closure of —;.

Given two triples 1 := (i1, j1,¢) and 3 := (i2, ja,¢) of integers, x1 is dominated by x5 if the
pair (i1, —j1) is lexicographically smaller than or equal to the pair (is, —j2) For instance, (2,5,4)
is dominated by (3,7,4) and by (2,3,4), but not by (1,1, 4) neither by (2,6,4).

The following lemma is a crucial tool that is used in several subsequent proofs.

» Lemma 22.1.A — Let S be a signature and t; and ty be two S-terms such that t; —; to for an

i > 2. The following properties hold:
(i) the decoration words of t; and ty are the same;
(ii) the S-terms t; and ty share all edges except for the parent edge of i;
(iii) the parent edge of i in t1 is dominated by the parent edge of i in to;
(iv) for any internal nodes i’ and i of t; and ta, if i" is a descendant of i’ in t1, then i" is also
a descendant of i’ in ts.
<« Proof — Let i1 := pa-t;-i, k be the leaf which is visited immediately before 4 in the preorder
traversal of t;, and i5 be the internal node of t; to which k is attached.

First, by definition of —;, since t; is obtained from t; by moving on & the subterm rooted at ¢, all

internal nodes of t; and ty are visited in the same order. Therefore, dc-t; = de-tg, establishing (i).
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Point (ii) is immediate since by definition of —;, t; and t5 differ only by the parent of their

internal node 4, which is 47 and t; and i in t5. All other edges are identical in both t; and ts.

To prove (iii), we need to distinguish two cases. First, if both k and i admits the same parent
i1 = 49, then, by definition of —;, (i1,j1 — 1,4) is the parent edge of ¢ in to. Therefore, the parent
edge of 7 in t; is dominated by the parent edge of 7 in to. Otherwise, due to the fact that in t1, k is
attached to io, i1 is the parent of 7, and k is visited immediately before i in the preorder traversal,
it follows that iy is visited after iy in the preorder traversal of t;. For this reason, i; < i5. Since

ig is the parent of ¢ in t5, the parent edge of ¢ in t; is dominated by the parent edge of i in t5.

Finally, by hypothesis, i is a descendant of i; in 1, and by (ii), ¢ is a descendant of is in ts.
Moreover, by (iii), i3 < i2. Hence, and since is < ¢, we have either that i; = i or that iy is
a descendant of ¢;. Therefore, in ts, ¢ remains a descendant of ¢;. This property implies that,
independently from the location of two internal nodes ' and " of t; and t,, if "/ is a descendant

of 7/ in t;, these two internal nodes enjoy the same property in ts. O

To illustrate Lemma 2.2.1.A, observe that in (2.2.1.A), the edge (2,2,3) is replaced by the
dominating edge (2,1,3), and in (2.2.1.B), the edge (1,2,5) is replaced by the dominating edge
(3,2,5). Moreover, all Se-terms of these two examples have agasasajazaga; as decoration word.

Let us denote by — the binary relation on €-S defined as the union of all relations —; for
i € N\ {0}. We call — the S-casterly wind rewrite rule. Let us also denote by — the reflexive

and transitive closure of —.

P ConnecTion worps. The connection word of an S-term t is the word cnc-t on Q of
length dg-t such that for any i5 € N-t,

cnc-ti = pa-ti + 1 — 2lpti —artpatiy (2.2.2.A)

In other words, cnc-t-i expresses in binary fixed-point notation as x.1¢, where x is the binary
expansion of pa-t-¢ and £ is the number of internal nodes of t among the siblings of 7 that lie to its

right.

For instance, the connection words of the S.-terms t; and tp of (2.2.1.B) satisfy

, 73 4 et — (19
— < an cne-tyg = | —
723 )y 2 ] 1y

| =3

,3,5, 1) . (2.2.2.B)

Under the alternative interpretation of cnc-t, the binary fixed-point representation of cnc-t;-2 is
1.1%2 = 1.11, which denotes the value g, and the one of cnc-t;-6 is 101.1° = 101.0, which denotes

the value 5 as expected.

» Lemma 222A — Let S be a signature, t be an S-term, and i be an internal node of t. The

parent of i in t is the unique integer i’ such that i < cnci < i’ + 1.

< Proof — Let (¢, 4,1) be the parent edge of i in t. From the definition (2.2.2.A) of cne, the
rational number cnc-é is minimal when j = ar-t-i’ and is, in this case, equal to i’. Moreover, cnc-i
is maximal when j = 0 and is, in this case, equal to i’ + 1 — 272"t Gince 2731t g g positive

number, the previous quantity is smaller than i’ + 1. The stated property follows. O

» Proposition 2.2.2.B — For any signature S and any word w on S, the map cnc on the domain

of the S-terms having w as decoration word, is injective.
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<« Proof — Let ¢ be a word of rational numbers belonging to the image of the map cnc on the
domain of S-terms having w as decoration word. Let us show that there exists a unique antecedent
t of ¢ by cnc. By denoting by n the length of w, by Lemma 2.2.2.A; for any i € [n], there is a
unique i’ € [n] such that i < ¢ < i’ 4+ 1. Therefore, the parent of the internal node i of t is ¢’.
Moreover, from (2.2.2.A), we have Ip-t-i = ar-jw-i’j + log, i’ + 1 — ¢-4). This shows that the parent
edge of i in t is entirely specified by c. Since an S-term is entirely specified by its decoration word

and its set of edges, this shows the unicity of t and entails the statement of the proposition. [l

2ivtei| EASTERLY WIND POSETS. Let < be the binary relation on €-S such that, for any S-terms
t; and to, we have t; < t5 if de-t; = de-te and, for all ¢ € N-t;, cnc-t;+4 < cne-ty-i. Immediately
from its definition, < is a partial order relation on ¥-S. Let us call (T-S, x) the S-easterly wind

poset.

Let us now state a series of lemmas that will be used to establish that — is the covering relation

of the S-easterly wind poset.

» Lemma 223 A — Let S be a signature and t; and tz be two S-terms of the same degree n and
the same decoration word. We have t1 < t3 if and only if for any i € [n], the parent edge of i in t

is dominated by the parent edge of i in ts.

< Proof — Let (i1,71,17) (resp. (i2,72,%)) be the parent edge of i in t; (resp. t3). By definition
of %, the property t; < t2 is equivalent to the fact that for any i € [n], cnct;+i < cnc-to-i.
By (2.22.A) and Lemma 2.2.2 A, this is equivalent to the fact that io > 4y or both i; = i and
jo < j1. This says exactly that (iy, j1,4) is dominated by (i, j2,4). The statement of the lemma
follows. O

» Lemma 2238 — For any signature S and any S-terms t; and t2, ¢ A to implies that 4 < to.

<« Proof — Assume that t; — t;. By Lemma 2.2.1.A, E-t5 is obtained from E-t; by replacing an
edge (i1,71,?) by a dominating edge (i2, j2,%). Therefore, by Lemma 2.23.A, t; < tg. Finally, the

statement of the lemma follows from the fact that < is transitive. O

» Lemma 2.2.3.C — For any signature S and any S-terms t1 and ta of degree 1 or more, if t; < to
then 0-t; < O-ts.

<« Proof — Assume that t; and ty are two S-terms of the same degree n > 1 and that
t1 < to. By definition of <, for all i € [n], cne-t;+i < cnctg-i. Observe that for any S-term t
of degree n, E-t = E<0-4 U {(pa-t-n,Ip-t-n,n)}. Therefore, this implies that for all i € [n — 1],
cne 041 = cne-ty -1 < cnc-tp-i = cne0-ty 1. Hence, we have 0-t; < 0ty as expected. O

» Lemma 223D — Let § be a signature, and t; and tz be two S-terms of the same degree
n > 1. If there exists i € [n — 1] such that d-t; —; 0-t3, de-ty-n = de-tan, pa-ty-n = pa-ten, and
Ip-t;-n =lp-tan, then t; —; to.

<« Proof — The S-terms t; and t; are both obtained by adding respectively to 0-t; and 9-to
an internal node n decorated by the same element of S and through the same edge. Since 0-t5
can be obtained from 0-t; by changing a single edge involving internal nodes smaller than n, as
prescribed by the definition of —;, it is possible to obtain t5 from t; by the same changing of edge.
Therefore, t; —; to. O
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» Lemma 223E — Let S be a signature, and t; and ta be two S-terms such that t; < to. There
exists a sequence (t(o), M ,t(”)) of S-terms such that

*

tp =t 2 ¢ 2 A ) — (2.2.3.A)

<« Proof — Let us proceed by induction on the common degree n of t; and t;. If n =0 o0or n =1,
then t; = t; and the property holds. Otherwise, we have n > 2 and, since t; < t2, by Lemma 2.2.3.C,
we have 0-t; < 0-t2. By induction hypothesis, there exists a sequence (5(0)75(1) e ,5(”_1)) of
S-terms such that

O =0 Iy s I A s — gy (22.3.B)

Let, for any i € [n — 1], t*) be the S-term obtained by adding to s(*) an internal node n decorated
by dc-t;-n through the edge (pa-t;-n,lp-t;-n,n). By Lemma 2.2.3.D,

*

TR O G B S N (223.0)

Now, since cnc-t;-n = cnet(™ Y.y < cnc-to-n, by Lemma 2.2.3.A, t5 is obtained from e(n=1) by
replacing the parent edge of j in t(~Y by an edge dominating it. By definition of — and
Lemma 2.2.1.A, the parent edge of n in t, can be formed from the parent edge of n in t(»~1) by
performing a sequence of applications of the S-easterly wind rewrite rule — from t(*~1. Indeed,
this consists in iteratively moving the node n of (=1 as specified by the binary relation —,,.

Therefore, we have t(»~1) ¢, establishing the expected property. O

» Theorem 223 F — For any signature S, the binary relation — is the covering relation of the

S-easterly wind poset.

<« Proof — By Lemmas 2.2.3.B8 and 2.2.3.E, the binary relations < and X are the same. Besides,
by Lemma 22.1.A, if t; and ty are two S-terms satisfying t; — to, then t; and ty differ by the
parent edge of a certain internal node i. Therefore, we have t; —; t2. Now, by contradiction,
assume that there is an S-term t3 such that t3 # t; and t; — {3 X t5. Recall that as noticed
in Section 2.2.1, t5 is the unique S-term such that t; —; t5. Therefore, we have t; —; t3 with
i’ #i. The fact that t; —; t3 — t, implies that t; and t, differ by the parent edge of i’. This
yields a contradiction with our hypotheses. This shows that — is the covering relation of the
poset (TS, X). O

Theorem 2.2.3 F justifies the given name for (%-S, <): this name of S-“easterly wind” poset is
derived from the observation that the covering relation of this poset involves detaching a subterm

from the east and then attaching it to the west, as if an easterly breeze is blowing on the tree.

For any t € T-S, let [-t:={t € T-S:txt'}. We call (|t,=<) the S-easterly wind poset of t.

Figure 1 shows the Hasse diagram of the S.-easterly wind poset of an Se-term.

POSETS ON TILTED TERMS

In this section, we consider an idempotent map tlt-X on the set of S-terms. It turns out that this
map is a closure operator on the S-easterly wind poset, so that the set of elements closed w.r.t.
tlt- X forms a subposet of the S-easterly wind poset. This construction will be useful in the final
section of this paper, as such posets are used to construct bases of natural Hopf algebras of free

operads.
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Figure 1: The Hasse diagram of the Sc-easterly wind poset of agazeeo;ajoe azeo,.

2psial TintING MAP. The X -tilting map is the map tlt-X : €S — T-S defined as follows. For
any t € T-S, the S-term tlt-X-t is obtained from t by rearranging the children of every internal
node ¢ with ¢ € X so that all non-leaf children preserve their original order and precede the
children that are leaves. Let us also define the X -reversed tilting map as the map tlt™-X in the
exact same manner as the X-tilting map but with the difference that the children different from

the leaf appear after the children which are leaves. For instance, we have

tlt'{l,Q}‘ag A90,@90jA10|,,0d90 — Q3,d2,@20/A10|0,AQ° (2.3.1.A)
and
tltr~{1,2}~a3 d90,A20jA10(,2d) — a3 d2eA20A1°(,AQ- (2.3.1.B)

Given an S-term t and an internal node i of t, let 1b-t-¢ be the number of internal nodes of
t among the siblings of ¢ that lie to its left, including ¢ itself. For instance, by setting t as the
Se-term appearing in the left-hand side of (2.3.1.A), we have 1b-t:1 =0, Ib-t-2 =1, and 1b-t-5 = 2.
Observe, of course, that if (i1, j, i) is an edge of t, then 1b-ti < j.

The following lemma provides a formalization of the effect of the A-tilting map on an S-term.

» Lemma 23.1.A — Let § be a signature, X be a set of positive integers, t be an S-term and

(7,7,1) be an edge of t. The following properties hold:
(i) ifi' ¢ X, then (i',7,1) is an edge of tlt-X-t;
(ii) if i' € X, then (¢/,1b-t-i,4) is an edge of tlt-X-t.

< Proof — By definition of the map tlt-X, if i’ ¢ X, then the children of ¢’ in t and in tlt-X-t

are arranged in the same way. This implies (i). Besides, when i’ € X, in order to obtain tlt-X-t,
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the children of ¢’ in t are pushed to the left taking the place of potential leaves. Since the children
of +" which are not leaves remain in the same relative order, each internal node ¢ of tlt-X-t which

is a children of i’ appears at the 1b-t-i-th position. This implies (ii). O

BEPI A CLOSURE OPERATOR. A map ¢: P — P is a closure operator (see [ ]) of a poset
(P, <p) if the following three properties hold:

(C1) for any z € P, x <p ¢-x;

(C2) for any =, 2’ € P, x Xp 2’ implies ¢-x <p ¢-';

(C3) for any x € P, ¢ ¢z = ¢-x.

Condition (C1) says that ¢ is extensive, Condition (C2) says that ¢ is order-preserving, and
Condition (C3) says that ¢ is idempotent.

» Lemma 232A — Let S be a signature, and t; and to be two S-terms such that t; < to. If i is

an internal node of both t; and ty admitting the same parent in t; and to, then Ib-ty-i < lb-t1-i.

< Proof — Assume that t; —; t; where 7/ € N-t;. It is immediate, by definition of —; that if
1’ is not a left brother of 7 in t;, then Ib-t;-¢ = lb-ty-7. Assume now that ¢’ is a left brother of 7 in
t; (including the case i’ = i). Again by definition of —;, if the leaf which is visited immediately
before 7’ in the preorder traversal of t; is a child of pa-t;-i, then 1b-ty-i = 1b-t;-i. Otherwise,
Ib-t5-i = lb-t;-i — 1. The facts that, by Theorem 2.2.3.F, — is the covering relation of the partial

order relation <, and that — is the union of all —;, with 7’ > 1, entail the statement of the lemma.

O

» Theorem 232B — For any signature S and any set X of positive integers, the map tlt-X is a

closure operator of the S-easterly wind poset.

< Proof — Let t € T-S. By Lemma 2.3.1.A, for any edge (¢/,j1,4) of t, there is an edge (i, j2,1%)
of tlt-X-t such that jo < j;. Hence, the former edge is dominated by the latter. Therefore, by
Lemma 2.23.A, t < tlt-X'-t, showing that tlt-X satisfies (C1).

Let t1,t2 € T-S such that t; < to. Assume that (i1, j1,4) is an edge of t;. By Lemma 2.2.3.A,
there is an edge (iz, j2,%) of ta such that the former edge is dominated by the latter. Moreover,
by Lemma 2.3.1.A, tlt-X-t; has an edge (i1, ji,7) with j; € {j1,lb-t-i}. Again by Lemma 2.3.1.A,
we have also that (ig, j5,7) is an edge of tlt-X-to with j5 € {ja,1b-t2-i}. Now, we have two cases
depending on how (i1, j1,4) is dominated by (i2, jo, 7).

1. If iy < io, then (i1,j1,) is dominated by (i2, j5,1).

2. Otherwise, we have necessarily that i1 = is and j} < ji. Now, by Lemma 23.1.A, if i ¢ X,
then both j; = j; and j5 = j hold. Otherwise, when i; € X, we have j; = lb-t;-i and
jb4 =1b-tg+i. By Lemma 2.32.A, we have in particular that lb-ty-¢ < Ib-t;-4. It follows that in
both sub-cases, (i1, j1,4) is dominated by (i1, j5,%).

From all this, it follows that (i1, ji,%) is dominated by (is, j5,%). Therefore, by Lemma 2.2.3.A, this
implies that tlt-X-t; < tlt-X -t and shows that tlt-X" satisfies (C2).

Finally, the map tlt-X is, immediately from its definition, idempotent. Therefore, (C3) holds.
O

Observe, contrary to the property highlighted by Theorem 2.3.2.B for the map tlt-X', the

map tlt"-X is not a closure operator of the S-easterly wind poset. Indeed, this map is not
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extensive. A counterexample involves the Se-easterly wind poset, the set X := {1}, and the
Se-term t := agaiee because we have t < agejaie; = tlt"-X-t. Moreover, the X-reversed tilting
map is not either order-preserving. A counterexample involves the S.-easterly wind poset, the set
X := [4], and the Se-terms t; := azagaiejag o and to := agagajageee because we have t; < to
but tlt"-X-t; = ageeazaiejag, K azeeaze@iag) = tlt"-X-ts.

2psiel| KERNEL OF THE TILTING MAP AND INTERVALS. Let us denote by =q;.x the kernel of
tlt- X, that is, the equivalence relation on T-S such that for any S-terms t and /', t =¢.» t' holds

whenever tlt-X-t = tlt-X-t’. For instance,

A4 320(d10j00A20{A200) Ztlt.{1,4} A4° 320100 32 A00j0 . (2.3.3.A)

Observe that t =¢;.x t' if and only if tlt"- Xt = tlt"-X-t'.

» Proposition 233A — Let S be a signature and X be a set of positive integers. The =g x -

equivalence class of an S-term t is an interval of the S-easterly wind poset. More specifically,
[t]=,, = [ElE"- Xt tlt- At (2.3.3.B)

<« Proof — By Theorem 2.3.2.B, t X tlt-X-t. Similarly, by very analogous arguments as the one
used in the proof of this property, we have tlt"-X-t < t. Now, let ¢ € [t|_
we have tlt-X-t' = tlt-X-t and tlt"-X-t' = tlt"-X-t. Therefore, from the above property, we have
tht" Xt <t < tlt- Xt

e Since t' =i t,

Assume now that t' € [tlt"-X-t,tlt-X-t] and let (i,4,4") be an edge of t'. If i € X, then by
Lemma 2.2.3.A, (i,7,4') is an edge of both tlt"-X-t and tlt-X-t. Otherwise, when i ¢ X, again by
Lemma 2.2.3.A, (4,5,4') is an edge of tlt"-X-t and (4, 5",4') is an edge of tlt-X-t with 77/ < j < 7.
Therefore, by definition of =¢j;.x, we have t' =¢j;.x t so that t' € [t] O

ENTE

CLOSED ELEMENTS. An element x of a poset P is closed w.r.t. a closure operator ¢ of P
if = is a fixed point of ¢. In this way, since by Theorem 2.3.2.B, for any set X of positive integers,
tlt-X is a closure operator of (T-S, %), closed elements w.r.t. tlt-X" are well-defined and are called

X-tilted. For instance, the Se-term az age agaieje;agazee is {1, 3, 6}-tilted but is not {2}-tilted.

For any set X of positive integers, < is a partial order on tlt-X+Z-S). Let us call (t1t-X(Z-S), X)
the X-tilted S-easterly wind poset. Observe that for any sets X7 and X5 of positive integers,
if X1 C Xy, then (tlt-X5-Z-S), %) is a subposet of (tlt-X;Z-S), x). Of course, (tlt-0-ZT-S),<x) is
the S-easterly wind poset introduced in Section 2.2.3. Moreover, for any t € T-S, let |- Xt :=
ey Nt We call (|-X-t, <) the X'-tilted S-casterly wind poset of t. Figure 2 shows the Hasse
diagram of the X-tilted Se-easterly wind poset of a term.

SCOPE SEQUENCES AND FULLY TILTED TERMS. The scope sequence of an S-term ¢ is the
word sc-t on N of length dg-t such that for any ¢ € N-t, sc-t-i is the number descendants of 7 in t.
For instance,

4303221 2)|Age0) 313200 = 6020010. (2.3.5.A)

» Lemma 235A — Let § be a signature and t be an S-term. For any internal node i of t

different from the root, the parent of i in t is the greatest internal node i of t such that i’ < i and
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Figure 2: The Hasse diagram of the {1,2}-tilted Sec-easterly wind poset of
a3d3000,d1 0, A200).

i +scti >,

< Proof — By definition of the word sc-t, in t, an internal node ¢ is a descendant of an internal
node ¢’ if and only if ' +1 < i < i’ + sc-ti’. Therefore, each ancestor ¢’ of 7 in t satisfies ¢/ < 4
and ¢’ + sc-t-4’ > ¢. The parent of i in t is the greatest internal node among the ancestors of .

The statement of the lemma follows. O

An S-term t is fully tilted if t is N\ {0}-tilted.

» Proposition 2358 — Let S be a signature, and t; and t3 be two fully tilted S-terms of the

same degree n. We have t1 <t if and only if, for any i € [n], sc-t;-i < sc-ty-i.

< Proof — Assume that t; and t5 are two fully tilted S-terms such that t; < t;. By Lemmas 2.2.1.A
and 2.2.3.E, for any internal node ¢ of both t; and ts, the number of descendants of ¢ in t; is smaller

than or equal to the number of descendants of 7 in t;. This implies that sc-t;-i < sc-ty-i.

Conversely, assume that for any i € [n], sc-t;-i < sc-to-i. Let ¢ € [n] and i1 (resp. i2) be the
parent of ¢ in t; (resp. t2). Lemma 2.3.5.A together with the fact that each letter of sc-ty is greater
than or equal to the letter at the same position of sc-t; imply that is > ;. Hence, the parent edge
of i in t; (resp. t2) is (41, J1,%) (resp. (i2,j2,1)) for some integer j; (resp. jo). Since t; (resp. t2) is
fully tilted, j1 = 1b-t;-¢ (resp. jo = lb-ta-¢). This implies that é; < ig, or both i; = is and j; > ja,
so that the edge (i1, j1,%) is dominated by the edge (i2,j2,7). By Lemma 2.2.3 A, we have t; < to,
as expected. O

For any fully tilted S-term t, the fully tilled S-casterly wind poset of t is the N\ {0}-tilted
S-easterly wind poset of t.

GEOMETRIC AND LATTICE PROPERTIES

In this section, we continue to establish properties of the easterly wind posets by focusing in
particular on geometric properties and on showing that terminal intervals of these posets are

lattices.
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GEOMETRIC PROPERTIES

We begin this section by showing that the S-easterly wind posets are EL-shellable. To this end,
we introduce an encoding of the saturated chains of these posets. Next, we propose a realization
of the X-tilted S-easterly wind posets as geometric objects using connection words introduced in
Section 2.2.2.

EL-SHELLABILITY. Given two S-terms t; and ty of common degree n > 0 such that

t1 < to, a (ty, ts)-sequence is a word w on [n] such that

=t — D~ — il tw) =, (3.1.1.A)
for some S-terms £, ¢ . (¢ Note that, by Theorem 223 F, the sequence of these terms

forms a saturated chain from t; to t3 in the S-easterly wind poset. We say that this saturated
chain is specified by u.

» Lemma 31.1.A — Let § be a signature, and t; and to be two S-terms such that t; < ts.
The set of saturated chains between t, and to is in one-to-one correspondence with the set of

(t1, t2)-sequences.

< Proof — Let ¢ be the map having the set of (t1, t2)-sequences as domain and the set of saturated
chains between t; and ty as codomain, sending any (t;, t2)-sequence u to the saturated chain
(t(o), W ,t“)) defined accordingly with (3.1.1.A). First, recall that as noticed in Section 2.2.1,
given an S-term $; and an internal node i of s1, there is at most one S-term s, such that s; —; so.
This implies that ¢ is a well-defined map. Moreover, as a consequence of Lemma 2.2.1.A, for any
S-terms s1 and $», if 1 —; $o and §1 —; s9 for two internal nodes 7 and i’ of s, then i = 7.
This implies that any saturated chain (t(o), t ,t(e)) between t; and ty admits exactly one
(t1, t2)-sequence which is an antecedent by ¢. Therefore ¢ is a bijection and the statement of the

lemma follows. O

Lemma 3.1.1.A entails in particular that the notion of saturated chain specified by a (41, t2)-

sequence is well-defined.

» Lemma 3.1.1.8 — Let S be a signature, and t; and ta be two S-terms such that t; < to. Among

all (t1,t2)-sequences,
(i) there is at most one which is a weakly increasing word;
(ii) there is at most one which is a weakly decreasing word;

(iii) the one specifying the saturated chain from t; to to which is induced by Lemma 2.2.3E is a

weakly increasing word;

(iv) this weakly increasing (t1, t2)-sequence is lexicographically smaller than any other (t1,t3)-

sequence.

< Proof — To prove the uniqueness of a weakly increasing (1, tz)-sequence, assume that v and
u’ are two such weakly increasing (t;, t2)-sequences. Let ¢ be a positive integer such that u and
u' have both the same number of occurrences of each letter ¢’ for any ¢’ < i. Since ¢ = 1 always
satisfies this condition, such an i exists. Let v be the prefix of u made of the letters smaller than
1. By the previously stated property on i and the fact that u and v’ are weakly increasing, v

is equivalently the prefix of 4’ made of the letters smaller than 7. By Lemma 3.1.1.A, there is a
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unique S-term s7 such that v is a (f1,81)-sequence. Now, let so be the S-term obtained from
51 by applying k times the rewrite rule —; where k is the number of occurrences of i in u. By
Lemma 2.2.1.A; s5 is obtained from s; by moving iteratively the parent edge of . Moreover, again
by Lemma 2.2.1.A, for all 7/ # ¢, each application of —; on s does not change the edge connecting
1 to its parent. Therefore, in order to obtaining to from so through both (t1,$1)-sequences u and
o/, all these properties imply that the number of occurrences of 7 is the same in v and «’. This
entails u = v’ and (i). In a completely similar way, this also shows that there is at most one

(t1,t2)-sequence which is a weakly decreasing word. Thus, (ii) holds.

Point (iii) is immediate by Lemma 2.2.3.E. Indeed, the saturated chain induced by the chain
of the statement of the lemma which has just been cited is specified by the (t1,t2)-sequence u
consisting in a possibly empty block of letter 1, then a possibly empty block of the letter 2, and
so on. Therefore, (iii) checks out. The fact that u is lexicographically smaller than any other
(t1, t2)-sequence holds by construction. Indeed, each letter of w is the smallest possible in order to

specify the right saturated chain from ¢; to t2. Hence, (iv) holds. O

We use the standard definitions about labelings of Hasse diagrams of posets and EL-labelings as
given in | ; ], which we recall here. A labeling of a poset (P, <p) isa map A: <p — A
where <p is the covering relation of P and (A, <) is a poset. Let A be the map sending any
saturated chain c of length k > 1 of P to the word on A of length k£ — 1 defined by

A-coi i= Neled) e+ 1 (3.1.1.B)

for any i € [k — 1]. A saturated chain of P is A-increasing (resp. A-weakly decreasing) if its image
by A is an increasing (resp. weakly decreasing) word w.r.t. the partial order relation <,. A
saturated chain ¢ of P is \-smaller than a saturated chain ¢ of P if A-c is smaller than \-¢ for
the lexicographic order induced by <. The labeling X is an EL-labeling of P if for any z,z' € P
satisfying x <p 2/, there is exactly one A-increasing saturated chain ¢ from z to 2/, and ¢ is

A-smaller than any other saturated chains from z to z’.

Let us denote by Z2 the set of triples of integers endowed with the lexicographic order. Let
A : — — Z? be the map defined, for any (t;,t2) € —, by

Aty -ty = (i,il,—jl) (3.1.1.C)

where (i1, j1,%) is the edge of t; which is replaced by an edge (i}, j7,%) in order to produce ta. This
map is well-defined thanks to Lemma 2.2.1.A. For instance, by considering the Se-term t; as the
left-hand side of (2.2.1.A) and the Se-term t5 as its right-hand side, we have A-t;-t; = (3,2, —2).

With the same conventions, in (2.2.1.B), we have A-t;-to = (5,1, —2).

» Lemma 3.1.1.C — Let S be a signature, and t1, ta, and t, be three S-terms such that t; —;, ta
and t; — t,, where i1 and i} are internal nodes of t1. We have i1 < 4y if and only if A\-t1-t5 is

smaller than or equal to A-t;-t, for the lexicographic order.

< Proof — By Lemma 2.2.1.A, t5 is obtained from t; by replacing the edge (i, j,41) by the edge
(2, j2,11) where 7 and i9 are internal nodes of both t; and t2, and j and jo are integers. In the
same way, t, is obtained from t; by replacing the edge (i',5’,i}) by an edge (i}, j5,}) where
" and 4, are internal nodes of both t; and t;, and j' and j} are integers. By definition of A,
Ati-ty = (41,4, —7) and At;-t;, = (i,47',—5’). The statement of the lemma follows immediately.
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O

Observe that Lemma 3.1.1.C implies that if v and u’ are two (t1, t3)-sequences where t; and to
are two S-terms satisfying t; < tp and v is lexicographically smaller than u’, then A-c is smaller

than \-¢/, where ¢ (resp. ¢) is the saturated chain specified by u (resp. u’).

» Lemma 3.1.1.D — Let S be a signature, and t1, t2, and ts be three S-terms such that t; —;,
to —y, t3, where i1 is an internal node of t1 and ia is an internal node of ta. The following

properties hold:
(i) the triples A-t1-ty and Mta-ts are different;

(ii) we have iy < iz if and only if A-t;-ty is smaller than A-ta-tg for the lexicographic order.

<« Proof — Let us first gather some properties about the fact that t; —;, to —;, t3. By
Lemma 2.2.1.A; t5 is obtained from t; by replacing the edge (i, j,41) by the edge (¢, j’,41) where
7 and 7' are internal nodes of both t; and t3, and j and j’ are integers. In the same way, t3 is
obtained from ty by replacing the edge (i, j”,i2) by the edge ("', ;" i2) where i and "’ are
internal nodes of both t; and t3, and 7" and ;" are integers. Again by Lemma 2.2.1 A, the edge
(4,4,%1) is dominated by the edge (i',5’,i1), and the edge (i”,j", i) is dominated by the edge
(#", 3", i2). Moreover, by definition of A, we have \-t;-to = (41,4, —j) and A-ta-tg = (ia,7”, —5").

First, let us assume by contradiction that A-t;-ty = A-ty-t3. This implies that (i1,4, —j) =
(i2,4"”,—j") so that t; and t; have both the same edge (i,j,41) = (i”,5",i2). Moreover, since
t; —;, to, by Lemma 2.2.1.A; (4, 7,41) is not an edge of t5. This yields a contradiction and (i) checks

out.

Besides, if i; < i9, then we have immediately that A-t;-t5 is smaller than A-t5-t3 for the
lexicographic order. When iy = is, the edges (i, j’,41) and (i, j”,i2) are equal. Hence, (4, j,41)
differs from and is dominated by (i”,j",i2). For this reason, A-t;-ta is smaller than A-ty-t3. for
the lexicographic order. Conversely, when i1 > ig, it follows directly that A-t;-t5 is greater than
A-ty-t3. Therefore, the fact that \-t;-t5 is smaller than A-tp-t3 implies that i1 < i5. The equivalence
stated by (ii) is established. O

» Theorem 3.1.1.E — For any signature S,
(i) the labeling X\ is an EL-labeling of the S-easterly wind poset;

(ii) there is at most one \-weakly decreasing saturated chain between any pair of elements of the

S-easterly wind poset.

<« Proof First of all, by Theorem 2.2.3.F, since — is the covering relation of the S-easterly

wind poset, the map A is a well-defined labeling of this poset.

Let t; and t5 be two S-terms such that t; < t5. Assume that there exist two A-weakly increasing
(resp. A-weakly decreasing) saturated chains ¢ and ¢’ between t; and t;. By Lemma 3.1.1.A; there
exist two (t1, t2)-sequences u and v’ such that ¢ is specified by u and ¢’ is specified by u'. By
Lemma 3.1.1.C, u and ' are weakly increasing (resp. weakly decreasing) words. By Point (i)
(resp. Point (ii)) of Lemma 3.1.1.B, we have u = u’. This shows that ¢ and ¢’ are in fact the same
saturated chain. Therefore, there is at most one A-weakly increasing (resp. A-weakly decreasing)

saturated chain from t; to t5. In particular, this proves (ii).

Let t; and to be two S-terms such that t; < to, and let u be a weakly increasing ({3, t2)-sequence.

The existence of such u is ensured by Point (iii) of Lemma 3.1.1.B. By Lemma 3.1.1.D, the saturated
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chain specified by w is A-increasing. The uniqueness of this A-increasing saturated chain is shown
in the previous paragraph of this proof. Finally, the fact that the saturated chain specified by w is
A-smaller than any other saturated chains from t; to to follows from Point (iv) of Lemma 3.1.1.B
and from Lemma 3.1.1.C. Therefore, (i) is established. O

An important consequence | | of Point (ii) of Theorem 3.1.1.E is that the codomain of the

Mébius function u of the S-easterly wind poset is the set {—1,0,1}.

Besides, since by Theorem 2.3.2.B, for any set X of positive integers, tlt-X is a closure operator
of the S-easterly wind poset, by the Crapo’s Closure Theorem | |, the Mébius function p-X
of the X-tilted S-easterly wind poset satisfies

pXtty = Y [tXth =t] ptty (3.1.1.D)
thexT-S

for all X-tilted S-terms t; and t5.

2P GEOMETRIC REALIZATION. Let P be an interval of the X-tilted S-easterly wind poset.
Since two S-terms are comparable only if they have the same degree, let us denote by n the
common degree of the S-terms of P. The geometric realization &-P of P is the embedding of the
Hasse diagram of P in the space R™ such that each t € P gives rise to a vertex of coordinates cnc-t

and each pair (t;,t2) of S-terms of P gives rise to an edge, provided that t; is covered by t2 in P.

Moreover, when X = ), since by Lemma, 2.2.1.A and Theorem 2.2.3.F, the connection sequences
of two S-terms which are in relation for — differ in exactly one component, every edge of &-P
is parallel to a line passing through the origin and a point of R™ the form (0,...,0,1,0,...,0).
For this reason, the geometric realizations of S-easterly wind posets are cubic | ; ]. In
general, &-P is not cubic when P is an interval of an X-tilted S-easterly wind poset with X # (.

Figure 3 shows examples of geometric realizations of such intervals.

Figure 3: The geometric realization of the Se-easterly wind poset of t on the left,
and the geometric realization of the {1}-tilted Se-easterly wind poset of tlt-{1}-t on

the right, for t := aso agoeoaie;@10;. The top (resp. bottom) point has (}—g, %,2, 1)

(resp. (%, %, 14—1, 3)) as coordinates on the left, and the top (resp. bottom) point has
(13.%.2,3) (resp. (15,7, %,3)) on the right.
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LATTICE PROPERTIES

The purpose of this section is to show that all terminal intervals of S-easterly wind posets are

lattices. We also show that this property holds for X-tilted S-easterly wind posets.

24l JOIN-SEMILATTICE STRUCTURE. For any words w; and wy on Q of the same length n,

let w3 := wy V wa be the sequence of length n such that for any i € [n], ws-i = max{w;-i,wa-i}.

Let t be an S-term and let on the set |-t the binary operation V defined as follows. For any
S-terms t; and t of |-t, let t; V t5 be the S-term t3 having dc-t as decoration word and such that

its connection word is cnc-t; V cne-ty. For instance, for t := agojazecag)azeeo;, we have

ageo|@30ago|@goeo) V a3|ag00da()@3000j0 = az|agedge|Agece|e. (3.2.1.A)

Note that by Lemma 2.2.1.A, since |-t < t; and |-t < t3, we have dc-t; = dc-t = de-ts.

» Lemma 3.2.1.A — Let S be a signature and t; and ty be two S-terms such that t; < t2. If 4
has an internal node i such that its j-th child is an extreme leaf, then in to, the j-th child of i is

an extreme leaf.

<« Proof — Assume that t; — t and that t; has an internal node ¢ such that its j-th child is
an extreme leaf. Let us call k£ this leaf. Since k is extreme in t;, there is no internal node of t;
which is visited after k in the preorder traversal of t;. For this reason, t; cannot be obtained by
replacing k by any other subterm through the S-easterly wind rewrite rule. This shows that k
remains an extreme leaf in t5, so that the j-th child of 7 is an extreme leaf. Now, the fact that, by
Theorem 2.2.3.F, — is the covering relation of the partial order relation < entails the statement of

the lemma. 0

» Proposition 3.2.1.B — For any signature S and any S-term t, the operation V is well-defined
on the S-easterly wind poset of t.

<« Proof — We have to show that for any S-terms t; and t; such that t < t; and t < t5, the
word ¢ V ¢y is the connection word of an S-term of |-t, having dc-t as decoration word, where
c1 = cnc-ty and ¢ := cnc-ty. Let us prove this property by induction on n, the degree of t. This
is immediately true when n = 0. Assume that n > 1. By Lemma 2.2.3.C, we have 0-t < 0-t; and
0t < O-t2. Let us set ¢] := cnc-0-ty), ¢4 := cnc-0-tg), and ¢’ := ¢ V ¢,. By induction hypothesis,
¢ is the connection word of an S-term t' of |- 9-t whose decoration word is dc-|@-t;. Without
loss of generality, assume that ¢;-n > co-n and let (i1, 1, n) be the parent edge of n in t;. Let
t” be the S-term obtained by adding to t' the edge (i1, j1,n) so that the added internal node n
is decorated by dc-t-n. Note that since n is the last visited internal node of t; in the preorder
traversal of t;, in 0-t;, the ji-th child of the internal node i; is an extreme leaf. Therefore, by
Lemma 3.2.1.A, in t/, the j;-child of t' is a leaf. This ensures that it is possible to build t” as stated.
By construction, cnc-t” = cne-t'. c1-n. Now, since 9t < t' and cnc-t-n < cne-t;-n, we have t < t”.

Moreover, by construction, dc-t” = dc-t'.dc-t-n = dc-t. This shows the stated property. O

m LATTICE STRUCTURE. Let us now state one of the most important results of this section.

» Theorem 3.2.2A — For any signature S and any S-term t, the subposet |-t of the S-easterly

wind poset is a lattice. Moreover, this lattice admits V as join operation.
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< Proof — Let us first prove that V is the join operation of the poset ({-t,<). First of all,
by Proposition 3.2.1.B, the operation V is well-defined on |-t. Let us show that for any S-terms
t; and ty such that t < t; and t < t3, t' := t; V t3 is the unique minimal element of the set
Lt1n |-to. For this, let ¥’ be an S-term such that t; < t” and t; < t”. By definition of <, for
any i € [dg-t], cnc-t”-i > cne-ty-¢ and cnet”-i > cneta-i so that cnct”-i > max{cnc-t;-4, cncta-i}.
Since, by definition of V, cne-t'+i = max{cnc-t;-i, cne-ty-i}, we have t' < t”/. This shows that V is
the join operation of (-t,%). Finally, since any join-semilattice with a unique minimal element is
a lattice [ ], the stated property holds. O

A lattice £ with meet operation A and join operation V is join semi-distributive | ] if for

any ¢, x1,T2 € L, 1V =V xo implies x V (x1 Ax2) = 21 V .

For some S-terms t, the S-easterly wind posets of t are not join semi-distributive lattices.

Indeed, let us consider the Se-terms

® t:=ayajeaieaie djoey; ® S$9 := agajjdje| Ai1jaie|ee;
® 5 := a4a10pa1,a1)a10 00} e 5/ 1= ajaj aj,ajjaiey eeo.
=) ==

® §1 = a4 dj,dj|dre|,eldie|e;

It is easy to check that s, s1, and s2 belong to the Se-easterly wind poset of t and that we have
51 Vs =5 =5V sy Now, since we have s V (51 Asy) =5V t=s #£ g, this yields a contradiction

with the required relation to be join semi-distributive.

An equivalence relation = on a lattice £ is a lattice congruence | ; | of L if each =-
equivalence class is an interval of £ and both the maps sending each z € £ to the smallest or greatest
element of [x]= are order-preserving. Observe that despite the fact that by Proposition 2.3.3.A, for
any set X of positive integers, each =q;. y-equivalence class is an interval of the S-easterly wind
poset, by the remark stated at the end of Section 2.3.2, tlt'-X is not order-preserving. For this
reason, for any S-term t, the restriction of the equivalence relation =¢;.x on the lattice |-t is not

in general a lattice congruence of this lattice.

2420et | LATTICE STRUCTURE ON TILTED TERMS. Let t be an S-term and X’ be a set of positive
integers. Let on the set |-X-t the binary operation V-X defined for any X-tilted S-terms t; and
to by 1 VX ty ;= tlt- X t; V t5; where V is the operation defined in Section 3.2.1.

» Proposition 3.2.3.A — For any signature S, any set X of positive integers, and any X -tilted
S-term t, the subposet |-X-t of the S-easterly wind poset is a lattice. Moreover, this lattice admits

V-X as join operation.

<« Proof This is a consequence of the fact that by Theorem 2.3.2.B, tlt-X is a closure operator
of |-t and the fact that, by Theorem 3.2.2.A; |-tis a lattice. Indeed, as exposed in [ l,ifpisa
closure operator of a lattice £, then ¢-L is also a lattice. This lattice has the same meet operation
as the one of £, and admits the join operation V' satisfying x; V' x5 = ¢-jx1 V T2, where V is the

join operation of L, for any z1, x5 € L. O

Remark that even if, as provided by Proposition 3.2.3.A, |-X-t is a lattice, this lattice is not a
sublattice of |-t. Indeed, in the S.-easterly wind poset of ag 2331300 3g00)0A200) 0, WE have for
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instance

Q9,292,23]a%00||A200(|A%00|0 0 V 32‘32 a3,220|A%00( 00 (AQ00 ‘o = 32‘32 a3,220|A%00|,0jA200 o‘o, (3.2.3.A)

but even if the two operands are {1, 3}-tilted, the result is not.

EASTERLY WIND LATTICES OF FORESTS

Easterly-wind posets are sufficiently large to contain, as subposets, several notable structures. In
particular, we introduce a notion of forests regarded as specific S-terms and study their posets. We
then obtain, on the one hand, a family of lattices on Fuss—Catalan objects and, on the other hand,
an alternative construction of the Tamari lattices. The section concludes with lattice structures
on leaning forests and several key notions that will later be used to describe the natural Hopf

algebras of free nonsymmetric operads.

FORESTS AND MAXIMAL INTERVALS

We introduce the notion of S-forests, which are particular S-terms. We also study certain maximal

intervals involving such forests in the easterly wind posets.

i FOrESTS. By seeing N as the signature such that for any n € N, ar-n := n, let Sy be
the signature S UN. An S-forest is an Sy-term § of the form f =nt;...t, where n € N and for
any i € [n], t; is an S-term. For instance, 4agagajeje s a1jagecey is an Se-forest. Moreover, the

concatenation of two S-forests nt; ...t, and n'¢| ...t,, is the S-forest

L I S A LUl (A R 2 I 4 (4.1.1.A)

An S-forest f = nty ... t, is balanced if dg-f = n + 1. For instance, 0 and 3 jazoag|ejageco; are
balanced S.-forests. On the contrary, 2 asagejag is an Se-forest which is not balanced. The size of
a balanced S-forest f is the decoration of the root of § (or, equivalently, the degree of § minus one).

Observe that the concatenation of two balanced S-forests is a balanced S-forest.

MAXIMAL INTERVALS. For any S-forest f of arity 1 or more and any S-term t, let f e t be
the S-forest obtained by replacing the leftmost leaf of § by t. For instance,

3asapag|agajojec ® Agzoe@iejo = 3a230a(| a2 a1,d30/@10(0, 0 o. (4.1.2.A)
=] L2 =)

Now, given a word w on S of length n € N, let the S-forests

£ = n e lyew2). .. e, (4.1.2.B)
and
flw = (... (Lo e rwl) e t-w-2)...) e w-n. (4.1.2.C)

For instance, for w := agajapagapazaz € S, we have

fﬂw = 73200 djejdpdpdg|agece|dgeoe (4.1.2.D)
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and

f@w = 7\32 d1dg aojaolag dgoo 00j0000. (4.1.2.E)

Note that f.e = 0 = f¥-¢. It is straightforward to prove that both fT.w and f¥%-w are well-defined

balanced S-forests of size {-w.

» Theorem 4.1.2.A — For any signature S, any set X of positive integers, and any word w on S
of length n € N,

(i) in the X-tilted Sy-easterly wind poset, £T-w < £¥-w;

(ii) the S-forest fT-w (resp. f4-w) is a minimal (resp. mazimal) element of the X -tilted S-

easterly wind poset.

< Proof — Observe first that neither £f.w nor f%-w depend on the set X. Indeed, directly from
their definitions, it follows that these two S-forests are X-tilted for any set X of positive integers.

For this reason, in this proof, we consider simply that X = ().

To prove (i), let us proceed by induction on n. When n = 0, f7 = 0 = f¥ so that the property is
satisfied. Assume that the property holds for any word w on S of length n > 0 and let a € S. By
definition of fT, we have E-f1-jw.a) = E-fT-w U {(1,n + 1,n + 2)}. Moreover, by definition of f¥,
we have E-f% w.aj = E-f¥w U {(,7,n + 2)} where i is the internal node of f%-w which is the
parent of the leftmost leaf and j is the position of this leaf in its siblings. By induction hypothesis,
we have fT.w < f¥-w. Thus, by Lemma 2.2.3 A, for any i’ € [n + 1], the parent edge of i in f-w is
dominated by that of i’ in £¥-w. Moreover, the edge (1,n + 1,7 + 2) is dominated by the edge
(i,7,n + 2). Indeed, otherwise, we would have i = 1 and j > n + 1, which is absurd since the
internal node 1 of both f-jw.qj and f¥-|w.qa) has arity n + 1. Therefore, again by Lemma 2.2.3.A,
we have fTw.a < f¥w.q as expected.

To prove (ii), assume first that t is an S-forest such that t < fT.w. Hence, by Lemma 2.2.3 A, for
any 4 € [2,n], the parent edge (pa-t-i,lp-t-i,i) of 7 in t is dominated by the parent edge (1,7 — 1,%)
of i in fM.w. By definition of the notion of edge domination, we have necessarily pa-t-i = 1 and
Ip-ti > i — 1. It follows that Ip-t-i =i — 1 so that t = fT.w. This shows that fT.w is a minimal
element of the Sy-easterly wind poset. Finally, observe that in f%.w, all leaves are visited after all
internal internal nodes in its preorder traversal. Therefore, there is no S-forest t such that f¢ — t.
Therefore, by Lemma 223 E, this implies that f¥-w is a maximal element of the Sy-easterly wind

poset. O

By Theorem 4.1.2.A and Proposition 3.2.3.A, the interval [£T.w, f¥-w] of the X-tilted Sy-casterly
wind poset is a maximal interval and a lattice. Let us call it the balanced forest X -tilted S-easterly
wind poset of w. When X = (), this poset is the balanced forest S-easterly wind poset of w. For
instance, by replacing all decorations az of the roots of the terms of Figure 1 by the decoration
3 € N, the resulting Hasse diagram of this figure is the balanced forest (-tilted S.-easterly wind
poset of agajas. With the same change, Figure 2 shows the Hasse diagram of the balanced forest
{1, 2}-tilted S.-easterly wind lattice of agajas.

CATALAN LATTICES AND FUSS-CATALAN LATTICES

The purpose of this section is to build, as a particular balanced forest X-tilted easterly wind
posets of some words, partial order structures on the combinatorial set of Catalan or Fuss-Catalan

objects. We begin by constructing such structures by introducing a nontrivial bijection between
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the set of some balanced forests and the set of terms whose internal node all have a fixed arity.
Using this bijection, we prove that our first family of posets admits as underlying set the set of
Fuss-Catalan objects. Independently, we consider a balanced forest easterly wind poset on fully
tilted terms and show that this construction yields an alternative description of the well-known

Tamari partial order.

VIR 'USS-CATALAN LATTICES. For any n,m € N, the m-Fuss-Catalan easterly wind poset of
order n is the balanced forest N-easterly wind poset of the word m™, as defined in Section 4.1.

Figure 4 shows the Hasse diagrams of some such posets.

dleileyloyle

31200y 2020010

32‘,25@2{4 \}lﬂ‘zxz_m
32%&1‘,”9 320212600, 00
< dldeatdeye
N s
4116l 1eje0 32220000 00

411 1dey eoe

Figure 4: The Hasse diagram of the 1-Fuss-Catalan easterly wind poset of order 4 on
the left, and the Hasse diagram of the 2-Fuss-Catalan easterly wind poset of order 3
on the right. Observe that these graphs are not regular (that is, not all vertices have
the same degree).

» Lemma 421A — For any m,n € N, [-f1-m™ is the set of S-forests of the form f=nty...t,
such that § is balanced and for any ¢ € [n], dg-t,—¢+1 + -+ dg-t, < L.

< Proof — Assume first that f = nt;...t, and § = nt]...t, are two N-forests such that f
satisfies the condition of the statement and f — /. From the definition of —, we have either that
dg-t; = dg-t for all j € [n], or that there exists j € [n — 1] such that dg-t; = dg-tj,; = 0 and
dg-tj;1 = dg~t;- # 0. In both cases, § satisfies also the condition of the statement. Since fT-m"
satisfies the condition of the statement and, by Theorem 2.2.3.F, — is the covering relation of x|
this shows that for any N-forest f such that fT-m" < §, f satisfies the condition of the statement.

Conversely, assume that f = nty ...t, is an N-forest satisfying the condition of the statement
and let i be an internal node of §. First, if pa-f-i > 2, since pa-|fT-m"-i = 1, the parent edge of i
in f dominates the parent edge of i in fT.m”. Otherwise, when pa-f-i = 1, let us set j := Ip-f-i.
Since f satisfies the condition of the statement, dg-t; 4+ --- 4 dg-t, < n — j 4 1. Moreover, as the
subterm of § rooted at ¢ is t; and the set of internal nodes of f which are greater than of equal to ¢
is {4,...,n+ 1}, we have dg-t; +--- +dg-t, =n — ¢+ 2. This implies that j < ¢ — 1, so that the
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parent edge of i in f dominates the parent edge (1,7 — 1,4) of i in fT.m™. Hence, by Lemma 2.2.3 A,

we have in both cases fT-m" < §, as expected. O

For any m € N, an m-tree is an element of T-{m + 1}. Besides, an m-binary tree is an element
of T T-{m}, where, here, T-{m} is seen as a signature whose all elements are of arity 2. In other
words, an m-binary tree is a binary tree whose internal nodes are decorated by m — 1-trees. Given
an m — 1-tree s of degree k > 1, the right comb of s is the m-binary tree such that its root is
decorated by s, the first child of the root is a leaf, and the second child is a right comb binary
tree consisting in k — 1 internal nodes decorated by ». For instance, the right comb of the 2-tree

5 := 31-3Jo[t-3) is the 3-binary tree

(4.2.1.A)

Let the map bt from the set of m-trees to the set of m-binary trees defined recursively, for any
m-tree t, as follows. First, if t = o, then bt-t = o. Otherwise, let s be the m — 1-tree obtained by
keeping the root of t and by deleting recursively all first subterms of the kept internal nodes. In
this process, let us denote by ti, ..., t; the forgotten subterms from left to right, with & := dg-s.
Now, let v be the right comb of s. With these definitions, bt-t is obtained by replacing, for any
i € [k], the i-th leaf of v by bt-t;. The last leaf of v is left as is. For instance, for m := 3, we have

(4.2.1.B)

Finally, let 28-m be the set of m-binary trees t such that from any internal node of v decorated
by an m — 1-tree s of degree k > 1, there is a right branch consisting in k& — 1 internal nodes

decorated by o, and each internal node decorated by » in t is a part of such right branch.

» Lemma 4.2.1.B — For any m € N, from the domain consisting in the set of m-trees and on the

codomain B-m, the map bt is a bijection.

< Proof — Let ¢ : B-m — T-{m + 1} be the map defined recursively, for any v € B-m of degree
n, as follows. First, if n = 0, then v = -. In this case, set ¢-t := .. Otherwise, we have n > 1 and,
from the description of B-m, v is the right comb t' of an m — 1-tree s of degree k > 1 such that
for any 4 € [k], the i-th leaf of v/ is attached to a subterm t; of v. Since for any i € [k], t; belongs
to B-m, the m-tree t; := ¢-t; is, by induction, well-defined. Let also t' be the m-tree obtained by
adding to each internal node of s a leaf as first child. We define ¢-t as the m-tree obtained by
replacing, for any 7 € [k], the first leaf of the internal node i of ¢’ by t;. It follows by induction on

n that ¢ is a well-defined map. Again by induction on n, it is straightforward to show that ¢ is
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the inverse map of bt. O

The inorder traversal of an m-binary tree v is defined recursively as follows. It v =, then the
inorder traversal of v is empty. Otherwise, we have t = stity where s is an m — 1-tree, and t;
and vy are two m-binary trees. In this case, vy is visited according to the inorder traversal, then
the root of v, and finally, vs is visited according to the inorder traversal. This procedure induces
a total order on the internal nodes of t where the first visited internal node is the smallest one.
Now, let the map if from the set of m-binary trees to the set of balanced N-forests such that,
for any m-binary tree t of degree n, if-v is the N-forest ns; ...s, where for any i € [n], s; is the
decoration of the i-th visited internal node of v w.r.t. the inorder traversal of v. For instance, by
considering the 3-binary tree t of the right-hand side of (4.2.1.B),

ifv = 712313 11:3jo1t-3)jo12-3) 3 o0lL-3)jo0. (421.0)

» Lemma 42.1.C— For anym € N, from the domain B-m and on the codomain | J,,cy L(f“m”),

the map if is a bijection.

< Proof —Let ¢ : U, cn L(fmm") — B-m be the map defined recursively, for any § €¢~(fﬂ~m”),
n € N, as follows. First, if n = 0, then §f = 0. In this case, set ¢-f := .. Otherwise, we have n > 1

and by Lemma 4.2.1.A, it follows by induction on n that f decomposes as

f=f11s.k—10...0.%2 (4.2.1.D)
k—1

where f; and fy are two N-forests and s is an m — 1-tree s of degree & > 1. Let us consider
this decomposition when the size £ > 0 of f; is minimal. Since f; . f2 satisfies the conditions
described in Lemma 4.2.1.A, the m-binary tree t := ¢-f1 .2, is, by induction, well-defined. Let
also t/ be the right comb of s. We define ¢-f as the m-binary tree obtained by inserting the root
of t/ onto the unique edge of v such that, w.r.t. the inorder traversal, the internal nodes coming
from f; are visited first, then the ones of t/ are visited, and finally the ones coming from fo are
visited. It follows by induction on n that ¢ is a well-defined map. Again by induction on n, it is

straightforward to show that ¢ is the inverse map of if. O

» Theorem 4.2.1.D — For any m,n € N, the underlying set of the m-Fuss-Catalan easterly wind
poset of order n is in one-to-one correspondence with the set of m-trees of degree n. The map

if o bt is such a one-to-one correspondence.

<« Proof — By Lemma 4.2.1.B, bt is a bijection between the set of m-trees and 98B-m. Moreover,
By Lemma 4.2.1.¢, if is a bijection between B-m and (J,,cy 1-ifT-m™). Since these two bijections
preserve the degree, the composition if o bt satisfies the property described in the statement of
the theorem. O

By Theorem 4.2.1.D, the m-Fuss-Catalan easterly wind posets involve the combinatorial family

of Fuss-Catalan objects. Hence, the cardinality of such posets of order n is

! (mn + n) . (4.2.1.E)

mn+ 1 n

Many other posets involving this family of objects exist | ; ], and our posets differ from

those presented in the cited works.
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709290 ROOTED TREE LATTICES. For any n € N, let dw-n be the word on N of length n such
that for any 4 € [n], dw-n-i = n—1. The rooted tree easterly wind poset of order n is the fully tilted
N-easterly wind poset of dw-n, as defined in Section 2.3.5. Figure 5 shows the Hasse diagrams

of such poset. By definition, all N-terms of the rooted tree easterly wind posets are balanced

43000/ 200)(10/0
oL

VAZIERN
29 \‘// AN Pas
432151600 000

43215000 s00 % 43000)2(10i0500 1"
RN .

q 2
432101500 000

Figure 5: The Hasse diagram of the rooted tree easterly wind poset of order 4.

forests. Observe that the minimal element of the rooted tree easterly wind poset of order n is

dt-n = M dw-n = ne-n —1y... 1.0 For instance, dt-4 = 4|3c00/200)|14J0.

A rooted tree is recursively defined as a node together with a possibly empty list of rooted trees,
each of which is attached to the node as a child. The size of a rooted tree t is the number of nodes
of v. The underlying rooted tree of an S-term t is the rooted tree rt-t obtained by removing the

leaves and their adjacent edges in t, as well as the decorations of its internal nodes. For instance,

rt- age A2|d190jA0°|A3|A200j00 = ng\g . (4.2.2.A)
Moreover, the fully tilted term ft-v of a rooted tree v is the fully tilted N-term obtained by labelling
from n — 1 to 0 the nodes of v w.r.t. the preorder traversal and then, by grafting to each node

some leaves as rightmost children such that each node labeled by k has k children. This ensures
that ft-v is fully tilted. For instance,

ft- Cg& =543 000J|2 00joojL Ojoco. (4.2.2.3)

» Lemma 422A — For anyn € N, the map rt is a one-to-one correspondence from the underlying
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set of the rooted tree easterly wind poset of order n and the set of rooted trees of size n.

<« Proof — Let T be the underlying set of the rooted tree easterly wind poset of order n. The
fact that the map rt on the domain T is injective is a consequence of the fact that all N-terms of
T are fully tilted. Let us show that each rooted tree v admits an antecedent in T for the map
rt. By setting t := ft-r, from the definitions of the maps rt and ft, it follows immediately that
rt-t = v. It remains to prove that t belongs to 7. By construction of the N-term £ dw-n, for any
internal node i of t, the parent edge of i in fT-|dw-n is dominated by that of 7 in t. Hence, by
Lemma 2.2.3.A, . dw-n < t. This shows that t € T" and implies the statement of the lemma. [

The scope sequence of a rooted tree v of size n is the word sc-t of length n such that for any

i € [n], sc-v-i is the number descendants of the i-th visited node in the preorder traversal of t. For

sc~§i)\g = 520010. (4.2.2.0)

Observe that the scope sequence of an S-term t as defined in Section 2.3.5 and the scope sequence

instance,

of the rooted tree rt-t coincide, that is sc-rt-t) = sc-t.

The Tamari partial order | ] is a partial order <1 defined on the family of Catalan
objects of a given size. We consider here the following description of this order involving rooted
trees [ ]. Given two rooted trees t; and to of the same size n, v; <1 t2 holds if and only if

for any ¢ € [n], sc-t1+i < sc-ta-i.

» Proposition 4228 — For any n € N, the map rt is a poset isomorphism between the rooted

tree easterly wind poset of order n and the Tamari poset of order n.

<« Proof Let T be the underlying set of the rooted tree easterly wind poset of order n. First
of all, by Lemma 4.2.2.A, the map rt is a bijection between T and the underlying set of the Tamari
poset of order n. It remains to prove that rt is an order embedding, that is, for any t;,t; € T,
t1 < to if and only if rt-t; <7 rt-t5. This property is a consequence of Proposition 2.3.5.B and the
fact that, as noticed above, for any N-term t, sc-t = sc-rt-4). O

LEANING FOREST LATTICES

Leaning forest S-easterly wind lattices will be used to construct bases of natural Hopf algebras of
free nonsymmetric operads in the next section. Here we introduce these lattices and establish
some of their properties. We also define two concatenation operations and a shuffle operation on
leaning forests. These operations will subsequently be employed to describe the product of natural

Hopf algebras of free nonsymmetric operads on alternative bases.

JES ) LEANING FORESTS. An S-forest f = nty ... t, is leaning if § is balanced and is {1}-tilted.
For instance, 0 and 4 aseja1a9)age° are leaning Se-forests. On the contrary, 4 ageazjagee)aie)e is
a balanced S.-forest which is not leaning since it is not {1}-tilted, and 3 a0 is a {1}-tilted
S-forest which is not leaning since it is not balanced. Let us denote by £-S the set of leaning
S-forests. The length of a leaning S-forest f is the number of children subterms of the root of §

which are not leaves. For instance, the length of 4 asejajag;agee is 2.
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For any w € §*, the leaning forest S-easterly wind poset of w is the balanced forest {1}-tilted
S-easterly wind poset of w, as defined in Section 4.1. Figure 6 shows the Hasse diagram of such

poset.

43200,@40,3200,30

(4200310 32030,0

4a231,3950,0 a0ee | N

N i
ae(arofas

. 143200, 3p0)2230010

sagiee! . !
AN 1,

|

|

|

Brbyardnge

423 21,395ap,0 000

4222189800 0000

Figure 6: The Hasse diagram of the leaning forest Se-easterly wind poset of agazajazag.

» Proposition 43.1.A — Let S be a signature and let w be a word on S of length n € N. The
leaning forest S-easterly wind poset of w contains all leaning S-forests having n.w as decoration

word.

< Proof — Let us prove that for any leaning forest f having n.w as decoration word, fT-w < §.
For this, let ¢ be an internal node of f different from the root, and let (¢, j,4) be the parent edge
of 7 in §. From the definition of f™.w, the parent edge of the internal node 4 in f™w is (1,5 — 1,4).
Now, if i’ > 2, then the parent edge of i in § dominates that of i in fT.w. Otherwise, we have
i/ = 1. Let us prove in this case that j < i — 1. Indeed, assume by contradiction that j > i. Under

this assumption, among the first j — 1 children of the root of f, since they comprise only i — 2
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internal nodes, there must be at least one leaf. Therefore, f would not be {1}-tilted, contradicting
our hypotheses. Hence, even in this case, the parent edge of i in f dominates that of i in fM-w. It

follows now from Lemma 2.23A that fT.w < §. O

Proposition 4.3.1.A provides the notable property that any leaning S-forest belong to a leaning

forest S-easterly wind poset.

m RESTRICTIONS. Let f be a leaning S-forest of size n. Given a subset I of [n], let
I:={i+1:i€TI}. The restriction f-Iof f on I is the leaning S-forest obtained by keeping only
the internal nodes from the set {1} U I of f and their adjacent edges, and by setting #I as the

decoration of the root. For instance, by considering the leaning S.-forest

f := B ag,aze;a1g)|@zeee oo, (4.3.2.A)

we have f-{1,4} = 2apag, f-{2,3} = 2,a2¢31¢)°, and §-{2,4,5} = 3 |ageejagagees.
When T is an interval of [n], let 6; : I — [#I] be the map defined for any i € I by 6;-i :=
i —min I + 1. Observe that for any i € I, the internal node i of § gives rise to the internal node

Or-t in §-I. This map will be used to lighten the notation during the proof of the following lemma.

» Lemma 432A — Let S be a signature, and let 1 and fo be two leaning S-forests of the same
sizen. If f1 < f2 and I is an interval of [n], then §1-I < f2-1.

< Proof — Assume that f; < f2 and that I is an interval of [n]. As the case where I is empty is
immediate, we assume that I is nonempty. Let ¢ be an internal node of both f; and {2 belonging
to I. Let also i; (resp. ip) be the parent of i in f; (resp. f2). We have several cases to explore

depending on whether 7; and is belong to I.

1. Assume first that i; € I. By Lemma 223 A, the parent edge of 4 in f; is dominated by that of
1 in fo. In particular, this implies that i; < 2 < ¢ so that, since I is an interval, io € I. For
this reason, we have also 1p-fo-1}-01-i; = Ip-f2-4. Similarly, since 4; € I, Ip-f1-4 019 = Ip-f1-i.
These properties imply that the parent edge of ;¢ in f1-I is dominated by that of ;-4
in fo-1.

2. Assume now that i; ¢ I and iy ¢ I. By definition of the restriction operation, the parent of
1 is the internal node 1 in both §;-I and f5-I. Moreover, since both f;-I and f5-I are leaning,
Ip-f1-1,-01-%) > Ip-fo-1}-01-3). Therefore, the parent edge of 6;-¢ in §;-I is dominated by that
of 07-i in fo-1.

3. In the remaining case, i; ¢ I and iy € I. By definition of the restriction operation, the
parent of ¢ is the internal node 1 in f;. Moreover, since is € f, 07-io > 2. This shows that

the parent edge of 04 in f1-I is dominated by that of ;-7 in fa-I.

We have shown that for any internal node 8;-¢ of both §;-I and fo-I, the parent edge of ;-7 in f;-I
is dominated by that of 6;-¢ in fo-I. Therefore, by Lemma 2.2.3.A, f1-1 < fa-1. O

Let us introduce two specific restrictions. Given a leaning S-forest f of size n, for any k € [n],
let f-k-f :=§-[1, k] and {-k-f := §-[k + 1,n]. We call the first restriction the k-top restriction of f
and the second, the k-bottom restriction of §. For instance, by considering the leaning S.-forest §

of (4.3.2.A), we have
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b (ﬂofa lloﬂ = (07 f)7 L4 (ﬂgfa‘u?’f) = (3 do|d2°d1¢) 7230@‘3000);
° (ﬂ*lf’ U,]_f) = (1 ag, 4 A20|a13a0) @300 oo); N (ﬂ4f,U4f): (4 a0,320(2130) 000, 1 agooo);

° (ﬂQf,U«Qf) = (2 a()\agoob3\3130H33000Jo); . (ﬂ‘5f ll5f) _ (f7 0)

m OVER AND UNDER OPERATIONS. Let / be the over operation on leaning S-forests defined,
for any leaning S-forests f1 and fa, by f1 /f2 := tlt-{1}+f1 « f2, where tlt is the tilting map defined
in Section 2.3.1 and . is the concatenation operation defined in Section 4.1.1. For instance, on

leaning S,-forests,

3 10202000 / 5 |@3000|d200) Ay d200) d]0j0 = 8 d10)d20dg00| dg000|d200 A |d200d]000.
(43.3.A)
Let f1 and fo be two leaning S-forests such that f; is of size n; and of length ¢;. From the

definition of the over operation, each edge (', ,4) of f1 /f2 obeys to the following rules:

1. if i < i < ng + 1 (that is, both ¢ and ¢ come from internal nodes of 1), then (¢, 7,) is an

edge of fi;

2. if n1+2 < ¢/ < i (that is, both ¢ and ¢ come from internal nodes of fo), then (' — n1,5,7 — nq)

is an edge of fo;

3. otherwise, we have i’ < ny + 1 (that is, ¢’ comes from an internal node of f;) and ny +2 <4
(that is, ¢ comes from an internal node of f2). In this case, we have ' = 1 (that is, ¢’ is the

root of f1) and that (1,7 — £1,7 — n1) is an edge of fs.

Similarly, let \ be the under operation on leaning S-forests such that, for any leaning S-forests
f1 and fa, by denoting by ny the size of §1, by ny the size of fo, and by r the number of extreme
leaves of f1, fi \fz2 is the leaning S-forest built by grafting, for any j € [ny + 7], the j-th subterm

of the root of fa..:r) onto the j-th extreme leaf of f; .t-ng). For instance, on leaning S.-forests,

3 A10(,d20(A200 0 \ 5‘33000“3200‘31‘3200‘ djoje = 8 dje ‘ago‘ag‘a;_gooouazoouHal‘8200“alo cooco.
(4.3.3.B)

Let f; and f2 be two leaning S-forests such that f; is of size ny and fs is of size ny. From the
definition of the under operation, each edge (', j,%) of f1 \f2 obeys to the following rules:

1. if ' <i < ny+1 (that is, both i’ and 7 come from internal nodes of f;), then (¢, j,4) is an
edge of fi;

2. if n1+2 < ¢/ < i (that is, both ¢’ and ¢ come from internal nodes of fo), then (' — n1, 5,7 — nq)
is an edge of fo;

3. otherwise, we have i’ < nj + 1 (that is, ¢’ comes from an internal node of ;) and ny +2 <1
(that is, ¢ comes from an internal node of f2). In this case, (1,;',4 — n;) is an edge of fo
where in f . t-ng), the child of i’ at position j is the j'-th extreme leaf of this S-forest.

» Lemma 433A — Let S be a signature and let f1, f;, f2, and §5 be leaning S-forests. If f1 < f}
and fo <X f5, then

(1) f1/f2 < f1/fa: (ii) Fi\F2 < f1\fa-

< Proof — Le us assume that f; < ] and f2 < f5. By Lemma 2.2.3.A, for any internal node ¢ of

f1 (resp. f2), the parent edge of i in f; (resp. f2) is dominated by that of i in | (resp. f}).

| S. Giraudo BASES OF NATURAL HOPF ALGEBRAS OF OPERADS 29 /39 |



[_4 EASTERLY WIND LATTICES OF FORESTS 4.3 LEANING FOREST LA’I"I‘ICES_]

Now, by the previous description of the edges of a leaning S-forest obtained from the over
operation applied on two leaning S-forests, together with the fact that for any leaning S-forests
g and ¢', g < ¢’ implies that the length of g is greater than or equal to the length of g’, for any
internal node ¢ of f; /f2 the parent edge of 4 in f; /fo is dominated by that of ¢ in f; /f5. Therefore,
by Lemma 2.2.3.A, (i) holds.

Similarly, by the previous description of the edges of a leaning S-forest obtained from the under
operation applied on two leaning S-forests, together with the fact that for any leaning S-forests
g and g', g < ¢’ implies that the number of extreme leaves of g is smaller than or equal to the
number of extreme leaves of g, for any internal node ¢ of f; /fo the parent edge of 7 in f; \fo is
dominated by that of ¢ in f; \f5. Therefore, by Lemma 2.2.3.A, (ii) holds. O

For any leaning S-forest f of size n and any k € [0, n], let
/ kg o=fkfs Ukf (4.33.0)

and

NGk =k fN Uk (4.3.3.D)

» Lemma 433B — Let S be a signature and let f be a leaning S-forest of size n. For any
k€ [0,n],
/kf<f< Nk (4.3.3.E)

< Proof — From the definition of /-k (resp. \-k) and the previous description of the edges of a
leaning S-forest obtained from the over (resp. under) operation applied on two leaning S-forests,
the leaning S-forests f and /-k-f (resp. \-k-f) have the same edges, except possibly the parent
edges of the internal nodes ¢ with ¢ > k + 2, which are of the form (¢’,,4) in /-k-f (resp. \-k-f)
where j is an integer, and of the form (¢, j',4) in f with ¢ > i’ (resp. i’/ < '), or both i’ = ¢’ and
j' = j. By Lemma 2.2.3.A, this implies that /-k-f < f (resp. f < \-Ef). O

» Lemma 433.C — Let S be a signature, and let f1 and f2 be two leaning S-forests. By denoting
by k the size of f1, for any leaning S-forest f, the two following properties hold:

(i) f1/f2 < f if and only if f1 IN-k-f and f2 <Y -k-f;
(ii) § < Fi\fa if and only if 1-k-f < F1 and J-kf < fo.

< Proof — Assume first that f; /fo < f (resp. f < fi\f2). By Lemma 4.32A, we have
ke f1 /o) STEf (vesp. k- <f-kef1\F2) and -k f1 /fo) Y-k (vesp. d-k-f <4k f1 \f2)). Now,
by definition of the over (resp. under) operation, we have f-k-j1 /fo; = f1 (resp. ft-k-f1 \f2; = f1)
and }-k-f1 /f2; = f2 (resp. }-k-f1\f2; = f2). Hence, fi <ft-k-f (resp. 1-k-f < f1) and 2 <U-k-f
(resp. {-k-f < f2). This proves the direct implication of (i) (resp. (ii)).

Assume conversely that fi < -k-f (vesp. -k < f1) and fo < -k (resp. | -kf < f2). By
Lemma 4.33.8, we have /-k-f < f (resp. f < \-k-f). Given this, by Lemma 4.3.3.A, we have
f1/f2 =< /- k- (resp. \-k-f < f1\f2). Therefore, by using the transitivity of <, this implies that
f1/f2 < f (resp. f < f1\f2). The converse of (i) (resp. (ii)) has been established. O

SHUFFLE PRODUCT. Let f1 and fo be two leaning S-forests of respective sizes n; and ns.
The shifted shuffie of f1 and fo is the set f; [ fo of leaning S-forests f of size ny + ng such that

ﬂ"fll‘f = fl and i}nlf = fg.
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For instance, let the leaning S.-forests f1 := 4 aj0/a30/230200000 and fg := 3 290/210,3pe. The

set fi LW f2 contains exactly the four leaning S.-forests

o 7 dje ‘a;;o dgedpe oHaQO die ‘a“ooo; o 7 die ‘a;go dged(,d2e|d]e o‘a()oooo;
o 7 dje \a;go dzedpe| doe|die Ja(')c)cuw; o 7 die \ago d3ed(,dge|die a()Jooooo.

Observe that among these four S.-forests, the first (resp. last) one is f1 /fo (resp. f1\f2).

» Proposition 4.3.4.A — For any signature S and any leaning S-forests f1 and f2, f1 W fo is an
interval of the leaning forest S-easterly wind poset of wy «ws, where the decoration word of f1 (resp.

fo) is ny.wy (Tesp. no.ws) and ny (resp. na) is the size of f1 (resp. f2). More precisely,

f1 00 f2 = [f1 /2, f1 \fol. (43.4.A)

< Proof — First of all, by definition of [, all S-forests of f; [ fo have (ny + n2) . w1 - ws as
decoration word. Hence, by Proposition 4.3.1.A, f; [ f5 is a subset of the leaning forest S-easterly

wind poset of wy . ws.

Let § be an S-forest. Assume that f belongs to the set f; i fo. By definition of [, we have
ftni-f = f1 and § -ni-f = f2. Therefore, by Lemma 4.33B, fi1/fo < §f < f1\f2. Conversely,
assume that f1 /f2 < f < fi \f2. By Lemma 4.3.2 A, we have -n1-f1 /f2; <f-n1-f 011 f1 \ fe; and
Jngf1 /2y U-na-f sd-nqfi \f2;. Directly from the definitions of the over and under operations,
we have f-ny-f1 /f2; = f1 = n1-f1 \fo; and {J-n1-f1 /f2; = fo =U-n1-f1\f2; = f2. Hence, we have
t-n1-f = f1 and {-nq-f = 2, showing that f belongs to §; [0 fo. Therefore, (4.3.4.A) holds. a

NATURAL HOPF ALGEBRAS OF NONSYMMETRIC OPERADS

In this final section we build on the preceding material to accomplish one of the main objectives
of this work: introducing new bases for the natural Hopf algebras of free nonsymmetric operads.
Existing descriptions of these Hopf algebras are given with respect to an elementary basis, under
which the product of two basis elements is expressed as a concatenation of leaning forests. We
then construct two additional bases, the fundamental basis and the homogeneous basis, such that
the product of two elements is, respectively, a shuffle or a specialized concatenation of leaning

forests.

NONSYMMETRIC OPERADS AND NATURAL HOPF ALGEBRAS

In this preliminary section, we recall the main elementary concepts of operad theory and of the

natural Hopf algebra construction.

Syl NONSYMMETRIC OPERADS. We use the standard definitions about nonsymmetric operads
(called simply operads here), as found in [Girl8]. An operad O is above all considered to be a

signature. We denote by
v:0n—=-0m; = —=0my, >0 mi+---+m, (5.1.1.A)

the composition map of O defined for any n,mq,...,m, € N, and by 1 the unit of O.
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Let O be an operad. When each z € O admits finitely many factorizations of the form
T=7YY1 - Yary Where ¥, 41, ..., Yary € O, O is finitely factorizable. When there exists a map
dg : O — N such that dg™'-0 = {1} and, for any y,y1, ..., Yary € O,

dg vy yi- .. Yary, = dgy +dgyr + - - + dg Yary, (5.1.1.B)

the map dg is a grading of O.

RN NATURAL HOPF ALGEBRAS OF NONSYMMETRIC OPERADS. The natural Hopf algebra
[Laa04; ML14; BG16; Gir24] of a finitely factorizable operad O admitting a grading dg is the
Hopf algebra N-O defined as follows. Let rd : O* — (O \ {1})" be the map such that rd-w is the
subword of w € O* consisting of its letters different from 1. Any fixed point of rd is reduced. Let
N-O be the K-linear span of the set rd-O*. The bases of N-O are thus indexed by rd-O*, and the
elementary basis (or E-basis for short) of N-O is the set {E,, : w € rd-O*}.

This vector space is endowed with an associative algebra structure through the product x

satisfying, for any wy, ws € rd-O*,
Ew, * Ew, = Ewyas- (5.1.2.A)

The element E. is the identity w.r.t. the product .

Moreover, N-O is endowed with the coproduct A defined as the unique associative algebra

morphism satisfying, for any = € O,

AE, = Z Z [.’E =~y -l ... weary ] Erd.y ® Erdows (5.1.2.B)

yeO weOv
where [ — ] is the Iverson bracket as defined at the end of Section 1. Due to the fact that O is
finitely factorizable, (5.1.2.B) is a finite sum. This coproduct endows N-O with the structure of a
bialgebra. By extending additively dg on O*, the map dg defines a grading of N-O. Thus, N-O

admits an antipode and becomes a Hopf algebra.

NATURAL HOPF ALGEBRAS OF FREE OPERADS

Here, we begin by describing the free operads on terms and then describe the natural Hopf algebras

of free operads in terms of leaning forests.

512000 FREE OPERADS ON TERMS. The free operad on S is the set €-S considered as a signature
through the arity map ar, with the composition map such that for any t,t;,...,t,,.« € TS,
ytty- ... tape is the S-term obtained by substituting each leaf of t from left to right with ¢, ...,

tar.t, and with o as unit. For instance, in T-S,, we have

7Y - @2(d19||d3000| * |dQ00| 0" ‘al dioe | ‘320 dgooo | = ag‘a] dgoeo Hago‘al djoe Hagv:: dgoeoo Ik (5.2.1.A)

S\2i20 | HOPF ALGEBRAS ON LEANING FORESTS. By construction, the Hopf algebra N Z-S is
graded by dg and its bases are indexed by the set of words (t,...,t) such that k£ > 0 and for
each i € [k], t; € T-§\ {o}. The map sending such a word (t1,...,t;) to the leaning S-forest
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nty...tgo...0 where n:=dgt; + --- 4 dg-t; is a one-to-one correspondence between the set of
words on T-S\ {o} and the set of leaning S-forests. For instance, the word (agejageee), aje, agayejeo)

on T-S. \ {o} is sent to the leaning Se-forest 5 [320(33000) 31 ¢ @331 ¢jee e0. For this reason, through

this correspondence, we shall identify words on T-S \ {o} with leaning S-forests.

On the E-basis, the product of N-Z-S] expresses, for any leaning S-forests f; and fs, as
E;, xEj, = Ef1/f27 (5.2.2.A)
where / is the over operation defined in Section 4.3.3. For instance, in N+ %-Sg),

E'l dj1|dgee| ,d3d1 000 00 * EQ‘ag dje o = E6‘31 dgoeo Hag dje ooHaz dje oj000- (5-2-2-8)

Let us now describe the coproduct of N %-S) on the E-basis. Given a leaning S-forest f of
size n, a pair (I1,I5) of sets is f-admissible it I; U Iy = [n], for any i1 € I, all ancestors of the
internal node i; + 1 of f except the root belong to I, and for any is € I», all descendants of
the internal node iy + 1 of f belong to I5. This property is denoted by (I3, I2) F §. For instance,
by considering the leaning S.-forest 3 azejajejo aseope, the f-admissible pairs of sets are exactly

({1,2,3},0), ({1,2},{3}), ({1,3},{2}), ({1},{2,3}), ({3}, {1,2}), and (0,{1,2,3}).

It follows from a description of | ] of the coproduct of N-|Z-S) that for any leaning S-forest
f of size n,
AEj= > [(Ii,I)F ]y, ®Ep,, (5.2.2.C)
I,,I>C[n]

where, for any leaning S-forest f of size n and any subset I of [n], the notation f-I refers to the
restriction, as introduced in Section 4.3.2. For instance, in N+ %-S,|,

A-Ejs (5.2.2.D)

a3ejd10|e,|@g00(0 — EO & E3 age|djeje dgeeje + El 83000 & E2 djoe|dgee

+ El dgoo & E2\330 dje o + E2\330 dje o & El dgoo

+ E2 d3ooopdgoeo 0 El dje + E3 dgejdje|odgoo|e & EO~

NONCOMMUTATIVE SYMMETRIC FUNCTIONS. In particular, the Hopf algebra of noncom-
mutative symmetric functions Sym | | can be understood as a natural Hopf algebra of a
free operad. Indeed, Sym is isomorphic to the natural Hopf algebra N-£-S; of the free operad on
the signature S := {a;} where ar-a; =1 (see | ]). Indeed, by encoding a leaning S-forest f by
the integer composition (r1,...,7x), k = 0, such that for any ¢ € [k], r; is the degree of the i-th

subterm of §, N £-S) and Sym are defined on the same vector space. Moreover, for any integer

compositions (r1,...,7%), k >0, and (r},...,7},), ¥ > 0, we have
E(rl,,..,rk) * E("‘i""""/k/) = E(rl,‘..,rk,ri,.“,r;,) (5.2.3.A)
and
AEp = Z Ew) @ Eqry—i)s (5.2.3.B)
7;6[[’!‘1]

where (0) and the empty integer composition are identified. This product and coproduct are the

ones of Sym through its elementary basis.
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FUNDAMENTAL AND HOMOGENEOUS BASES

We introduce a two new bases of the natural Hopf algebra of a free operad. These bases mimic
well-known constructions of bases in combinatorial Hopf algebras defined by summing on intervals
of particular posets. Here, the posets intervening in this new basis are the leaning forest S-easterly

wind posets.

Sieiil FUNDAMENTAL BASIS. Let us use the leaning forest S-easterly wind posets to build a
new basis of N £-S). For any leaning S-forest f, let

>l =F] {17, Ey, (5.3.1.A)

fee.s

where £-S is the set defined in Section 4.3.1, < is the partial order relation of the leaning forest
S-easterly wind posets, and, in accordance with the notations introduced at the end of Section 3.1.1,

{1} is the Mobius function of these lattices. For instance, in N+ -8,

FS A3ojd1e|0dg000 — E3 dgoejdioeje,dgeo o_E3\330 djoe|dgee Joo_E?wag dje oo, dgoeo o_E3 dg|dle|e|dgoeo|co

(5.3.1.B)
By Mbobius inversion and triangularity, for any leaning S-forest f,

> [F=f]Fy, (5.3.1.0)

fee-s
so that the set {F;:f§ € £-S} is a basis of N Z-S), called the fundamental basis (or F-basis for
short).
We can now state one of the main results of this work.
» Theorem 53.1.A — For any signature S and any leaning S-forests f1 and fa,

 *xFy = Z [f1/F2 < T < fiN\f2] Fy. (5.3.1.D)

jee.s
< Proof — Let + be the product on N-Z-Sj such that for any S-forests f; and f2, Fy, " Fy, is

the right-hand side of (5.3.1.D). For any leaning S-forests f; and fo, by denoting by n; the size of
f1 and by using Proposition 4.3.4.A and Lemma 4.3.3.C, we have

En # B = D > [ <fillfa <ol Fyy # Fy, (5.3.1E)

flee.Sf,eL-s

SO S B < Bl < BIR R < F< R Fy

fleL-SfeL-SfeL-S

Yoo h=fillla<fl Y. F

fleEL-SfLEL-S IS ANA
ST s illfa <l > [naf =11 bnaf =] F
fleEL-SfheLS feg-S
= Z [f1 fnafl[f2 sUna-f] Fy
fee.S
=Y [h/f <11 F
feL-S
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= Efl/fz’

This shows that Ej, «" Ej, = Ej, x Ej,, so that «" and « are the same products. Therefore, (5.3.1.D)
holds. O

The product of N-Z-S) on the F-basis is akin to a shuffle of reduced S-forests. For instance, in
N-T-S,|, we have

F.‘5 dgooo ‘320 dgoo ° * F'l ‘a;go‘agoo‘o‘ djejdgoeoe = F7‘a;goooH320‘3200“‘830‘3200‘0‘ djejdgoeejee (5-3-1-':)

+ F7 d3oeoo| doe doo d3e|dQ00(0, (d]o||dQ 00000
Lo e =

+ F7 d3000| doo d9 d3odeo(0o 0 |d]o|dQ00|000
(Bl ===~

+ F7 d3eoo| doo d9,d30|doe0(0d] 0| |dQ00|0000"
iy o e o= [ T

Observe that the fundamental basis of N-2-S) coincides with the ribbon basis of Sym [Gel+95].
Indeed, by employing the notation introduced in Section 5.2.3, for any integer compositions
(ri,...,7%), k>0, and (r1,...,7},), ¥ > 0, we have

F(rl,...,rk) * F(ri,...,r;,) = F(rl,...,rk,ri,...,rl’c/) + F(rl,...,rkJrri,,,.,r;/)' (5'3'1'6)
This product is the one of Sym through its ribbon basis.

51620 | HOMOGENEOUS BASIS. Let us use again the leaning forest S-easterly wind posets to build
a new basis of N £-S). For any leaning S-forest f, let

Hi:= > [f < flFy. (5.3.2.A)

feL-S

For instance, in N+ T-Sg),

H3 A30|d10j0 2000 = F3\33000Jm@20q + F3 agoo|d]o|d00e + F3 ago|djojodgeojo- (5-3-2-8)
By Mbobius inversion and triangularity, for any leaning S-forest f,
Fi= > [f <] g {1} Hy, (5.32.C)

frec-s

so that the set {H; : § € £:S} is a basis of N-Z-S, called the homogeneous basis (or H-basis for
short).

We can now state one of the main results of this work.

» Theorem 53.2.A — For any signature S and any leaning S-forests f1 and fz,
Hy, x Hj, = Hj \f,- (5.3.2.D)

< Proof — For any leaning S-forests f; and fo, by denoting by n; the size of f; and by using
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Theorem 5.3.1.A, Proposition 4.3.4.A, and Lemma 4.3.3.C, we have

naHp = Y0 > [ < fallfs < F] Fyy < Fy (5.3.2.E)

fleL-SfheL-S

)DED DI DN VTN CREN TV AR BETANALS

fee-Sf,eL-Sfee-S

Z Z [f1 fll[fz ] Z Fi

fleL-SfeL-S SAmA

= > Y [H=hllf <] Do [hnaf=fHl bnif=1f]F

flEL-SfLeL-S feL-S

= 3 [ <RIl bt < Rl Fy

feL-S

= Z [f < fi\f2] F}

feL-S

= Hfl\fQ‘

This shows that (5.3.2.0) holds. O

By employing the notation introduced at the end of Section 5.2.2; the H-basis of Sym admits

the following expression for its product. For any integer compositions (r1,...,7), k > 0, and
(ri,...,75), k' = 0, we have
Hirs o) ¥ oy = H et ) (5:3.2.F)

I CONCLUSION AND OPEN QUESTIONS

We have introduced a new partial order relation < on the underlying set T-S of free operads,
namely the easterly wind partial order. As shown in this work, the resulting posets yield new
bases of natural Hopf algebras IN-|X-Sj of free operads, sharing key properties with a broad class of
combinatorial Hopf algebras. We list here several open questions and directions for future research

in this context.

At the general level of the easterly wind posets, many properties remain unknown, including an
explicit expression for the Mébius function of X-tilted S-easterly wind posets and the enumeration
of the set |-X-t of terms greater than or equal to the X-tilted S-term t. This last question is
linked with the enumeration of the intervals of such posets.

In Section 4.2.2, we have shown that certain X-tilted S-easterly wind posets contain, as maximal
intervals, the Tamari lattices. A natural question is whether one can similarly realize, as X-tilted
S-easterly wind posets, other classical lattices involving treelike structures, such as the Kreweras
lattices | ], the Stanley lattices | ; |, the m-Tamari lattices [ ], the m-canyon

lattices | ], and the pruning-grafting lattices | ].

In Section 4.2.1, we have defined lattices on the combinatorial family of Fuss-Catalan objects.
To the best of our knowledge, these lattices are new and warrant a detailed combinatorial study,
including the enumeration of their intervals and their relationships with known structures on the

same combinatorial family.
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Besides, now linked with the natural Hopf algebra N-Z-Sj of a free operad ¥-S, one may ask
how to express the coproduct and the antipode of N-Z-Sj on the new F-basis and H-basis. A
further question concerns using these two bases to investigate the cofreeness and self-duality

of N- .S}, and obtain necessary and sufficient conditions for these properties, depending on S.

Finally, for now the easterly wind order is defined only at the level of terms. It would be
valuable to generalize this order on the underlying set of any operad O, possibly subject to
certain restrictions, so that the analogous F-basis and H-basis of N-O satisfy generalizations
of Theorems 5.3.1.A and 5.3.2.A. One approach to build such a partial order relation on O is to
choose a generating set Sp of O and consider the easterly wind order on treelike factorizations
of the elements of O as elements of the free operad T-Sp. The main challenge is to choose a
canonical factorization for each x € O, since an element may admit, when O is not free, several

factorizations.
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