Groupe de travail APR, LIP6 Paris – 18/11/2011

Structure and enumeration of level-k phylogenetic networks

Philippe Gambette

Outline

- Phylogenetic motivations
- Level-k network reconstruction
- Structure of level-k networks
- Counting level-1 and 2 networks

Outline

- Phylogenetic motivations
- Level-*k* network reconstruction
- Structure of level-*k* networks
- Counting level-1 and 2 networks

Rooted binary phylogenetic networks

leaves bijectively labeled by current species

- + internal vertices (extinct species):
 - root
 - **split vertices** (speciation)
 - hybrid vertices (hybridization, horizontal gene transfer)

Rooted binary phylogenetic networks

Model: each gene comes from one parent:

Rooted binary phylogenetic networks

Model: each gene comes from one parent:


```
species 1 : AATTGCAG TAGCCCAAAAT
species 2 : ACCTGCAG TAGACCAAT
species 3 : GCTTGCCG TAGACAAGAAT
species 4 : ATTTGCAG AAGACCAAAT
species 5 : TAGACAAGAAT
species 6 : ACTTGCAG TAGCACAAAAT
species 7 : ACCTGGTG TAAAAAT
```

G1

G2

Checking the solution:

Finding all triplets of a rooted network: $O(n^3)$

Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Checking the solution:

Finding all triplets of a rooted network: $O(n^3)$

Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Finding all quartets of an unrooted network?

Checking the solution:

Finding all triplets of a rooted network: $O(n^3)$

Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Finding all quartets of an unrooted network?

Checking the solution:

Finding all triplets of a rooted network: $O(n^3)$

Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Finding **all quartets** of an unrooted network: $O(n^6)$ 2-Disjoint Paths in a graph of degree ≤ 3 : $O(n(1+\alpha(n,n)))$

Tholey, *SOFSEM'09*, 2009

Plan

- Phylogenetic motivations
- Level-*k* network reconstruction
- Structure of level-*k* networks
- Counting level-1 and 2 networks

Level-k networks

level: how "far" is the network from a tree? small level → tree structure → fast algorithms

level =

maximum number of hybrid vertices by bridgeless component (blob) of the underlying undirected graph.

Level-k networks

level: how "far" is the network from a tree? small level → tree structure → fast algorithms

level =
maximum number of hybrid vertices
by blob.

level-1 network ("galled tree")

Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level → tree structure → fast algorithms

level =

maximum number of edges to remove, by *blob*, to obtain a tree.

unrooted level-2 network

Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level → tree structure → fast algorithms

level =

maximum number of edges to remove, by blob, to obtain a tree. = maximum cyclomatic number of the blobs

unrooted level-2 network

Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level → tree structure → fast algorithms

unrooted level-1 network → tree of cycles (unrooted galled tree)

Equivalence between rooted and unrooted level

- choosing a root
- choosing an orientation for the edges

Equivalence between rooted and unrooted level

- choosing a root
- choosing an orientation for the edges

Equivalence between rooted and unrooted level

- choosing a root
- choosing an orientation for the edges

- many possible rootings (possibly exponential in the level)
- same level (invariant)

Phylogenetic network subclass hierarchy

Phylogenetic network subclass hierarchy

Plan

- Phylogenetic motivations
- Level-*k* network reconstruction
- Structure of level-k networks
- Counting level-1 and 2 networks

Decomposition of level-k networks

We formalize the decomposition into blobs:

Generators introduced by van Iersel & al (Recomb 2008) for the restricted class of simple level-k networks.

Level-k generators

A **level-k** generator is a level-k network with no cut arc.

The **sides** of the generator are:

- its arcs
- its reticulation vertices of outdegree 0

N is a level-*k* network

iff

```
there exists a sequence (I_j)_{j \in [1,r]} of r locations (arcs or reticulation vertices of outdegree 0) and a sequence (G_j)_{j \in [0,r]} of generators of level at most k, such that: -N = \operatorname{Attach}_k(I_r, G_r, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{Attach}_k(I_1, G_1, G_0))...)), -\operatorname{or} N = \operatorname{Attach}_k(I_r, G_r, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{SplitRoot}_k(G_1, G_0))...)).
```

N is a level-*k* network

iff

there exists a sequence $(I_j)_{j \in [1,r]}$ of r locations (arcs or reticulation vertices of outdegree 0) and a sequence $(G_j)_{j \in [0,r]}$ of generators of level at most k, such that: $-N = \operatorname{Attach}_k(I_r, G_r, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{Attach}_k(I_1, G_1, G_0))...)),$ $-\operatorname{or} N = \operatorname{Attach}_k(I_r, G_r, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{SplitRoot}_k(G_1, G_0))...)).$

N is a level-*k* network

iff

there exists a sequence $(I_j)_{j \in [1,r]}$ of r locations (arcs or reticulation vertices of outdegree 0) and a sequence $(G_j)_{j \in [0,r]}$ of generators of level at most k, such that: $N = \operatorname{Attach}_k(I_r, G_r, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{Attach}_k(I_1, G_1, G_0))...)),$ or $N = \operatorname{Attach}_k(I_r, G_r, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{SplitRoot}_k(G_1, G_0))...)).$

 I_i is an arc of N

Attach_k (I_i,G_i,N)

N is a level-*k* network

iff

there exists a sequence $(I_j)_{j \in [1,r]}$ of r locations (arcs or reticulation vertices of outdegree 0) and a sequence $(G_j)_{j \in [0,r]}$ of generators of level at most k, such that: $N = \operatorname{Attach}_k(I_r, G_r, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{Attach}_k(I_1, G_1, G_0))...)),$ or $N = \operatorname{Attach}_k(I_r, G_r, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{SplitRoot}_k(G_1, G_0))...)).$

 I_i is a reticulation vertex of N

Attach_k (I_i,G_i,N)

N is a level-*k* network

iff

```
there exists a sequence (I_j)_{j \in [1,r]} of r locations (arcs or reticulation vertices of outdegree 0) and a sequence (G_j)_{j \in [0,r]} of generators of level at most k, such that: -N = \operatorname{Attach}_k(I_j, G_j, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{Attach}_k(I_1, G_1, G_0))...)), -\operatorname{or} N = \operatorname{Attach}_k(I_j, G_j, \operatorname{Attach}_k(... \operatorname{Attach}_k(I_2, G_2, \operatorname{SplitRoot}_k(G_1, G_0))...)).
```

This decomposition is **not unique!**

recursive decomposition later, for level-1...

1,4,65

Case analysis by van Iersel & al to find the 4 level-2 generators Exponential algorithm by Steven Kelk to find the 65 level-3 generators.

Greetings from The On-Line Encyclopedia of Integer Sequences!

Search

Search: 1, 4, 65 Displaying 1-2 of 2 results found. page 1 Format: long | short | internal | text Sort: relevance | references | number Highlight: on | off +20A041119 Denominators of continued fraction convergents to sqrt(68). 1, 4, 65, 264, 4289, 17420, 283009, 1149456, 18674305, 75846676, 1232221121, 5004731160, 81307919681, 330236409884, 5365090477825, 21790598321184, 354014663616769, 1437849252788260, 23359602708228929 (list; graph; listen) OFFSET 0,2 CROSSREFS Cf. A041118. Sequence in context: A138835 A119601 A058438 this sequence A015475 A025585 Adjacent sequences: A041116 A041117 A041118 this sequence A041120 A041121 A041122 KEYWORD nonn, cofr, easy AUTHOR njas +20 A015475 q-Fibonacci numbers for q=4. 0, 1, 4, 65, 4164, 1066049, 1091638340, 4471351706689, 73258627454030916, 4801077413298721817665, 1258573637505038759624004676, 1319710110525284599824799048959041 (list; graph; listen) OFFSET 0,3 FORMULA $a(n) = 4^{(n-1)} a(n-1) + a(n-2)$. CROSSREFS Sequence in context: A119601 A058438 A041119 this sequence A025585 A048828

Construction rules of level-(k+1) generators from level-k generators

Construction rules of level-(k+1) generators from level-k generators

Construction rules of level-(k+1) generators from level-k generators

 R_1 and R_2 can be applied at most on all pairs of sides A level-k generator has at most 5k slides:

$$g_{k+1} < 50 \ k^2 \ g_k$$

Upper bound:

$$g_{k} < k!^{2} 50^{k}$$

Theoretical corollary:

There is a polynomial algorithm to build the set of level-(k+1) generators from the set of level-k generators.

→ polynomial time algorithms to reconstruct level-*k* networks with fixed *k* Kelk, Scornavacca & van Iersel, *TCBB*, 2011

Practical corollary:

$$g_{_{A}}$$
 < 28350

 \rightarrow it is possible to enumerate all level-4 generators.

Problem:

Some of the level-(k+1) generators obtained from level-k generators are **isomorphic**!

$$R_{1}(N,h_{2},e_{1})$$

- → difficult to count
- → possible generation up to level 5 : 1, 4, 65, 1993, 91454

Greetings from The On-Line Encyclopedia of Integer Sequences!

1,4,65,1993 Search Hints

Lower bound:

$$g_{k} \geq 2^{k-1}$$

There is an **exponential number** of generators!

Idea:

Code every number between 0 and $2^{k-1}-1$ by a level-k generator.

Lower bound:

$$g_{k} \geq 2^{k-1}$$

There is an **exponential number** of generators!

Idea:

Code every number between 0 and $2^{k-1}-1$ by a level-k generator.

Lower bound:

$$g_{k} \geq 2^{k-1}$$

There is an **exponential number** of generators!

Idea:

Code every number between 0 and $2^{k-1}-1$ by a level-k generator.

Lower bound:

$$g_{k} \geq 2^{k-1}$$

There is an exponential number of generators!

Idea:

Code every number between 0 and $2^{k-1}-1$ by a level-k generator.

Practical corollary:

Phylogenetic reconstruction algorithms based on generators are not practical.

Unrooted level-k networks

level = maximum number of edges to remove, by blob, to obtain a tree.

unrooted level-k network \implies tree of blobs

tree of **generators** of level $\leq k$

Unrooted level-k generators: bridgeless loopless 3-regular multigraphs with

2k-2 vertices

level-2 generator

level-3 generators

Plan

- Phylogenetic motivations
- Level-*k* network reconstruction
- Structure of level-*k* networks
- Counting level-1 and 2 networks

Counting labeled level-k networks

Unrooted level-1 networks:

explicit formula for *n* leaves, *c* cycles, *m* edges involved in the cycles.

Semple & Steel, TCBB, 2006

Unrooted level-1 networks:

explicit formula for *n* leaves, *c* cycles, *m* edges involved in the cycles.

Pointing + bijection:

Bijection between labeled unrooted level-1 networks with n+1 leaves and labeled pointed level-1 networks with n leaves.

Unrooted level-1 networks:

explicit formula for *n* leaves, *c* cycles, *m* edges involved in the cycles.

Pointing + bijection:

Bijection between labeled unrooted level-1 networks with n+1 leaves and labeled pointed level-1 networks with *n* leaves.

Recursive decomposition of pointed level-1 networks with *n* leaves:

Exponential generating function:

$$G = x + \frac{1}{2}G^2 + \frac{1}{2}\frac{G^2}{(1-G)}$$

Unrooted level-1 networks:

explicit formula for *n* leaves, *c* cycles, *m* edges involved in the cycles.

Pointing + bijection:

Bijection between labeled unrooted level-1 networks with n+1 leaves and labeled pointed level-1 networks with n leaves.

Recursive decomposition of pointed level-1 networks with *n* leaves:

Exponential generating function:

$$G = x + \frac{1}{2}G^2 + \left(\frac{1}{2}\frac{G^2}{(1-G)}\right)$$

Seq,, any direction

Exponential generating function:

$$G = z + \frac{1}{2}G^2 + \frac{1}{2}\frac{G^2}{(1-G)}$$

Using the Singular Inversion Theorem (Theorem VI.6 of

$$g_n \approx 0.2074 (1.8904)^n n^{n-1}$$

Exponential generating function:

$$G = z + \frac{1}{2}G^2 + \frac{1}{2}\frac{G^2}{(1-G)}$$

Using the Singular Inversion Theorem (Theorem VI.6 of

$$g_n \approx 0.2074 (1.8904)^n n^{n-1}$$

Proof:

We write
$$G = z \varphi(G)$$
, with $\varphi(z) = \frac{1}{1 - \frac{1}{2} z (1 + \frac{1}{1 - z})}$

Then
$$g_n \approx n! \sqrt{\frac{\varphi(\tau)}{2\varphi''(\tau)}} \frac{\rho^{-n}}{\sqrt{\pi n^{3'}}}$$
, with $\rho = \tau / \varphi(\tau)$ and τ is the solution of $\varphi(z)$ - $z\varphi'(z)$ =0

Recursive decomposition of pointed level-2 networks with *n* leaves:

Recursive decomposition of pointed level-2 networks with *n* leaves:

Seq_{≥ 1}, any direction Seq_{≥ 2}, any direction

→ Seq_≥
→ Seq₃

simple edge symmetry

horizontal symmetry with new orientation for lower edges

Recursive decomposition of pointed level-2 networks with *n* leaves:

$$\begin{split} R &= z + \frac{R^2}{2} + \frac{R^2}{2(1-R)} + \frac{R^2}{1-R} + \frac{R^2}{2(1-R)} + \frac{R^2}{(1-R)^2} + \frac{R^2}{2(1-R)^2} \\ &+ \frac{R^2}{2} + \frac{R^3}{2(1-R)} + \frac{R^4}{4(1-R)^2} + \frac{R^3}{2(1-R)^3} + \frac{R^3}{2(1-R)^3} + \frac{R^4}{4(1-R)^4} \end{split}$$

Rewrite:

$$R = z\phi(R)$$
 where $\phi(R) = \frac{1}{1 - \frac{3r^5 - 20r^4 + 46r^3 - 46r^2 + 18r}{4(r-1)^4}}$

Recursive decomposition of pointed level-2 networks with *n* leaves:

$$\begin{split} R &= z + \frac{R^2}{2} + \frac{R^2}{2(1-R)} + \frac{R^2}{1-R} + \frac{R^2}{2(1-R)} + \frac{R^2}{(1-R)^2} + \frac{R^2}{2(1-R)^2} \\ &+ \frac{R^2}{2} + \frac{R^3}{2(1-R)} + \frac{R^4}{4(1-R)^2} + \frac{R^3}{2(1-R)^3} + \frac{R^3}{2(1-R)^3} + \frac{R^4}{4(1-R)^4} \end{split}$$

Rewrite:

Rewrite:
$$R = z\phi(R) \text{ where } \phi(R) = \frac{1}{1 - \frac{3r^5 - 20r^4 + 46r^3 - 46r^2 + 18r}{4(r-1)^4}}$$

Lagrange inversion:

$$r(n) = n![z^n]R(z) = \frac{n!}{n}[\lambda^{n-1}]\phi^n(\lambda),$$

Taylor expansions of $\varphi_{n}(\lambda)$:

number of leaves	2	3	4	5	6	7
unrooted level-2	-	9	282	14 697	1 071 750	100 467 405

Recursive decomposition of pointed level-2 networks with *n* leaves:

$$\begin{split} R &= z + \frac{R^2}{2} + \frac{R^2}{2(1-R)} + \frac{R^2}{1-R} + \frac{R^2}{2(1-R)} + \frac{R^2}{(1-R)^2} + \frac{R^2}{2(1-R)^2} \\ &+ \frac{R^2}{2} + \frac{R^3}{2(1-R)} + \frac{R^4}{4(1-R)^2} + \frac{R^3}{2(1-R)^3} + \frac{R^3}{2(1-R)^3} + \frac{R^4}{4(1-R)^4} \end{split}$$

Rewrite:

Rewrite:
$$R = z\phi(R) \text{ where } \phi(R) = \frac{1}{1 - \frac{3r^5 - 20r^4 + 46r^3 - 46r^2 + 18r}{4(r-1)^4}}$$

Lagrange inversion:

$$r(n) = n![z^n]R(z) = \frac{n!}{n}[\lambda^{n-1}]\phi^n(\lambda),$$

Taylor expansions + Newton formula:

$$r(n) = (n-1)! \sum_{\substack{0 \le s \le q \le p \le k \le i \le n-1 \\ j=n-1-i-k-p-q-s \ge 0}} {\binom{n+i-1}{i}} {\binom{4i+j-1}{j}} {\binom{i}{k}} {\binom{k}{p}} {\binom{p}{q}} {\binom{q}{s}} \times {(\frac{-3}{20})^s} {(\frac{9}{2})^i} {(\frac{-23}{9})^k} {(-1)^p} {(\frac{-10}{23})^q}.$$

Counting labeled level-k networks

Unrooted level-1 networks:

explicit formula for *n* leaves, *c* cycles, *m* edges involved in the cycles

Semple & Steel, TCBB, 2006

+ asymptotic evaluation for *n* leaves: $\approx 0.207 \frac{n^{n-1}}{1.890^n}$

Rooted level-1 networks:

Explicit formula for *n* leaves, *c* cycles, *m* edges across cycles

+ asymptotic evaluation for *n* leaves: $\approx 0.134 \ 2.943^n \ n^{n-1}$

Unrooted level-2 networks:

Explicit formula for n leaves: $(n-1)! \sum_{\substack{0 \le s \le q \le p \le k \le i \le n-1 \\ j=n-1-i-k-p-q-s \ge 0}} {n+i-1 \brack j} {4i+j-1 \brack k} {k \brack p} {q \brack q} {s \brack 20}^s {9 \brack 2}^i {-23 \brack 9}^k {(-1)}^p {s \brack 23}^q$

number of leaves	2	3	4	5	6	7
unrooted level-1			15		3 450	79 740
rooted level-1	3	36	723	20 280	730 755	32 171 580
unrooted level-2	-	9	282	14 697	1 071 750	100 467 405

Thank you for your attention!

Co-authors of these results

Vincent Berry & Christophe Paul (LIRMM, Montpellier) Mathilde Bouvel (LABRI, Bordeaux)

Thanks to the LABRI for their Junior Guest grant in April 2011!

Thank you for your attention!

Thank you for your attention!

