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Abstract. We introduce new partial order structures on the underlying sets of free nonsym-
metric operads. These posets involve decorated ordered rooted trees, and their terminal intervals
are lattices. These lattices are not graded, not self-dual, and not semi-distributive, but they
are EL-shellable, and their Möbius functions take values in {−1, 0, 1}. They admit sublattices
on the families of m-Fuss-Catalan objects and of forests of trees. This latter order structure is
used to construct two new bases for the natural Hopf algebras of free nonsymmetric operads: a
fundamental basis and a homogeneous basis. Along with the already known elementary basis
of these Hopf algebras, this yields a triple of bases. The situation is similar to what is observed
in the Hopf algebras of Malvenuto-Reutenauer, Loday-Ronco, and noncommutative symmetric
functions, each of which presents such triples of bases and basis changes involving, respectively,
the right weak partial order, the Tamari partial order, and the Boolean lattice partial order.
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1 Introduction

1 Introduction
Since the advent of modern Hopf algebra theory around the 1990s, most Hopf algebras defined on
the linear spans of sets X of combinatorial objects are equipped with multiple bases. This is the
case, as main examples, for the Malvenuto-Reutenauer Hopf algebra FQSym [MR95; DHT02] of
permutations, the Loday-Ronco Hopf algebra PBT [LR98; LR02; HNT05] of binary trees, and
the Hopf algebra of noncommutative symmetric functions Sym [Gel+95] of integer compositions.
Each of these structures is equipped with bases {Fx}x∈X , {Ex}x∈X , and {Hx}x∈X . A notable fact
is that, in each case, there is a partial order relation ≼ on X such that

Ex =
∑

x′∈X
x≼ x′

Fx′ and Hx =
∑

x′∈X
x′ ≼ x

Fx′ , (1.0.0.A)

and two binary operations and on X such that

Ex1 ⋆ Ex2 = Ex1 x2 and Hx1 ⋆ Hx2 = Hx1 x2 , (1.0.0.B)

and
Fx1 ⋆ Fx2 =

∑
x∈X

x1 x2 ≼ x≼x1 x2

Fx, (1.0.0.C)

where ⋆ is the product of the Hopf algebra. For FQSym, ≼ is the right weak partial order, for
PBT, ≼ is the Tamari partial order [Tam62], and for Sym, ≼ is the Boolean lattice partial order.
The case of Sym is prototypical and, by analogy with the theory of symmetric functions, the
F-basis is termed the fundamental basis, while the E-basis (resp. H-basis) is termed the elementary
(resp. homogeneous) basis. There are a lot of other known examples of Hopf algebras or associative
algebras sharing these properties [NT06; Gir12; CGM15; G C17; CG22].

Besides all this, the natural Hopf algebra of an operad O is a Hopf algebra N·O whose bases are
indexed by some words on O, where the coproduct is inherited from the composition map of O.
This construction is considered for instance in [Laa04; Gir11; BG16; Gir24], and a noncommutative
variation for nonsymmetric operads is introduced in [ML14] and already employed in [Gir11].
However, surprisingly, no alternative bases are known in general for N·O. In this work, we focus
on natural Hopf algebras N· T·S of free nonsymmetric operads T·S generated by a signature
S. These Hopf algebras are defined on the linear span of certain forests and come, through the
construction N, with an E-basis.

Our main contribution consists in the introduction of a general partial order, the S-easterly
wind partial order, defined on some treelike structures decorated on a signature S (called S-terms).
This poset exhibits notable properties and specializes as a poset on forests as well as on various
other families of combinatorial objects. This structure leads to the definition of fundamental and
homogeneous bases satisfying (1.0.0.A) for N· T·S . We also introduce two binary operations
and on forests, such that the triple formed by the elementary, fundamental, and homogeneous
bases of N· T·S satisfies (1.0.0.B) and (1.0.0.C).

The contents and the results of this work are presented as follows.

Section 2, after presenting preliminary notions about signatures and S-terms, introduces the
easterly wind partial order relation ≼ on the set of S-terms. This partial order relation is defined
via connection words, which are some sequences of rational numbers associated with S-terms. In
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1 Introduction

parallel, we define a rewrite rule ⇀ on S-terms, and establish, through Theorem 2.2.3.F, that ⇀

is the covering relation of ≼. We then introduce a map tlt·X , called the X -tilting map, on the
easterly wind poset which turns out to be a closure operator [DP02] of this poset, as stated by
Theorem 2.3.2.B. This will allow us to consider subposets of easterly wind posets on closed terms
w.r.t. tlt·X , called tilted terms.

In Section 3, we prove via Theorem 3.1.1.E that the easterly wind posets are EL-shellable [Bjö80;
BW96] and that their Möbius functions take values in the set {−1, 0, 1}. Using connections words,
we also propose geometric realizations of these posets. We end this section with Theorem 3.2.2.A,
which shows that any terminal interval ↓·t from a term t in the easterly wind poset is a lattice.
This property also holds for its subposets on tilted terms. As a side remark, these lattices ↓·t are
not always join semi-distributive.

Section 4 focuses on special cases of easterly wind posets. We begin by defining a notion of
forest as a particular kind of term. To each word w on a signature S, we associate an interval[
f⇑·w, f⇓·w

]
of the S-easterly wind poset. Theorem 4.1.2.A shows that such intervals are maximal.

We then study these maximal intervals to construct posets on forests that are in bijection with
objects from the Fuss-Catalan family. This is established in Theorem 4.2.1.D. These resulting
posets, which are also lattices, are distinct from the already known posets on this combinatorial
family [BP12; CG22], and to our knowledge, have not appeared before in the literature. Through
a separate construction involving tilted terms, we realize the Tamari poset [Tam62] as a maximal
interval of a particular easterly wind poset of tilted terms. Proposition 4.2.2.B provides an explicit
poset isomorphism with the Tamari poset using the Knuth realization [Knu04] involving ordered
rooted trees and scope sequences. We conclude this section by introducing leaning forests, a
specific subclass of forests (and thus, of terms), which form the bases of the natural Hopf algebras
of free nonsymmetric operads. We endow this set with two concatenation operations and ,
and define a shuffle operation � on leaning forests. The properties and concepts established in
this section are crucial for the final one.

In the final part, Section 5, we use the easterly wind partial order on leaning forests to build
a fundamental and a homogeneous basis of the natural Hopf algebra of a free nonsymmetric
operad. Theorem 5.3.1.A shows that the product of two elements of the fundamental basis can be
expressed as an interval of the easterly wind poset, or equivalently as a shuffle of leaning forests.
Theorem 5.3.2.A shows in a similar way that the product of two elements of the homogenous basis
expresses through the operation on leaning forests.

We conclude in Section 6 with some open questions raised by this work.

General notations and conventions. All functions are written in curried form: given a
function f : A1 ×· · ·×An → A, we denote its application by f ·a1· . . . ·an rather than f(a1, . . . , an).
Accordingly, the function type of f is A1 → · · · → An → A; the arrow → is taken to be right-
associative. Rather than enclosing sub-expressions in parentheses, we use underlining to distinguish
these parts within expressionsa. For a statement P , the Iverson bracket [[[P ]]] takes the value 1 if P

is true and 0 otherwise. For two integers i and j, [i, j] denotes the interval {i, . . . , j}, [i] denotes
the set [1, i] and Jn] denotes the set [0, i]. For a set A, A∗ is the set of words on A. For w ∈ A∗,
the length of w is ℓ·w. The only word of length 0 is the empty word ϵ. For any i ∈ [ℓ·w], w·i is the

aThese two notational conventions are particularly useful when working with treelike structures and operads, as
they simplify the handling of compositions and nested applications.
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2 Easterly wind partial orders

i-th letter of w. For a ∈ A and n ∈ N, an is the word of length n such that an·i = a for all i ∈ [n].
Given two words w and w′, the concatenation of w and w′ is denoted by w ■ w′. In graphical
representations of Hasse diagrams of posets, the order relation progresses from top to bottom.

2 Easterly wind partial orders
This first section is devoted to introducing a partial order on the set of S-terms, which are treelike
structures that realize the free nonsymmetric operad on the generating set S. We establish several
properties of this partial order.

2.1 Signatures and terms
We begin with some preliminary definitions concerning particular treelike structures, called terms,
which are defined from a set of allowed decorations, called signatures.

2.1.1 Signatures. A signature is a set S endowed with a map ar : S → N. For any s ∈ S,
ar·s is the arity of s. For any n ∈ N, let S·n := {s ∈ S : ar·s = n}. For the examples that will
follow, we shall consider the signature Se := {ai,j : i, j ∈ N} where for any ai,j ∈ Se, ar·ai,j = i.
To lighten the notations, we shall write simply ai for ai,0.

In what follows, we define several concepts “C” parameterized by a signature S, denoted by
“S-C”. To streamline the phrasing, whenever there is no ambiguity, we simply write “C”.

2.1.2 Terms. Given a signature S, an S-term is either the leaf or a pair (s, (t1, . . . , tar·s))
where s ∈ S, and t1, . . . , tar·s are S-terms. For brevity, we write s t1 . . . tar·s for (s, (t1, . . . , tar·s)).
By definition, an S-term is therefore a decorated ordered rooted tree where each internal node
having n children is decorated on S·n. The set of S-terms is denoted by T·S. For instance,
a3 a1 a2a0 a3a0 a1 is an Se-term and it writes as the decorated ordered rooted tree

a3

a1 a2

a0

a3

a0 a1

1

2 3

4

5
6

7

. (2.1.2.A)

A subterm of an S-term t := s t1 . . . tar·s is either t itself, or recursively a subterm of ti where
i ∈ [ar·s]. For any s ∈ S, the s-corolla is the S-term ι·s := s . . . . In other words, ι·s is the S-term
consisting in one single internal node decorated by s and in ar·s leaves. Let us now introduce some
additional definitions about S-terms. Below, t is an S-term.

The preorder traversal of t is defined recursively as follows. If t = , then the leaf forming t

is visited. Otherwise, we have t = s t1t2 . . . tar·s where s ∈ S and t1, t2, . . . , and tar·s are S-terms.
In this case, the root of t is visited first, and then, t1, t2, . . . , and tar·s are visited from left to
right according to their respective preorder traversals. This procedure induces a total order on the
leaves and internal nodes of t where the first visited element is the smallest one. Note that the
symbolic notation of an S-term already lists its leaves and internal nodes in this order (see (2.1.2.A)
and its symbolic notation given just before).
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2 Easterly wind partial orders 2.2 Posets on terms

The arity ar·t of t is the number of occurrences of leaves of t. The leaves of t are numbered
consecutively, starting with 1, according to their positions in the preorder traversal of t. Given
i ∈ [ar·t], the i-th leaf of t is extreme if all internal nodes of t are visited before the i-th leaf in the
preorder traversal of t.

The degree dg·t of t is the number of internal nodes of t. The internal nodes of t are numbered
consecutively, starting with 1, according to their positions in the preorder traversal of t. Henceforth,
we identify each internal node of t with the index assigned to it. When dg·t ⩾ 1, the contraction
of t is the S-term ∂·t obtained by replacing the last internal node dg·t of t by a leaf. We denote
by N·t the set [dg·t] of internal nodes of t. The decoration word of t is the word dc·t on S such
that for any i ∈ N·t, dc·t·i is the decoration of i in t. By a slight abuse of notation, let us denote
by ar·t·i the arity ar· dc·t·i of the decoration of i ∈ N·t.

An edge of t is a triple (i1, j, i2) such that i1, i2 ∈ N·t and i2 is the j-th child of i1, where the
children of i1 are numbered from left to right, starting by 1. For convenience, when dg·t ⩾ 1, we
consider that (1, 0, 1) is an edge of t. This edge can be seen as a loop on the root of t. We denote
by E·t the set of edges of t. For any internal node i2 of t, there is a unique edge of t of the form
(i1, j, i2), called the parent edge of i2. Under these definitions, the parent pa·t·i2 of i2 is the node
i1, and the local position lp·t·i2 of i2 is the integer j. With the previous convention, the internal
node 1 is the parent of itself and its local position is 0.

Let us give some examples of the previous definitions. The integers near each internal node
of the Se-term t in (2.1.2.A) are the integers with which they are identified. Moreover, we have
dg·t = 7, ar·t = 4, dc·t = a3a1a2a0a3a0a1,

E·t = {(1, 0, 1), (1, 1, 2), (1, 2, 3), (3, 1, 4), (1, 3, 5), (5, 1, 6), (5, 2, 7)}, (2.1.2.B)

and the extreme leaves of t are the 3-rd and the 4-th ones. Besides, the contraction of t is the
Se-term a3 a1 a2a0 a3a0 .

2.2 Posets on terms
The purpose of this section is to define a partial order relation ≼ on the set of S-terms. This
partial order is defined by comparing, letter by letter, certain sequences of rational numbers
obtained from S-terms, called connection words. We show that ≼ admits, as its covering relation,
a rewrite rule ⇀ on the set of S-terms, which consists of pruning and grafting subterms in an
appropriate way. We begin this section by introducing this rewrite rule.

2.2.1 A rewrite rule on terms. For any i ∈ N \ {0}, let ⇀i be the binary relation on T·S
defined as follows. Let t1 be an S-term of degree at least i and such that its internal node i is
visited immediately after a leaf in the preorder traversal of t1. Then, t1 ⇀i t2 holds if t2 is the
S-term obtained from t1 by moving to this leaf the subterm rooted at i. For instance, we have

a3

a2

a2

a1

a2

a0

a1

↑
⇀3

a3

a2

a2

a1

a2

a0

a1
, (2.2.1.A)
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2 Easterly wind partial orders 2.2 Posets on terms

a3 a2 a2 a1 a2 a0 a1 ⇀3 a3 a2 a2 a1 a2 a0 a1

and

a3

a2

a2

a1

a2

a0

a1

↑

⇀5

a3

a2

a2

a1 a2

a0

a1

, (2.2.1.B)

a3 a2 a2 a1 a2 a0 a1 ⇀3 a3 a2 a2 a1 a2 a0 a1 .

In these examples, in accordance with the previous definition of ⇀i, each surrounded area shows
the moved subterm rooted at an internal node i, and each arrow shows the leaf which is visited
immediately before i in the preorder traversal, target of the moved subterm. Observe that these
transformations become particularly transparent when the terms are displayed in their symbolic
notation: the subterm rooted at i, written in bold, is relocated on the leaf appearing immediately
to its left. Remark that by setting t1 as the Se-term appearing in the left-hand sides in (2.2.1.A)
and (2.2.1.B), there is no Se-term t2 such that t1 ⇀1 t2 nor t1 ⇀2 t2 because there are no leaves
which are visited before the internal nodes 1 and 2 in the preorder traversal of t1. Moreover, there
is no Se-term t2 such that t1 ⇀7 t2 because an internal node, in this case the internal node 6, is
visited just before visiting the internal node 7 in the preorder traversal of t1.

From now on, except at some places in Section 4.2.1, we will exclusively use the symbolic
notation for S-terms. However, readers are invited to convert these into their graphical notation
if they feel more comfortable doing so.

It follows immediately from the definition of ⇀i that ⇀1 is the empty relation. Another
immediate property is that for any i ∈ N \ {0} and any S-term t1, there is at most one S-term t2

such that t1 ⇀i t2. Let us also denote by ∗
⇀i the reflexive and transitive closure of ⇀i.

Given two triples x1 := (i1, j1, i) and x2 := (i2, j2, i) of integers, x1 is dominated by x2 if the
pair (i1, −j1) is lexicographically smaller than or equal to the pair (i2, −j2) For instance, (2, 5, 4)
is dominated by (3, 7, 4) and by (2, 3, 4), but not by (1, 1, 4) neither by (2, 6, 4).

The following lemma is a crucial tool that is used in several subsequent proofs.

▶ Lemma 2.2.1.A — Let S be a signature and t1 and t2 be two S-terms such that t1 ⇀i t2 for an
i ⩾ 2. The following properties hold:

(i) the decoration words of t1 and t2 are the same;

(ii) the S-terms t1 and t2 share all edges except for the parent edge of i;

(iii) the parent edge of i in t1 is dominated by the parent edge of i in t2;

(iv) for any internal nodes i′ and i′′ of t1 and t2, if i′′ is a descendant of i′ in t1, then i′′ is also
a descendant of i′ in t2.

◀ Proof — Let i1 := pa·t1·i, k be the leaf which is visited immediately before i in the preorder
traversal of t1, and i2 be the internal node of t1 to which k is attached.

First, by definition of ⇀i, since t2 is obtained from t1 by moving on k the subterm rooted at i, all
internal nodes of t1 and t2 are visited in the same order. Therefore, dc·t1 = dc·t2, establishing (i).
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2 Easterly wind partial orders 2.2 Posets on terms

Point (ii) is immediate since by definition of ⇀i, t1 and t2 differ only by the parent of their
internal node i, which is i1 and t1 and i2 in t2. All other edges are identical in both t1 and t2.

To prove (iii), we need to distinguish two cases. First, if both k and i admits the same parent
i1 = i2, then, by definition of ⇀i, (i1, j1 − 1, i) is the parent edge of i in t2. Therefore, the parent
edge of i in t1 is dominated by the parent edge of i in t2. Otherwise, due to the fact that in t1, k is
attached to i2, i1 is the parent of i, and k is visited immediately before i in the preorder traversal,
it follows that i2 is visited after i1 in the preorder traversal of t1. For this reason, i1 < i2. Since
i2 is the parent of i in t2, the parent edge of i in t1 is dominated by the parent edge of i in t2.

Finally, by hypothesis, i is a descendant of i1 in t1, and by (ii), i is a descendant of i2 in t2.
Moreover, by (iii), i1 ⩽ i2. Hence, and since i2 < i, we have either that i1 = i2 or that i2 is
a descendant of i1. Therefore, in t2, i remains a descendant of i1. This property implies that,
independently from the location of two internal nodes i′ and i′′ of t1 and t2, if i′′ is a descendant
of i′ in t1, these two internal nodes enjoy the same property in t2. □□□

To illustrate Lemma 2.2.1.A, observe that in (2.2.1.A), the edge (2, 2, 3) is replaced by the
dominating edge (2, 1, 3), and in (2.2.1.B), the edge (1, 2, 5) is replaced by the dominating edge
(3, 2, 5). Moreover, all Se-terms of these two examples have a3a2a2a1a2a0a1 as decoration word.

Let us denote by ⇀ the binary relation on T·S defined as the union of all relations ⇀i for
i ∈ N \ {0}. We call ⇀ the S-easterly wind rewrite rule. Let us also denote by ∗

⇀ the reflexive
and transitive closure of ⇀.

2.2.2 Connection words. The connection word of an S-term t is the word cnc·t on Q of
length dg·t such that for any i2 ∈ N·t,

cnc·t·i = pa·t·i + 1 − 2lp·t·i − ar·t· pa·t·i . (2.2.2.A)

In other words, cnc·t·i expresses in binary fixed-point notation as x.1ℓ, where x is the binary
expansion of pa·t·i and ℓ is the number of internal nodes of t among the siblings of i that lie to its
right.

For instance, the connection words of the Se-terms t1 and t2 of (2.2.1.B) satisfy

cnc·t1 =
(

15
8 ,

7
4 , 2,

7
2 ,

3
2 , 5, 1

)
and cnc·t2 =

(
15
8 ,

7
4 , 2,

7
2 , 3, 5, 1

)
. (2.2.2.B)

Under the alternative interpretation of cnc·t, the binary fixed-point representation of cnc·t1·2 is
1.12 = 1.11, which denotes the value 7

4 , and the one of cnc·t1·6 is 101.10 = 101.0, which denotes
the value 5 as expected.

▶ Lemma 2.2.2.A — Let S be a signature, t be an S-term, and i be an internal node of t. The
parent of i in t is the unique integer i′ such that i′ ⩽ cnc·i < i′ + 1.

◀ Proof — Let (i′, j, i) be the parent edge of i in t. From the definition (2.2.2.A) of cnc, the
rational number cnc·i is minimal when j = ar·t·i′ and is, in this case, equal to i′. Moreover, cnc·i
is maximal when j = 0 and is, in this case, equal to i′ + 1 − 2−ar·t·i. Since 2−ar·t·i is a positive
number, the previous quantity is smaller than i′ + 1. The stated property follows. □□□

▶ Proposition 2.2.2.B — For any signature S and any word w on S, the map cnc on the domain
of the S-terms having w as decoration word, is injective.
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2 Easterly wind partial orders 2.2 Posets on terms

◀ Proof — Let c be a word of rational numbers belonging to the image of the map cnc on the
domain of S-terms having w as decoration word. Let us show that there exists a unique antecedent
t of c by cnc. By denoting by n the length of w, by Lemma 2.2.2.A, for any i ∈ [n], there is a
unique i′ ∈ [n] such that i′ ⩽ c·i < i′ + 1. Therefore, the parent of the internal node i of t is i′.
Moreover, from (2.2.2.A), we have lp·t·i = ar· w·i′ + log2 · i′ + 1 − c·i . This shows that the parent
edge of i in t is entirely specified by c. Since an S-term is entirely specified by its decoration word
and its set of edges, this shows the unicity of t and entails the statement of the proposition. □□□

2.2.3 Easterly wind posets. Let ≼ be the binary relation on T·S such that, for any S-terms
t1 and t2, we have t1 ≼ t2 if dc·t1 = dc·t2 and, for all i ∈ N·t1, cnc·t1·i ⩽ cnc·t2·i. Immediately
from its definition, ≼ is a partial order relation on T·S. Let us call (T·S,≼) the S-easterly wind
poset.

Let us now state a series of lemmas that will be used to establish that ⇀ is the covering relation
of the S-easterly wind poset.

▶ Lemma 2.2.3.A — Let S be a signature and t1 and t2 be two S-terms of the same degree n and
the same decoration word. We have t1 ≼ t2 if and only if for any i ∈ [n], the parent edge of i in t1

is dominated by the parent edge of i in t2.

◀ Proof — Let (i1, j1, i) (resp. (i2, j2, i)) be the parent edge of i in t1 (resp. t2). By definition
of ≼, the property t1 ≼ t2 is equivalent to the fact that for any i ∈ [n], cnc·t1·i ⩽ cnc·t2·i.
By (2.2.2.A) and Lemma 2.2.2.A, this is equivalent to the fact that i2 > i1 or both i1 = i2 and
j2 ⩽ j1. This says exactly that (i1, j1, i) is dominated by (i2, j2, i). The statement of the lemma
follows. □□□

▶ Lemma 2.2.3.B — For any signature S and any S-terms t1 and t2, t1
∗

⇀ t2 implies that t1 ≼ t2.

◀ Proof — Assume that t1 ⇀ t2. By Lemma 2.2.1.A, E·t2 is obtained from E·t1 by replacing an
edge (i1, j1, i) by a dominating edge (i2, j2, i). Therefore, by Lemma 2.2.3.A, t1 ≼ t2. Finally, the
statement of the lemma follows from the fact that ≼ is transitive. □□□

▶ Lemma 2.2.3.C — For any signature S and any S-terms t1 and t2 of degree 1 or more, if t1 ≼ t2

then ∂·t1 ≼ ∂·t2.

◀ Proof — Assume that t1 and t2 are two S-terms of the same degree n ⩾ 1 and that
t1 ≼ t2. By definition of ≼, for all i ∈ [n], cnc·t1·i ⩽ cnc·t2·i. Observe that for any S-term t

of degree n, E·t = E· ∂·t ∪ {(pa·t·n, lp·t·n, n)}. Therefore, this implies that for all i ∈ [n − 1],
cnc· ∂·t1 ·i = cnc·t1·i ⩽ cnc·t2·i = cnc· ∂·t2 ·i. Hence, we have ∂·t1 ≼ ∂·t2 as expected. □□□

▶ Lemma 2.2.3.D — Let S be a signature, and t1 and t2 be two S-terms of the same degree
n ⩾ 1. If there exists i ∈ [n − 1] such that ∂·t1 ⇀i ∂·t2, dc·t1·n = dc·t2·n, pa·t1·n = pa·t2·n, and
lp·t1·n = lp·t2·n, then t1 ⇀i t2.

◀ Proof — The S-terms t1 and t2 are both obtained by adding respectively to ∂·t1 and ∂·t2
an internal node n decorated by the same element of S and through the same edge. Since ∂·t2
can be obtained from ∂·t1 by changing a single edge involving internal nodes smaller than n, as
prescribed by the definition of ⇀i, it is possible to obtain t2 from t1 by the same changing of edge.
Therefore, t1 ⇀i t2. □□□
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▶ Lemma 2.2.3.E — Let S be a signature, and t1 and t2 be two S-terms such that t1 ≼ t2. There
exists a sequence

(
t(0), t(1) . . . , t(n)) of S-terms such that

t1 = t(0) ∗
⇀1 t(1) ∗

⇀2 · · · ∗
⇀n t(n) = t2. (2.2.3.A)

◀ Proof — Let us proceed by induction on the common degree n of t1 and t2. If n = 0 or n = 1,
then t1 = t2 and the property holds. Otherwise, we have n ⩾ 2 and, since t1 ≼ t2, by Lemma 2.2.3.C,
we have ∂·t1 ≼ ∂·t2. By induction hypothesis, there exists a sequence

(
s(0), s(1) . . . , s(n−1)) of

S-terms such that
∂·t1 = s(0) ∗

⇀1 s(1) ∗
⇀2 · · · ∗

⇀n s(n−1) = ∂·t2. (2.2.3.B)

Let, for any i ∈ Jn − 1], r(k) be the S-term obtained by adding to s(k) an internal node n decorated
by dc·t1·n through the edge (pa·t1·n, lp·t1·n, n). By Lemma 2.2.3.D,

t1 = r(0) ∗
⇀1 r(1) ∗

⇀2 · · · ∗
⇀n r(n−1). (2.2.3.C)

Now, since cnc·t1·n = cnc·r(n−1)·n ⩽ cnc·t2·n, by Lemma 2.2.3.A, t2 is obtained from r(n−1) by
replacing the parent edge of j in r(n−1) by an edge dominating it. By definition of ⇀ and
Lemma 2.2.1.A, the parent edge of n in t2 can be formed from the parent edge of n in r(n−1) by
performing a sequence of applications of the S-easterly wind rewrite rule ⇀ from r(n−1). Indeed,
this consists in iteratively moving the node n of r(n−1) as specified by the binary relation ⇀n.
Therefore, we have r(n−1) ∗

⇀n t2, establishing the expected property. □□□

▶ Theorem 2.2.3.F — For any signature S, the binary relation ⇀ is the covering relation of the
S-easterly wind poset.

◀ Proof — By Lemmas 2.2.3.B and 2.2.3.E, the binary relations ≼ and ∗
⇀ are the same. Besides,

by Lemma 2.2.1.A, if t1 and t2 are two S-terms satisfying t1 ⇀ t2, then t1 and t2 differ by the
parent edge of a certain internal node i. Therefore, we have t1 ⇀i t2. Now, by contradiction,
assume that there is an S-term t3 such that t3 ̸= t2 and t1 ⇀ t3

∗
⇀ t2. Recall that as noticed

in Section 2.2.1, t2 is the unique S-term such that t1 ⇀i t2. Therefore, we have t1 ⇀i′ t3 with
i′ ̸= i. The fact that t1 ⇀i′ t3

∗
⇀ t2 implies that t1 and t2 differ by the parent edge of i′. This

yields a contradiction with our hypotheses. This shows that ⇀ is the covering relation of the
poset (T·S,≼). □□□

Theorem 2.2.3.F justifies the given name for (T·S,≼): this name of S-“easterly wind” poset is
derived from the observation that the covering relation of this poset involves detaching a subterm
from the east and then attaching it to the west, as if an easterly breeze is blowing on the tree.

For any t ∈ T·S, let ↓·t := {t′ ∈ T·S : t ≼ t′}. We call (↓·t,≼) the S-easterly wind poset of t.
Figure 1 shows the Hasse diagram of the Se-easterly wind poset of an Se-term.

2.3 Posets on tilted terms
In this section, we consider an idempotent map tlt·X on the set of S-terms. It turns out that this
map is a closure operator on the S-easterly wind poset, so that the set of elements closed w.r.t.
tlt·X forms a subposet of the S-easterly wind poset. This construction will be useful in the final
section of this paper, as such posets are used to construct bases of natural Hopf algebras of free
operads.
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a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

a3 a3 a1 a2

Figure 1: The Hasse diagram of the Se-easterly wind poset of a3 a3 a1 a2 .

2.3.1 Tilting map. The X -tilting map is the map tlt·X : T·S → T·S defined as follows. For
any t ∈ T·S, the S-term tlt·X ·t is obtained from t by rearranging the children of every internal
node i with i ∈ X so that all non-leaf children preserve their original order and precede the
children that are leaves. Let us also define the X -reversed tilting map as the map tltr·X in the
exact same manner as the X -tilting map but with the difference that the children different from
the leaf appear after the children which are leaves. For instance, we have

tlt·{1, 2}·a3 a2 a2 a1 a0 = a3 a2 a2 a1 a0 (2.3.1.A)

and
tltr·{1, 2}·a3 a2 a2 a1 a0 = a3 a2 a2 a1 a0. (2.3.1.B)

Given an S-term t and an internal node i of t, let lb·t·i be the number of internal nodes of
t among the siblings of i that lie to its left, including i itself. For instance, by setting t as the
Se-term appearing in the left-hand side of (2.3.1.A), we have lb·t·1 = 0, lb·t·2 = 1, and lb·t·5 = 2.
Observe, of course, that if (i1, j, i) is an edge of t, then lb·t·i ⩽ j.

The following lemma provides a formalization of the effect of the X -tilting map on an S-term.

▶ Lemma 2.3.1.A — Let S be a signature, X be a set of positive integers, t be an S-term and
(i′, j, i) be an edge of t. The following properties hold:

(i) if i′ /∈ X , then (i′, j, i) is an edge of tlt·X ·t;

(ii) if i′ ∈ X , then (i′, lb·t·i, i) is an edge of tlt·X ·t.

◀ Proof — By definition of the map tlt·X , if i′ /∈ X , then the children of i′ in t and in tlt·X ·t
are arranged in the same way. This implies (i). Besides, when i′ ∈ X , in order to obtain tlt·X ·t,
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the children of i′ in t are pushed to the left taking the place of potential leaves. Since the children
of i′ which are not leaves remain in the same relative order, each internal node i of tlt·X ·t which
is a children of i′ appears at the lb·t·i-th position. This implies (ii). □□□

2.3.2 A closure operator. A map ϕ : P → P is a closure operator (see [DP02]) of a poset
(P,≼P) if the following three properties hold:

(C1) for any x ∈ P, x ≼P ϕ·x;

(C2) for any x, x′ ∈ P, x ≼P x′ implies ϕ·x ≼P ϕ·x′;

(C3) for any x ∈ P, ϕ· ϕ·x = ϕ·x.

Condition (C1) says that ϕ is extensive, Condition (C2) says that ϕ is order-preserving, and
Condition (C3) says that ϕ is idempotent.

▶ Lemma 2.3.2.A — Let S be a signature, and t1 and t2 be two S-terms such that t1 ≼ t2. If i is
an internal node of both t1 and t2 admitting the same parent in t1 and t2, then lb·t2·i ⩽ lb·t1·i.

◀ Proof — Assume that t1 ⇀i′ t2 where i′ ∈ N·t1. It is immediate, by definition of ⇀i′ that if
i′ is not a left brother of i in t1, then lb·t1·i = lb·t2·i. Assume now that i′ is a left brother of i in
t1 (including the case i′ = i). Again by definition of ⇀i′ , if the leaf which is visited immediately
before i′ in the preorder traversal of t1 is a child of pa·t1·i, then lb·t2·i = lb·t1·i. Otherwise,
lb·t2·i = lb·t1·i − 1. The facts that, by Theorem 2.2.3.F, ⇀ is the covering relation of the partial
order relation ≼, and that ⇀ is the union of all ⇀i′ with i′ ⩾ 1, entail the statement of the lemma.

□□□

▶ Theorem 2.3.2.B — For any signature S and any set X of positive integers, the map tlt·X is a
closure operator of the S-easterly wind poset.

◀ Proof — Let t ∈ T·S. By Lemma 2.3.1.A, for any edge (i′, j1, i) of t, there is an edge (i′, j2, i)
of tlt·X ·t such that j2 ⩽ j1. Hence, the former edge is dominated by the latter. Therefore, by
Lemma 2.2.3.A, t ≼ tlt·X ·t, showing that tlt·X satisfies (C1).

Let t1, t2 ∈ T·S such that t1 ≼ t2. Assume that (i1, j1, i) is an edge of t1. By Lemma 2.2.3.A,
there is an edge (i2, j2, i) of t2 such that the former edge is dominated by the latter. Moreover,
by Lemma 2.3.1.A, tlt·X ·t1 has an edge (i1, j′

1, i) with j′
1 ∈ {j1, lb·t·i}. Again by Lemma 2.3.1.A,

we have also that (i2, j′
2, i) is an edge of tlt·X ·t2 with j′

2 ∈ {j2, lb·t2·i}. Now, we have two cases
depending on how (i1, j1, i) is dominated by (i2, j2, i).

1. If i1 < i2, then (i1, j′
1, i) is dominated by (i2, j′

2, i).

2. Otherwise, we have necessarily that i1 = i2 and j′
2 ⩽ j′

1. Now, by Lemma 2.3.1.A, if i1 /∈ X ,
then both j′

1 = j1 and j′
2 = j2 hold. Otherwise, when i1 ∈ X , we have j′

1 = lb·t1·i and
j′

2 = lb·t2·i. By Lemma 2.3.2.A, we have in particular that lb·t2·i ⩽ lb·t1·i. It follows that in
both sub-cases, (i1, j′

1, i) is dominated by (i1, j′
2, i).

From all this, it follows that (i1, j′
1, i) is dominated by (i2, j′

2, i). Therefore, by Lemma 2.2.3.A, this
implies that tlt·X ·t1 ≼ tlt·X ·t2 and shows that tlt·X satisfies (C2).

Finally, the map tlt·X is, immediately from its definition, idempotent. Therefore, (C3) holds.
□□□

Observe, contrary to the property highlighted by Theorem 2.3.2.B for the map tlt·X , the
map tltr·X is not a closure operator of the S-easterly wind poset. Indeed, this map is not
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extensive. A counterexample involves the Se-easterly wind poset, the set X := {1}, and the
Se-term t := a2 a1 because we have t �≼ a2 a1 = tltr·X ·t. Moreover, the X -reversed tilting
map is not either order-preserving. A counterexample involves the Se-easterly wind poset, the set
X := [4], and the Se-terms t1 := a3 a2 a1 a0 and t2 := a3 a2 a1a0 because we have t1 ≼ t2

but tltr·X ·t1 = a3 a2 a1 a0 �≼ a3 a2 a1a0 = tltr·X ·t2.

2.3.3 Kernel of the tilting map and intervals. Let us denote by ≡tlt·X the kernel of
tlt·X , that is, the equivalence relation on T·S such that for any S-terms t and t′, t ≡tlt·X t′ holds
whenever tlt·X ·t = tlt·X ·t′. For instance,

a4 a2 a1 a2 a2 ≡tlt·{1,4} a4 a2 a1 a2 a2 . (2.3.3.A)

Observe that t ≡tlt·X t′ if and only if tltr·X ·t = tltr·X ·t′.

▶ Proposition 2.3.3.A — Let S be a signature and X be a set of positive integers. The ≡tlt·X -
equivalence class of an S-term t is an interval of the S-easterly wind poset. More specifically,

[t]≡tlt·X
= [tltr·X ·t, tlt·X ·t]. (2.3.3.B)

◀ Proof — By Theorem 2.3.2.B, t ≼ tlt·X ·t. Similarly, by very analogous arguments as the one
used in the proof of this property, we have tltr·X ·t ≼ t. Now, let t′ ∈ [t]≡tlt·X

. Since t′ ≡tlt·X t,
we have tlt·X ·t′ = tlt·X ·t and tltr·X ·t′ = tltr·X ·t. Therefore, from the above property, we have
tltr·X ·t ≼ t′ ≼ tlt·X ·t.

Assume now that t′ ∈ [tltr·X ·t, tlt·X ·t] and let (i, j, i′) be an edge of t′. If i ∈ X , then by
Lemma 2.2.3.A, (i, j, i′) is an edge of both tltr·X ·t and tlt·X ·t. Otherwise, when i /∈ X , again by
Lemma 2.2.3.A, (i, j′, i′) is an edge of tltr·X ·t and (i, j′′, i′) is an edge of tlt·X ·t with j′′ ⩽ j ⩽ j′.
Therefore, by definition of ≡tlt·X , we have t′ ≡tlt·X t so that t′ ∈ [t]≡tlt·X

. □□□

2.3.4 Closed elements. An element x of a poset P is closed w.r.t. a closure operator ϕ of P
if x is a fixed point of ϕ. In this way, since by Theorem 2.3.2.B, for any set X of positive integers,
tlt·X is a closure operator of (T·S,≼), closed elements w.r.t. tlt·X are well-defined and are called
X -tilted. For instance, the Se-term a3 a2 a2 a1 a0 a2 is {1, 3, 6}-tilted but is not {2}-tilted.

For any set X of positive integers, ≼ is a partial order on tlt·X · T·S . Let us call (tlt·X · T·S ,≼)
the X -tilted S-easterly wind poset. Observe that for any sets X1 and X2 of positive integers,
if X1 ⊆ X2, then (tlt·X2· T·S ,≼) is a subposet of (tlt·X1· T·S ,≼). Of course, (tlt·∅· T·S ,≼) is
the S-easterly wind poset introduced in Section 2.2.3. Moreover, for any t ∈ T·S, let ↓·X ·t :=
↓·t ∩ tlt·X ·t . We call (↓·X ·t,≼) the X -tilted S-easterly wind poset of t. Figure 2 shows the Hasse
diagram of the X -tilted Se-easterly wind poset of a term.

2.3.5 Scope sequences and fully tilted terms. The scope sequence of an S-term t is the
word sc·t on N of length dg·t such that for any i ∈ N·t, sc·t·i is the number descendants of i in t.
For instance,

a4a0 a2 a1 a2 a1 a2 = 6020010. (2.3.5.A)

▶ Lemma 2.3.5.A — Let S be a signature and t be an S-term. For any internal node i of t

different from the root, the parent of i in t is the greatest internal node i′ of t such that i′ < i and
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a3 a3 a1 a2
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Figure 2: The Hasse diagram of the {1, 2}-tilted Se-easterly wind poset of
a3 a3 a1 a2 .

i′ + sc·t·i′ ⩾ i.

◀ Proof — By definition of the word sc·t, in t, an internal node i is a descendant of an internal
node i′ if and only if i′ + 1 ⩽ i ⩽ i′ + sc·t·i′. Therefore, each ancestor i′ of i in t satisfies i′ < i

and i′ + sc·t·i′ ⩾ i. The parent of i in t is the greatest internal node among the ancestors of i.
The statement of the lemma follows. □□□

An S-term t is fully tilted if t is N \ {0}-tilted.

▶ Proposition 2.3.5.B — Let S be a signature, and t1 and t2 be two fully tilted S-terms of the
same degree n. We have t1 ≼ t2 if and only if, for any i ∈ [n], sc·t1·i ⩽ sc·t2·i.

◀ Proof — Assume that t1 and t2 are two fully tilted S-terms such that t1 ≼ t2. By Lemmas 2.2.1.A

and 2.2.3.E, for any internal node i of both t1 and t2, the number of descendants of i in t1 is smaller
than or equal to the number of descendants of i in t2. This implies that sc·t1·i ⩽ sc·t2·i.

Conversely, assume that for any i ∈ [n], sc·t1·i ⩽ sc·t2·i. Let i ∈ [n] and i1 (resp. i2) be the
parent of i in t1 (resp. t2). Lemma 2.3.5.A together with the fact that each letter of sc·t2 is greater
than or equal to the letter at the same position of sc·t1 imply that i2 ⩾ i1. Hence, the parent edge
of i in t1 (resp. t2) is (i1, j1, i) (resp. (i2, j2, i)) for some integer j1 (resp. j2). Since t1 (resp. t2) is
fully tilted, j1 = lb·t1·i (resp. j2 = lb·t2·i). This implies that i1 < i2, or both i1 = i2 and j1 ⩾ j2,
so that the edge (i1, j1, i) is dominated by the edge (i2, j2, i). By Lemma 2.2.3.A, we have t1 ≼ t2,
as expected. □□□

For any fully tilted S-term t, the fully tilted S-easterly wind poset of t is the N \ {0}-tilted
S-easterly wind poset of t.

3 Geometric and lattice properties
In this section, we continue to establish properties of the easterly wind posets by focusing in
particular on geometric properties and on showing that terminal intervals of these posets are
lattices.
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3.1 Geometric properties
We begin this section by showing that the S-easterly wind posets are EL-shellable. To this end,
we introduce an encoding of the saturated chains of these posets. Next, we propose a realization
of the X -tilted S-easterly wind posets as geometric objects using connection words introduced in
Section 2.2.2.

3.1.1 EL-shellability. Given two S-terms t1 and t2 of common degree n ⩾ 0 such that
t1 ≼ t2, a (t1, t2)-sequence is a word u on [n] such that

t1 = t(0) ⇀u·1 t(1) ⇀u·2 . . . ⇀
u· ℓ·u t(ℓ·u) = t2 (3.1.1.A)

for some S-terms t(0), t(1), . . . , t(ℓ·u). Note that, by Theorem 2.2.3.F, the sequence of these terms
forms a saturated chain from t1 to t2 in the S-easterly wind poset. We say that this saturated
chain is specified by u.

▶ Lemma 3.1.1.A — Let S be a signature, and t1 and t2 be two S-terms such that t1 ≼ t2.
The set of saturated chains between t1 and t2 is in one-to-one correspondence with the set of
(t1, t2)-sequences.

◀ Proof — Let ϕ be the map having the set of (t1, t2)-sequences as domain and the set of saturated
chains between t1 and t2 as codomain, sending any (t1, t2)-sequence u to the saturated chain(
t(0), t(1), . . . , t(ℓ)) defined accordingly with (3.1.1.A). First, recall that as noticed in Section 2.2.1,

given an S-term s1 and an internal node i of s1, there is at most one S-term s2 such that s1 ⇀i s2.
This implies that ϕ is a well-defined map. Moreover, as a consequence of Lemma 2.2.1.A, for any
S-terms s1 and s2, if s1 ⇀i s2 and s1 ⇀i′ s2 for two internal nodes i and i′ of s1, then i = i′.
This implies that any saturated chain

(
t(0), t(1), . . . , t(ℓ)) between t1 and t2 admits exactly one

(t1, t2)-sequence which is an antecedent by ϕ. Therefore ϕ is a bijection and the statement of the
lemma follows. □□□

Lemma 3.1.1.A entails in particular that the notion of saturated chain specified by a (t1, t2)-
sequence is well-defined.

▶ Lemma 3.1.1.B — Let S be a signature, and t1 and t2 be two S-terms such that t1 ≼ t2. Among
all (t1, t2)-sequences,

(i) there is at most one which is a weakly increasing word;

(ii) there is at most one which is a weakly decreasing word;

(iii) the one specifying the saturated chain from t1 to t2 which is induced by Lemma 2.2.3.E is a
weakly increasing word;

(iv) this weakly increasing (t1, t2)-sequence is lexicographically smaller than any other (t1, t2)-
sequence.

◀ Proof — To prove the uniqueness of a weakly increasing (t1, t2)-sequence, assume that u and
u′ are two such weakly increasing (t1, t2)-sequences. Let i be a positive integer such that u and
u′ have both the same number of occurrences of each letter i′ for any i′ < i. Since i = 1 always
satisfies this condition, such an i exists. Let v be the prefix of u made of the letters smaller than
i. By the previously stated property on i and the fact that u and u′ are weakly increasing, v

is equivalently the prefix of u′ made of the letters smaller than i. By Lemma 3.1.1.A, there is a
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unique S-term s1 such that v is a (t1, s1)-sequence. Now, let s2 be the S-term obtained from
s1 by applying k times the rewrite rule ⇀i where k is the number of occurrences of i in u. By
Lemma 2.2.1.A, s2 is obtained from s1 by moving iteratively the parent edge of i. Moreover, again
by Lemma 2.2.1.A, for all i′ ≠ i, each application of ⇀i′ on s2 does not change the edge connecting
i to its parent. Therefore, in order to obtaining t2 from s2 through both (t1, s1)-sequences u and
u′, all these properties imply that the number of occurrences of i is the same in u and u′. This
entails u = u′ and (i). In a completely similar way, this also shows that there is at most one
(t1, t2)-sequence which is a weakly decreasing word. Thus, (ii) holds.

Point (iii) is immediate by Lemma 2.2.3.E. Indeed, the saturated chain induced by the chain
of the statement of the lemma which has just been cited is specified by the (t1, t2)-sequence u

consisting in a possibly empty block of letter 1, then a possibly empty block of the letter 2, and
so on. Therefore, (iii) checks out. The fact that u is lexicographically smaller than any other
(t1, t2)-sequence holds by construction. Indeed, each letter of u is the smallest possible in order to
specify the right saturated chain from t1 to t2. Hence, (iv) holds. □□□

We use the standard definitions about labelings of Hasse diagrams of posets and EL-labelings as
given in [Bjö80; BW96], which we recall here. A labeling of a poset (P,≼P) is a map λ : ⋖P → Λ
where ⋖P is the covering relation of P and (Λ,≼Λ) is a poset. Let λ̄ be the map sending any
saturated chain c of length k ⩾ 1 of P to the word on Λ of length k − 1 defined by

λ̄·c·i := λ· c·i · c· i + 1 (3.1.1.B)

for any i ∈ [k − 1]. A saturated chain of P is λ-increasing (resp. λ-weakly decreasing) if its image
by λ̄ is an increasing (resp. weakly decreasing) word w.r.t. the partial order relation ≼Λ. A
saturated chain c of P is λ-smaller than a saturated chain c′ of P if λ̄·c is smaller than λ̄·c′ for
the lexicographic order induced by ≼Λ. The labeling λ is an EL-labeling of P if for any x, x′ ∈ P
satisfying x ≼P x′, there is exactly one λ-increasing saturated chain c from x to x′, and c is
λ-smaller than any other saturated chains from x to x′.

Let us denote by Z3 the set of triples of integers endowed with the lexicographic order. Let
λ : ⇀ → Z3 be the map defined, for any (t1, t2) ∈ ⇀, by

λ·t1·t2 := (i, i1, −j1) (3.1.1.C)

where (i1, j1, i) is the edge of t1 which is replaced by an edge (i′
1, j′

1, i) in order to produce t2. This
map is well-defined thanks to Lemma 2.2.1.A. For instance, by considering the Se-term t1 as the
left-hand side of (2.2.1.A) and the Se-term t2 as its right-hand side, we have λ·t1·t2 = (3, 2, −2).
With the same conventions, in (2.2.1.B), we have λ·t1·t2 = (5, 1, −2).

▶ Lemma 3.1.1.C — Let S be a signature, and t1, t2, and t′2 be three S-terms such that t1 ⇀i1 t2

and t1 ⇀i′
1
t′2, where i1 and i′

1 are internal nodes of t1. We have i1 ⩽ i′
1 if and only if λ·t1·t2 is

smaller than or equal to λ·t1·t′2 for the lexicographic order.

◀ Proof — By Lemma 2.2.1.A, t2 is obtained from t1 by replacing the edge (i, j, i1) by the edge
(i2, j2, i1) where i and i2 are internal nodes of both t1 and t2, and j and j2 are integers. In the
same way, t′2 is obtained from t1 by replacing the edge (i′, j′, i′

1) by an edge (i′
2, j′

2, i′
1) where

i′ and i′
2 are internal nodes of both t1 and t′2, and j′ and j′

2 are integers. By definition of λ,
λ·t1·t2 = (i1, i, −j) and λ·t1·t′2 = (i′

1, i′, −j′). The statement of the lemma follows immediately.
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□□□

Observe that Lemma 3.1.1.C implies that if u and u′ are two (t1, t2)-sequences where t1 and t2

are two S-terms satisfying t1 ≼ t2 and u is lexicographically smaller than u′, then λ̄·c is smaller
than λ̄·c′, where c (resp. c′) is the saturated chain specified by u (resp. u′).

▶ Lemma 3.1.1.D — Let S be a signature, and t1, t2, and t3 be three S-terms such that t1 ⇀i1

t2 ⇀i2 t3, where i1 is an internal node of t1 and i2 is an internal node of t2. The following
properties hold:

(i) the triples λ·t1·t2 and λ·t2·t3 are different;

(ii) we have i1 ⩽ i2 if and only if λ·t1·t2 is smaller than λ·t2·t3 for the lexicographic order.

◀ Proof — Let us first gather some properties about the fact that t1 ⇀i1 t2 ⇀i2 t3. By
Lemma 2.2.1.A, t2 is obtained from t1 by replacing the edge (i, j, i1) by the edge (i′, j′, i1) where
i and i′ are internal nodes of both t1 and t2, and j and j′ are integers. In the same way, t3 is
obtained from t2 by replacing the edge (i′′, j′′, i2) by the edge (i′′′, j′′′, i2) where i′′ and i′′′ are
internal nodes of both t2 and t3, and j′′ and j′′′ are integers. Again by Lemma 2.2.1.A, the edge
(i, j, i1) is dominated by the edge (i′, j′, i1), and the edge (i′′, j′′, i2) is dominated by the edge
(i′′′, j′′′, i2). Moreover, by definition of λ, we have λ·t1·t2 = (i1, i, −j) and λ·t2·t3 = (i2, i′′, −j′′).

First, let us assume by contradiction that λ·t1·t2 = λ·t2·t3. This implies that (i1, i, −j) =
(i2, i′′, −j′′) so that t1 and t2 have both the same edge (i, j, i1) = (i′′, j′′, i2). Moreover, since
t1 ⇀i1 t2, by Lemma 2.2.1.A, (i, j, i1) is not an edge of t2. This yields a contradiction and (i) checks
out.

Besides, if i1 < i2, then we have immediately that λ·t1·t2 is smaller than λ·t2·t3 for the
lexicographic order. When i1 = i2, the edges (i′, j′, i1) and (i′′, j′′, i2) are equal. Hence, (i, j, i1)
differs from and is dominated by (i′′, j′′, i2). For this reason, λ·t1·t2 is smaller than λ·t2·t3. for
the lexicographic order. Conversely, when i1 > i2, it follows directly that λ·t1·t2 is greater than
λ·t2·t3. Therefore, the fact that λ·t1·t2 is smaller than λ·t2·t3 implies that i1 ⩽ i2. The equivalence
stated by (ii) is established. □□□

▶ Theorem 3.1.1.E — For any signature S,

(i) the labeling λ is an EL-labeling of the S-easterly wind poset;

(ii) there is at most one λ-weakly decreasing saturated chain between any pair of elements of the
S-easterly wind poset.

◀ Proof — First of all, by Theorem 2.2.3.F, since ⇀ is the covering relation of the S-easterly
wind poset, the map λ is a well-defined labeling of this poset.

Let t1 and t2 be two S-terms such that t1 ≼ t2. Assume that there exist two λ-weakly increasing
(resp. λ-weakly decreasing) saturated chains c and c′ between t1 and t2. By Lemma 3.1.1.A, there
exist two (t1, t2)-sequences u and u′ such that c is specified by u and c′ is specified by u′. By
Lemma 3.1.1.C, u and u′ are weakly increasing (resp. weakly decreasing) words. By Point (i)
(resp. Point (ii)) of Lemma 3.1.1.B, we have u = u′. This shows that c and c′ are in fact the same
saturated chain. Therefore, there is at most one λ-weakly increasing (resp. λ-weakly decreasing)
saturated chain from t1 to t2. In particular, this proves (ii).

Let t1 and t2 be two S-terms such that t1 ≼ t2, and let u be a weakly increasing (t1, t2)-sequence.
The existence of such u is ensured by Point (iii) of Lemma 3.1.1.B. By Lemma 3.1.1.D, the saturated
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chain specified by u is λ-increasing. The uniqueness of this λ-increasing saturated chain is shown
in the previous paragraph of this proof. Finally, the fact that the saturated chain specified by u is
λ-smaller than any other saturated chains from t1 to t2 follows from Point (iv) of Lemma 3.1.1.B

and from Lemma 3.1.1.C. Therefore, (i) is established. □□□

An important consequence [BW96] of Point (ii) of Theorem 3.1.1.E is that the codomain of the
Möbius function µ of the S-easterly wind poset is the set {−1, 0, 1}.

Besides, since by Theorem 2.3.2.B, for any set X of positive integers, tlt·X is a closure operator
of the S-easterly wind poset, by the Crapo’s Closure Theorem [Cra66], the Möbius function µ·X
of the X -tilted S-easterly wind poset satisfies

µ·X ·t1·t2 =
∑

t′
2∈T·S

[[[ tlt·X ·t′2 = t2 ]]] µ·t1·t′2 (3.1.1.D)

for all X -tilted S-terms t1 and t2.

3.1.2 Geometric realization. Let P be an interval of the X -tilted S-easterly wind poset.
Since two S-terms are comparable only if they have the same degree, let us denote by n the
common degree of the S-terms of P . The geometric realization G·P of P is the embedding of the
Hasse diagram of P in the space Rn such that each t ∈ P gives rise to a vertex of coordinates cnc·t
and each pair (t1, t2) of S-terms of P gives rise to an edge, provided that t1 is covered by t2 in P .

Moreover, when X = ∅, since by Lemma 2.2.1.A and Theorem 2.2.3.F, the connection sequences
of two S-terms which are in relation for ⇀ differ in exactly one component, every edge of G·P
is parallel to a line passing through the origin and a point of Rn the form (0, . . . , 0, 1, 0, . . . , 0).
For this reason, the geometric realizations of S-easterly wind posets are cubic [CG22; Com23]. In
general, G·P is not cubic when P is an interval of an X -tilted S-easterly wind poset with X ̸= ∅.
Figure 3 shows examples of geometric realizations of such intervals.

Figure 3: The geometric realization of the Se-easterly wind poset of t on the left,
and the geometric realization of the {1}-tilted Se-easterly wind poset of tlt·{1}·t on
the right, for t := a3 a3 a1 a1 . The top (resp. bottom) point has

(
15
18 , 3

2 , 2, 1
)

(resp.
(

15
18 , 7

4 , 11
4 , 3

)
) as coordinates on the left, and the top (resp. bottom) point has(

15
18 , 7

4 , 2, 3
2

)
(resp.

(
15
18 , 7

4 , 11
4 , 3

)
) on the right.
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3.2 Lattice properties
The purpose of this section is to show that all terminal intervals of S-easterly wind posets are
lattices. We also show that this property holds for X -tilted S-easterly wind posets.

3.2.1 Join-semilattice structure. For any words w1 and w2 on Q of the same length n,
let w3 := w1 ∨ w2 be the sequence of length n such that for any i ∈ [n], w3·i = max{w1·i, w2·i}.

Let t be an S-term and let on the set ↓·t the binary operation ∨ defined as follows. For any
S-terms t1 and t2 of ↓·t, let t1 ∨ t2 be the S-term t3 having dc·t as decoration word and such that
its connection word is cnc·t1 ∨ cnc·t2. For instance, for t := a3 a3 a0 a3 , we have

a3 a3 a0 a3 ∨ a3 a3 a0 a3 = a3 a3 a0 a3 . (3.2.1.A)

Note that by Lemma 2.2.1.A, since ↓·t ≼ t1 and ↓·t ≼ t2, we have dc·t1 = dc·t = dc·t2.

▶ Lemma 3.2.1.A — Let S be a signature and t1 and t2 be two S-terms such that t1 ≼ t2. If t1
has an internal node i such that its j-th child is an extreme leaf, then in t2, the j-th child of i is
an extreme leaf.

◀ Proof — Assume that t1 ⇀ t2 and that t1 has an internal node i such that its j-th child is
an extreme leaf. Let us call k this leaf. Since k is extreme in t1, there is no internal node of t1
which is visited after k in the preorder traversal of t1. For this reason, t2 cannot be obtained by
replacing k by any other subterm through the S-easterly wind rewrite rule. This shows that k

remains an extreme leaf in t2, so that the j-th child of i is an extreme leaf. Now, the fact that, by
Theorem 2.2.3.F, ⇀ is the covering relation of the partial order relation ≼ entails the statement of
the lemma. □□□

▶ Proposition 3.2.1.B — For any signature S and any S-term t, the operation ∨ is well-defined
on the S-easterly wind poset of t.

◀ Proof — We have to show that for any S-terms t1 and t2 such that t ≼ t1 and t ≼ t2, the
word c1 ∨ c2 is the connection word of an S-term of ↓·t, having dc·t as decoration word, where
c1 := cnc·t1 and c2 := cnc·t2. Let us prove this property by induction on n, the degree of t. This
is immediately true when n = 0. Assume that n ⩾ 1. By Lemma 2.2.3.C, we have ∂·t ≼ ∂·t1 and
∂·t ≼ ∂·t2. Let us set c′

1 := cnc· ∂·t1 , c′
2 := cnc· ∂·t2 , and c′ := c′

1 ∨ c′
2. By induction hypothesis,

c′ is the connection word of an S-term t′ of ↓· ∂·t whose decoration word is dc· ∂·t . Without
loss of generality, assume that c1·n ⩾ c2·n and let (i1, j1, n) be the parent edge of n in t1. Let
t′′ be the S-term obtained by adding to t′ the edge (i1, j1, n) so that the added internal node n

is decorated by dc·t·n. Note that since n is the last visited internal node of t1 in the preorder
traversal of t1, in ∂·t1, the j1-th child of the internal node i1 is an extreme leaf. Therefore, by
Lemma 3.2.1.A, in t′, the j1-child of t′ is a leaf. This ensures that it is possible to build t′′ as stated.
By construction, cnc·t′′ = cnc·t′ ■ c1·n. Now, since ∂·t ≼ t′ and cnc·t·n ⩽ cnc·t1·n, we have t ≼ t′′.
Moreover, by construction, dc·t′′ = dc·t′ ■ dc·t·n = dc·t. This shows the stated property. □□□

3.2.2 Lattice structure. Let us now state one of the most important results of this section.

▶ Theorem 3.2.2.A — For any signature S and any S-term t, the subposet ↓·t of the S-easterly
wind poset is a lattice. Moreover, this lattice admits ∨ as join operation.
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◀ Proof — Let us first prove that ∨ is the join operation of the poset (↓·t,≼). First of all,
by Proposition 3.2.1.B, the operation ∨ is well-defined on ↓·t. Let us show that for any S-terms
t1 and t2 such that t ≼ t1 and t ≼ t2, t′ := t1 ∨ t2 is the unique minimal element of the set
↓·t1∩ ↓·t2. For this, let t′′ be an S-term such that t1 ≼ t′′ and t2 ≼ t′′. By definition of ≼, for
any i ∈ [dg·t], cnc·t′′·i ⩾ cnc·t1·i and cnc·t′′·i ⩾ cnc·t2·i so that cnc·t′′·i ⩾ max{cnc·t1·i, cnc·t2·i}.
Since, by definition of ∨, cnc·t′·i = max{cnc·t1·i, cnc·t2·i}, we have t′ ≼ t′′. This shows that ∨ is
the join operation of (↓·t,≼). Finally, since any join-semilattice with a unique minimal element is
a lattice [Sta11], the stated property holds. □□□

A lattice L with meet operation ∧ and join operation ∨ is join semi-distributive [FJN95] if for
any x, x1, x2 ∈ L, x1 ∨ x = x ∨ x2 implies x ∨ (x1 ∧ x2) = x1 ∨ x.

For some S-terms t, the S-easterly wind posets of t are not join semi-distributive lattices.
Indeed, let us consider the Se-terms

• t := a4 a1 a1 a1 a1 ;

• s := a4 a1 a1 a1 a1 ;

• s1 := a4 a1 a1 a1 a1 ;

• s2 := a4 a1 a1 a1 a1 ;

• s′ := a4 a1 a1 a1 a1 .

It is easy to check that s, s1, and s2 belong to the Se-easterly wind poset of t and that we have
s1 ∨ s = s′ = s ∨ s2. Now, since we have s ∨ (s1 ∧ s2) = s ∨ t = s ≠ s′, this yields a contradiction
with the required relation to be join semi-distributive.

An equivalence relation ≡ on a lattice L is a lattice congruence [CS98; Rea04] of L if each ≡-
equivalence class is an interval of L and both the maps sending each x ∈ L to the smallest or greatest
element of [x]≡ are order-preserving. Observe that despite the fact that by Proposition 2.3.3.A, for
any set X of positive integers, each ≡tlt·X -equivalence class is an interval of the S-easterly wind
poset, by the remark stated at the end of Section 2.3.2, tltr·X is not order-preserving. For this
reason, for any S-term t, the restriction of the equivalence relation ≡tlt·X on the lattice ↓·t is not
in general a lattice congruence of this lattice.

3.2.3 Lattice structure on tilted terms. Let t be an S-term and X be a set of positive
integers. Let on the set ↓·X ·t the binary operation ∨·X defined for any X -tilted S-terms t1 and
t2 by t1 ∨ ·X t2 := tlt·X · t1 ∨ t2 where ∨ is the operation defined in Section 3.2.1.

▶ Proposition 3.2.3.A — For any signature S, any set X of positive integers, and any X -tilted
S-term t, the subposet ↓·X ·t of the S-easterly wind poset is a lattice. Moreover, this lattice admits
∨·X as join operation.

◀ Proof — This is a consequence of the fact that by Theorem 2.3.2.B, tlt·X is a closure operator
of ↓·t and the fact that, by Theorem 3.2.2.A, ↓·t is a lattice. Indeed, as exposed in [DP02], if ϕ is a
closure operator of a lattice L, then ϕ·L is also a lattice. This lattice has the same meet operation
as the one of L, and admits the join operation ∨′ satisfying x1 ∨′ x2 = ϕ· x1 ∨ x2 where ∨ is the
join operation of L, for any x1, x2 ∈ L. □□□

Remark that even if, as provided by Proposition 3.2.3.A, ↓·X ·t is a lattice, this lattice is not a
sublattice of ↓·t. Indeed, in the Se-easterly wind poset of a2 a2 a3 a2 a2 a2 , we have for
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instance

a2 a2 a3 a2 a2 a2 ∨ a2 a2 a3 a2 a2 a2 = a2 a2 a3 a2 a2 a2 , (3.2.3.A)

but even if the two operands are {1, 3}-tilted, the result is not.

4 Easterly wind lattices of forests
Easterly-wind posets are sufficiently large to contain, as subposets, several notable structures. In
particular, we introduce a notion of forests regarded as specific S-terms and study their posets. We
then obtain, on the one hand, a family of lattices on Fuss–Catalan objects and, on the other hand,
an alternative construction of the Tamari lattices. The section concludes with lattice structures
on leaning forests and several key notions that will later be used to describe the natural Hopf
algebras of free nonsymmetric operads.

4.1 Forests and maximal intervals
We introduce the notion of S-forests, which are particular S-terms. We also study certain maximal
intervals involving such forests in the easterly wind posets.

4.1.1 Forests. By seeing N as the signature such that for any n ∈ N, ar·n := n, let SN be
the signature S ⊔ N. An S-forest is an SN-term f of the form f = n t1 . . . tn where n ∈ N and for
any i ∈ [n], ti is an S-term. For instance, 4 a0 a2 a1 a1 a3 is an Se-forest. Moreover, the
concatenation of two S-forests n t1 . . . tn and n′ t′1 . . . t′n′ is the S-forest

n t1 . . . tn ■ n′ t′1 . . . t′n′ := n + n′ t1 . . . tnt
′
1 . . . t′n′ . (4.1.1.A)

An S-forest f = n t1 . . . tn is balanced if dg·f = n + 1. For instance, 0 and 3 a2 a0 a3 are
balanced Se-forests. On the contrary, 2 a2a0 a0 is an Se-forest which is not balanced. The size of
a balanced S-forest f is the decoration of the root of f (or, equivalently, the degree of f minus one).
Observe that the concatenation of two balanced S-forests is a balanced S-forest.

4.1.2 Maximal intervals. For any S-forest f of arity 1 or more and any S-term t, let f • t be
the S-forest obtained by replacing the leftmost leaf of f by t. For instance,

3 a2a0a0 a2 a1 • a3 a1 = 3 a2a0a0 a2 a1 a3 a1 . (4.1.2.A)

Now, given a word w on S of length n ∈ N, let the S-forests

f⇑·w := n ι· w·1 ι· w·2 . . . ι· w·n (4.1.2.B)

and
f⇓·w := (. . . (( ι·n • ι· w·1 ) • ι· w·2 ) . . .) • ι· w·n . (4.1.2.C)

For instance, for w := a2a1a0a0a0a3a2 ∈ S∗
e , we have

f⇑·w = 7 a2 a1 a0a0a0 a3 a2 (4.1.2.D)
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and
f⇓·w = 7 a2 a1a0 a0 a0 a3 a2 . (4.1.2.E)

Note that f⇑·ϵ = 0 = f⇓·ϵ. It is straightforward to prove that both f⇑·w and f⇓·w are well-defined
balanced S-forests of size ℓ·w.

▶ Theorem 4.1.2.A — For any signature S, any set X of positive integers, and any word w on S
of length n ∈ N,

(i) in the X -tilted SN-easterly wind poset, f⇑·w ≼ f⇓·w;

(ii) the S-forest f⇑·w (resp. f⇓·w) is a minimal (resp. maximal) element of the X -tilted SN-
easterly wind poset.

◀ Proof — Observe first that neither f⇑·w nor f⇓·w depend on the set X . Indeed, directly from
their definitions, it follows that these two S-forests are X -tilted for any set X of positive integers.
For this reason, in this proof, we consider simply that X = ∅.

To prove (i), let us proceed by induction on n. When n = 0, f⇑ = 0 = f⇓ so that the property is
satisfied. Assume that the property holds for any word w on S of length n ⩾ 0 and let a ∈ S. By
definition of f⇑, we have E· f⇑· w ■ a = E· f⇑·w ∪ {(1, n + 1, n + 2)}. Moreover, by definition of f⇓,
we have E· f⇓· w ■ a = E· f⇓·w ∪ {(i, j, n + 2)} where i is the internal node of f⇓·w which is the
parent of the leftmost leaf and j is the position of this leaf in its siblings. By induction hypothesis,
we have f⇑·w ≼ f⇓·w. Thus, by Lemma 2.2.3.A, for any i′ ∈ [n + 1], the parent edge of i′ in f⇑·w is
dominated by that of i′ in f⇓·w. Moreover, the edge (1, n + 1, n + 2) is dominated by the edge
(i, j, n + 2). Indeed, otherwise, we would have i = 1 and j > n + 1, which is absurd since the
internal node 1 of both f⇑· w ■ a and f⇓· w ■ a has arity n + 1. Therefore, again by Lemma 2.2.3.A,
we have f⇑· w ■ a ≼ f⇓· w ■ a as expected.

To prove (ii), assume first that t is an S-forest such that t ≼ f⇑·w. Hence, by Lemma 2.2.3.A, for
any i ∈ [2, n], the parent edge (pa·t·i, lp·t·i, i) of i in t is dominated by the parent edge (1, i − 1, i)
of i in f⇑·w. By definition of the notion of edge domination, we have necessarily pa·t·i = 1 and
lp·t·i ⩾ i − 1. It follows that lp·t·i = i − 1 so that t = f⇑·w. This shows that f⇑·w is a minimal
element of the SN-easterly wind poset. Finally, observe that in f⇓·w, all leaves are visited after all
internal internal nodes in its preorder traversal. Therefore, there is no S-forest t such that f⇓ ⇀ t.
Therefore, by Lemma 2.2.3.E, this implies that f⇓·w is a maximal element of the SN-easterly wind
poset. □□□

By Theorem 4.1.2.A and Proposition 3.2.3.A, the interval
[
f⇑·w, f⇓·w

]
of the X -tilted SN-easterly

wind poset is a maximal interval and a lattice. Let us call it the balanced forest X -tilted S-easterly
wind poset of w. When X = ∅, this poset is the balanced forest S-easterly wind poset of w. For
instance, by replacing all decorations a3 of the roots of the terms of Figure 1 by the decoration
3 ∈ N, the resulting Hasse diagram of this figure is the balanced forest ∅-tilted Se-easterly wind
poset of a3a1a2. With the same change, Figure 2 shows the Hasse diagram of the balanced forest
{1, 2}-tilted Se-easterly wind lattice of a3a1a2.

4.2 Catalan lattices and Fuss-Catalan lattices
The purpose of this section is to build, as a particular balanced forest X -tilted easterly wind
posets of some words, partial order structures on the combinatorial set of Catalan or Fuss-Catalan
objects. We begin by constructing such structures by introducing a nontrivial bijection between
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the set of some balanced forests and the set of terms whose internal node all have a fixed arity.
Using this bijection, we prove that our first family of posets admits as underlying set the set of
Fuss-Catalan objects. Independently, we consider a balanced forest easterly wind poset on fully
tilted terms and show that this construction yields an alternative description of the well-known
Tamari partial order.

4.2.1 Fuss-Catalan lattices. For any n, m ∈ N, the m-Fuss-Catalan easterly wind poset of
order n is the balanced forest N-easterly wind poset of the word mn, as defined in Section 4.1.
Figure 4 shows the Hasse diagrams of some such posets.

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

4 1 1 1 1

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

Figure 4: The Hasse diagram of the 1-Fuss-Catalan easterly wind poset of order 4 on
the left, and the Hasse diagram of the 2-Fuss-Catalan easterly wind poset of order 3
on the right. Observe that these graphs are not regular (that is, not all vertices have
the same degree).

▶ Lemma 4.2.1.A — For any m, n ∈ N, ↓· f⇑·mn is the set of S-forests of the form f = n t1 . . . tn

such that f is balanced and for any ℓ ∈ [n], dg·tn−ℓ+1 + · · · + dg·tn ⩽ ℓ.

◀ Proof — Assume first that f = n t1 . . . tn and f′ = n t′1 . . . t′n are two N-forests such that f

satisfies the condition of the statement and f ⇀ f′. From the definition of ⇀, we have either that
dg·tj = dg·t′j for all j ∈ [n], or that there exists j ∈ [n − 1] such that dg·tj = dg·t′j+1 = 0 and
dg·tj+1 = dg·t′j ̸= 0. In both cases, f′ satisfies also the condition of the statement. Since f⇑·mn

satisfies the condition of the statement and, by Theorem 2.2.3.F, ⇀ is the covering relation of ≼,
this shows that for any N-forest f such that f⇑·mn ≼ f, f satisfies the condition of the statement.

Conversely, assume that f = n t1 . . . tn is an N-forest satisfying the condition of the statement
and let i be an internal node of f. First, if pa·f·i ⩾ 2, since pa· f⇑·mn ·i = 1, the parent edge of i

in f dominates the parent edge of i in f⇑·mn. Otherwise, when pa·f·i = 1, let us set j := lp·f·i.
Since f satisfies the condition of the statement, dg·tj + · · · + dg·tn ⩽ n − j + 1. Moreover, as the
subterm of f rooted at i is tj and the set of internal nodes of f which are greater than of equal to i

is {i, . . . , n + 1}, we have dg·tj + · · · + dg·tn = n − i + 2. This implies that j ⩽ i − 1, so that the
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parent edge of i in f dominates the parent edge (1, i − 1, i) of i in f⇑·mn. Hence, by Lemma 2.2.3.A,
we have in both cases f⇑·mn ≼ f, as expected. □□□

For any m ∈ N, an m-tree is an element of T·{m + 1}. Besides, an m-binary tree is an element
of T· T·{m} where, here, T·{m} is seen as a signature whose all elements are of arity 2. In other
words, an m-binary tree is a binary tree whose internal nodes are decorated by m − 1-trees. Given
an m − 1-tree s of degree k ⩾ 1, the right comb of s is the m-binary tree such that its root is
decorated by s, the first child of the root is a leaf, and the second child is a right comb binary
tree consisting in k − 1 internal nodes decorated by . For instance, the right comb of the 2-tree
s := 3 ι·3 ι·3 is the 3-binary tree

3

3 3

. (4.2.1.A)

Let the map bt from the set of m-trees to the set of m-binary trees defined recursively, for any
m-tree t, as follows. First, if t = , then bt·t = . Otherwise, let s be the m − 1-tree obtained by
keeping the root of t and by deleting recursively all first subterms of the kept internal nodes. In
this process, let us denote by t1, . . . , tk the forgotten subterms from left to right, with k := dg·s.
Now, let r be the right comb of s. With these definitions, bt·t is obtained by replacing, for any
i ∈ [k], the i-th leaf of r by bt·ti. The last leaf of r is left as is. For instance, for m := 3, we have

bt·

4

4 4 4

4

4 4

=

3

3 3

3

3

3

3

. (4.2.1.B)

Finally, let B·m be the set of m-binary trees r such that from any internal node of r decorated
by an m − 1-tree s of degree k ⩾ 1, there is a right branch consisting in k − 1 internal nodes
decorated by , and each internal node decorated by in r is a part of such right branch.

▶ Lemma 4.2.1.B — For any m ∈ N, from the domain consisting in the set of m-trees and on the
codomain B·m, the map bt is a bijection.

◀ Proof — Let ϕ : B·m → T·{m + 1} be the map defined recursively, for any r ∈ B·m of degree
n, as follows. First, if n = 0, then r = . In this case, set ϕ·r := . Otherwise, we have n ⩾ 1 and,
from the description of B·m, r is the right comb r′ of an m − 1-tree s of degree k ⩾ 1 such that
for any i ∈ [k], the i-th leaf of r′ is attached to a subterm ri of r. Since for any i ∈ [k], ri belongs
to B·m, the m-tree ti := ϕ·ri is, by induction, well-defined. Let also t′ be the m-tree obtained by
adding to each internal node of s a leaf as first child. We define ϕ·r as the m-tree obtained by
replacing, for any i ∈ [k], the first leaf of the internal node i of t′ by ti. It follows by induction on
n that ϕ is a well-defined map. Again by induction on n, it is straightforward to show that ϕ is
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the inverse map of bt. □□□

The inorder traversal of an m-binary tree r is defined recursively as follows. It r = , then the
inorder traversal of r is empty. Otherwise, we have r = s r1r2 where s is an m − 1-tree, and r1

and r2 are two m-binary trees. In this case, r1 is visited according to the inorder traversal, then
the root of r, and finally, r2 is visited according to the inorder traversal. This procedure induces
a total order on the internal nodes of r where the first visited internal node is the smallest one.
Now, let the map if from the set of m-binary trees to the set of balanced N-forests such that,
for any m-binary tree r of degree n, if·r is the N-forest n s1 . . . sn where for any i ∈ [n], si is the
decoration of the i-th visited internal node of r w.r.t. the inorder traversal of r. For instance, by
considering the 3-binary tree r of the right-hand side of (4.2.1.B),

if·r = 7 ι·3 3 ι·3 ι·3 ι·3 3 ι·3 . (4.2.1.C)

▶ Lemma 4.2.1.C — For any m ∈ N, from the domain B·m and on the codomain
⋃

n∈N ↓·
(
f⇑·mn

)
,

the map if is a bijection.

◀ Proof — Let ϕ :
⋃

n∈N ↓·
(
f⇑·mn

)
→ B·m be the map defined recursively, for any f ∈↓·

(
f⇑·mn

)
,

n ∈ N, as follows. First, if n = 0, then f = 0. In this case, set ϕ·f := . Otherwise, we have n ⩾ 1
and by Lemma 4.2.1.A, it follows by induction on n that f decomposes as

f = f1 ■ 1 s ■ k − 1 . . .︸ ︷︷ ︸
k−1

■ f2 (4.2.1.D)

where f1 and f2 are two N-forests and s is an m − 1-tree s of degree k ⩾ 1. Let us consider
this decomposition when the size ℓ ⩾ 0 of f1 is minimal. Since f1 ■ f2 satisfies the conditions
described in Lemma 4.2.1.A, the m-binary tree r := ϕ· f1 ■ f2 is, by induction, well-defined. Let
also r′ be the right comb of s. We define ϕ·f as the m-binary tree obtained by inserting the root
of r′ onto the unique edge of r such that, w.r.t. the inorder traversal, the internal nodes coming
from f1 are visited first, then the ones of r′ are visited, and finally the ones coming from f2 are
visited. It follows by induction on n that ϕ is a well-defined map. Again by induction on n, it is
straightforward to show that ϕ is the inverse map of if. □□□

▶ Theorem 4.2.1.D — For any m, n ∈ N, the underlying set of the m-Fuss-Catalan easterly wind
poset of order n is in one-to-one correspondence with the set of m-trees of degree n. The map
if ◦ bt is such a one-to-one correspondence.

◀ Proof — By Lemma 4.2.1.B, bt is a bijection between the set of m-trees and B·m. Moreover,
By Lemma 4.2.1.C, if is a bijection between B·m and

⋃
n∈N ↓· f⇑·mn . Since these two bijections

preserve the degree, the composition if ◦ bt satisfies the property described in the statement of
the theorem. □□□

By Theorem 4.2.1.D, the m-Fuss-Catalan easterly wind posets involve the combinatorial family
of Fuss-Catalan objects. Hence, the cardinality of such posets of order n is

1
mn + 1

(
mn + n

n

)
. (4.2.1.E)

Many other posets involving this family of objects exist [BP12; CG22], and our posets differ from
those presented in the cited works.
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4.2.2 Rooted tree lattices. For any n ∈ N, let dw·n be the word on N of length n such
that for any i ∈ [n], dw·n·i = n− i. The rooted tree easterly wind poset of order n is the fully tilted
N-easterly wind poset of dw·n, as defined in Section 2.3.5. Figure 5 shows the Hasse diagrams
of such poset. By definition, all N-terms of the rooted tree easterly wind posets are balanced

4 3 2 1 0

4 3 2 10

4 3 2 1 0

4 3 2 1 0

4 3 2 10

4 3 2 1 0

4 3 2 10

4 3 2 1 0

4 3 2 1 0

4 3 2 10

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

4 3 2 10

Figure 5: The Hasse diagram of the rooted tree easterly wind poset of order 4.

forests. Observe that the minimal element of the rooted tree easterly wind poset of order n is
dt·n := f⇑· dw·n = n ι· n − 1 . . . ι·0 . For instance, dt·4 = 4 3 2 1 0.

A rooted tree is recursively defined as a node together with a possibly empty list of rooted trees,
each of which is attached to the node as a child. The size of a rooted tree r is the number of nodes
of r. The underlying rooted tree of an S-term t is the rooted tree rt·t obtained by removing the
leaves and their adjacent edges in t, as well as the decorations of its internal nodes. For instance,

rt· a4 a2 a1 a0 a3 a2 = . (4.2.2.A)

Moreover, the fully tilted term ft·r of a rooted tree r is the fully tilted N-term obtained by labelling
from n − 1 to 0 the nodes of r w.r.t. the preorder traversal and then, by grafting to each node
some leaves as rightmost children such that each node labeled by k has k children. This ensures
that ft·r is fully tilted. For instance,

ft· = 5 4 3 2 1 0 . (4.2.2.B)

▶ Lemma 4.2.2.A — For any n ∈ N, the map rt is a one-to-one correspondence from the underlying
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set of the rooted tree easterly wind poset of order n and the set of rooted trees of size n.

◀ Proof — Let T be the underlying set of the rooted tree easterly wind poset of order n. The
fact that the map rt on the domain T is injective is a consequence of the fact that all N-terms of
T are fully tilted. Let us show that each rooted tree r admits an antecedent in T for the map
rt. By setting t := ft·r, from the definitions of the maps rt and ft, it follows immediately that
rt·t = r. It remains to prove that t belongs to T . By construction of the N-term f⇑· dw·n , for any
internal node i of t, the parent edge of i in f⇑· dw·n is dominated by that of i in t. Hence, by
Lemma 2.2.3.A, f⇑· dw·n ≼ t. This shows that t ∈ T and implies the statement of the lemma. □□□

The scope sequence of a rooted tree r of size n is the word sc·r of length n such that for any
i ∈ [n], sc·r·i is the number descendants of the i-th visited node in the preorder traversal of r. For
instance,

sc· = 520010. (4.2.2.C)

Observe that the scope sequence of an S-term t as defined in Section 2.3.5 and the scope sequence
of the rooted tree rt·t coincide, that is sc· rt·t = sc·t.

The Tamari partial order [Tam62] is a partial order ≼T defined on the family of Catalan
objects of a given size. We consider here the following description of this order involving rooted
trees [Knu04]. Given two rooted trees r1 and r2 of the same size n, r1 ≼T r2 holds if and only if
for any i ∈ [n], sc·r1·i ⩽ sc·r2·i.

▶ Proposition 4.2.2.B — For any n ∈ N, the map rt is a poset isomorphism between the rooted
tree easterly wind poset of order n and the Tamari poset of order n.

◀ Proof — Let T be the underlying set of the rooted tree easterly wind poset of order n. First
of all, by Lemma 4.2.2.A, the map rt is a bijection between T and the underlying set of the Tamari
poset of order n. It remains to prove that rt is an order embedding, that is, for any t1, t2 ∈ T ,
t1 ≼ t2 if and only if rt·t1 ≼T rt·t2. This property is a consequence of Proposition 2.3.5.B and the
fact that, as noticed above, for any N-term t, sc·t = sc· rt·t . □□□

4.3 Leaning forest lattices
Leaning forest S-easterly wind lattices will be used to construct bases of natural Hopf algebras of
free nonsymmetric operads in the next section. Here we introduce these lattices and establish
some of their properties. We also define two concatenation operations and a shuffle operation on
leaning forests. These operations will subsequently be employed to describe the product of natural
Hopf algebras of free nonsymmetric operads on alternative bases.

4.3.1 Leaning forests. An S-forest f = n t1 . . . tn is leaning if f is balanced and is {1}-tilted.
For instance, 0 and 4 a2 a1a0 a0 are leaning Se-forests. On the contrary, 4 a0 a2 a2 a1 is
a balanced Se-forest which is not leaning since it is not {1}-tilted, and 3 a1 is a {1}-tilted
S-forest which is not leaning since it is not balanced. Let us denote by L·S the set of leaning
S-forests. The length of a leaning S-forest f is the number of children subterms of the root of f
which are not leaves. For instance, the length of 4 a2 a1a0 a0 is 2.
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For any w ∈ S∗, the leaning forest S-easterly wind poset of w is the balanced forest {1}-tilted
S-easterly wind poset of w, as defined in Section 4.1. Figure 6 shows the Hasse diagram of such
poset.

4 a2 a1 a2 a0

4 a2 a1 a2 a0

4 a2 a1 a2a0

4 a2 a1 a2 a0

4 a2 a1 a2 a0

4 a2 a1 a2a0

4 a2 a1 a2 a0

4 a2 a1 a2 a0

4 a2 a1 a2a0

4 a2 a1 a2 a0

4 a2 a1 a2 a0

4 a2 a1 a2a0

4 a2 a1 a2 a0

4 a2 a1 a2 a0

4 a2 a1 a2a0

4 a2 a1 a2 a0

4 a2 a1 a2 a0

4 a2 a1 a2a0

4 a2 a1 a2 a0

4 a2 a1 a2 a0

4 a2 a1 a2 a0

4 a2 a1 a2a0

Figure 6: The Hasse diagram of the leaning forest Se-easterly wind poset of a4a2a1a2a0.

▶ Proposition 4.3.1.A — Let S be a signature and let w be a word on S of length n ∈ N. The
leaning forest S-easterly wind poset of w contains all leaning S-forests having n ■ w as decoration
word.

◀ Proof — Let us prove that for any leaning forest f having n ■ w as decoration word, f⇑·w ≼ f.
For this, let i be an internal node of f different from the root, and let (i′, j, i) be the parent edge
of i in f. From the definition of f⇑·w, the parent edge of the internal node i in f⇑·w is (1, i − 1, i).
Now, if i′ ⩾ 2, then the parent edge of i in f dominates that of i in f⇑·w. Otherwise, we have
i′ = 1. Let us prove in this case that j ⩽ i − 1. Indeed, assume by contradiction that j ⩾ i. Under
this assumption, among the first j − 1 children of the root of f, since they comprise only i − 2
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internal nodes, there must be at least one leaf. Therefore, f would not be {1}-tilted, contradicting
our hypotheses. Hence, even in this case, the parent edge of i in f dominates that of i in f⇑·w. It
follows now from Lemma 2.2.3.A that f⇑·w ≼ f. □□□

Proposition 4.3.1.A provides the notable property that any leaning S-forest belong to a leaning
forest S-easterly wind poset.

4.3.2 Restrictions. Let f be a leaning S-forest of size n. Given a subset I of [n], let
Ī := {i + 1 : i ∈ I}. The restriction f·Iof f on I is the leaning S-forest obtained by keeping only
the internal nodes from the set {1} ∪ Ī of f and their adjacent edges, and by setting #I as the
decoration of the root. For instance, by considering the leaning Se-forest

f := 5 a0 a2 a1a0 a3 , (4.3.2.A)

we have f·{1, 4} = 2 a0a0, f·{2, 3} = 2 a2 a1 , and f·{2, 4, 5} = 3 a2 a0 a3 .

When I is an interval of [n], let θI : Ī → [#I] be the map defined for any i ∈ Ī by θI ·i :=
i − min I + 1. Observe that for any i ∈ Ī, the internal node i of f gives rise to the internal node
θI ·i in f·I. This map will be used to lighten the notation during the proof of the following lemma.

▶ Lemma 4.3.2.A — Let S be a signature, and let f1 and f2 be two leaning S-forests of the same
size n. If f1 ≼ f2 and I is an interval of [n], then f1·I ≼ f2·I.

◀ Proof — Assume that f1 ≼ f2 and that I is an interval of [n]. As the case where I is empty is
immediate, we assume that I is nonempty. Let i be an internal node of both f1 and f2 belonging
to Ī. Let also i1 (resp. i2) be the parent of i in f1 (resp. f2). We have several cases to explore
depending on whether i1 and i2 belong to Ī.

1. Assume first that i1 ∈ Ī. By Lemma 2.2.3.A, the parent edge of i in f1 is dominated by that of
i in f2. In particular, this implies that i1 ⩽ i2 < i so that, since I is an interval, i2 ∈ Ī. For
this reason, we have also lp· f2·I · θI ·i = lp·f2·i. Similarly, since i1 ∈ Ī, lp· f1·I · θI ·i = lp·f1·i.
These properties imply that the parent edge of θI ·i in f1·I is dominated by that of θI ·i
in f2·I.

2. Assume now that i1 /∈ Ī and i2 /∈ Ī. By definition of the restriction operation, the parent of
i is the internal node 1 in both f1·I and f2·I. Moreover, since both f1·I and f2·I are leaning,
lp· f1·I · θI ·i ⩾ lp· f2·I · θI ·i . Therefore, the parent edge of θI ·i in f1·I is dominated by that
of θI ·i in f2·I.

3. In the remaining case, i1 /∈ Ī and i2 ∈ Ī. By definition of the restriction operation, the
parent of i is the internal node 1 in f1. Moreover, since i2 ∈ Ī, θI ·i2 ⩾ 2. This shows that
the parent edge of θI ·i in f1·I is dominated by that of θI ·i in f2·I.

We have shown that for any internal node θI ·i of both f1·I and f2·I, the parent edge of θI ·i in f1·I
is dominated by that of θI ·i in f2·I. Therefore, by Lemma 2.2.3.A, f1·I ≼ f2·I. □□□

Let us introduce two specific restrictions. Given a leaning S-forest f of size n, for any k ∈ Jn],
let ⇑·k·f := f·[1, k] and ⇓·k·f := f·[k + 1, n]. We call the first restriction the k-top restriction of f
and the second, the k-bottom restriction of f. For instance, by considering the leaning Se-forest f

of (4.3.2.A), we have
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• (⇑·0·f, ⇓·0·f) = (0, f);

• (⇑·1·f, ⇓·1·f) =
(

1 a0, 4 a2 a1a0 a3

)
;

• (⇑·2·f, ⇓·2·f) = (2 a0 a2 , 3 a1a0 a3 );

• (⇑·3·f, ⇓·3·f) =
(

3 a0 a2 a1 , 2 a0 a3

)
;

• (⇑·4·f, ⇓·4·f)=
(

4 a0 a2 a1a0 , 1 a3

)
;

• (⇑·5·f ⇓·5·f) = (f, 0).

4.3.3 Over and under operations. Let be the over operation on leaning S-forests defined,
for any leaning S-forests f1 and f2, by f1 f2 := tlt·{1}· f1 ■ f2 where tlt is the tilting map defined
in Section 2.3.1 and ■ is the concatenation operation defined in Section 4.1.1. For instance, on
leaning Se-forests,

3 a1 a2 a2 5 a3 a2 a1 a2 a1 = 8 a1 a2 a2 a3 a2 a1 a2 a1 .

(4.3.3.A)

Let f1 and f2 be two leaning S-forests such that f1 is of size n1 and of length ℓ1. From the
definition of the over operation, each edge (i′, j, i) of f1 f2 obeys to the following rules:

1. if i′ < i ⩽ n1 + 1 (that is, both i′ and i come from internal nodes of f1), then (i′, j, i) is an
edge of f1;

2. if n1+2 ⩽ i′ < i (that is, both i′ and i come from internal nodes of f2), then (i′ − n1, j, i − n1)
is an edge of f2;

3. otherwise, we have i′ ⩽ n1 + 1 (that is, i′ comes from an internal node of f1) and n1 + 2 ⩽ i

(that is, i comes from an internal node of f2). In this case, we have i′ = 1 (that is, i′ is the
root of f1) and that (1, j − ℓ1, i − n1) is an edge of f2.

Similarly, let be the under operation on leaning S-forests such that, for any leaning S-forests
f1 and f2, by denoting by n1 the size of f1, by n2 the size of f2, and by r the number of extreme
leaves of f1, f1 f2 is the leaning S-forest built by grafting, for any j ∈ [n2 + r], the j-th subterm
of the root of f2 ■ ι·r onto the j-th extreme leaf of f1 ■ ι·n2 . For instance, on leaning Se-forests,

3 a1 a2 a2 5 a3 a2 a1 a2 a1 = 8 a1 a2 a2 a3 a2 a1 a2 a1 .

(4.3.3.B)

Let f1 and f2 be two leaning S-forests such that f1 is of size n1 and f2 is of size n2. From the
definition of the under operation, each edge (i′, j, i) of f1 f2 obeys to the following rules:

1. if i′ < i ⩽ n1 + 1 (that is, both i′ and i come from internal nodes of f1), then (i′, j, i) is an
edge of f1;

2. if n1+2 ⩽ i′ < i (that is, both i′ and i come from internal nodes of f2), then (i′ − n1, j, i − n1)
is an edge of f2;

3. otherwise, we have i′ ⩽ n1 + 1 (that is, i′ comes from an internal node of f1) and n1 + 2 ⩽ i

(that is, i comes from an internal node of f2). In this case, (1, j′, i − n1) is an edge of f2
where in f1 ■ ι·n2 , the child of i′ at position j is the j′-th extreme leaf of this S-forest.

▶ Lemma 4.3.3.A — Let S be a signature and let f1, f′1, f2, and f′2 be leaning S-forests. If f1 ≼ f′1

and f2 ≼ f′2, then

(i) f1 f2 ≼ f′1 f′2; (ii) f1 f2 ≼ f′1 f′2.

◀ Proof — Le us assume that f1 ≼ f′1 and f2 ≼ f′2. By Lemma 2.2.3.A, for any internal node i of
f1 (resp. f2), the parent edge of i in f1 (resp. f2) is dominated by that of i in f′1 (resp. f′2).
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Now, by the previous description of the edges of a leaning S-forest obtained from the over
operation applied on two leaning S-forests, together with the fact that for any leaning S-forests
g and g′, g ≼ g′ implies that the length of g is greater than or equal to the length of g′, for any
internal node i of f1 f2 the parent edge of i in f1 f2 is dominated by that of i in f′1 f′2. Therefore,
by Lemma 2.2.3.A, (i) holds.

Similarly, by the previous description of the edges of a leaning S-forest obtained from the under
operation applied on two leaning S-forests, together with the fact that for any leaning S-forests
g and g′, g ≼ g′ implies that the number of extreme leaves of g is smaller than or equal to the
number of extreme leaves of g′, for any internal node i of f1 f2 the parent edge of i in f1 f2 is
dominated by that of i in f′1 f′2. Therefore, by Lemma 2.2.3.A, (ii) holds. □□□

For any leaning S-forest f of size n and any k ∈ J0, n], let

·k·f :=⇑·k·f ⇓·k·f (4.3.3.C)

and
·k·f :=⇑·k·f ⇓·k·f. (4.3.3.D)

▶ Lemma 4.3.3.B — Let S be a signature and let f be a leaning S-forest of size n. For any
k ∈ J0, n],

·k·f ≼ f ≼ ·k·f. (4.3.3.E)

◀ Proof — From the definition of ·k (resp. ·k) and the previous description of the edges of a
leaning S-forest obtained from the over (resp. under) operation applied on two leaning S-forests,
the leaning S-forests f and ·k·f (resp. ·k·f) have the same edges, except possibly the parent
edges of the internal nodes i with i ⩾ k + 2, which are of the form (i′, j, i) in ·k·f (resp. ·k·f)
where j is an integer, and of the form (i′′, j′, i) in f with i′′ > i′ (resp. i′′ < i′), or both i′′ = i′ and
j′ = j. By Lemma 2.2.3.A, this implies that ·k·f ≼ f (resp. f ≼ ·k·f). □□□

▶ Lemma 4.3.3.C — Let S be a signature, and let f1 and f2 be two leaning S-forests. By denoting
by k the size of f1, for any leaning S-forest f, the two following properties hold:

(i) f1 f2 ≼ f if and only if f1 ≼⇑·k·f and f2 ≼⇓·k·f;

(ii) f ≼ f1 f2 if and only if ⇑·k·f ≼ f1 and ⇓·k·f ≼ f2.

◀ Proof — Assume first that f1 f2 ≼ f (resp. f ≼ f1 f2). By Lemma 4.3.2.A, we have
⇑·k· f1 f2 ≼⇑·k·f (resp. ⇑·k·f ≼⇑·k· f1 f2 ) and ⇓·k· f1 f2 ≼⇓·k·f (resp. ⇓·k·f ≼⇓·k· f1 f2 ). Now,
by definition of the over (resp. under) operation, we have ⇑·k· f1 f2 = f1 (resp. ⇑·k· f1 f2 = f1)
and ⇓·k· f1 f2 = f2 (resp. ⇓·k· f1 f2 = f2). Hence, f1 ≼⇑·k·f (resp. ⇑·k·f ≼ f1) and f2 ≼⇓·k·f
(resp. ⇓·k·f ≼ f2). This proves the direct implication of (i) (resp. (ii)).

Assume conversely that f1 ≼⇑ ·k·f (resp. ⇑ ·k·f ≼ f1) and f2 ≼⇓ ·k·f (resp. ⇓ ·k·f ≼ f2). By
Lemma 4.3.3.B, we have ·k·f ≼ f (resp. f ≼ ·k·f). Given this, by Lemma 4.3.3.A, we have
f1 f2 ≼ ·k·f (resp. ·k·f ≼ f1 f2). Therefore, by using the transitivity of ≼, this implies that
f1 f2 ≼ f (resp. f ≼ f1 f2). The converse of (i) (resp. (ii)) has been established. □□□

4.3.4 Shuffle product. Let f1 and f2 be two leaning S-forests of respective sizes n1 and n2.
The shifted shuffle of f1 and f2 is the set f1 � f2 of leaning S-forests f of size n1 + n2 such that
⇑·n1·f = f1 and ⇓·n1·f = f2.
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For instance, let the leaning Se-forests f1 := 4 a1 a3 a3 a0 and f2 := 3 a2 a1 a0 . The
set f1 � f2 contains exactly the four leaning Se-forests

• 7 a1 a3 a3 a0 a2 a1 a0 ;

• 7 a1 a3 a3 a0 a2 a1 a0 ;

• 7 a1 a3 a3 a0 a2 a1 a0 ;

• 7 a1 a3 a3 a0 a2 a1 a0 .

Observe that among these four Se-forests, the first (resp. last) one is f1 f2 (resp. f1 f2).

▶ Proposition 4.3.4.A — For any signature S and any leaning S-forests f1 and f2, f1 � f2 is an
interval of the leaning forest S-easterly wind poset of w1 ■ w2, where the decoration word of f1 (resp.
f2) is n1 ■ w1 (resp. n2 ■ w2) and n1 (resp. n2) is the size of f1 (resp. f2). More precisely,

f1 � f2 = [f1 f2, f1 f2]. (4.3.4.A)

◀ Proof — First of all, by definition of �, all S-forests of f1 � f2 have (n1 + n2) ■ w1 ■ w2 as
decoration word. Hence, by Proposition 4.3.1.A, f1 � f2 is a subset of the leaning forest S-easterly
wind poset of w1 ■ w2.

Let f be an S-forest. Assume that f belongs to the set f1 � f2. By definition of �, we have
⇑ ·n1·f = f1 and ⇓ ·n1·f = f2. Therefore, by Lemma 4.3.3.B, f1 f2 ≼ f ≼ f1 f2. Conversely,
assume that f1 f2 ≼ f ≼ f1 f2. By Lemma 4.3.2.A, we have ⇑·n1· f1 f2 ≼⇑·n1·f ≼⇑·n1 f1 f2 and
⇓·n1· f1 f2 ≼⇓·n1·f ≼⇓·n1 f1 f2 . Directly from the definitions of the over and under operations,
we have ⇑·n1· f1 f2 = f1 =⇑·n1· f1 f2 and ⇓·n1· f1 f2 = f2 =⇓·n1· f1 f2 = f2. Hence, we have
⇑·n1·f = f1 and ⇓·n1·f = f2, showing that f belongs to f1 � f2. Therefore, (4.3.4.A) holds. □□□

5 Natural Hopf algebras of nonsymmetric operads
In this final section we build on the preceding material to accomplish one of the main objectives
of this work: introducing new bases for the natural Hopf algebras of free nonsymmetric operads.
Existing descriptions of these Hopf algebras are given with respect to an elementary basis, under
which the product of two basis elements is expressed as a concatenation of leaning forests. We
then construct two additional bases, the fundamental basis and the homogeneous basis, such that
the product of two elements is, respectively, a shuffle or a specialized concatenation of leaning
forests.

5.1 Nonsymmetric operads and natural Hopf algebras
In this preliminary section, we recall the main elementary concepts of operad theory and of the
natural Hopf algebra construction.

5.1.1 Nonsymmetric operads. We use the standard definitions about nonsymmetric operads
(called simply operads here), as found in [Gir18]. An operad O is above all considered to be a
signature. We denote by

γ : O·n → O·m1 → · · · → O·mn → O· m1 + · · · + mn (5.1.1.A)

the composition map of O defined for any n, m1, . . . , mn ∈ N, and by 1 the unit of O.
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Let O be an operad. When each x ∈ O admits finitely many factorizations of the form
x = γ·y·y1· . . . ·yar·y where y, y1, . . . , yar·y ∈ O, O is finitely factorizable. When there exists a map
dg : O → N such that dg−1·0 = {1} and, for any y, y1, . . . , yar·y ∈ O,

dg· γ·y·y1· . . . ·yar·y = dg·y + dg·y1 + · · · + dg·yar·y, (5.1.1.B)

the map dg is a grading of O.

5.1.2 Natural Hopf algebras of nonsymmetric operads. The natural Hopf algebra
[Laa04; ML14; BG16; Gir24] of a finitely factorizable operad O admitting a grading dg is the
Hopf algebra N·O defined as follows. Let rd : O∗ → (O \ {1})∗ be the map such that rd·w is the
subword of w ∈ O∗ consisting of its letters different from 1. Any fixed point of rd is reduced. Let
N·O be the K-linear span of the set rd·O∗. The bases of N·O are thus indexed by rd·O∗, and the
elementary basis (or E-basis for short) of N·O is the set {Ew : w ∈ rd·O∗}.

This vector space is endowed with an associative algebra structure through the product ⋆

satisfying, for any w1, w2 ∈ rd·O∗,

Ew1 ⋆ Ew2 = Ew1■w2 . (5.1.2.A)

The element Eϵ is the identity w.r.t. the product ⋆.

Moreover, N·O is endowed with the coproduct ∆ defined as the unique associative algebra
morphism satisfying, for any x ∈ O,

∆·Ex =
∑
y∈O

∑
w∈Oar·y

[[[
x = γ·y· w·1 · . . . · w· ar·y

]]]
Erd·y ⊗ Erd·w, (5.1.2.B)

where [[[ − ]]] is the Iverson bracket as defined at the end of Section 1. Due to the fact that O is
finitely factorizable, (5.1.2.B) is a finite sum. This coproduct endows N·O with the structure of a
bialgebra. By extending additively dg on O∗, the map dg defines a grading of N·O. Thus, N·O
admits an antipode and becomes a Hopf algebra.

5.2 Natural Hopf algebras of free operads
Here, we begin by describing the free operads on terms and then describe the natural Hopf algebras
of free operads in terms of leaning forests.

5.2.1 Free operads on terms. The free operad on S is the set T·S considered as a signature
through the arity map ar, with the composition map such that for any t, t1, . . . , tar·t ∈ T·S,
γ·t·t1· . . . ·tar·t is the S-term obtained by substituting each leaf of t from left to right with t1, . . . ,
tar·t, and with as unit. For instance, in T·Se, we have

γ · a2 a1 a3 · a2 · · a1 a1 · a2 a3 = a2 a1 a2 a3 a1 a1 a2 a3 . (5.2.1.A)

5.2.2 Hopf algebras on leaning forests. By construction, the Hopf algebra N· T·S is
graded by dg and its bases are indexed by the set of words (t1, . . . , tk) such that k ⩾ 0 and for
each i ∈ [k], ti ∈ T·S \ { }. The map sending such a word (t1, . . . , tk) to the leaning S-forest

S. Giraudo Bases of natural Hopf algebras of operads 32 / 39



5 Natural Hopf algebras of nonsymmetric operads 5.2 Natural Hopf algebras of free operads

n t1 . . . tk . . . where n := dg·t1 + · · · + dg·tk is a one-to-one correspondence between the set of
words on T·S \ { } and the set of leaning S-forests. For instance, the word (a2 a3 , a1 , a3 a1 )
on T·Se \ { } is sent to the leaning Se-forest 5 a2 a3 a1 a3 a1 . For this reason, through
this correspondence, we shall identify words on T·S \ { } with leaning S-forests.

On the E-basis, the product of N· T·S expresses, for any leaning S-forests f1 and f2, as

Ef1 ⋆ Ef2 = Ef1 f2 , (5.2.2.A)

where is the over operation defined in Section 4.3.3. For instance, in N· T·Se ,

E4 a1 a2 a3 a1 ⋆ E2 a2 a1 = E6 a1 a2 a3 a1 a2 a1 . (5.2.2.B)

Let us now describe the coproduct of N· T·S on the E-basis. Given a leaning S-forest f of
size n, a pair (I1, I2) of sets is f-admissible if I1 ⊔ I2 = [n], for any i1 ∈ I1, all ancestors of the
internal node i1 + 1 of f except the root belong to I1, and for any i2 ∈ I2, all descendants of
the internal node i2 + 1 of f belong to I2. This property is denoted by (I1, I2) ⊢ f. For instance,
by considering the leaning Se-forest 3 a3 a1 a2 , the f-admissible pairs of sets are exactly
({1, 2, 3}, ∅), ({1, 2}, {3}), ({1, 3}, {2}), ({1}, {2, 3}), ({3}, {1, 2}), and (∅, {1, 2, 3}).

It follows from a description of [Gir24] of the coproduct of N· T·S that for any leaning S-forest
f of size n,

∆·Ef =
∑

I1,I2⊆[n]

[[[ (I1, I2) ⊢ f]]] Ef·I1 ⊗ Ef·I2 , (5.2.2.C)

where, for any leaning S-forest f of size n and any subset I of [n], the notation f·I refers to the
restriction, as introduced in Section 4.3.2. For instance, in N· T·Se ,

∆·E3 a3 a1 a2 = E0 ⊗ E3 a3 a1 a2 + E1 a3 ⊗ E2 a1 a2 (5.2.2.D)

+ E1 a2 ⊗ E2 a3 a1 + E2 a3 a1 ⊗ E1 a2

+ E2 a3 a2 ⊗ E1 a1 + E3 a3 a1 a2 ⊗ E0.

5.2.3 Noncommutative symmetric functions. In particular, the Hopf algebra of noncom-
mutative symmetric functions Sym [Gel+95] can be understood as a natural Hopf algebra of a
free operad. Indeed, Sym is isomorphic to the natural Hopf algebra N· T·S of the free operad on
the signature S := {a1} where ar·a1 = 1 (see [Gir24]). Indeed, by encoding a leaning S-forest f by
the integer composition (r1, . . . , rk), k ⩾ 0, such that for any i ∈ [k], ri is the degree of the i-th
subterm of f, N· T·S and Sym are defined on the same vector space. Moreover, for any integer
compositions (r1, . . . , rk), k ⩾ 0, and (r′

1, . . . , r′
k′), k′ ⩾ 0, we have

E(r1,...,rk) ⋆ E(r′
1,...,r′

k′) = E(r1,...,rk,r′
1,...,r′

k′) (5.2.3.A)

and
∆·E(r1) =

∑
i∈Jr1]

E(i) ⊗ E(r1−i), (5.2.3.B)

where (0) and the empty integer composition are identified. This product and coproduct are the
ones of Sym through its elementary basis.
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5.3 Fundamental and homogeneous bases
We introduce a two new bases of the natural Hopf algebra of a free operad. These bases mimic
well-known constructions of bases in combinatorial Hopf algebras defined by summing on intervals
of particular posets. Here, the posets intervening in this new basis are the leaning forest S-easterly
wind posets.

5.3.1 Fundamental basis. Let us use the leaning forest S-easterly wind posets to build a
new basis of N· T·S . For any leaning S-forest f, let

Ff :=
∑

f′∈L·S

[[[ f ≼ f′ ]]] µ·{1}·f·f′ Ef′ , (5.3.1.A)

where L·S is the set defined in Section 4.3.1, ≼ is the partial order relation of the leaning forest
S-easterly wind posets, and, in accordance with the notations introduced at the end of Section 3.1.1,
µ·{1} is the Möbius function of these lattices. For instance, in N· T·Se ,

F3 a3 a1 a2 = E3 a3 a1 a2 −E3 a3 a1 a2 −E3 a3 a1 a2 −E3 a3 a1 a2 .

(5.3.1.B)

By Möbius inversion and triangularity, for any leaning S-forest f,

Ef =
∑

f′∈L·S

[[[ f ≼ f′ ]]] Ff′ , (5.3.1.C)

so that the set {Ff : f ∈ L·S} is a basis of N· T·S , called the fundamental basis (or F-basis for
short).

We can now state one of the main results of this work.

▶ Theorem 5.3.1.A — For any signature S and any leaning S-forests f1 and f2,

Ff1 ⋆ Ff2 =
∑

f∈L·S

[[[ f1 f2 ≼ f ≼ f1 f2 ]]] Ff. (5.3.1.D)

◀ Proof — Let ⋆′ be the product on N· T·S such that for any S-forests f1 and f2, Ff1 ⋆′ Ff2 is
the right-hand side of (5.3.1.D). For any leaning S-forests f1 and f2, by denoting by n1 the size of
f1 and by using Proposition 4.3.4.A and Lemma 4.3.3.C, we have

Ef1 ⋆′ Ef2 =
∑

f′
1∈L·S

∑
f′

2∈L·S

[[[ f1 ≼ f′1 ]]][[[ f2 ≼ f′2 ]]] Ff′
1

⋆′ Ff′
2

(5.3.1.E)

=
∑

f′
1∈L·S

∑
f′

2∈L·S

∑
f∈L·S

[[[ f1 ≼ f′1 ]]][[[ f2 ≼ f′2 ]]][[[ f′1 f′2 ≼ f ≼ f′1 f′2 ]]] Ff

=
∑

f′
1∈L·S

∑
f′

2∈L·S

[[[ f1 ≼ f′1 ]]][[[ f2 ≼ f′2 ]]]
∑

f∈f′
1�f′

2

Ff

=
∑

f′
1∈L·S

∑
f′

2∈L·S

[[[ f1 ≼ f′1 ]]][[[ f2 ≼ f′2 ]]]
∑

f∈L·S

[[[ ⇑·n1·f = f′1 ]]][[[ ⇓·n1·f = f′2 ]]] Ff

=
∑

f∈L·S

[[[ f1 ≼⇑·n1·f]]][[[ f2 ≼⇓·n1·f]]] Ff

=
∑

f∈L·S

[[[ f1 f2 ≼ f]]] Ff
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= Ef1 f2 .

This shows that Ef1 ⋆′ Ef2 = Ef1 ⋆ Ef2 , so that ⋆′ and ⋆ are the same products. Therefore, (5.3.1.D)
holds. □□□

The product of N· T·S on the F-basis is akin to a shuffle of reduced S-forests. For instance, in
N· T·Se , we have

F3 a3 a2 a2 ⋆ F4 a3 a2 a1 a2 = F7 a3 a2 a2 a3 a2 a1 a2 (5.3.1.F)

+ F7 a3 a2 a2 a3 a2 a1 a2

+ F7 a3 a2 a2 a3 a2 a1 a2

+ F7 a3 a2 a2 a3 a2 a1 a2 .

Observe that the fundamental basis of N· T·S coincides with the ribbon basis of Sym [Gel+95].
Indeed, by employing the notation introduced in Section 5.2.3, for any integer compositions
(r1, . . . , rk), k ⩾ 0, and (r′

1, . . . , r′
k′), k′ ⩾ 0, we have

F(r1,...,rk) ⋆ F(r′
1,...,r′

k′) = F(r1,...,rk,r′
1,...,r′

k′) + F(r1,...,rk+r′
1,...,r′

k′). (5.3.1.G)

This product is the one of Sym through its ribbon basis.

5.3.2 Homogeneous basis. Let us use again the leaning forest S-easterly wind posets to build
a new basis of N· T·S . For any leaning S-forest f, let

Hf :=
∑

f′∈L·S

[[[ f′ ≼ f]]] Ff′ . (5.3.2.A)

For instance, in N· T·Se ,

H3 a3 a1 a2 = F3 a3 a1 a2 + F3 a3 a1 a2 + F3 a3 a1 a2 . (5.3.2.B)

By Möbius inversion and triangularity, for any leaning S-forest f,

Ff =
∑

f′∈L·S

[[[ f′ ≼ f]]] µ·{1}·f′·f Hf′ , (5.3.2.C)

so that the set {Hf : f ∈ L·S} is a basis of N· T·S , called the homogeneous basis (or H-basis for
short).

We can now state one of the main results of this work.

▶ Theorem 5.3.2.A — For any signature S and any leaning S-forests f1 and f2,

Hf1 ⋆ Hf2 = Hf1 f2 . (5.3.2.D)

◀ Proof — For any leaning S-forests f1 and f2, by denoting by n1 the size of f1 and by using
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Theorem 5.3.1.A, Proposition 4.3.4.A, and Lemma 4.3.3.C, we have

Hf1 ⋆ Hf2 =
∑

f′
1∈L·S

∑
f′

2∈L·S

[[[ f′1 ≼ f1 ]]][[[ f′2 ≼ f2 ]]] Ff′
1

⋆ Ff′
2

(5.3.2.E)

=
∑

f′
1∈L·S

∑
f′

2∈L·S

∑
f∈L·S

[[[ f′1 ≼ f1 ]]][[[ f′2 ≼ f2 ]]][[[ f′1 f′2 ≼ f ≼ f′1 f′2 ]]] Ff

=
∑

f′
1∈L·S

∑
f′

2∈L·S

[[[ f′1 ≼ f1 ]]][[[ f′2 ≼ f2 ]]]
∑

f∈f′
1�f′

2

Ff

=
∑

f′
1∈L·S

∑
f′

2∈L·S

[[[ f′1 ≼ f1 ]]][[[ f′2 ≼ f2 ]]]
∑

f∈L·S

[[[ ⇑·n1·f = f′1 ]]][[[ ⇓·n1·f = f′2 ]]] Ff

=
∑

f∈L·S

[[[ ⇑·n1·f ≼ f1 ]]][[[ ⇓·n1·f ≼ f2 ]]] Ff

=
∑

f∈L·S

[[[ f ≼ f1 f2 ]]] Ff

= Hf1 f2 .

This shows that (5.3.2.D) holds. □□□

By employing the notation introduced at the end of Section 5.2.2, the H-basis of Sym admits
the following expression for its product. For any integer compositions (r1, . . . , rk), k ⩾ 0, and
(r′

1, . . . , r′
k′), k′ ⩾ 0, we have

H(r1,...,rk) ⋆ H(r′
1,...,r′

k′) = H(r1,...,rk+r′
1,...,r′

k′). (5.3.2.F)

6 Conclusion and open questions
We have introduced a new partial order relation ≼ on the underlying set T·S of free operads,
namely the easterly wind partial order. As shown in this work, the resulting posets yield new
bases of natural Hopf algebras N· T·S of free operads, sharing key properties with a broad class of
combinatorial Hopf algebras. We list here several open questions and directions for future research
in this context.

At the general level of the easterly wind posets, many properties remain unknown, including an
explicit expression for the Möbius function of X -tilted S-easterly wind posets and the enumeration
of the set ↓·X ·t of terms greater than or equal to the X -tilted S-term t. This last question is
linked with the enumeration of the intervals of such posets.

In Section 4.2.2, we have shown that certain X -tilted S-easterly wind posets contain, as maximal
intervals, the Tamari lattices. A natural question is whether one can similarly realize, as X -tilted
S-easterly wind posets, other classical lattices involving treelike structures, such as the Kreweras
lattices [Kre72], the Stanley lattices [Sta75; Knu04], the m-Tamari lattices [BP12], the m-canyon
lattices [CG22], and the pruning-grafting lattices [BP08].

In Section 4.2.1, we have defined lattices on the combinatorial family of Fuss-Catalan objects.
To the best of our knowledge, these lattices are new and warrant a detailed combinatorial study,
including the enumeration of their intervals and their relationships with known structures on the
same combinatorial family.
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Besides, now linked with the natural Hopf algebra N· T·S of a free operad T·S, one may ask
how to express the coproduct and the antipode of N· T·S on the new F-basis and H-basis. A
further question concerns using these two bases to investigate the cofreeness and self-duality
of N· T·S , and obtain necessary and sufficient conditions for these properties, depending on S.

Finally, for now the easterly wind order is defined only at the level of terms. It would be
valuable to generalize this order on the underlying set of any operad O, possibly subject to
certain restrictions, so that the analogous F-basis and H-basis of N·O satisfy generalizations
of Theorems 5.3.1.A and 5.3.2.A. One approach to build such a partial order relation on O is to
choose a generating set SO of O and consider the easterly wind order on treelike factorizations
of the elements of O as elements of the free operad T·SO. The main challenge is to choose a
canonical factorization for each x ∈ O, since an element may admit, when O is not free, several
factorizations.
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