Groupe de travail APR, LIP6
Paris —18/11/2011

Structure and enumeration
of level-k phylogenetic networks

Philippe Gambette

@VERSITEPA RIS-EST
/‘\/)af/w«éz\a///é&




Outline

e Phylogenetic motivations
¢ Level-k network reconstruction
e Structure of level-k networks

e Counting level-1 and 2 networks



Outline

e Phylogenetic motivations



Rooted binary phylogenetic networks

a b cd e f g hi j k

leaves bijectively labeled by current species
+ internal vertices (extinct species) :
- root
- split vertices (speciation)
- hybrid vertices (hybridization,
horizontal gene transfer)



Rooted binary phylogenetic networks

a b cd e f g hi j k

Model: each gene comes from one parent:

Gene 1 Gene 2

a b cd e f g hi j k a b cd e f g hi j k



Rooted binary phylogenetic networks

a b cd e f g hi j k

Model: each gene comes from one parent:

Gene 1 Gene 2

gene loss

a b cd e f g hi j k a b e f g hi



Combinatorial phylogenetic network reconstruction

species
species
species
species
species
species
species

NOY s W N =

: AATTGCAG TAGCCCAAAAT
: ACCTGCAG TAGACCAAT

: GCTTGCCG TAGACAAGAAT
: ATTTGCAG AAGACCAAAT

TAGACAAGAAT

: ACTTGCAG TAGCACAAAAT
: ACCTGGTG TAAAAT

G1 G2

{gene sequences}

{trees}

#_=

w2,
\ rf.
HOGENOM database ﬂ(’ -
NR

Dufayard, Duret, Penel, Gouy,
Rechenmann & Perriere, Biolnf, 2005



Combinatorial phylogenetic network reconstruction

species
species
species
species
species
species
species

NOY O W N =

: AATTGCAG
: ACCTGCAG
: GCTTGCCG
: ATTTGCAG AAGACCAAAT

: ACTTGCAG
: ACCTGGTG

G1

TAGCCCAAAAT
TAGACCAAT
TAGACAAGAAT

TAGACAAGAAT
TAGCACAAAAT
TAAAAT

G2

{gene sequences}

T1 AN
% A %
t |
{trees} \A\ /ﬂp /\@ﬁ
T2

¥ _=

» )
HOGENOM database -"{( MR
Dufayard, Duret, Penel, Gouy, N
Rechenmann & Perriere, Biolnf, 2005

network

contains the trees
+ “optimal”



Combinatorial phylogenetic network reconstruction

species 1 : AATTGCAG TAGCCCAAAAT

specics 2 : ACCTGCAG TAGACCAAT {gene sequences}
species 3 : GCTTGCCG TAGACAAGAAT

species 4 : ATTTGCAG AAGACCAAAT

species 5 : TAGACAAGAAT

species 6 : ACTTGCAG TAGCACAAAAT

species 7 : ACCTGGTG TAAAAT

I\
%\
[\

T1 AN
G1 G2 % Y /%
{trees} R /ﬂp /\@ﬁ

T2

¥ _=

» )
HOGENOM database ‘{( MR
Dufayard, Duret, Penel, Gouy, N
Rechenmann & Perriere, Biolnf, 2005

o = network
contains the trees
+ “optimal”
NP-complete for 2 rooted trees

Bordewich & Semple, DAM, 2007



Combinatorial phylogenetic network reconstruction

species 1 : AATTGCAG TAGCCCAAAAT

specics 2 : ACCTGCAG TAGACCAAT {gene sequences}
species 3 : GCTTGCCG TAGACAAGAAT

species 4 : ATTTGCAG AAGACCAAAT

species 5 : TAGACAAGAAT

species 6 : ACTTGCAG TAGCACAAAAT

species 7 : ACCTGGTG TAAAAT

G1 G2 T %/\ :
{trees} e

% £
HOGENOM database ‘;{( B i
Dufayard, Duret, Penel, Gouy, NR
Rechenmann & Perriere, Biolnf, 2005
> 500 species, >70 000 trees

o < network
| d
contains the trees
+ “optimal”
NP-complete for 2 rooted trees

Bordewich & Semple, DAM, 2007



Reconstruction from triplets / quartets

{gene sequences}

{trees} d
a b cde

{triplets} {quartets}

network
contains the quartets/triplets + “optimal”



Reconstruction from triplets / quartets

{gene sequences}

{trees} d
a b cde

{triplets} {quartets}

a b c d e

triplet a|ce

network
contains the quartets/triplets + “optimal”



Reconstruction from triplets / quartets

{gene sequences}

b C
{trees} d
f

a bcde S o
b C
{triplets} {quartets} 3
f
a b c d e o d
triplet a|ce quartet ab|ce
network

contains the quartets/triplets + “optimal”



Reconstruction from triplets / quartets

Checking the solution:

Finding all triplets of a rooted network: O(n?)
Byrka, Gawrychowski, Huber & Kelk, JDA, 2010



Reconstruction from triplets / quartets

Checking the solution:

Finding all triplets of a rooted network: O(n?)
Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Finding all quartets of an unrooted network?

quartet ab|cd




Reconstruction from triplets / quartets

Checking the solution:

Finding all triplets of a rooted network: O(n?)
Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Finding all quartets of an unrooted network?

quartet ab|cd

| |

2-disjoint paths
a-b,c-d




Reconstruction from triplets / quartets

Checking the solution:

Finding all triplets of a rooted network: O(n?)
Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Finding all quartets of an unrooted network: O(n°)
2-Disjoint Paths in a graph of degree <3: O(n(1+a(n,n))) Tholey, SOFSEM'09, 2009

h g

quartet ab|cd

| |

2-disjoint paths
a-b,c-d
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e Level-k network reconstruction



Level-k networks

level: how “far” is the network from a tree ?
small level = tree structure = fast algorithms

level =

maximum number of hybrid vertices
by bridgeless component (b/ob) of
the underlying undirected graph.

a b cd e f g hi j k

level-2 network

Choy, Jansson, Sadakane & Sung, TCS, 2005



Level-k networks

level: how “far” is the network from a tree ?
small level = tree structure s fast algorithms

level =
maximum number of hybrid vertices
by blob.

a b cd e f g hi j k

level-2 network

level-1 network
(“galled tree”) a b cde fghi jk




Unrooted level-k networks

level: how “far” is the network from an unrooted tree ?
small level = tree structure = fast algorithms

level =
f  maximum number of edges to
remove, by blob, to obtain a tree.

unrooted level-2 network

Gambette, Berry & Paul, manuscript, 2011



Unrooted level-k networks

level: how “far” is the network from an unrooted tree ?
small level = tree structure = fast algorithms

level =

maximum number of edges to
remove, by blob, to obtain a tree.
= maximum cyclomatic number of

the blobs

unrooted level-2 network



Unrooted level-k networks

level: how “far” is the network from an unrooted tree ?
small level = tree structure = fast algorithms

level =
f  maximum number of edges to
remove, by blob, to obtain a tree.

unrooted level-1 network = tree of cycles
(unrooted galled tree)



Equivalence between rooted and unrooted level

rooting

Rooting: a b ¢c d e f g h i
- choosing a root

- choosing an orientation for the edges

Gambette, Berry & Paul, manuscript, 2011
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Equivalence between rooted and unrooted level

rooting

Rooting: a b ¢c d e f g h i
- choosing a root

- choosing an orientation for the edges

» - many possible rootings (possibly exponential in the level)
- same level (invariant)

Gambette, Berry & Paul, manuscript, 2011



Phylogenetic network subclass hierarchy

unicyclic
simple
tree level-1

) . -

l contains rooted binary phylogenetic networks



Phylogenetic network subclass hierarchy

explicit
rooted

level k
level-2

tree-sibling :|

tree-child :I

galled
|: network ]l: nested :I

[
=
[

efficient
reconstruction
algorithms
(polynomial for

unicyclic fixed k)

~ ~ Jansson, Nguyen & Sung
- Y ~ 2006, van lersel et al.
[ e ] simple 2009, To & Habib 2009,

level-1

~ ~ van lersel & Kelk 2010,
van lersel et al. 2010

l contains rooted binary phylogenetic networks
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Decomposition of level-k networks

We formalize the decomposition into blobs:

—

abcdef ghij k abcdef ghij k

N, level-k network. N decomposed as a tree of simple
graph patterns: generators.

Generators introduced by van lersel & al (Recomb 2008) for the restricted class
of simple level-k networks.



Level-k generators

A level-k generator is a level-k network with no cut arc.

- U QAAD
G° G’ 2a 2¢
The sides of the generator are:

- its arcs
- its reticulation vertices of outdegree O



Decomposition theorem of level-k networks

/ N is a level-k network \

ff

there exists a sequence (l,),e iy of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G) of generators of level at most k, such that:

- N = Attach (/, G Attach( . Attach (/,G_,Attach (/,G ,G )) )),
\ -or N = Attach (/ G Attach( Attach (/ G SletRoot (G G)) J)). /




Decomposition theorem of level-k networks

/ N is a level-k network \

ff

there exists a sequence (/j)je[lr] of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (Gj)jE[0 A of generators of level at most k, such that:

-N = Attachk(lr,Gr,Attachk(... Attachk(lz,GZ,Attachk(ll,Gl,Go))...)),
\ -or N = Attach (/,G Attach (.. Attach (/G SplitRoot (G ,G ))...)).

SpIitRootk(Gl,GO)

0 = ¢go




Decomposition theorem of level-k networks

/ N is a level-k network \

ff

there exists a sequence (l,),e o of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G) of generators of level at most k, such that:

- N = Attach (/, G Attach( Attach (/,G ,Attach (/ ,G ,G )) ),
-or N = Attach (/ G Attach( Attach (/ G SletRoot (G G )) )). /

l/ isan arcof N Attachk(/i,Gi,N)

—




Decomposition theorem of level-k networks

/ N is a level-k network \

ff

there exists a sequence (l,),e iy of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G) of generators of level at most k, such that:

- N = Attach (/, G Attach( . Attach (/,G_,Attach (/,G ,G )) )),
-or N = Attach (/ G Attach( Attach (/ G SletRoot (G G )) )). /

I,- is a reticulation vertex of N Attachk(/i,Gi,N)

—




Decomposition theorem of level-k networks

/ N is a level-k network \

ff

there exists a sequence (l,),e iy of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G) of generators of level at most k, such that:

- N = Attach (/, G Attach( . Attach (/,G_,Attach (/,G ,G )) )),
\ -or N = Attach (/ G Attach( Attach (/ G SletRoot (G G)) J)). /

This decomposition is not unique!

recursive decomposition later, for level-1...



Construction of level-k generators

Case analysis by van lersel & al to find the 4 level-2 generators
Exponential algorithm by Steven Kelk to find the 65 level-3 generators.

i |"'I“i_1"5@ v Sequencel | geseamcu

e C e = —————

Greetings from The On-Line Encvelopedia of Integer Sequences!

[1.4.65 Search | s

Search- 1, 4, 65
Displaying 1-2 of 2 results found. page 1

Format: long | shott | intemal | text Sort: relevance | references  mumber  Highlight: on | off

AD41119 Denominators of contimied fraction convergents to sqrt(68). —22
1, 4, 65, 264, 4289, 17420, 283009, 1149456, 18674305, T5846676, 1232221121, 5004731160,
81307919681, 330236409884, 5365090477825, 21790598321184, 354014663616769,
1437849252788260, 23359602708228929 (list; graph; listen)

OFFSET 0,2
CROSSREFS Cf. AD4111E5.
Sequence in context: A1388535 R119601 4058458 this sequence A015475 A0Z5585
LO4BEZ2E
Rdjacent segquences: A041116 A041117 A041118 this sequence A041120 4041121
BO41122
EEYWORD nonn, cofr, easy
AUTHOR njas
A015475 g-Fibonacci numbers for g=4. —m'.l'.

o, 1, 4, 65, 4184, 1066049, 1091638340, 4471351706689, 73258627454030918,
4801077413298721817665, 1258573637505038759624004676, 1319710110525284599824799048959041

(list; graph; listen)
OFFSET 0,3
FOFMULA a{n) = 4" {n-1) ain-1) + a{n-2).

CROSSREFS Sequence in context: A119601 AODS5E438 R041115 this sequence A0DZ5085 RO4E

2 k=]
DE0




Construction of level-k generators

Construction rules of level-(k+1) generators from level-k generators




Construction of level-k generators

Construction rules of level-(k+1) generators from level-k generators

/‘I1 1 h2 /‘I1 h3 h2
R (N,h h )
" % )
2
e
h1 1 h2 h1 h hz




Construction of level-k generators

Construction rules of level-(k+1) generators from level-k generators

/‘I1 1 h2 /‘I1 h3 h2
R (N,h h )
" © -
2
h1 1 h2 h1 hz




Upper bound on the number of level-k generators

R and R can be applied at most on all pairs of sides
A level-k generator has at most 5k slides:

gk+1 < 50 kz gk

Upper bound:
g, <k 12 50

Theoretical corollary:

There is a polynomial algorithm to build the set of level-(k+1) generators
from the set of level-k generators.

— polynomial time algorithms to reconstruct level-k networks with fixed k

Practical corollary:

g, < 28350

— it is possible to enumerate all level-4 generators.



Construction of level-k generators

Problem:
Some of the level-(k+1) generators obtained from level-k generators are

isomorphic!

1 h3
Rl(N,hl,ez) Rl(N,hZ,el)
— difficult to count

— possible generation up to level 5
1,4, 65,1993, 91454

ATeT | I"'{_?“&gf 5&_@&*!(—69 RESEARCH

il

Greetings from The On-Line Encyclopedia of Integer Sequences!

[1.4.65,1993

Search: 1, 4, 65, 1993
I am sorry, but the terms do not match anything in the table.



Lower bound on the number of level-k generators

Lower bound:

g, 2 k1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2“*-1 by a level-k generator.
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Lower bound:

g, 2 k1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2“*-1 by a level-k generator.

/



Lower bound on the number of level-k generators

Lower bound:

g, 2 k1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2“*-1 by a level-k generator.

/

Practical corollary:
Phylogenetic reconstruction algorithms based on generators are not
practical.



Unrooted level-k networks

g
i h P
level =
—® f maximum number of edges to

remove, by blob, to obtain a tree.
0 @—
—§ \e
\ d

b C
unrooted level-k network == tree of blobs

=) tree of generators of level <k

Unrooted level-k generators: bridgeless loopless 3-regular multigraphs with
2k-2 vertices

level-2 generator @ level-3 generators

Berry, Bouvel, Gambette & Paul, manuscript, 2011
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Counting labeled level-k networks

Unrooted level-1 networks:

explicit formula for n leaves, c cycles, m edges involved in the cycles.
Semple & Steel, TCBB, 2006




Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with n+1 leaves and
labeled pointed level-1 networks with n leaves.

Semple & Steel, TCBB, 2006



Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with n+1 leaves and
labeled pointed level-1 networks with n leaves.

Recursive decomposition of pointed level-1 networks with n leaves:

: or

or

Exponential generating function:

G=X+iGz+l GZ
2 2 (1-G)

Semple & Steel, TCBB, 2006



Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with n+1 leaves and
labeled pointed level-1 networks with n leaves.

Recursive decomposition of pointed level-1 networks with n leaves:

: or

or

Exponential generating function:

G=x 1 G 5 1 62\ - Seq_, any direction

K( e~

Semple & Steel, TCBB, 2006



Counting labeled unrooted level-1 networks

Exponential generating function:

2
G=z +%G2 + % 1G Analytic
(1-G) Combinatorics
Using the Singular Inversion Theorem (Theorem VI.6 of Sy

g ~0.2074 (1.8904)" n"*

~
Maplesoft Berry, Bouvel, Gambette & Paul, manuscript, 2012



Counting labeled unrooted level-1 networks

Exponential generating function:

2
G=z +%G2 + % 1G Analytic
(1-G) Combinatorics
Using the Singular Inversion Theorem (Theorem VI.6 of sl

g ~0.2074 (1.8904)" n"*

Proof : 1
We write G = z ¢(G), with ¢(z) =

1-%z(1+1/(1-2))

T -n
Theng = n! \/ sz'()r) \/%. , with p =1/ (1)

and t is the solution of ¢(z)-z¢'(z)=0

—a
Maplesoft Berry, Bouvel, Gambette & Paul, manuscript, 2012




Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

le 1 RZ

wa O

o . horizontal symmetry with
- Seq , any direction - Se —— simple edge - - ) :
9, 3Ny 9 N P 8 ?ym> new orientation for lower

m— Seq_, any direction - Seq, Eyn; edge symmetry edges



Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

, lp 1 R R? 1 R

2 2 1-R

¢ o

1
— R2
2
®
— \ )
a o
e Seq>1, any direction — Seq>1 —— simple edge

— Seq>2, any direction = Seq>2 Em’ edge symmetry

Gt

horizontal symmetry with
sym> new orientation for lower
edges

<



Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

RZ R2 RQ RQ RQ RQ

=ty taiomticrtan-n Ta-r? Taa-Re
RZ H?: Rr’l RB H?, Hl

N 2 +2(1—R) +4(1—R)2 +2(1_R)3 +2(1—R)3 T

Rewrite: 1

= 20(R) where ¢(R) =

1 — 3r5—=20r44-461r3—46r2+18r
A(r—1)4

Berry, Bouvel, Gambette & Paul, manuscript, 2011



Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:
R? R? R? R? R? R?
R=z+—+ — + — . ’
S R TR =) - R T ) S - Vi
RZ R3 Rr’l RB R3 Rl

T TI0—R? T21-RP T21—RP I1-R)

2 2 ( 1 — R)
Rewrite: 1

R = 2¢(R) where ¢(R) =

1 — 3r5—=20r44+46r3 —46r2+18r

4(_11_1}4
Lagrange inversion: .
r(n) = n![z"|R(z) = —[\"" o™ (N).
n
Taylor expansions of cpn(A):
numberofleavesl 23 4 5 6 7

unrooted level-2 | -

9| 282/14 697/ 1071 750 100 467 405

Berry, Bouvel, Gambette & Paul, manuscript, 2011



Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

R? R? R? R? R? R?
R:E+7+2(1—R)+1—R+2(1—R)+(1—R)2+2(1—R)2

R2 R3 Rr’l RB R3 Rr’l

"2 m T I-RE AR A1 RP A B

Rewrite: 1

R = 2¢(R) where ¢(R) =

1 — 3r5—=20r44-461r3—46r2+18r

A(r—1)4
Lagrange inversion: .
r(n) = n![z"|R(z) = —[\"" o™ (N).
n
Taylor expansions + Newton formula:
r(n) = (n—U! ) Z CHEICY IR EEIE)
SERE . @ W P O

Berry, Bouvel, Gambette & Paul, manuscript, 2011



Counting labeled level-k networks

Unrooted level-1 networks:

explicit formula for n leaves, c cycles, m edges involved in the cycles

Semple & Steel, TCBB, 2006
nn—l

1.890"

+ asymptotic evaluation for n leaves: = 0.207

Rooted level-1 networks :
Explicit formula for n leaves, c cycles, m edges across cycles
+ asymptotic evaluation for n leaves: = 0.134 2.943" n"*

Unrooted level-2 networks :

Explicit formula for n leaves : (n-1)! Z {”J’;’lﬂmyﬂmm{ﬂ EHZ%J ET [3—3}?—1)" {%q

0<s<g<p<gks<isn-1
Jj=n-1-i-k-p-q-s20
i#0

number of leaves| 2 | 3 | 4 5 6 7
unrooted level-1 |- |2 15| 192 3450 79 740
rooted level-1 3 36 723/20280 730755 32171580
unrooted level-2 |- |9 28214697 1071 750|100 467 405

Berry, Bouvel, Gambette & Paul, manuscript, 2011



Thank you for your attention!

Co-authors of these results

Vincent Berry & Christophe Paul (LIRMM, Montpellier)
Mathilde Bouvel (LABRI, Bordeaux)

Thanks to the LABRI for their Junior Guest grant in April 2011! LqLaBR|




Thank you for your attention!

Co-authors of these results...

A level-2 network?
- ?

1
]
I
I

]

[ |

|

1

1

]

]

]

1

1

1

1
1
1
1
1
1
L}

Berry PaulJ B
0 ®coue
Gambette ﬁ

.,"'.r e

i The Mathematics Genealogy




Thank you for your attention!

Co-authors of these results...
A level-3 network

Paul /] B
B & 5o
| Gambette H

.,"'.r e

i The Mathematics Genealogy
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