
Paris-Est Sup

Laboratoire d’Informatique Gaspard-Monge (UMR 8049)

Proximité, similarité et hérédité :
de la bioinformatique aux humanités numériques

Dossier de travaux

Présenté par Philippe Gambette

pour une candidature à l’habilitation à diriger des recherches en informatiqe

22 aout 2024

2

Les pages suivantes réunissent dix de mes articles mentionnés dans la synthèse de mes

travaux de recherche intitulée Proximilarity, similarity and heredity : from bioinformatics
to digital humanities (Proximité, similarité et hérédité : de la bioinformatique aux humanités
numériques), dans leur version mise à disposition dans les archives ouvertes HAL ou ArXiv,

que je peux donc di�user dans ce document [6, 9, 8, 7, 3, 5, 4, 1, 10, 2].

Mes publications sont toutes fournies en libre accès sur HAL à l’adresse https://cv.hal

.science/philippe-gambette, où les liens vers les publications sur le site des maisons d’édi-

tion sont fournis.

Je mets parfois à disposition quelques compléments (matériel supplémentaire : données,

démo web ou code source) sur la page https://igm.univ-mlv.fr/ gambette/RePublications.php.

1

https://cv.hal.science/philippe-gambette
https://cv.hal.science/philippe-gambette
https://igm.univ-mlv.fr/~gambette/RePublications.php

2

Bibliographie

[1] Rachel Bawden et al. “Automatic Normalisation of Early Modern French”. In : LREC
2022 - 13th Language Resources and Evaluation Conference. European Language Re-

sources Association. Marseille, France, juin 2022. doi : 10 . 5281 / zenodo .
5865428. url : https://hal.inria.fr/hal-03540226.

[2] Pierre Bourhis, Aaron Boussidan et Philippe Gambette. “On Distances between

Words with Parameters”. In : CPM 2023. Sous la dir. de Laurent Bulteau et Zsuzsanna

Lipták. T. 259. Proceedings of the 34th Annual Symposium on Combinatorial Pattern

Matching. Champs-sur-Marne, Marne-la-Vallée, France : Schloss Dagstuhl, juin 2023,

6:1-6:23. doi : 10.4230/LIPIcs.CPM.2023.6. url : https://hal.
science/hal-04080842.

[3] Mathilde Bouvel, Philippe Gambette et Marefatollah Mansouri. “Counting phy-

logenetic networks of level 1 and 2”. In : Journal of Mathematical Biology 81 (oct.

2020), p. 1357-1395. doi : 10.1007/s00285-020-01543-5. url : https:
//hal-upec-upem.archives-ouvertes.fr/hal-02955527.

[4] Laurent Bulteau, Philippe Gambette et Olga Seminck. “Reordering a tree according

to an order on its leaves”. In : CPM 2022. T. 223. LIPIcs. Prague, Czech Republic :

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, juin 2022, 24:1-24:15. doi : 10.
4230/LIPIcs.CPM.2022.24. url : https://hal-upec-upem.
archives-ouvertes.fr/hal-03413413.

[5] Chuanming Dong, Philippe Gambette et Catherine Dominguès. “Extracting Event-

related Information from a Corpus Regarding Soil Industrial Pollution”. In : KDIR
2021. T. 1. 13th International Conference on Knowledge Discovery and Information

Retrieval. Setúbal, Portugal : SciTePress, oct. 2021, p. 217-224. doi : 10.5220/
0010656700003064. url : https://hal.archives-ouvertes.fr/
hal-03366097.

[6] Philippe Gambette, Núria Gala et Alexis Nasr. “Longueur de branches et arbres de

mots”. In : Corpus 11.- (2012), p. 129-146. url : https://hal-upec-upem.
archives-ouvertes.fr/hal-00822993.

[7] Philippe Gambette et al. “Anatomie, animaux, vocabulaire de la vivisection”. In :

Animalhumanité - Expérimentation et �ction : l’animalité au cœur du vivant. Sous la

dir. de Gisèle Séginger. Savoirs en Texte. LISAA, 2018, p. 223-231. url : https:
//hal.archives-ouvertes.fr/hal-01609198.

[8] Philippe Gambette et al. “Do branch lengths help to locate a tree in a phylogenetic

network?” In : Bulletin of Mathematical Biology 78.9 (2016), p. 1773-1795. doi : 10.
1007/s11538- 016- 0199- 4. url : https://hal- upec- upem.
archives-ouvertes.fr/hal-01372824.

3

https://doi.org/10.5281/zenodo.5865428
https://doi.org/10.5281/zenodo.5865428
https://hal.inria.fr/hal-03540226
https://doi.org/10.4230/LIPIcs.CPM.2023.6
https://hal.science/hal-04080842
https://hal.science/hal-04080842
https://doi.org/10.1007/s00285-020-01543-5
https://hal-upec-upem.archives-ouvertes.fr/hal-02955527
https://hal-upec-upem.archives-ouvertes.fr/hal-02955527
https://doi.org/10.4230/LIPIcs.CPM.2022.24
https://doi.org/10.4230/LIPIcs.CPM.2022.24
https://hal-upec-upem.archives-ouvertes.fr/hal-03413413
https://hal-upec-upem.archives-ouvertes.fr/hal-03413413
https://doi.org/10.5220/0010656700003064
https://doi.org/10.5220/0010656700003064
https://hal.archives-ouvertes.fr/hal-03366097
https://hal.archives-ouvertes.fr/hal-03366097
https://hal-upec-upem.archives-ouvertes.fr/hal-00822993
https://hal-upec-upem.archives-ouvertes.fr/hal-00822993
https://hal.archives-ouvertes.fr/hal-01609198
https://hal.archives-ouvertes.fr/hal-01609198
https://doi.org/10.1007/s11538-016-0199-4
https://doi.org/10.1007/s11538-016-0199-4
https://hal-upec-upem.archives-ouvertes.fr/hal-01372824
https://hal-upec-upem.archives-ouvertes.fr/hal-01372824

[9] Philippe Gambette et al. “Locating a Tree in a Phylogenetic Network in Quadratic

Time”. In : RECOMB 2015. T. 9029. LNCS. Varsovie, Poland : Springer, avr. 2015, p. 96-

107. doi : 10.1007/978-3-319-16706-0_12. url : https://hal-
upec-upem.archives-ouvertes.fr/hal-01116231.

[10] Olga Seminck et al. “The Evolution of the Idiolect over the Lifetime: A Quantitative

and Qualitative Study of French 19th Century Literature”. In : Journal of Cultural
Analytics 7.3 (2022). doi : 10.22148/001c.37588. url : https://hal.
science/hal-03767854.

4

https://doi.org/10.1007/978-3-319-16706-0_12
https://hal-upec-upem.archives-ouvertes.fr/hal-01116231
https://hal-upec-upem.archives-ouvertes.fr/hal-01116231
https://doi.org/10.22148/001c.37588
https://hal.science/hal-03767854
https://hal.science/hal-03767854

HAL Id: hal-00822993
https://hal.science/hal-00822993

Submitted on 15 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Longueur de branches et arbres de mots
Philippe Gambette, Núria Gala, Alexis Nasr

To cite this version:
Philippe Gambette, Núria Gala, Alexis Nasr. Longueur de branches et arbres de mots. Corpus, 2012,
11 (-), pp.129-146. �hal-00822993�

Longueur de branches et arbres de mots

Philippe Gambette1, Nuria Gala2, Alexis Nasr2

1Université Paris-Est – LIGM, 2Université Aix-Marseille – LIF

Résumé : Les arbres de mots constituent un des outils de la
statistique textuelle pour visualiser les relations sémantiques
entre mots d'un texte. Les méthodes de construction de ces
arbres à partir d'une distance de co-occurrence dans le texte
produisent des arbres dont les longueurs d'arêtes se prêtent mal
à l'analyse. Pour faciliter l'interprétation visuelle de l'arbre,
l'idéal serait que des longues arêtes séparent des classes
sémantiques de mots. Ainsi, découper les arêtes les plus longues
de l'arbre devrait conduire à une partition de l'ensemble des
mots qui fournit des classes pertinentes. À l'aide de deux corpus
dont un sous-ensemble de mots a été partitionné en un ensemble
de classes sémantiques, nous évaluons plusieurs formules
permettant de recalculer les longueurs d'arêtes de l'arbre
construit à partir des distances de co-occurrence, afin de rendre
l'interprétation de l'arbre plus facile et plus fiable.

Mots-clés : classification hiérarchique, visualisation, arbre,
nuage arboré, co-occurrence, partition

Branch Lengths and Word Trees

Philippe Gambette1, Nuria Gala2, Alexis Nasr2

1Université Paris-Est – LIGM, 2Université Aix-Marseille – LIF

Summary: Word trees are one of the available tools in textual
analysis to visualize semantic relationships between the words
of a text. Tree construction methods from the co-occurrence
distances between words in a text produce trees whose edge
lengths are difficult to analyze. In order to make the visual
interpretation of the tree easier, long edges should separate
semantic classes of words. Therefore, cutting the longest edges
in the tree should lead to a partition of the word set with
relevant classes. Using two corpuses where a subset of words
was partitioned into semantic classes, we evaluate several
formulas computing new edge lengths for a tree built from co-
occurrence distances, aiming at making the interpretation of the
tree easier and more reliable.

Keywords: hierarchical clustering, visualization, tree, tree
cloud, co-occurrence, partition

Longueur de branches et arbres de mots

Philippe Gambette1, Nuria Gala2, Alexis Nasr2

1Université Paris-Est – LIGM, 2Université Aix-Marseille – LIF

1. Introduction

1.1 Les arbres de mots comme classifications

Les arbres de mots se sont ajoutés aux projections et aux
réseaux de co-occurrence parmi les outils développés pour
l'analyse textométrique des textes (Luong, 1989 ; Mayaffre,
2008). Ils permettent en effet de représenter de manière
esthétique un nombre limité de classes de mots emboîtées (en
nombre linéaire par rapport au nombre de mots), tout en laissant
la possibilité de faire varier les tailles de caractères des mots,
par exemple dans les nuages arborés (Gambette & Véronis,
2009), dont une illustration est donnée en Figure 1.

L'arbre est construit à partir d'une matrice de distances
entre les mots, en utilisant un algorithme de classification
hiérarchique. La distance de co-occurrence entre deux mots a et
b dans cette matrice de distances est proche de 0 si les mots
apparaissent souvent à proximité dans le texte, et grande s'ils
apparaissent rarement ensemble. Interprétée comme une
distance sémantique en suivant le principe selon lequel le sens
du mot provient de ses voisins (Firth, 1957), elle conduit à
l'analyse suivante de l'arbre construit pour refléter au mieux
cette distance : un sous-arbre regroupe des mots dont les
distances sont petites comparées aux distances avec les mots du
reste de l'arbre, donc ils apparaissent plus fréquemment
ensemble dans le texte qu'avec des mots du reste de l'arbre. On
en déduit qu'ils constituent une classe sémantique, et donc bien

souvent représentent une thématique du texte dont ils ont été
extraits.

Figure 1 : Nuage arboré des 25 mots les plus fréquents (hors mots vides) du
corpus Wikileaks (voir Section 4), construit par les logiciels TreeCloud
(Gambette & Véronis, 2009) et SplitsTree (Huson & Bryant, 2006). L'arête en
gras sépare la classe [julian, assange, porte, parole] du reste des mots.

On remarque par exemple, dans une lecture rapide du
nuage arboré de la Figure 1, que le mot au coeur du texte utilisé
pour construire cette visualisation est “wikileaks”, qui se trouve
dans un sous-arbre aux côtés de “site” et “spécialisé”. Ceci nous
permet d'esquisser une définition de la thématique principale du
texte, que l'on complète en remarquant que le sous-arbre
correspondant à la classe {wikileaks, site, spécialisé} est inclus
dans le sous-arbre correspondant à la classe {wikileaks, site,
spécialisé, publication, documents, secrets}. L'arbre rapproche
également des composants du mot composé “porte-parole”, ou

le prénom “julian” du nom “assange”. Le fait que ces quatre
mots sont les feuilles d'un même sous-arbre nous invite à
déduire que dans le texte, Julian Assange est présenté comme le
porte-parole de Wikileaks.

1.2 Interprétation des longueurs de branches

Cette interprétation d'un arbre de mots comme un simple
ensemble de classes de mots emboîtées prend en compte
uniquement la topologie de l'arbre, et ne fait pas intervenir les
longueurs de branches. Pourtant, des longueurs de branches
sont naturellement calculées par toute méthode de classification
hiérarchique à partir d'une matrice de distance. La propriété
attendue de ces longueurs est que les distances dans l'arbre
obtenu1 soient aussi proches que possible des distances fournies
en entrée dans la matrice. Ainsi, des méthodes qui s'attachent à
fournir des longueurs d'arêtes pertinentes peuvent avoir pour
objectif une optimisation par les moindres carrés entre la
matrice de distance fournie en entrée et les distances estimées
dans l'arbre en sortie.

Ce type de méthodes, pour lesquelles les distances entre
feuilles dans l'arbre calculé ont un grand intérêt, ont été
particulièrement utilisées pour l'étude de l'évolution des espèces
ou phylogénie (Felsenstein, 2004). En effet, la longueur du
chemin entre deux feuilles de l'arbre a une interprétation
directe : c'est la distance évolutive entre les deux espèces
représentées par ces feuilles, qui se reflète généralement dans la
distance entre leurs ADN.

Cette interprétation des distances entre feuilles de
l'arbre est beaucoup moins pertinente pour un arbre de mots,
pour trois raisons : de modélisation, de fiabilité et de lisibilité.

1 rappelons que la distance entre deux feuilles d'un arbre est égale à la
somme des longueurs des arêtes dans le chemin allant, dans l'arbre,
d'une feuille à l'autre..

Tout d'abord, notons que dans un arbre phylogénétique,
les sommets internes représentent des espèces ancestrales, et
que les longueurs d'arêtes modélisent des distances d'évolution
entre les espèces, ancestrales ou actuelles, correspondantes. En
revanche, dans un arbre de mots, il est difficile d'interpréter les
nœuds internes, et d'en déduire une façon naturelle d'interpréter
la longueur d'une arête située entre deux nœuds internes de
l'arbre.

L'absence d'un modèle d'évolution arborée implique
aussi un problème de fiabilité : contrairement aux distances
phylogénétiques qui ont généralement une structure proche
d'une métrique d'arbre, les distances de co-occurrence entre
mots peuvent être très éloignées de toute représentation arborée.
Ainsi, l'approximation, fournie par l'arbre obtenu en sortie, des
distances entre feuilles données dans la matrice en entrée, peut
être très mauvaise, quand bien même on aurait calculé l'arbre
optimal au sens de l'optimisation des moindres carrés.

Enfin, même si l'on choisit de ne pas interpréter les
longueurs d'arêtes internes de l'arbre, et de se focaliser
uniquement sur les distances entre feuilles, en espérant une
certaine fiabilité, l'estimation visuelle de ces dernières pose un
problème de lisibilité. Dans la Figure 1 par exemple, s'il est
clair que dans l'arbre, “diplomatie” est plus proche
d'“américaine” que de “publier”, il est en revanche difficile de
comparer la distance entre “diplomatie” et “wikileaks” avec
celle entre “dons” et “monde”. Un problème supplémentaire de
lisibilité apparaît avec les données textuelles : la longueur
excessive des branches menant aux feuilles (appelées arêtes
externes) réduit la lisibilité de l'intérieur de l'arbre. Il s'agit là
d'un défaut des méthodes de construction d'arbres à partir de
distances, en particulier la méthode Neighbor-Joining de Saitou
& Nei (1987) utilisée dans cet article : en raison de la structure
très particulière des formules de co-occurrence de mots (Evert,
2005), on peut constater que la longueur des arêtes internes d'un

nuage arboré est souvent très petite par rapport à celle des arêtes
menant aux feuilles.

Ces trois constats montrent les limites d'une utilisation
des arbres de mots dont les longueurs d'arêtes sont calculées
directement par l'algorithme de classification hiérarchique. Dès
lors, il convient de proposer un modèle d'interprétation de
l'arbre, et de calcul de ses longueurs d'arêtes, qui soit pertinent
pour la textométrie.

Nous avons vu que l'interprétation la plus immédiate de
l'arbre consiste à considérer chaque sous-arbre comme une
classe de mots. Il convient donc de faciliter et de renforcer cette
interprétation, en choisissant une méthode de calcul des
longueurs d'arêtes compatible avec cet objectif. Nous proposons
de recalculer les longueurs de branches après la construction de
l'arbre, de telle manière qu'elles assurent sa lisibilité, tout en
facilitant la lecture de l'arbre comme une partition en classes de
l'ensemble des mots. Pour cela, nous proposons d'utiliser des
formules proposées par Guénoche & Garreta (2002) pour
évaluer la qualité des arêtes d'un arbre. Ces formules indiquent
si les deux ensembles de mots séparés par une arête sont
effectivement bien séparés d'après la matrice de distance. Ainsi,
on attribuera à chaque arête une longueur proportionnelle à son
score de qualité, et les arêtes les plus longues seront les plus
discriminantes.

1.3 Évaluation par la construction automatique d'une
partition

Afin d'évaluer la pertinence de ces formules, nous proposons un
algorithme qui construit une partition d'un ensemble de mots, à
partir d'un arbre de mots, en découpant successivement, dans
l'ordre décroissant des longueurs, ses arêtes internes, jusqu'à un
certain critère d'arrêt, comme illustré en Figure 2. Cet
algorithme correspond donc à la démarche effectuée
visuellement par l'utilisateur de l'analyse arborée, qui interprète

les arêtes les plus longues de l'arbre comme des séparations
entre des classes de mots regroupés en raison de leur proximité
sémantique.

Figure 2 : Arbre de la famille de « art » dans la base de données Polymots
(Gala & Rey, 2008). Les sept arêtes les plus longues sont numérotées dans
l'ordre des longueurs décroissantes, et les six classes de mots obtenues après
découpage de ces sept arêtes sont montrées par des ellipses rouges.

Ainsi, l'algorithme permet d'obtenir une partition de
l'ensemble des mots, qui dépend directement de la longueur
choisie pour les arêtes de l'arbre. C'est ce principe que nous
allons utiliser pour évaluer les diverses formules permettant de
calculer les longueurs d'arêtes de l'arbre. Nous allons en effet
comparer des partitions de référence avec des partitions
obtenues automatiquement par cette méthode.

Pour cela, nous utiliserons deux corpus d'évaluation. Le
premier est constitué par 20 partitions de familles de mots de la
base de données Polymots (Gala & Rey, 2008). Les

informations de distances entre les mots d'une même famille
proviennent à la fois d'informations de co-occurrence dans le
TLFi (Dendiel & Pierrel, 2003), et du nombre d'affixes
communs (Gala et al., 2011). La partition de référence pour
chacune de ces 20 familles a été construite manuellement, en
effectuant des choix arbitraires de classe pour les mots
polysémiques qui pourraient appartenir à plusieurs classes. Un
exemple de famille et de sa partition en classes est donné au
début de la Section 3.

Le second corpus est constitué par 10 textes écrits
autour de 25 mots relatifs à l'organisation Wikileaks, ces mots
étant organisés en une partition de référence. Chacun des 10
textes est donc censé faire apparaître les mots d'une même
classe à proximité les uns des autres, et la distance de co-
occurrence entre les mots est calculée par TreeCloud.

Ces deux corpus sont utilisés dans des protocoles
d'évaluation qui permettent de faire émerger deux méthodes de
calcul appropriées pour le calcul des longueurs d'arête de
l'arbre, parmi les 5 testées : triples et lengthRatio.

2. Les formules de longueurs d'arêtes

Notre objectif est d'attribuer des longueurs d'arêtes cohérentes
avec les informations de distance sémantique entre mots, c'est-
à-dire une grande longueur aux arêtes qui séparent
effectivement deux groupes de mots sémantiquement éloignés
l'un de l'autre, et une petite longueur aux arêtes qui séparent des
mots proches sémantiquement. Pour cela, plusieurs formules
sont possibles à partir d'une matrice de distances entre mots de
l'arbre (Guénoche & Garreta, 2002). Nous notons d(a,b) la
distance sémantique entre deux mots a et b d'après cette matrice
de distances. Pour être précis, il ne s'agit pas exactement d'une
distance au sens mathématique du terme, puisqu'elle ne respecte
pas, généralement, l'inégalité triangulaire, mais d'une
dissimilarité. Nous comparerons cinq formules possibles,

notées computedLength, triples, quartets, lengthRatio, et
agreementPairs.

La première, computedLength, consiste à considérer
simplement la longueur de l'arête calculée par l'algorithme de
construction de l'arbre à partir de la matrice de distance, c'est-à-
dire l'algorithme Neighbor-Joining (Saitou & Nei, 1987).

La deuxième, triples, désigne le taux de bons triplets
séparés par l'arête. Elle consiste à calculer, pour tout ensemble
de trois mots {a,b,c}, où a et b sont situés d'un côté de l'arête et
c de l'autre côté, la proportion de deux qui vérifient :

d(a,b) ≤ min(d(a,c),d(b,c)).
Si l'arête est cohérente avec les données de distance sémantique,
le score triples, compris entre 0 et 1, doit être proche de 1.
Inversement, si les mots de part et d'autre de l'arête sont situés à
distance inférieure aux mots d'un même côté de l'arête, ce score
triples sera proche de 0.

De manière similaire, la troisième formule, quartets,
désigne le taux de bons quadruplets séparés par l'arête. Pour le
calculer, il faut évaluer, pour tout ensemble de quatre mots
{a,b,x,y}, où a et b sont situés d'un côté de l'arête, et x et y de
l'autre côté, la proportion de ceux qui vérifient :

d(a,b)+d(x,y) ≤ min(d(a,x)+d(b,y), d(a,y)+d(b,x)).
De nouveau, un bon score sera proche de 1 et un mauvais sera
proche de 0.

Pour calculer le taux d'accord des paires, noté
agreementPairs, on commence par classer, dans l'ordre
croissant, les distances entre paires de mots distincts. Parmi ces
n(n-1)/2 distances (pour n mots), on s'attend à ce que celles
entre deux mots d'un même côté de l'arête soient inférieures à
celles entre deux mots séparés par l'arête. En appelant donc m le
nombre de paires de mots d'un même côté de l'arête, et d_m la
m-ième plus petite distance entre paires de mots distincts, la
formule agreementPairs calcule la somme du nombre de paires
de mots distincts d'un même côté de l'arête dont la distance est

inférieure ou égale à d_m d'une part (conformément à ce qui est
attendu), avec d'autre part le nombre de paires de mots distincts
séparés par l'arête dont la distance est supérieure ou égale à
d_m (conformément à ce qui est attendu), somme divisée par le
nombre total de distances, soit n(n-1)/2. Comme il s'agit d'un
taux de paires de mots, les scores des arêtes cohérentes avec les
données de distance seront de nouveau proches de 1, et les
mauvais proches de 0.

Enfin, le ratio des longueurs moyennes, noté
lengthRatio, est la distance moyenne entre mots séparés par
l'arête, divisée par la distance moyenne entre mots d'un même
côté de l'arête. Si l'arête est bien cohérente avec les données de
distance sémantique, on attend que ce score soit strictement
supérieur à 1, sinon, il sera inférieur à 1.

3. Évaluation sur des familles morphologiques

3.1 Protocole d'évaluation

Pour chacune des formules de longueur d'arête décrites ci-
dessus, nous avons testé leur performance avec la base de
données Polymots. Cette base comprend 20 000 mots regroupés
en 2 000 familles, chacune centrée autour d'un mot racine.
Parmi ces familles, 20 ont été partitionnées manuellement en
classes sémantiques. Par exemple, voici la partition pour un
extrait de la base correspondant à la famille du radical « art » :
[artificier, artifice, artificiel, artificiellement] [artillerie,
artilleur] [artisan, artisanal, artisanalement, artisanat] [artiste,
artistique, artistiquement, art].

Pour chacune des formules de longueur d'arêtes, nous
effectuons, pour chaque famille de mots, une comparaison, à
l'aide de l'indice de Rand, ou de l'indice de Rand corrigé, entre
les partitions construites manuellement et celles construites
automatiquement à partir d'une distance sémantique prenant en
compte les co-occurrences des mots dans le TLFi ainsi que leur

nombre d'affixes communs (Gala et al, 2011). Les partitions
construites automatiquement le sont en utilisant un algorithme
de découpage des arêtes par longueur décroissante, illustré en
Figure 2. Au k-ième découpage d'arête, on considère que
chaque composante connexe obtenue, dans l'arbre ainsi
découpé, fournit une classe de la partition. Nous obtenons ainsi
une partition d'au plus k+1 classes, dont nous pouvons calculer
un score de similarité avec la partition manuelle, comme montré
en Figure 3.

Figure 3 : Méthodologie d'évaluation des formules de calcul de longueur des
arêtes de l'arbre.

Plus précisément, pour obtenir un score de qualité,
comme il y a n-3 arêtes internes dans un arbre de n mots, nous
sélectionnons parmi ces partitions obtenues après 1, 2, 3... n-3
découpages, celle qui est la plus proche de la partition de
référence, selon l'indice de Rand, ou selon l'indice de Rand
corrigé. Nous obtenons de cette façon deux scores de qualité

(Rand et Rand corrigé) pour chacune des formules de calcul des
longueurs d'arêtes de l'arbre.

Rappelons que ces deux indices sont au plus égaux à 1,
valeur atteinte pour deux partitions identiques. L'indice de Rand
entre deux partitions P1 et P2 correspond à la proportion de
paires d'éléments qui sont dans la même classe à la fois dans P1
et dans P2, ou dans des classes distinctes à la fois dans P1 et
dans P2 (Rand, 1971). Comme cet indice a tendance à
surestimer la similitude entre deux partitions, l'indice de Rand
corrigé (Hubert & Arabie, 1985) a été proposé. Son espérance
pour deux partitions aléatoires est nulle, il soustrait donc la part
de similitude due au hasard.

3.2 Résultats
Les moyennes des scores de Rand, données en Figure 4, et plus
encore celles des scores de Rand corrigé, montrent que pour ces
20 familles de mots, l'utilisation des formules triples et
lengthRatio fournit les meilleures résultats pour fixer les
longueurs d'arête.

Formule : computed
Length

triples quartets lengthRatio agreement
Pairs

Rand 0.783 0.791 0.762 0.792 0.765

Rand corr. 0.354 0.396 0.254 0.392 0.270

Figure 4 : Moyenne, pour 20 familles de mots de la base Polymots, des scores
de Rand et de Rand corrigé pour la meilleure partition construite
automatiquement en fonction de la formule choisie pour calculer les longueurs
des arêtes.

Pour plus de détails, les scores de Rand et Rand corrigé
obtenus pour les 10 premières familles de mots sont donnés en
Figures 5 et 6, respectivement.

Figure 5 : Score de Rand pour la meilleure partition construite
automatiquement en fonction de la formule choisie pour calculer les longueurs
des arêtes, pour 10 familles de mots de la base Polymots.

On peut également s'interroger sur la similarité entre
ces formules de calcul des distances d'arêtes. Pour en savoir
plus, il est possible de comparer les ensembles de longueurs
d'arêtes obtenues pour chacune de ces cinq formules. Si l'on se
focalise sur l'arbre de la famille du mot “art”, on constate que
les longueurs d'arêtes calculées par la formule lengthRatio
présentent une corrélation avec celles calculées par la formule
triples, le coefficient de corrélation entre ces ensembles de
distances étant de 0,865. Les autres choix de paires de formules
ne font en revanche pas apparaître de corrélations aussi nettes.
On note également, toujours sur l'arbre de la famille “art”, que
les arêtes internes ont une longueur généralement plus
importante que les arêtes externes, tant par le calcul avec la
formule triples que celui avec lengthRatio. Ceci est un avantage
pour la lisibilité de l'arbre.

Figure 6 : Score de Rand corrigé pour la meilleure partition construite
automatiquement en fonction de la formule choisie pour calculer les longueurs
des arêtes, pour 10 familles de mots de la base Polymots.

En revanche, par rapport à la formule triples, la formule
lengthRatio fournit une variance des longueurs d'arêtes moins
importante. Pour améliorer la lisibilité, il faudra donc effectuer
une transformation monotone des distances (par exemple, une
transformation affine) qui augmente cette variance.

4. Évaluation sur un corpus textuel

4.1 Protocole d'évaluation

Dans l'évaluation sur des familles morphologiques ci-dessus, la
distance entre les mots de la famille est une composition entre
une distance sur les co-occurrents communs au sein du TLFi et
une distance des affixes communs. Ainsi, cette distance n'est
pas calculée directement à partir d'un corpus textuel, alors que
c'est le cas pour les distances de co-occurrence utilisées comme
base de la construction des nuages arborés.

Nous proposons donc un second protocole d'évaluation
de la qualité de la partition qui se base sur les distances de co-

occurrence entre mots d'un texte implémentées dans TreeCloud.
A partir d'une partition d'un ensemble de 25 mots liés à
Wikileaks ([julian, assange, porte, parole], [dons, euros, nom,
whf], [membres], [wikileaks, site, documents, publication,
spécialisé, secrets], [guerre, diplomatie, américaine],
[américains, diplomatiques, transparence, monde], [fuites,
journaux, publier]), dix textes d'environ 300 mots ont été
rédigés. Ce corpus est disponible sur le site treecloud.org.

La consigne suivante a été donnée pour l'élaboration
des textes par dix groupes d'étudiants : rédiger “un texte de plus
de 300 mots qui fait obligatoirement apparaître les 25 mots
voulus, en tentant de rapprocher les mots contenus dans une
même classe de la partition”. La partition de départ provenait
d'un découpage thématique en sous-arbres, réalisé
manuellement, d'un nuage arboré. Ce nuage arboré montré en
Figure 7 a été construit par le logiciel TreeCloud à partir de la
concaténation de trois articles de presse : “WikiLeaks : une
transparence qui fait débat”, dans Le Monde du 30 novembre
2010, “WikiLeaks change la donne de la diplomatie et des
médias”, dans Les Echos du 29 novembre 2010, et “Wikileaks,
une nébuleuse si peu transparente...”, dans Les Echos du 9
décembre 2010.

Les 10 textes sont alors concaténés pour former le
corpus d'évaluation, et c'est sur ce corpus qu'on applique la
méthode de création d'un nuage arboré (fenêtre glissante de 10
mots et pas de glissement de 1 mot pour le calcul des co-
occurrences, méthode Neighbor-Joining de Saitou & Nei (1987)
pour la construction de l'arbre), puis la méthode indiquée dans
la Figure 3 pour le calcul des longueurs d'arêtes, la création de
la partition par découpage des arêtes les plus longues, et la
comparaison avec la partition de référence, pour chaque
formule de calcul des longueurs d'arête. Comme la partition de
référence a 7 classes, nous arrêtons le processus de découpage

après 6 découpages d'arêtes, afin de créer la partition dont on
évaluera la qualité par rapport à la partition de référence.

Figure 7 : Nuage arboré de trois articles de presse concaténés permettant de
construire une partition de 25 mots liés à Wikileaks (chacune des 7 classes de
la partition est contenue dans un cercle) fournie comme base de la rédaction
des 10 textes du corpus d'évaluation.

Comme 13 distances de co-occurrence entre mots sont
implémentées dans TreeCloud, nous avons choisi de nous
focaliser sur les 7 dont la robustesse pour construire des nuages
arborés était la meilleure, d'après l'analyse de Gambette &
Véronis (2009) : liddell, gmean, jaccard, dice, ms (minimum
sensitivity), zscore et hyperlex (Gambette, 2010).

4.2 Résultats

Nous obtenons les résultats montrés en Figure 8 pour le score
de Rand corrigé. Les formules lengthRatio et triplets
apparaissent encore une fois comme les meilleures, comme on
le voit dans la Figure 9 avec les moyennes de score de Rand
corrigé.

Figure 8 : Score de Rand corrigé des partitions construites automatiquement
sur le corpus d'évaluation “Wikileaks”, en fonction de 7 distances de co-
occurrence et de 5 formules de calcul des longueurs d'arêtes.

Formule : computed
Length

triples quartets lengthRatio agreement
Pairs

Rand corr. 0.164 0.621 0.200 0.818 0.102

Figure 9 : Moyenne, pour 7 distances de co-occurrence, du score de Rand
corrigé des partitions construites automatiquement sur le corpus d'évaluation
“Wikileaks”, en fonction de 5 formules de calcul des longueurs d'arêtes.

Les partitions obtenues sont très proches de la partition
d'origine, voici par exemple celle obtenue avec la formule de
co-occurrence gmean et la formule de longueurs d'arêtes
lengthRatio, à comparer avec la partition originale de la
Figure 7 : [assange, julian, porte, parole], [site, wikileaks,
documents, secrets, publication, spécialisé], [américaine,
guerre, diplomatie], [membres], [monde, fuites, diplomatiques,
américains, transparence, journaux, publier], [dons, whf, euros,
nom].

On peut remarquer que cette partition n'a que 6 classes,
car un des 6 découpages n'a pas induit de séparation d'une

classe en deux. En effectuant le découpage de l'arête suivante la
plus longue avec ces paramètres (gmean et lengthRatio), on
retrouve exactement la partition originale.

5. Conclusions et perspectives

Cet article fournit une méthodologie de calcul des longueurs
d'arêtes d'un arbre de mots qui permet de l'interpréter comme un
ensemble de classes, les classes les mieux séparées l'étant par
les arêtes les plus longues.

La proposition d'une méthode de partitionnement de
l'ensemble des mots aux feuilles de l'arbre par découpage
successif des arêtes dans un ordre de longueur décroissant
permet de mettre en application ce principe. Comparer les
partitions ainsi obtenues à une partition de référence nous a
permis de déterminer que deux formules de calcul des
longueurs d'arêtes semblent fournir de bons résultats : triples (le
taux de triplets de mots séparés par cette arête qui le sont
également d'après la matrice de distance) et lengthRatio (la
distance moyenne entre mots de part et d'autre de l'arête, divisée
par la distance moyenne entre mots d'un même côté de l'arête).

Ainsi, ces deux formules, ou toute transformation affine
(ou plus généralement toute transformation qui respecte l'ordre
relatif des arêtes en fonction de leur longueur ainsi calculée),
permettent d'obtenir un arbre interprétable comme un ensemble
de classes de mots plus ou moins séparées les unes des autres.
Ce système augmente la fiabilité de l'interprétation de l'arbre, là
où les longueurs directement calculées par la méthode de
classification hiérarchique choisie pour construire l'arbre
peuvent induire en erreur l'utilisateur qui tente d'interpréter
l'arbre.

Comme nous l'avons vu avec la qualité des scores
obtenus dans l'évaluation sur un corpus textuel simulant un
ensemble d'articles portant sur un même sujet, la méthode de
classification non supervisée d'un ensemble de mots en fonction

de leur distance sémantique proposée dans cet article permet
d'obtenir de bons résultats, et a donc un intérêt en tant que telle.
Une comparaison plus poussée avec d'autres méthodes, et sur
d'autres corpus construits de la même manière, permettrait de
confirmer la qualité de la méthode.

Remerciements

Nous remercions Alain Guénoche pour les discussions qui sont
à l'origine de cet article, et les outils indiqués en réponse à nos
besoins méthodologiques. Les remarques du relecteur anonyme
de l'article ont également permis de l'améliorer. Le colloque La
co-occurrence : du fait statistique au fait textuel a également
permis de nourrir cet article grâce à plusieurs discussions et
présentations. En particulier, les informations données par Jean-
Marie Leblanc à propos de sa méthodologie de validation, sur
des textes générés à partir du résultat attendu, ont inspiré le
second protocole expérimental de cet article. Nous remercions
enfin les étudiants du module d'Ingéniérie Linguistique du
master 1 mention informatique de l'Université Paris-Est Marne-
la-Vallée en 2011-2012, pour leur participation au projet
Classes de mots / Infoling 2012 qui a permis la constitution du
corpus utilisé dans ce protocole expérimental, à partir des textes
qu'ils ont rédigés.

Références

Dendien J. & Pierrel J.M. (2003). « Le trésor de la langue
française informatisé. Un exemple d'informatisation d'un
dictionnaire de langue de référence ». Traitement
automatique des langues 44(2) : 11–37.

Evert S. (2005). The Statistics of Word Cooccurrences, Word
Pairs and Collocations. Thèse de l'Université de Stuttgart,
pp. 75–91.

Felsenstein J. (2004). Inferring Phylogenies. Sinauer
Associates.

Firth J.R. (1957). « A synopsis of linguistic theory, 1930–
1955 ». Studies in Linguistic Analysis, pp. 1–32. Special
Volume, Philological Society.

Gala N., Hathout N., Nasr A., Rey V. & Seppälä S. (2011).
« Création de clusters sémantiques dans des familles
morphologiques à partir du TLFi », In Actes de TALN'11.

Gala N. & Rey V. (2008). « Polymots : une base de données de
constructions dérivationnelles en français à partir de
radicaux phonologiques ». In Actes de TALN'08.

Gambette P. & Véronis J. (2009). « Visualising a Text with a
Tree Cloud ». In Locarek-Junge H. and Weihs C., éditeurs,
Classification as a Tool of Research, Proc. of IFCS'09, pp.
561–570.

Gambette P. (2010). « User manual for TreeCloud ». Manuscrit,
http://manual.treecloud.com.

Guénoche A. & Garreta H. (2002). « Representation and
Evaluation of Partitions ». In Classification, clustering and
data analysis, Proc. of IFCS'02.

Hubert L. & Arabie P. (1971), « Comparing Partitions »,
Journal of Classification 2(1) : 193–218.

Huson D.H. & Bryant D. (2006). « Application of Phylogenetic
Networks in Evolutionary Studies ». Molecular Biology
and Evolution 23(2) : 254–267, logiciel disponible sur
www.splitstree.org.

Luong X. (1989). Analyse arborée des données textuelles.
CUMFID 16.

Mayaffre D. (2008). « Quand “travail”, “famille”, “patrie” co-
occurrent dans le discours de Nicolas Sarkozy. Étude de
cas et réflexion théorique sur la co-occurrence ». In Heiden

S., Pincemin B., éditeurs, Actes des JADT'08, pp. 811–
822.

Rand W.M. (1971), « Objective criteria for the evaluation of
clustering methods », Journal of the American Statistical
Association 66(336) : 846–850.

Saitou N. & Nei M. (1987), « The neighbor-joining method: a
new method for reconstructing phylogenetic trees »,
Molecular Biology and Evolution 4(4) : 406–425.

HAL Id: hal-01116231
https://hal.science/hal-01116231

Submitted on 13 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Locating a Tree in a Phylogenetic Network in Quadratic
Time

Philippe Gambette, Andreas D.M. Gunawan, Anthony Labarre, Stéphane
Vialette, Louxin Zhang

To cite this version:
Philippe Gambette, Andreas D.M. Gunawan, Anthony Labarre, Stéphane Vialette, Louxin Zhang.
Locating a Tree in a Phylogenetic Network in Quadratic Time. RECOMB 2015, Apr 2015, Varsovie,
Poland. pp.96-107, �10.1007/978-3-319-16706-0_12�. �hal-01116231�

Locating a Tree in a Phylogenetic Network
in Quadratic Time

Philippe Gambette1, Andreas D. M. Gunawan2, Anthony Labarre1,
Stéphane Vialette1, and Louxin Zhang2

1 Université Paris-Est, LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPC, F-77454,
Marne-la-Vallée, France

2 Department of Mathematics, National University of Singapore

Abstract. A fundamental problem in the study of phylogenetic net-
works is to determine whether or not a given phylogenetic network con-
tains a given phylogenetic tree. We develop a quadratic-time algorithm
for this problem for binary nearly-stable phylogenetic networks. We also
show that the number of reticulations in a reticulation visible or nearly
stable phylogenetic network is bounded from above by a function linear
in the number of taxa.

1 Introduction

Genetic material can be transferred between organisms by hybridization, recom-
bination and horizontal gene transfer besides traditional reproduction. Recent
studies in comparative genomics suggest that these “lateral” processes are a
driving force in evolution which shapes the genome of a species [3, 11, 16]. Ac-
cordingly, phylogenetic networks have commonly been used to model reticulate
evolutionary histories of species [3, 4, 10]. A plethora of methods for reconstruct-
ing reticulate evolutionary histories of species and related algorithmic issues have
extensively been studied over the past two decades [5, 6, 12–14, 17].

A phylogenetic network is an acyclic digraph with a set X of labeled leaves
(that is, vertices of outdegree zero) and a root (having indegree zero). The leaves
are in one-to-one correspondence with a collection of taxa under study, whereas
the unique root represents their least common ancestor. Vertices with indegree
one represent speciation events. Vertices of indegree at least two represent an
evolutionary process by which genetic material was horizontally transferred from
one species to another.

A fundamental question in the study of phylogenetic networks is to determine
whether a tree is displayed by a phylogenetic network over the same set of taxa
(in a sense we define precisely below). This problem is called the tree containment
problem [6]. Answering this question is indeed useful to validate and justify a
phylogenetic network model by testing whether it displays existing phylogenies
over a set of taxa under study.

The problem is NP-complete in general [9], even on the more restricted class
of tree-sibling time-consistent regular networks [7]. Although great effort has been

devoted to the study of that problem, it has been shown to be polynomial-time
solvable only for a couple of interesting classes of phylogenetic networks, namely,
normal networks and tree-child networks [7]. Determining the complexity of the
tree containment problem for a class of phylogenetic networks that properly
contains tree-child networks, particularly those with the so-called reticulation-
visibility property, is an open problem [6, 7].

In this paper, we study the tree containment problem for nearly stable phy-
logenetic networks (defined in the next section), which generalize normal and
tree-child networks. Recombination histories of viruses, hybridization histories
of plants, and histories of horizontal gene transfers reported in literature often
satisfy the property that defines those networks [8, 10]. Our key results include:
(i) the number of reticulations in a reticulation-visible or nearly stable phyloge-
netic network is linearly bounded from above in terms of the number of taxa;
and (ii) the tree containment problem for nearly stable phylogenetic networks
can be solved in quadratic time. Omitted proofs and details will appear in the
extended version.

2 Concepts and Notions

A (phylogenetic) network on a set X of taxa is a directed acyclic graph with a
single root (a vertex with indegree 0) which satisfies the following properties: (i)
its leaves (vertices with outdegree 0) are in one-to-one correspondence with the
taxa in X; (ii) there are no vertices with both indegree one and outdegree one;
and (iii) there is a path from the root to any other vertex. We identify each leaf
with the taxon corresponding to it and refer to the directed edges (tail, head)
as branches.

In a network, reticulation vertices (or simply reticulations) are vertices with
indegree at least two and outdegree one; tree vertices are vertices with indegree
one and outdegree at least two. A branch is a tree branch if it ends at a tree
vertex; it is called a reticulation branch otherwise.

A network is binary if its root, leaves and the other vertices have degree 2,
1 and 3, respectively. A phylogenetic tree is simply a binary network without
reticulations.

For a binary network N , we shall use rN to denote the root of N . Let x and
y be vertices in N . We say that x is a parent of y and y is a child of x if (x, y)
is a branch. More generally, we say that x is an ancestor of y and equivalently y
is a descendant of x if there is a directed path from x to y. A vertex x in N is a
stable ancestor of a vertex v if it belongs to all directed paths from rN to v. We
say that x is stable if there exists a leaf ℓ such that x is a stable ancestor of ℓ.

Proposition 1. Let N be a binary network. The following facts hold.

(1) A vertex is stable if it has a stable tree child.

(2) A reticulation is stable if and only if its unique child is a stable tree vertex.

(3) If a tree vertex is stable, then its children cannot both be reticulations.

A network is a tree-child network if every vertex has a child that is a tree
vertex [2]. It can be proved that a network is a tree-child network if and only if
every vertex is stable. It is reticulation-visible if all its reticulations are stable [6].
It is nearly stable if for every vertex, either that vertex is stable or its parents
are.

Contracting a branch (u, v) means replacing it with a single vertex w in such
a way that all neighbors of u and v become neighbors of w. Given a binary
phylogenetic tree T and a binary network N , we say that N displays T if there
is a spanning subtree T ′ of N that is a subdivision of T , i.e. T ′ has the same
vertex set as N and T can be obtained from T ′ by contracting all branches in T ′

incident with the vertices with outdegree 1 and indegree 1, all branches incident
with the “dummy leaves” (leaves in T ′ that correspond to tree vertices in N),
and all branches incident with a vertex of indegree 0 and outdegree 1. Figure 1
shows an example of a phylogenetic network N and a tree that is displayed in
N .

a b c d e a b c d e a b c d e

A B C

Fig. 1. (A) A phylogenetic network. (B) A spanning subtree of N obtained after the
reticulation branch between the parents of c and b is removed. (C) A tree displayed in
N through the subtree in (B).

In this work, we study the tree containment problem (TCP), which is that of
determining whether a phylogenetic tree is displayed by a network or not.

3 How Many Reticulations in a Network?

An arbitrary network with n leaves can have a very large number of reticulations.
To analyze the time complexity of an algorithm designed for solving a network
problem, we need to bound the size of the network by a function of n.

Removing a reticulation branch from each reticulation in a binary network
N yields a spanning subtree T ′. All leaves in N are still leaves in T ′, but T ′

may additionally contain some “dummy leaves” that correspond to tree vertices
whose outgoing branches have both been removed. The following lemma says
that it is always possible to remove proper reticulation branches so as to obtain
a tree without dummy leaves.

Lemma 1. Let N be a binary reticulation-visible phylogenetic network. We can
determine which reticulation branch to remove at each reticulation so that the
tree obtained after removing the selected branches contains no dummy leaves.

Proof. Let T be a tree obtained from N by removing exactly one reticulation
branch incident to each reticulation. In order for T not to contain any dummy
leaves, we need to guarantee that the reticulation branches to be removed are
incident with different tree vertices. In other words, the branches to be removed
form a matching that covers every reticulation in N . Since N has the reticulation-
visibility property, the parents of each reticulation are both tree vertices (Propo-
sition 1). Such a set of reticulation branches exists and can be found by applying
Hall’s Theorem to a bipartite graph with tree vertices and reticulations as vertex
sets and reticulation branches as edges. Since each reticulation is the head of two
reticulation branches and each tree vertex is the tail of at most two reticulation
branches, there exists a matching that covers all the reticulations (see a result
of N. Alon on page 429 in [1]). ⊓⊔

A cross branch

removed

A non-cross

branch

removed

A cross branch

removed

A B C D

y

x

y

x

y

t
1

r
1

t
2

x
z

Fig. 2. Illustration of the different cases in the proof of Theorem 1. A. Definition of
cross and non-cross branches removed from a path. B. The branch (x, y) is a non-cross
branch removed from a path. Assume that a cross branch (z′, z) has been removed from
a reticulation z inside the segment from x and y, where z′ is not shown, and two cross
branches have also been removed from two tree vertices t1 and t2 between z and y.
C. Some cross branches must have been removed from their tails located between the
heads of two non-cross branches that are removed from a path (in this case, between y
and y′). D. If two cross branches have been removed from two reticulations in a path,
then the upper reticulation (rj here) is not stable.

Theorem 1. Let N be a binary reticulation-visible phylogenetic network with n
leaves. Then N has at most 4(n − 1) reticulations.

Proof. Assume N contains m reticulations. By Lemma 1, we can obtain a tree
T without dummy leaves by removing m reticulation branches from N . Since N
is binary, an internal vertex in T has either one or two children; equivalently, T
is a subdivision of a rooted binary tree T ′ over the same leaves as N . Therefore,
T ′ has n − 1 internal vertices (including its root) of outdegree 2 and there are
2n − 2 paths Pi (1 ≤ i ≤ 2n − 2) satisfying (i) the ends of each Pi are either the
root of T , a leaf, or internal vertices of outdegree 2, and (ii) each internal vertex
of Pi has both indegree and outdegree 1 if Pi consists of two or more branches.

For each path Pi of length ≥ 2, an internal vertex of Pi is either a tree vertex
of N , whose outgoing branch not in Pi has been removed, or a reticulation, whose
incoming branch not in Pi has been removed. For convenience of discussion, we
divide the removed reticulation branches into cross and non-cross branches
(with respect to T) (Figure 2A). A removed branch is called a cross branch if
its tail and head are located on two different paths Pi and Pj , i ̸= j, otherwise
it’s called a non-cross branch. We first have the following facts.

Facts
(1) If (x, y) is a non-cross branch removed from Pi, then at least one cross

branch has been removed from its tree vertex tail in the segment Pi[x, y]
from x to y of Pi, and there is no reticulation in Pi[x, y] other than y.

(2) Let (x, y) and (x′, y′) be two non-cross branches removed from Pi, where
y is an ancestor of y′. Then there exists at least one cross branch being
removed from its tree vertex tail located between y and y′ (Figure 2C).

(3) There are at least as many cross reticulation branches removed as non-
cross reticulation branches.

Proof. (1) Since N contains no parallel branches, Pi[x, y] has at least three
vertices, so it suffices to prove that y is the only reticulation in Pi[x, y].
Assume on the contrary that a branch (z′, z) has been removed from a retic-
ulation z in Pi[x, y] (Figure 2B). Then there is a path including (x, y) from
rN to a leaf below y that avoids z, so z is not stable on any leaf below y
(and hence below z) in T (and hence in N). Moreover, since T is a sub-
tree of N , z cannot be stable in N on any leaf that is not below z in T . N
and T have the same leaf set, hence z is not stable in N , contradicting the
reticulation-visibility property.
(2) Note that y and y′ are reticulations in N . By Fact (1) above, y must be
above x′, and there is a cross brach removed from its tree vertex tail located
between x′ and y′.
(3) By Facts (1) and (2), we can establish an injective map from the set of
non-cross reticulation branches to that of cross ones. Hence, the statement
in this part is also true. ⊓⊔

Assume at least 2n−1 cross branches (ti, ri) have been removed from the 2n−2
paths Pi. At least two heads rj and rk are on the same path Pi (Figure 2D).
Using an argument similar to that used in the proof of Fact (2), one of rj and rk

which is upstream in Pi is not stable, a contradiction. Therefore, at most 2n− 2
cross branches have been removed to produce T . By Fact (3), there are also at
most 2n − 2 non-cross branches removed during the process. Since we removed
one incoming branch for each reticulation, we conclude that there are at most
4(n − 1) reticulations in N . ⊓⊔

Lemma 2. Let N be a binary nearly stable network, and let Uret(N) (resp.
Sret(N)) denote the number of all unstable (resp. stable) reticulations in N . We
can transform N into a binary reticulation-visible network N ′ with the property
that N ′ has the same leaf set as N and Sret(N) ≤ Sret(N

′) ≤ Sret(N)+Uret(N).

Proof. Let a be an unstable reticulation in N , whose child is denoted by b. Since
N is nearly stable, b is stable. By Proposition 1(2), b is a stable reticulation. Let
c denote a parent of a; then c is stable by definition of N , and it is a tree vertex
by Proposition 1(2). Let d denote the other child of c. Since c is stable, d is a
tree vertex (Proposition 1(3)). In addition, d is stable.

Assume on the contrary that d is unstable. Then both its children must
be stable by the nearly-stable property of N . Hence, by Proposition 1(2) and
the fact that d is unstable, both its children are stable reticulations. Since a is
unstable, a is not a child of d. This implies that c is unstable, a contradiction.

Finally, let e be the parent of c. f be the other parent of a and g be the
other parent of b (see Figure 3). Note that g ̸= f . Otherwise, f is unstable,
contradicting that there are no two consecutive unstable vertices. To transform
N into a binary reticulation-visible network, we remove unstable vertex a by first
removing the branch (c, a), and then contracting the paths f -a-b and e-c-d into
branches (f, b) and (e, d). Both b and d are clearly still stable in the resulting
network. By rewiring around every unstable reticulation in N , we produce a
binary reticulation-visible network N ′. The inequality follows from the fact that
no stable reticulation is removed, and no new reticulation is created during the
rewiring. ⊓⊔

b

a

c

e

fg
d

b

a

c

e

fg
d

b

e

fg
d

Remove

branch (c, a)

Contract

paths

Fig. 3. A An unstable reticulation a, its stable child b and its stable parents (c and
f) in the original network N . To transform N into a reticulation-visible network, we
remove the incoming reticulation branch (c, a) (B) and then contract paths e-c-d and
f -a-b (C). The rewiring eliminates the unstable reticulation vertex a.

Lemma 3. For a binary nearly stable network N , Uret(N) ≤ 2Sret(N).

Proof. Directly follows from the fact that an unstable reticulation must have a
stable reticulation as its child, and any stable reticulation can be the child of at
most two unstable reticulations. ⊓⊔

Theorem 2. Let N be a binary nearly stable network with n leaves. Let T (N)
denotes the number of tree vertices in N . Then:

(i) N has at most 12(n − 1) reticulations;
(ii) |T (N)| ≤ 13(n − 1) and |E(N)| ≤ 38(n − 1).

Proof. (i) Theorem 1 and Lemmas 2 and 3 imply Sret(N)+Uret(N) ≤ 3Sret(N) ≤
3Sret(N

′) ≤ 3(4n − 4) = 12(n − 1).
(ii) We can think of the network as a flow network, with rN as source and the n
leaves as sinks. Hence, the number of tree vertices equals n − 1 plus the number
of reticulations, that is, at most 13(n − 1) (by (i)). Since the outdegree of the
root is two, and the outdegrees of each tree and reticulation vertex are 2 and 1,
respectively, N has 2(13n − 13) + 12(n − 1) = 38(n − 1) branches at most. ⊓⊔

4 A Quadratic-Time Algorithm for the TCP

In this section, we shall present a quadratic-time algorithm for solving the TCP.
If a given network N and a given reference tree T contain a common subphy-
logeny, then we can simplify the task of determining whether N displays T by
replacing the common subphylogeny by a new leaf. Therefore, without loss of
generality, we assume that N does not contain a subphylogeny with two or more
leaves. We call this property the subphylogeny-free property.

v

u

w

r

v

u

r

A B C D E

F G H I J

v

u

w

r

v

u

w

r

w

v

u

r

w

v

u

r

v

u

w

r

v

u

w

r

v

u

w

r

v

w

u

r

Fig. 4. All ten possible subnetworks at the end of a longest path in a nearly stable
network. Here, r is the network root and the directed path from r to w is represented
by a coiled path. The parent w of u is not shown in C.

Lemma 4. Let N be a nearly stable phylogenetic network satisfying the subphylogeny-
free property. Let P = (r, . . . , w, u, v, ℓ) be a longest root-to-leaf path of four or

more vertices in N , where r = rN and ℓ the leaf end. Then the subnetwork con-
sisting of the descendants of w exhibits one of the structures given in Figure 4.

Proof. Note that v cannot be a tree vertex: since P is a longest root-to-leaf
path, the other child of v would otherwise be a leaf, thereby contradicting our
assumption that N satisfies the subphylogeny-free property. Therefore, v is a
reticulation. There are two possible cases for u.

1. The u is a reticulation: Then u is unstable, and w must be a stable tree
vertex (see Proposition 1(2) for both claims), which is stable on ℓ or some
other leaf. Let g be the other child of w. By Proposition 1(3), g is either a
tree vertex or a leaf. If g is a leaf, we obtain the subnetwork in Figure 4A.
If g is a tree vertex, then neither of its children is a tree vertex: since P is
a longest path, a tree vertex child of g would have two leaves as children,
thereby contradicting the subphylogeny-free property. Note that g’s children
cannot both be reticulations either, since otherwise w would be unstable.
Therefore, one child of g is a leaf and the other is a reticulation with a leaf
child (again because P is a longest path), as shown in Figure 4B.

2. The u is a tree vertex: Let e denote the other child of u. Note that e
cannot be a tree vertex, otherwise both its children would be leaves (since
P is a longest path), which would contradict our assumption that N has the
subphylogeny-free property. If e is a leaf, we obtain the subnetwork shown
in Figure 4C. If e is a reticulation, then its only child is a leaf (again because
P is a longest path), so e is stable on that leaf and u is therefore unstable.
Since N is nearly stable, w must be a stable tree vertex. We consider the
other child g of w in the following subcases.

(2.1) If g is a leaf, then we have the subnetwork given in Figure 4D.
(2.2) If g is a tree vertex and also a parent of e and v, then we obtain the

subnetwork in Figure 4E.
(2.3) If g is a tree vertex and in addition, g is a parent of e, but not a parent

of v: then w is stable on ℓ′, the unique child of e. Let h be the other
child of g; then h cannot be a tree vertex, since both its children would
then be leaves, which would contradict our assumption that N has the
subphylogeny-free property. If h is a reticulation, its child must be a
leaf, since P is a longest path. Thus, we have the subnetwork given in
Figure 4F. If h is a leaf, we obtain the subnetwork in Figure 4G.

(2.4) If g is a tree vertex and in addition, g is a parent of v, but not a parent
of e, then a discussion similar to that of case (2.2) characterises the
only two possible subnetworks (Figure 4H and 4I) in this case.

(2.5) If g is a tree vertex and in addition, g is neither a parent of v nor
a parent of e: then again we look at g’s children. Both cannot be
reticulations, otherwise w is unstable, a contradiction. If neither of
them is a reticulation, then there is a subtree below g; if one of them
is a reticulation and the other is a tree vertex, then again there is a
subtree. The only possible case that remains, shown in Figure 4J, is
the case where one child is a reticulation and the other is a leaf.

(2.6) If g is a reticulation: Then w unstable. This is impossible, as w is a
stable tree vertex. ⊓⊔

The subnetwork below g of the structures shown in Figure 4B, 4G, 4I, 4J
and that below u in Figure 4C match the following pattern:

y

in which a leaf ℓ has a reticulation sibling y and a leaf nephew, ℓ′. Such a pattern
is called an uncle-nephew structure. Note that if ℓ and ℓ′ are not siblings in a
tree displayed by N , then the reticulation branch (x, y) should not be used. If
ℓ and ℓ′ are siblings, either (x, y) or the other branch entering y can be used.
Here, since the other branch enters y from an unspecified vertex, it is simply
called a dangling branch. It is not hard to see that for a tree T in which ℓ
and ℓ′ are siblings, if T is displayed in the network resulting from the removal
of (x, y), it is also displayed in the one after the dangling branch is removed.
Hence, to determine whether N displays a tree T , we can simplify the network
by eliminating y using the following process:

Uncle-Nephew Reduction In an uncle-nephew substructure shown
above, remove the dangling branch if ℓ and ℓ′ are siblings in T , or remove
(x, y) otherwise. Then contract vertices with indegree and outdegree 1.

In each of the other cases, we can also simplify the network by using infor-
mation on the input tree. To summarize how to simplify the network, we use the
following notation for each vertex w in a network N :

– R(w) denotes the subnetwork consisting of all the descendants of w;
– (−, x) denotes the dangling branch entering x from its parent not in R(w)

for x in R(w);
– N ′ + (x, y) denotes the subnetwork obtained by adding (x, y) into N ′ for a

subnetwork N ′ of N and a branch (x, y) of N ;
– N ′ − (x, y) denotes the subnetwork obtained by removing (x, y) from N ′ for

a subnetwork N ′ of N ;
– pT (x) denotes the parent of a vertex x in a tree T .

Theorem 3. Let N be a binary nearly stable network with no uncle-nephew
structure, and T a tree with the same set of labeled leaves. Let w be a tree vertex
in N . Define N ′ as follows.

(i) When R(w) matches the structure of Figure 4A, define N ′ = N − (w, u) if ℓ
and ℓ′ are not sibling in T and N ′ = N − {(−, u), (−, v)} otherwise.

(ii) When R(w) matches the structure of Figure 4D, define N ′ = N − (−, v)
when ℓ and ℓ′′ are siblings, or when ℓ and ℓ′ are siblings and their parent is
a sibling of ℓ′′ in T , and N ′ = N − (u, v) otherwise.

(iii) When R(w) matches the structure of Figure 4E, define N ′ = N−{(u, e), (g, v)}.
(iv) When R(w) matches the structure of Figure 4F, define N ′ = N−{(g, e), (−, v)}

if ℓ and ℓ′ are siblings in T and N ′ = N − (u, e) otherwise.
(v) When R(w) matches the structure of Figure 4H, define N ′ = N−{(g, v), (−, e)}

if ℓ and ℓ′ are siblings in T and N ′ = N − (u, v) otherwise.

Then N ′ is nearly stable and N displays T only if N ′ displays T .

Proof. Since none of the simplifications removes any leaf and all of them only
reduce possible paths from rN to a leaf, the resulting network N ′ is nearly stable.

Assume R(w) is the subnetwork in Figure 4A and N displays T . Then there
exists a subtree T ′ of N that is a subdivision of T and let pT (ℓ) corresponds x
in T ′. Clearly, x is of degree 3 and hence a tree vertex in N . We consider two
cases.

CASE A. Leaves ℓ and ℓ′ are not siblings in T .
We first have that x ̸= u, x ̸= v for u and v in Figure 4A. We also have

x ̸= w. Otherwise, ℓ′ must be a child of x in T ′ and ℓ is a sibling of ℓ′ in T , a
contradiction. Therefore, the path from x to ℓ contains two or more vertices and
v is the parent of ℓ in this path. If u is the parent of v in the same path, neither
(−, v) nor (w, u) is in T ′, indicating that N ′ = N − (w, u) also displays T .

If pT ′(v) ̸= u in the same path, then (u, v) is not in T ′ and hence u becomes
a dummy leaf in T ′, as there is no leaf other than ℓ below u in R(w). If (w, u)
is in T ′, then (−, u) is not in T ′ and T ′ + (−, u) − (w, u) is a subtree of N ′ in
which only the dummy leaf u is relocated. Hence, N ′ also displays T .

CASE B. Leaves ℓ and ℓ′ are siblings in T .
Then x is a common ancestor of ℓ and ℓ′ in N . If x = w, the path from x to

ℓ in T ′ must be w, u, v, as this is only path from w to ℓ in N . Hence, (−, u) and
(−, v) are not in T ′. Therefore, T ′ is a subtree of N ′ and N ′ also displays T .

If x ̸= w, then x is an ancestor of w and hence w is the parent of ℓ′ in the
path from x to ℓ′ in T ′. Note that pT ′(ℓ) = v. If pT ′(v) = u, then (−, u) is in T ′,
but both (−, v) and (w, u) are not. T ′′ = T ′ + (w, u) − (−, u) is a subtree of N ′.
Noting that T ′′ is also a subdivision of T , N ′ displays T .

If pT ′(v) ̸= u, then (−, v) is in the path from x to ℓ in T ′. This implies
that (u, v) is not in T ′ and u is a dead-end in T ′. If (w, u) is in T ′, the subtree
T ′′ = T ′ + (u, v) − (−, v) of N ′ is a subdivision of T . If (w, u) is not in T ′, the
subtree T ′′ = T ′ + (w, u) − (−, u) − (−, v) of N ′ is a subtree of N ′. Hence, N ′

displays T ′.
Similarly, we can prove that N displays T only if N ′ displays T when R(w)

is the subnetwork in the panels D, F, and H in Figure 4. Note also that the
subnetworks in the panels F and H are essentially identical (if the positions of v
and e are switched). Due to the limited space, the details are omitted here. The
case when R(w) is the subnetwork in Figure 4E is trivial, as deletion of which
two reticulation branches from v and e does not affect outcome. ⊓⊔

By Theorem 3, we are able to determine whether a nearly stable phylogenetic
network N displays a binary tree T or not by repeatedly executing the following
tasks in turn until the resulting network N ′ becomes a tree:

– Compute a longest path P in N ′ = N ;
– Simplify N ′ by considering the subnetwork at the end of P according to the

cases in Lemma 4;
– Contract degenerated reticulations in N ′ and replace the parent of a pair of

leaves appearing in both N ′ and T with a new leaf.

and then check if N ′ is identical to T .
Finally, we analyze the time complexity. Let N and T have n leaves. By

Theorem 2, there are O(n) vertices and O(n) branches in N . Since we eliminate
at least a reticulation in each loop step, the algorithm stops after O(n) loop steps.
In each loop step, a longest path can be computed in O(n) time ([15], page 661),
as N is acyclic; both the second and third tasks can be done in constant time.
In summary, our algorithm has quadratic time complexity.

5 Conclusion

We have developed a quadratic-time algorithm for the TCP for binary nearly
stable phylogenetic networks. Our algorithm not only is applicable to a superclass
of tree-child networks, but also has a lower time complexity than the algorithm
reported in [7]. Although phylogenetic network models built in the study of viral
and plant evolution are often nearly stable, it is interesting to know whether the
TCP is polynomial time solvable or not for networks with other weak properties.

In particular, the problem remains open for binary networks with the visi-
bility property, but the upper bound we have presented on the number of retic-
ulation vertices of such networks, as well as our algorithm for nearly stable
phylogenetic networks, provide definitely valuable ideas to solve the problem,
exactly or heuristically, on phylogenetic networks with the reticulation visibility
property.

6 Acknowledgments

The project was financially supported by Merlion Programme 2013.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)

2. Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic net-
works. IEEE/ACM Trans. Comput. Biol. Bioinfo. 6(4), 552–569 (2009)

3. Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. PNAS 110(46),
18566–18571 (2013)

4. Dagan, T., Artzy-Randrup, Y., Martin, W.: Modular networks and cumulative
impact of lateral transfer in prokaryote genome evolution. PNAS 105(29), 10039–
10044 (2008)

5. Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination
Graphs and Explicit Phylogenetic Networks. The MIT Press (2014)

6. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algo-
rithms and Applications. Cambridge University Press (2011)

7. van Iersel, L., Semple, C., Steel, M.: Locating a tree in a phylogenetic network.
Inf. Process. Lett. 110(23), 1037–1043 (2010)

8. Jenkins, P., Song, Y., Brem, R.: Genealogy-based methods for inference of historical
recombination and gene flow and their application in saccharomyces cerevisiae.
PLoS ONE 7(11), e46947 (2012)

9. Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in
the network is hard. Theor. Comput. Sci. 401, 153–164 (2008)

10. Marcussen, T., Jakobsen, K.S., Danihelka, J., Ballard, H.E., Blaxland, K., Bryst-
ing, A.K., Oxelman, B.: Inferring species networks from gene trees in high-polyploid
north american and hawaiian violets (viola, violaceae). Syst. Biol. 61, 107–126
(2012)

11. McBreen, K., Lockhart, P.J.: Reconstructing reticulate evolutionary histories of
plants. Trends Plant Sci. 11(8), 103–122 (2006)

12. Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A.,
Sun, J., Timme, R.: Phylogenetic networks: Modeling, reconstructibility, and ac-
curacy. IEEE/ACM Trans. Comput. Biol. Bioinfo. 1(1), 13–23 (2004)

13. Nakhleh, L.: Computational approaches to species phylogeny inference and gene
tree reconciliation. Trends Ecol. Evolut. 28(12), 719–728 (2013)

14. Parida, L. : Ancestral recombinations graph: a reconstructability perspective using
random-graphs framework. J. Comput. Biol. 17(10), 1345–1370 (2010)

15. Sedgewick, R., Wayne, K.: Algorithms, 4th Edition. Addison-Wesley (2011)
16. Treangen, T.J., Rocha, E.P.: Horizontal transfer, not duplication, drives the ex-

pansion of protein families in prokaryotes. PLoS Genetics 7(1), e1001284 (2011)
17. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination.

J. Comp. Biol. 8(1), 69–78 (2001)

HAL Id: hal-01372824
https://hal.science/hal-01372824

Submitted on 27 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Do branch lengths help to locate a tree in a phylogenetic
network?

Philippe Gambette, Leo van Iersel, Steven Kelk, Fabio Pardi, Celine
Scornavacca

To cite this version:
Philippe Gambette, Leo van Iersel, Steven Kelk, Fabio Pardi, Celine Scornavacca. Do branch lengths
help to locate a tree in a phylogenetic network?. Bulletin of Mathematical Biology, 2016, 78 (9),
pp.1773-1795. �10.1007/s11538-016-0199-4�. �hal-01372824�

Noname manuscript No.
(will be inserted by the editor)

Do branch lengths help to locate a tree in a phylogenetic
network?

Philippe Gambette · Leo van Iersel ·
Steven Kelk · Fabio Pardi · Celine
Scornavacca

Received: date / Accepted: date

P. Gambette
Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-77454,
Marne-la-Vallée, France
E-mail: philippe.gambette@u-pem.fr

L. van Iersel
Delft Institute of Applied Mathematics, Delft University of Technology
Postbus 5031,2600 GA Delft, The Netherlands
E-mail: l.j.j.v.iersel@gmail.com

S. Kelk
Department of Data Science and Knowledge Engineering (DKE)
Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
E-mail: steven.kelk@maastrichtuniversity.nl

Corresponding author: F. Pardi
Institut de Biologie Computationnelle (IBC)
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM)
CNRS, Université de Montpellier, France
E-mail: pardi@lirmm.fr

C. Scornavacca
Institut de Biologie Computationnelle (IBC)
Institut des Sciences de l’Evolution, CC 064
Place Eugène Bataillon, Montpellier, France
E-mail: celine.scornavacca@umontpellier.fr

2 Philippe Gambette et al.

Abstract Phylogenetic networks are increasingly used in evolutionary biology
to represent the history of species that have undergone reticulate events such
as horizontal gene transfer, hybrid speciation and recombination. One of the
most fundamental questions that arise in this context is whether the evolution
of a gene with one copy in all species can be explained by a given network. In
mathematical terms, this is often translated in the following way: is a given
phylogenetic tree contained in a given phylogenetic network? Recently this
tree containment problem has been widely investigated from a computational
perspective, but most studies have only focused on the topology of the phylo-
genies, ignoring a piece of information that, in the case of phylogenetic trees,
is routinely inferred by evolutionary analyses: branch lengths. These measure
the amount of change (e.g., nucleotide substitutions) that has occurred along
each branch of the phylogeny. Here, we study a number of versions of the
tree containment problem that explicitly account for branch lengths. We show
that, although length information has the potential to locate more precisely a
tree within a network, the problem is computationally hard in its most general
form. On a positive note, for a number of special cases of biological relevance,
we provide algorithms that solve this problem efficiently. This includes the case
of networks of limited complexity, for which it is possible to recover, among
the trees contained by the network with the same topology as the input tree,
the closest one in terms of branch lengths.

Keywords Phylogenetic network · tree containment · branch lengths ·
displayed trees · computational complexity

1 Introduction

The last few years have witnessed a growing appreciation of reticulate evolu-
tion – that is, cases where the history of a set of taxa (e.g., species, populations
or genomes) cannot be accurately represented as a phylogenetic tree [11,2],
because of events causing inheritance from more than one ancestor. Classic
examples of such reticulate events are hybrid speciation [29,32,1], horizontal
gene transfer [5,19,40] and recombination [34,36]. Inferring the occurrence of
these events in the past is a crucial step towards tackling major biological
issues, for example to understand recombinant aspects of viruses such as HIV
[35], or characterizing the mosaic structure of plant genomes.

Reticulate evolution is naturally represented by phylogenetic networks –
mathematically, simple generalizations of phylogenetic trees, where some nodes
are allowed to have multiple direct ancestors [21,31]. Currently, much of the
mathematical and computational literature on this subject focuses solely on
the topology of phylogenetic networks [22], namely not taking into account
branch length information. This information – a measure of elapsed time, or
of change that a species or gene has undergone along a branch – is usually
estimated when inferring phylogenetic trees, and it may have a big impact on
the study of reticulate evolution as well.

Do branch lengths help to locate a tree in a phylogenetic network? 3

For example, in the literature investigating hybridization in the presence of
incomplete lineage sorting, the branch lengths of a phylogenetic network are
the key parameters to calculate the probability of observing a gene tree, and
thus to determine the likelihood of the network [30,38]. Moreover, accurate es-
timates of branch lengths in the gene trees are known to improve the accuracy
of the inferred network [28,39]. Similarly, for another large class of methods for
network reconstruction, otherwise indistinguishable network scenarios can be-
come distinguishable, if branch lengths are taken into account [33]. The precise
meaning of branch lengths is often context-dependent, ranging from expected
number of substitutions per site, generally adopted in molecular phylogenet-
ics, to a measure of the probability of coalescence, often adopted for smaller
timescales where incomplete lineage sorting is common, to the amount of time
elapsed. In the last case, we may expect the phylogeny (network or tree) to be
ultrametric, that is to have all its leaves at the same distance from the root
[7,4].

In this paper, we explore the impact of branch lengths on a fundamen-
tal question about phylogenetic networks: the tree containment problem. In-
formally (formal definitions will be given in the next section), this problem
involves determining whether a given phylogenetic tree is contained, or dis-
played, by a given phylogenetic network, and in the positive case, locating
this tree within the network. Biologically, this means understanding whether
a gene – whose phylogenetic history is well-known – is consistent with a given
phylogenetic network, and understanding from which ancestor the gene was
inherited at each reticulate event. From a computational perspective, the tree
containment problem lies at the foundation of the reconstruction of phyloge-
netic networks. In its classic version, where only topologies are considered, the
problem is NP-hard [27], but for some specific classes of networks it can be
solved in polynomial time [25].

Intuitively, an advantage of considering branch lengths is that it should
allow one to locate more precisely a gene history within a network, and, more
generally, it should give more specific answers to the tree containment problem.
For example, whereas a tree topology may be contained in multiple different
locations inside a network [9], this will happen much more rarely when branch
lengths are taken into account (see, e.g., T1 in Fig. 1). Similarly, some genes
may only be detected to be inconsistent with a network when the branch
lengths of their phylogenetic trees are considered (see, e.g., T2 in Fig. 1). In
practice, some uncertainty in the branch length estimates is to be expected,
which implies that deciding whether a tree is contained in a network will
depend on the confidence in these estimates (e.g., T2 in Fig. 1 is only displayed
by N if we allow its branch lengths to deviate by 2 or more units from their
specified values).

While the possibility of having more meaningful answers to a computa-
tional problem is certainly an important advantage, another factor to consider
is the complexity of calculating its solutions. It is known that adding con-
straints on branch lengths can lead to polynomial tractability of other prob-
lems in phylogenetics that would otherwise be NP-complete [13]. In this paper,

4 Philippe Gambette et al.

N T1 T2

a b c d

2 2

2 2

a b c d

3

2 2
4 4

a b c d

3

5

2

Fig. 1 Toy example on the impact of branch lengths on locating a tree within
a network. If lengths are not taken into account, both T1 and T2 are displayed by N .
Moreover, locating uniquely T1 within N is not possible: there are 4 switchings (formally
defined in the Preliminaries) of N for T1, and 3 different ways to locate (images of) T1
within N . If instead lengths are taken into account, the only image of T1 within N is the
one highlighted in bold, and T2 is not displayed by N (in fact, the tree displayed by N
isomorphic to T2 has significantly different branch lengths). Note: branches with no label
are assumed to have length 1.

we will show a number of results on the effect of taking into account branch
lengths on the computational complexity of the tree containment problem. We
first introduce the necessary mathematical preliminaries (Sec. 2), including a
formal definition of the main problem that we consider (Tree Containment
with Branch Lengths – TCBL), and of some variations of this problem ac-
counting for the fact that branch lengths are usually only imprecise estimates
of their true values (relaxed-TCBL and closest-TCBL). We then show a
number of hardness (negative) results for the most general versions of these
problems (Sec. 3), followed by a number of positive results (Sec. 4). Specifi-
cally, a suite of polynomial-time, pseudo-polynomial time and fixed parameter
tractable algorithms that solve the problems above for networks of limited
complexity (measured by their level [8,26]; definition below) and containing
no unnecessary complexity (no redundant blobs [24]; also defined below).

2 Preliminaries

We define a phylogenetic network on X as a rooted directed acyclic graph with
exactly one vertex of indegree 0 (the root), with no vertices with indegree and
outdegree 1, and whose outdegree 0 vertices (the leaves) are bijectively labeled
by the elements of X (the taxa). A phylogenetic tree is a phylogenetic network
whose underlying undirected graph has no cycles. We consider phylogenetic
networks (and thus trees) where each arc has an associated length. Formally,
given an arc (u, v) of a phylogenetic network N , its length λN (u, v) is a positive
integer, i.e. strictly greater than zero. In this paper we will use the terms “arc
lengths” and “branch lengths” interchangeably.

Do branch lengths help to locate a tree in a phylogenetic network? 5

A phylogenetic tree or network is binary if all vertices have indegree 1 and
outdegree 2 (bifurcations), indegree 2 and outdegree 1 (reticulations), indegree
0 and outdegree 1 (root) or indegree 1 and outdegree 0 (leaves). For example,
all networks and trees in Fig. 1 are binary.

A biconnected component is a maximal connected subgraph that remains
connected after removal of any one vertex. A blob of a phylogenetic network N
is a biconnected component in which the undirected graph underpinning the
biconnected component contains at least one cycle. Note that if a biconnected
component of N is not a blob, then it is simply a cut arc (i.e., an arc whose
removal disconnects N). The level of a binary phylogenetic network N is the
maximum number of reticulations in any blob of N . An outgoing arc of a blob
B is an arc (u, v) such that u is in B but v is not. An incoming arc (u, v)
of B is such that v is in B but u is not. Note that a blob has at most one
incoming arc. A blob is redundant if it has fewer than two outgoing arcs (i.e.,
one outgoing arc if the network is binary). As an example of these notions, the
network N in Fig. 1 contains only one blob, which has 4 outgoing arcs and is
thus non-redundant. Because this blob has 3 reticulations, N is level-3.

We say that two phylogenetic trees T1 and T2 are isomorphic, or that they
have the same topology, if there is a bijection between the nodes that is both
edge-preserving and leaf label-preserving. (Note that arc lengths do not play
a role here.)

Given a phylogenetic tree T and a phylogenetic network N whose leaves
are labeled bijectively by the same set X, we say that T is displayed by N
taking into account lengths, if T can be obtained from N in the following way:

• for each reticulation, remove all incoming arcs except one; the tree obtained
after this process is called a switching of N ;

• repeat as long as possible the following dummy leaf deletions: for each leaf
not labeled by an element of X, delete it;

• repeat as long as possible the following vertex smoothings: for each vertex
v with exactly one parent p and one child c, replace it with an arc from p
to c, with λN (p, c) = λN (p, v) + λN (v, c).

In the following, we sometimes only say that T is displayed by N (with no men-
tion of lengths) to mean that arc lengths are disregarded, and only topological
information is taken into account.

Note that N displays T taking into account lengths if and only if there
exists a subtree T ′ of N with the same root as N such that T can be obtained
by repeatedly applying vertex smoothings to T ′. In this case T ′ is said to be
the image of T . There is a natural injection from the vertices of T to the
vertices of T ′, so the definition of image extends naturally to any subgraph of
T . In particular, the image of any arc in T is a path in N . Note that T can
potentially have many images in N , but for a switching S of N , the image of T
within S, if it exists, is unique. As an example of these notions, consider again
Fig. 1, where N displays both T1 and T2, but only T1 if lengths are taken into
account. The part of N in bold is both a switching and an image of T1 (as no
dummy leaf deletions are necessary in this case).

6 Philippe Gambette et al.

Finally, is worth noting that, in this paper, if N displays T taking into
account lengths, then the image of the root of T will always coincide with the
root of N (no removal of vertices with indegree 0 and outdegree 1 is applied
to obtain T). The biological justification for this is that trees and networks
are normally rooted using an outgroup, which is sometimes omitted from the
phylogeny; if arc lengths are taken into account, then the length of the path
to the root of N in a tree displayed by N conveys the information regarding
the distance from the outgroup. (See also [33] for a full discussion about this
point.)

In this paper, we consider the following problem:

Problem 1 Tree Containment with Branch Lengths (TCBL)

Input: A phylogenetic network N and a phylogenetic tree T on the same
set X, and both with positive integer arc lengths.

Output: YES if T is displayed by N taking into account lengths, NO
otherwise.

We also consider two variations of TCBL seeking trees displayed by N that
are allowed to somehow deviate from the query tree, to account for uncertainty
in the branch lengths of the input tree. The first of these two problems aims
to determine the existence of a tree displayed by N , whose branch lengths fall
within a specified (confidence) interval.

Problem 2 relaxed-TCBL

Input: A phylogenetic network N with positive integer arc lengths, and a
phylogenetic tree T , whose arcs are labelled by two positive integers
mT (a) and MT (a), representing respectively the minimum and the
maximum arc length. Both N and T are on the same set X.

Output: YES if and only if there exists a tree T̃ displayed byN , isomorphic
to T , and such that, for each arc a of T :

λT̃ (ã) ∈ [mT (a),MT (a)] ,

where ã denotes the arc in T̃ that corresponds to a in T .

The second variation of TCBL we consider here, seeks – among all trees dis-
played by the network, and that are isomorphic to the input tree T – one that
is closest to T , in terms of the maximum difference between branch lengths.
There are several other alternative choices for defining the “closest” tree to T ,
for example if distance is measured in terms of the average difference between
branch lengths. Later on, we will see that our results on this problem also
apply to many of these alternative formulations (see Theorem 7).

Do branch lengths help to locate a tree in a phylogenetic network? 7

Problem 3 closest-TCBL

Input: A phylogenetic network N and a phylogenetic tree T on the same
set X, and both with positive integer arc lengths.

Output: A tree T̃ displayed by N , isomorphic to T , that minimizes

max
∣∣λT (a)− λT̃ (ã)

∣∣ ,

where the max is over any choice of an arc a in T , and ã denotes the
arc in T̃ that corresponds to a in T . If no tree isomorphic to T is
displayed by N , then report FAIL.

Note that all problems in this paper involving positive integer arc lengths
are equivalent to problems where arc lengths are positive rational numbers: it
suffices to multiply those rational numbers by the least common denominator
of the fractions corresponding to these numbers in order to obtain integers.

We conclude with some definitions concerning computational complexity.
An NP-complete decision problem that includes numbers in the input may
or may not permit a pseudo-polynomial time algorithm. This is an algorithm
which runs in polynomial time if the numbers in the input are encoded in
unary, rather than binary. Formally speaking such algorithms are not poly-
nomial time, since unary encodings artificially inflate the size of the input.
Nevertheless, a pseudo-polynomial time algorithm has the potential to run
quickly if the numbers in the input are not too large. An NP-complete prob-
lem with numbers in the input is said to be strongly NP-complete if it remains
NP-complete even under unary encodings of the numbers. Informally, such
problems remain intractable even if the numbers in the input are small. An
NP-complete problem is weakly NP-complete if it is NP-complete when the
numbers are encoded in binary. Summarizing, if one shows that a weakly NP-
complete problem also permits a pseudo-polynomial time algorithm, then (un-
der standard complexity assumptions) this excludes strong NP-completeness.
Similarly, demonstrating strong NP-completeness excludes (under standard
complexity assumptions) the existence of a pseudo-polynomial time algorithm.
We refer to Garey and Johnson [16] for formal definitions.

On a slightly different note, an algorithm is said to be fixed parameter
tractable (FPT) if it runs in time O(f(k) · poly(n)) where n is the size of
the input, k is some parameter of the input (in this article: the level of the
network) and f is some computable function that depends only on k. An FPT
algorithm for an NP-complete problem has the potential to run quickly even
when n is large, as long as the parameter k is small, for example when f is a
function of the form ck, where c is a small constant greater than 1. We refer
to [12,17] for more background on FPT algorithms.

8 Philippe Gambette et al.

3 Negative results

3.1 Strong NP-completeness

Theorem 1 TCBL is strongly NP-complete, even when the phylogenetic tree
T and the phylogenetic network N are binary.

Proof We reduce to TCBL the following 3-Partition problem, which is strongly
NP-complete [15]:

Input: an integer Σ and a multiset S of 3m positive integers ni in]Σ/4, Σ/2[
such that mΣ =

∑
i∈[1..3m]

ni.

Output: YES if S can be partitioned into m subsets of elements S1, S2, . . . , Sm

each of size 3, such that the sums of the numbers in each subset are all
equal; NO otherwise.

Let us consider a multiset S containing 3m positive integers ni which have
sum mΣ.

We build a phylogenetic tree T in the following way. We first build a di-
rected path containing m+2 vertices, whose arcs all have length 1. We call its
initial vertex ρ, its final vertex b0, and the ancestors of b0, from the parent of
b0 to the child of ρ are called v1 to vm. Then, to each of the m vertices vi for
i ∈ [1..m] on this directed path, from bottom to top, we add an arc of length
L = Σ + 6m2 − 3m+ 1 to a child, called bi.

We now build a phylogenetic network N in the following way. We start by
creating a copy of T but for each i ∈ [1..m] we remove the arc (vi, bi) and
replace it by an arc of length 1 from vi to a new vertex ri1 (see Figure 2). Then
we create 3m subnetworks called Bk, for k ∈ [1..3m], as described in Figure 3.
For ease of notation, we consider that vertex p2k is also labeled p1k and c2k is
also labeled c1k for any k ∈ [1..3m]. Finally, we add arcs (bik, r

i
k+1) of length 1

for each k ∈ [1..3m − 1] and i ∈ [1..m] (to connect each Bk with Bk+1) and
arcs of length 1 from bi3m to bi for each i ∈ [1..m] to obtain N .

Suppose that S can be partitioned intom subsets of elements S1, S2, . . . , Sm

each of size 3, such that the sums of the numbers in each subset are all equal to
Σ. We now prove that this implies that T and N constructed above constitute
a positive instance of TCBL.

For each nk, if it belongs to Si then we remove from N all arcs (cjk, b
j
k) for

j ∈ [1..m]− {i}, as well as all arcs (rjk, p
j
k) for j ∈ [1..m]− {i} − {1 if i 6= 2},

the arc (rik, b
i
k), and finally the arc (pi−1k , pik) if i /∈ {1, 2}. This way, we obtain

a switching T ′ of N for T , shown in Figure 3(b).
In T ′, the only path from rik to bik goes through the arc (pmk , c

m
k) of length

nk, so the total length of this path is 2m − 2 + nk. For all other Sj , j ∈
[1..k] − {i}, the only directed path from rik to bik is an arc of length 2m − 2.

Thanks to the arcs (bjk, r
j
k+1), for j ∈ [1,m] a unique path can be found in T ′

from vj to bj . We can check that the lengths of the arcs of T leading to bi with
i ∈ [1..m] are consistent with the lengths of these paths: the latter have all

Do branch lengths help to locate a tree in a phylogenetic network? 9

ρ

vm

vi

v2

v1

b0 b1 b2 bi bm

L L L L

ρ

vm

vi

v2

v1

b0 b1 b2 bi bm

B1

Bk

B3m

T N

Fig. 2 The tree T and the network N used in the proof of Theorem 1. All arcs are
directed downwards. The dotted arcs represent parts of the network which are not shown
in details but which ensure connectivity. All arcs incident to leaves bi of T , for i ∈ [1..m]
have length L = Σ + 6m2 − 3m + 1; and remaining arcs of T have length 1. All arcs of N
have length 1, except in the 3m boxes Bk (see Figure 3(a) for more details on the content
of those 3m boxes Bk).

length 3m((2m−2)+1)+(
∑

nk∈Si

nk)+1 = Σ+6m2−3m+1. Furthermore, all

other arcs of T (on the path from ρ to b0) are also present in T ′ with the same
configuration and length, meaning that, as we wished to prove, T is displayed
by N taking into account lengths.

We now focus on the converse, supposing that the tree T is displayed by
N taking into account lengths. We first note that any switching T ′ of N for T
contains the vertices b0, vi for i ∈ [1..m], ρ and the arcs between these vertices.
Furthermore, T ′ also contains a path Pi(T

′) from vi to bi, for each i ∈ [1..m],
of length L.

Claim 1: For any switching T ′ of N for T , for any i ∈ [1..m] and k ∈
[1..3m], rik ∈ Pi(T

′) and bik ∈ Pi(T
′).

We prove it by induction on k. For k = 1, for all i ∈ [1..m], vertex ri1 has
indegree 1 and its unique parent is contained in Pi(T

′) so it is also contained in
Pi(T

′). As arc (pm1 , c
m
1) belongs to all paths between pi1 and cj1 for i, j ∈ [1..m],

at most one of the paths Pi(T
′) contains (pm1 , c

m
1). If no such path exists then

all paths Pi(T
′) contain arc (ri1, b

i
1), so bi1 ∈ Pi(T

′). Otherwise, we denote by
Pi0(T ′) the path containing (pm1 , c

m
1). All other paths Pi(T

′) for i ∈ [1..m]− i0
contain arc (ri1, b

i
1), so bi1 ∈ Pi(T

′). Because none of those paths contain bi01 ,
we must have bi01 ∈ Pi0(T ′). Therefore, for all i ∈ [1..m], bi1 ∈ Pi(T

′).

Supposing vertices rik−1 and bik−1 belong to Pi(T
′) for all i ∈ [1..m], we

can reproduce the proof above by replacing “1” by “k” each time we refer to

10 Philippe Gambette et al.

p1k = p2k

pi−1
k

pik

pmk

r1k r2k rik rmk

to b1 to b2 to bi to bm

b1k b2k bik bmk

c1k = c2k

cik

cmk

n
k

2
m
−

2

2
m
−

2

2
m
−

2

2
m
−

2

i−
1

m
− 1

i− 1
m− 1

p1k = p2k

pi−1
k

pik

pmk

r1k r2k rik rmk

to b1 to b2 to bi to bm

b1k b2k bik bmk

c1k = c2k

cik

cmk

n
k

2
m
−

2

2
m
−

2

2
m
−

2

i−
1

i− 1

(a) (b)

Fig. 3 The content of the box Bk (a) and a corresponding switching (b) of the
network of Fig. 2. All arcs are directed downwards. The dotted arcs represent parts of the
network which are not shown in details but which ensure connectivity. All arcs have length
1 except arcs (rik, b

i
k) for i ∈ [1..m] which have length 2m− 2, arcs (rik, p

i
k) and (cik, b

i
k), for

i > 1, which have length i− 1, and the arc (pmk , c
m
k) with length nk.

bi1, ci1, pi1 and ri1 for any i ∈ [1..m], in order to deduce that rik and bik belong
to Pi(T

′).
Claim 2: For any switching T ′ of N for T , for any k ∈ [1..3m], one of the

paths Pi(T
′) contains arc (pmk , c

m
k).

First, using Claim 1, we can consider each portion of the path Pi(T
′) from

rik to bik in T ′, and note that this portion has length 2m − 2 + nk if Pi(T
′)

contains arc (pmk , c
m
k), or length 2m− 2 otherwise.

Therefore, supposing by contradiction that there exists at least one k0 ∈
[1..3m] such that none of the paths Pi(T

′) contain arc (pmk0
, cmk0

), then the

cumulative length Lk0 of the portions of all paths Pi(T
′) between rik0

and

bik0
, for i ∈ [1..m], is m(2m − 2). Therefore, summing the lengths of all these

portions and the ones of arcs (bik, r
i
k+1) between them as well as the ones of

the arcs (vi, r
i
1) and (bi3m, bi) for any i ∈ [1..m], the sum L′ of the lengths of all

paths Pi(T
′) for i ∈ [1..m] is at most m+3m(Lk0

+m)+(
∑

k∈[1..3m] nk)−nk0
=

m(6m2− 3m+ 1 +Σ)−nk0
= mL−nk0

. However, the sum LT of the lengths
of all arcs (vi, bi) of T is equal to mL so L′ < LT , meaning that T is not
displayed by N taking into account lengths: contradiction.

Claim 3: for any switching T ′ of N for T , for any i ∈ [1..m], there are
exactly 3 arcs of the form (pmk , c

m
k) contained in Pi(T

′).
We suppose by contradiction that there exists i ∈ [1..m], and k1, k2, k3

and k4 ∈ [1..3m] such that (pmk1
, cmk1

), (pmk2
, cmk2

), (pmk3
, cmk3

) and (pmk4
, cmk4

) are

Do branch lengths help to locate a tree in a phylogenetic network? 11

contained in Pi(T
′). Then, this path has length at least nk1 + nk2 + nk3 +

nk4 + 3m(2m− 2) + 3m+ 1 > Σ + 3m(2m− 1) + 1 because ni > Σ/4 for all
i ∈ [1..3m]. So T ′ contains a path from vi to bi which is strictly longer than
the arc from vi to bi in T , so T is not displayed by T ′, nor in N : contradiction.

Now, we suppose by contradiction that there exists i ∈ [1..m] such that
Pi contains at most 2 arcs of the form (pmk , c

m
k). Then, according to Claim 2,

each of the the remaining 3m− 2 arcs of the form (pmk , c
m
k) must be contained

by one of the remaining m − 1 paths Pj for j ∈ [1..m] − {i}. So at least one
of those paths must contain strictly more than 3 such arcs, which contradicts
the previous paragraph: contradiction.

Finally, for any switching T ′ of N for T , the fact that T is displayed by
N taking into account lengths, implies that the length of each arc (vi, bi) of
T , Σ + 6m2 − 3m + 1, equals the length of each path Pi(T

′). Claim 2 and
3 imply that the arcs of the form (pmk , c

m
k) are partitioned into the paths

Pi(T
′), with each Pi(T

′) containing exactly 3 such arcs. Denoting by nki
, nk′

i

and nk′′
i

the length of such arcs, we obtain that the length of Pi(T
′) equals

nki
+nk′

i
+nk′′

i
+ 6m2− 3m+ 1, therefore nki

+nk′
i
+nk′′

i
= Σ, which implies

that S can be partitioned into m subsets of elements Si = {nki
, nk′

i
, nk′′

i
}, such

that the sums of the numbers in each subset Si are all equal to Σ.

Finally, it is easy to see that the problem is in NP: a switching T ′ of the
input network N is a polynomial size certificate of the fact that the input
tree T is contained in N . We can check in polynomial time that T can be
obtained from T ′ by applying dummy leaf deletions and vertex smoothings
until possible, and checking that the obtained tree is isomorphic with T . ut

We note that Theorem 1 can be extended to binary tree-sibling [6] time-
consistent [3] networks, by multiplying by 2 all arc lengths of the network
constructed in the proof (in order to keep integer arc lengths even if those arcs
are subdivided, which happens at most once), and using a gadget shown in
Figure 4, adapted from Fig. 4 of [25] with arcs of length 1, and the operations
described in the proof of Theorem 3 of the same article.

ρ

r

v

ρ

r′
r

p

x′v

x

ρT

rT

ρT

r′T
rT

pT
x′

x

N → N∗ T → T ∗

Fig. 4 How our slightly modified HangLeaves(v) modifies N and T . Vertices ρ and
ρT are the roots of N and T respectively. All arcs have length 1, except (r′, r) of N∗ which
has the same length as (ρ, r) of N , (r′T , rT) of T ∗ which has the same length as (ρT , rT) of
T and (pT , x) which has length 2.

12 Philippe Gambette et al.

Corollary 1 relaxed-TCBL is strongly NP-complete, and closest-TCBL
is strongly NP-hard.

Proof TCBL can be easily reduced to both problems. Indeed, any instance of
TCBL corresponds to an instance of relaxed-TCBL withmT (a) = MT (a) :=
λT (a) for each arc of T . Additionally, TCBL can be reduced to closest-

TCBL by checking whether there exists a solution T̃ with max |λT (a) −
λT̃ (ã)| = 0. ut

3.2 Weak NP-completeness for level-2 networks

The strong NP-completeness result above does not imply anything about the
hardness of TCBL on networks of bounded level. Unfortunately, TCBL is hard
even for low-level networks, as we now show.

Theorem 2 TCBL is weakly NP-complete for level-2 binary networks.

Proof First, recall that TCBL is in NP (Theorem 1). To prove the theorem,
we will reduce from the subset sum problem: given a multiset of positive
integers I = {n1, . . . , nk} and a positive integer s, is there a non-empty subset
of I whose sum is s? The subset sum problem is known to be weakly NP-
complete.

Now, we show how to construct an instance of the TCBL problem with the
required characteristics, for each instance of the subset sum problem. This
can be done by defining the tree T and the network N as follows. The tree T
is defined as the rooted tree on two leaves labeled a and b, parent ρ′ and root
ρ, and arcs (ρ, ρ′), (ρ′, a) and (ρ′, b), respectively of length 1, 1 and s+ 3k+ 1.
The network N is the network on the two leaves labeled a and b shown in Fig.
5, where L > s+ 3k+ 1. Then, it is easy to see that a positive instance of the
TCBL problem gives a positive instance of the subset sum problem through
the previous transformation, and vice versa. This is true because no switching
S of N giving rise to T will ever contain the arcs with length L. Thus, the
paths in S going through the blob containing the arc with length ni can have
either length 2 or 2 + ni. Now, any path from ρ′N to the leaf labeled b has to
go through all blobs, and through all arcs connecting these blobs. The sum
of the lengths of the arcs on this path but outside the blobs is k + 1. Thus,
there exists a path from ρ′N to b with length s+ 3k + 1 if and only if there is
a non-empty subset of I = {n1, . . . , nk} whose sum is s.

As to the weakness of this NP-completeness result, we refer to Section
4.2, where we give a pseudo-polynomial algorithm for TCBL on any binary
network of bounded level. ut

Do branch lengths help to locate a tree in a phylogenetic network? 13

1

a

b

L

2

1

1

n1

L

2

1

1

n2

L

2

1

1

nk

1

1

1

1

1

ρ′N

ρN
1

Fig. 5 The network used in the proof of Theorem 2.

4 Positive results

4.1 TCBL is FPT in the level of the network when no blob is redundant

Note that in the weak NP-completeness result from Section 3.2 the blobs have
only one outgoing arc each – that is, they are redundant. If we require that
every blob has at least two outgoing arcs, then dynamic programming becomes
possible, and the problem becomes much easier. The high-level reason for this
as follows. Because blobs in the network N have at least two outgoing arcs,
the image of any tree displayed by N will branch at least once inside each
blob. This means that for each arc (u′, v′) of T , if the image of u′ lies inside a
blob B, then the image of v′ either lies (i) also inside B or (ii) in one of the
biconnected components Ci immediately underneath B. This last observation
holds with or without arc lengths, but when taking lengths into account it
has an extra significance. Indeed, suppose N displays T taking lengths into

14 Philippe Gambette et al.

account, and S is a switching of N that induces the image of T inside N . Let
(u′, v′) be an arc of T . If, within S, the image of u′ lies inside a blob B and the
image of v′ lies inside a biconnected component Ci immediately underneath
B, then the image of the arc (u′, v′) – a path – is naturally partitioned into
3 parts. Namely, a subpath inside B (starting at the image of u′), followed
by an outgoing arc of B, followed by a subpath inside Ci (terminating at the
image of v′). See Fig. 6 for an illustration. Within S, the lengths of these 3
parts must sum to λT (u′, v′). The dynamic programming algorithm described
below, in which we process the blobs in a bottom-up fashion, makes heavy use
of this insight.

u′

v′

. . .

B

u

`S(u, ai)

λN (ai)
ai

Ci `S′ (ai, v)

v

T N

Fig. 6 Illustration of the idea at the basis of Algorithm 1. If a network N displays
a tree T and the image u of u′ (for an arc (u′, v′) of T) lies inside a blob B of N , then
– assuming every blob of the network has at least two outgoing arcs – the image v of v′

will either lie inside B, or inside a blob Ci that is immediately beneath B. In the latter
case the image of (u′, v′) can be naturally partitioned into three parts, as shown. This is
the foundation for the dynamic programming approach used in Theorem 3 and later in
Theorems 5 and 6.

Theorem 3 Let N be a level-k binary network and T be a rooted binary tree,
both on X. If no blob of N is redundant, then TCBL can be solved in time
O(k · 2k · n) using O(k · 2k · n) space, where n = |X|.

Proof Firstly, note that networks can have nodes that are not inside blobs (i.e.
tree-like regions). To unify the analysis, it is helpful to also regard such a node
u (including when u is a taxon) as a blob with 0 reticulations: the definition
of incoming and outgoing arcs extends without difficulty. Specifically, in this
case they will simply be the arcs incoming to and outgoing from u. We regard
such blobs as having exactly one switching.

Next, it is easy to see that the blobs of N can themselves be organized as a
rooted tree, known as the blobbed-tree [14,18]. In other words, the parent-child
relation between blobs is well-defined, and unique. The idea is to process the

Do branch lengths help to locate a tree in a phylogenetic network? 15

blobs in bottom-up, post-order fashion. Hence, if a blob B has blob children
C1, C2, . . . (underneath outgoing arcs a1, a2 . . .) we first process C1, C2, . . . and
then B. Our goal is to identify some switching of B which can legitimately
be merged with one switching each from C1, C2, We initialize the dynamic
programming by, for each blob B that is a taxon, recording that it has exactly
one switching whose root-path has length 0. (The definition and meaning of
root-path will be given in due course).

For each blob B that is not a taxon, we will loop through the (at most) 2k

ways to switch the reticulations within B. Some of these candidate switchings
can be immediately discarded on topological grounds, i.e., such a switching
of B induces bifurcations that are not present in T . Some other candidate
switchings S can be discarded on the basis of the lengths of their internal
paths, that is, the paths u → v entirely contained within S coinciding with
the image of some arc (u′, v′) in T . Clearly the path u → v must have the
same length as (u′, v′).

Finally, we need to check whether the candidate switching S can be com-
bined with switchings from C1, C2, . . . such that arc lengths are correctly taken
into account. This proceeds as follows. Observe that, for each outgoing arc ai
of B, ai lies on the image of an arc (u′, v′) of T . This arc of T is uniquely
defined. Let u be the image of u′ in B, and let `S(u, ai) be the total length
of the path (in S) from u to the tail of ai. The image of v′ will lie somewhere
inside Ci. For a switching S′ of Ci, let v be the image of v′ within S′, and let
`S′(ai, v) be the total length of the path (in S′) from the head of ai to v. (See
Fig. 6).

If we wish to combine S′ with S, then we have to require λT (u′, v′) =
`S(u, ai) + λN (ai) + `S′(ai, v). To know whether such an S′ exists, B can ask
Ci the question: “do you have a candidate switching S′ such that `S′(ai, v) =
λT (u′, v′) − `S(u, ai) − λN (ai) ?” This will be true if and only if Ci has a
candidate switching S′ such that the root-path in S′ – defined as the path
from the root of Ci to the first branching node of S′ – has length exactly
λT (u′, v′) − `S(u, ai) − λN (ai). (We consider a node of S′ to be a branching
node if it is the image of some node of T .) B queries all its children C1, C2, . . .
in this way. If all the Ci answer affirmatively, then we store S, together with
the length of its root-path, as a candidate switching of B, otherwise we discard
S.

This process is repeated until we have finished processing the highest blob
B of N . The answer to TCBL is YES, if and only if this highest blob B has
stored at least one candidate switching. Pseudocode formalizing the descrip-
tion above is provided in Algorithm 1.

We now analyse the running time and storage requirements. For step 1,
observe that the blobbed-tree can easily be constructed once all the bicon-
nected components of the undirected, underlying graph of N have been iden-
tified. The biconnected components can be found in linear time (in the size of
the graph) using the well-known algorithm of Hopcroft and Tarjan (see, e.g.,
[10]). Because every blob has at least two outgoing arcs, N will have O(kn)
vertices and arcs, (see, e.g., Lemma 4.5 in [23] and discussion thereafter) so

16 Philippe Gambette et al.

the time to construct the blobbed-tree is at most O(kn). Moreover, N has
O(n) blobs, meaning that the blobbed-tree has O(n) nodes and that step 2
can be completed in O(n) time by checking whether T and the blobbed-tree
are compatible. (The compatibility of two trees can be tested in linear time
[37].) Each blob has at most 2k switchings, and each switch can be encoded
in k bits. If we simply keep all the switchings in memory (which can be useful
for constructing an actual switching of N , whenever the answer to TCBL is
YES) then at most O(k · 2k · n) space is required.

For time complexity, each blob B loops through at most 2k switchings,
and for each switching S it is necessary to check the topological legitimacy
of S (step 3(a)), that internal paths of the switching have the correct lengths
(step 3(b)), and subsequently to make exactly one query to each of its child
blobs Ci (step 3(c)). We shall return to steps 3(a) and 3(b) in due course. It
is helpful to count queries from the perspective of the blob that is queried. In
the entire course of the algorithm, a blob will be queried at most 2k times.
Recalling that the number of blobs is O(n), in total at most O(2k · n) queries
will be made, so the total time devoted to queries is O(q ·2k ·n), where q is the
time to answer each query. Recall that a query consists of checking whether a
blob has a switching whose root-path has a given length. Each blob needs to
store at most 2k switchings. By storing these switchings (ranked by the lengths
of their root-paths) in a balanced look-up structure (e.g. red-black trees) an
incoming query can be answered in logarithmic time in the number of stored
switchings, that is, in time log 2k = k. Hence, the total time spent on queries
is O(k · 2k · n).

For steps 3(a) and 3(b) we require amortized analysis. Let d+(B) denote the
number of outgoing arcs from blob B. The blob B can be viewed in isolation
as a rooted phylogenetic network with d+(B) “taxa”, so inside B there are
O(k · d+(B)) vertices and arcs [23]. Therefore, the time to convert a switching
S from B into a tree T ′ on d+(B) “taxa” (via dummy leaf deletions and vertex
smoothings) is at most O(k · d+(B)). The topology and internal arc lengths of
T ′ can be checked against those of the corresponding part of T in O(d+(B))
time [37]. Hence, the total time spent on steps 3(a) and 3(b) is

∑

B

O(2k · k · d+(B)), (1)

where the sum ranges over all blobs. Note that
∑

B d
+(B) is O(n) because

there are O(n) blobs and each outgoing arc enters exactly one blob. Hence,
the expression (1) is O(k · 2k · n), matching the time bound for the queries.
Hence, the overall running time of the algorithm is O(k · 2k · n). ut

Algorithm 1 FPT algorithm for TCBL on networks with no redundant
blobs

Do branch lengths help to locate a tree in a phylogenetic network? 17

1. Decompose N into blobs and construct the blobbed-tree TN , whose
nodes are the blobs in N and whose arcs are the arcs external to the
blobs.

2. Check that TN is compatible with the input tree T (in fact check that
TN can be obtained from T via arc contractions). If this is not the
case, then terminate with a NO. Otherwise each vertex B in TN can
be obtained as the contraction of a subtree T (B) of T , and each arc a
in the blobbed-tree TN originates from an arc a′ in T . Store references
to the a′ and the T (B).

3. for each blob B, in bottom-up order:
for each switching S of B:

(a) check that S is topologically compatible with T (B).
(b) check that each arc of T (B) is as long as its image in S;
(c) for each blob Ci that is a child of B, via the arc ai:

– check that Ci has stored a switching S′ whose root-
path has the appropriate length. Specifically, we require
`S′(ai, v) = λT (u′, v′)− `S(u, ai)− λN (ai), where (u′, v′)
is the arc of T on whose image ai lies (i.e. a′i), and u and
v are the uniquely defined images of u′ and v′ in S and
S′, respectively.

(d) if none of the checks above failed, store S along with the
length of its root-path;

(e) if no switching is stored for B, then terminate with NO, as
no tree displayed by N satisfies the requirements.

4. If the algorithm gets this far, then it returns YES and the image in N
of T can be obtained by combining a switching S stored for the root
blob, to the switchings S′ found for its child blobs, recursively.

4.2 Pseudo-polynomial solution of TCBL on any network of bounded level

Redundant blobs are problematic for TCBL because when they appear “in
series” (as in Fig. 5) they give rise to an exponential explosion of paths that
can be the images of an arc a in T , and, as we saw, checking the existence of a
path of the appropriate length λT (a) is at least as hard as subset sum. Just
like for subset sum, however, a pseudo-polynomial time solution is possible,
as we now show.

Theorem 4 Let N be a level-k binary network with b blobs, and let T be a
rooted binary tree on the same set of n taxa. TCBL can be solved in time
O(k · b · L+ 2k · n · L) using O(k · n · L) space, where L is an upper bound on
arc lengths in T .

Proof The algorithm we now describe is based on the following two observa-
tions (we use here the same notational conventions as in Algorithm 1). First,

18 Philippe Gambette et al.

if T is indeed displayed by N , the image u → v of any of its arcs (u′, v′) will
either be entirely contained in one blob, or u and v will be in two different
blobs, which can only be separated by redundant blobs. Second, it only makes
sense to store a switching S′ of a blob Ci, if `S′(ai, v) < λT (u′, v′), i.e., if its
root-leaf path is shorter than the corresponding arc in T , meaning that we
only need to store O(L) switchings per blob.

Accordingly, we modify Algorithm 1 as follows:

Step 2a: Check that TN is compatible with the input tree T in the following
way: replace any chain of redundant blobs M1,M2, . . . ,Mh in TN with a
single arc from the parent of M1 to the child of Mh, and then check that
the resulting blobbed-tree T ′N can be obtained from T via arc contractions.
If this is not the case then terminate with a NO. Otherwise for each arc a
and vertex B in T ′N , define and store a′ and T (B) as before.

Step 2b: For each arc a in T ′N , calculate a set of lengths L(a) as follows. If
a originates from a chain of redundant blobs M1,M2, . . . ,Mh, then L(a)
is obtained by calculating the lengths of all paths in N starting with the
incoming arc of M1 and ending with the (unique) outgoing arc of Mh. Only
keep the lengths that are smaller than λT (a′). For the remaining arcs in
T ′N , simply set L(a) := {λN (a)}.

The algorithm only visits non-redundant blobs, performing a bottom-up traver-
sal of T ′N , and doing the same as Algorithm 1 except for:

Step 3c: for each blob Ci that is a child of B in T ′N :
– check the existence of an ` ∈ L(ai) and a switching S′ stored for Ci

that satisfy:

`S′(ai, v) = λT (u′, v′)− `S(u, ai)− `. (2)

To complete the description of the algorithm resulting from these changes,
we assume that the switchings for a (non-redundant) blob B are stored in an
array SB indexed by the root-path length of the switching. If two or more
switchings of a blob have the same root-path length `, we only keep one of
them in SB [`]. Because for Ci we only store the switchings whose root-path
length is less than λT (a′i), the SB arrays have size O(L).

As for step 2b above, the computation of L(a) for an arc in T ′N correspond-
ing to a chain of redundant blobs can be implemented in a number of ways.
Here we assume that the vertices in M1,M2, . . . ,Mh are visited following a
topological ordering, and that, for each visited vertex v, we fill a boolean array
Pv of length λT (a′), where Pv[`] is true if and only if there exists a path of
length ` from the tail of the arc incoming M1 to v. Once Pvh for the head vh
of the arc outgoing Mh has been filled, L(a) will then be equal to the set of
indices ` for which Pvh [`] is true.

We are now ready to analyse the complexity of this algorithm. We start
with the space complexity. First note that every redundant blob of level k in
a binary network must have exactly 2k vertices (as the number of bifurca-
tions must equal the number of reticulations). Because each redundant blob
has O(k) vertices, and each Pv array is stored in O(L) space, step 2b requires

Do branch lengths help to locate a tree in a phylogenetic network? 19

O(kL) space to process each redundant blob. Because every time a new re-
dundant blob Mi+1 is processed, the Pv arrays for the vertices in Mi can be
deleted, step 2b only requires O(kL) space in total. This however is dominated
by the space required to store O(L) switchings for each non-redundant blob.
Since there are O(n) non-redundant blobs in N and each switching requires
O(k) bits to be represented, the space complexity of the algorithm is O(k·n·L).

We now analyse the time complexity. Checking the compatibility of the
blobbed tree and T (step 2a) can be done in time O(n + b), as this is the
size of T ′N before replacing the chains of redundant blobs. The computation of
the arrays Pv (step 2b) involves O(L) operations per arc in M1,M2, . . . ,Mh.
Because there are O(b) redundant blobs, and because each of them contains
O(k) arcs, calculating all the Pv arrays requires time O(k · b · L).

The other runtime-demanding operations are the queries in step 3c. These
involve asking, for each ` ∈ L(ai), whether Ci has a switching whose root-
path has the length in Eqn. (2). Each of these queries can be answered in
constant time by checking whether SCi

[λT (u′, v′) − `S(u, ai) − `] is filled or
not. Because every non-redundant blob Ci will be queried at most 2k · L(ai)
times, and because there are O(n) non-redundant blobs, the total time devoted
to these queries is O(2k · n · L). The remaining steps require the same time
complexities as in Theorem 3. By adding up all these runtimes we obtain a
total time complexity of O(k · b · L+ 2k · n · L). ut

4.3 closest-TCBL and relaxed-TCBL are FPT in the level of the
network when no blob is redundant

We now show that Algorithm 1 can be adapted to solve the “noisy” variations
of TCBL that we have introduced in the Preliminaries section.

Theorem 5 Let N be a level-k binary network and T be a rooted binary tree,
both on the same set of n taxa. The arcs of N are labelled by positive integer
lengths, and the arcs of T are labelled by a minimum and a maximum positive
integer length. If no blob of N is redundant, then relaxed-TCBL can be
solved in O(k · 2k · n) time and space.

Proof We modify Algorithm 1 to allow some flexibility whenever a check on
lengths is made: instead of testing for equality between arc lengths in the tree
and the path lengths observed in the partial switching under consideration,
we now check that the path length belongs to the input interval. Specifically,
we modify two steps in Algorithm 1 as follows:

Step 3b: check that every arc (u′, v′) of T (B), whose image is an internal path
u→ v of S, is such that `S(u, v) ∈ [mT (u′, v′),MT (u′, v′)].

Step 3c: check that, among the switchings stored for Ci, there exists at least
one switching S′ whose root-path `S′(ai, v) has a length in the appropriate
interval. Specifically, using the same notation as in Algorithm 1, check that:

`S(u, ai) + λN (ai) + `S′(ai, v) ∈ [mT (a′i),MT (a′i)],

20 Philippe Gambette et al.

that is:

mT (a′i)−`S(u, ai)−λN (ai) ≤ `S′(ai, v) ≤ MT (a′i)−`S(u, ai)−λN (ai).
(3)

We can use the same data structures used by Algorithm 1, so the space com-
plexity remains O(k · 2k · n). As for time complexity, the only relevant dif-
ference is in step 3c: instead of querying about the existence of a switching
with a definite path-length, we now query about the existence of a switching
whose path-length falls within an interval (see Eqn. (3)). In a balanced look-
up structure, this query can be answered again in time O(log 2k) = O(k). In
conclusion the time complexity remains the same as that in Theorem 3, that
is O(k · 2k · n). ut

Theorem 6 Let N be a level-k binary network and T be a rooted binary tree,
both with positive integer arc lengths and on the same set of n taxa. If no blob
of N is redundant, then closest-TCBL can be solved in time O(22k ·n) using
O(k · 2k · n) space.

Proof As we shall see, we modify Algorithm 1 by removing all checks on arc
lengths, and by keeping references to those switchings that may become part of
an optimal solution in the end: any topologically-viable switching S of a blob
B is stored along with a reference, for each child blob Ci, to the switching S′

that must be combined with S. Moreover, we compute recursively µS , which
we define as follows:

µS = max
∣∣λT (a)− λT̃ (ã)

∣∣ ,
where T̃ is the subtree displayed by N obtained by (recursively) combining
S to the switchings stored for its child blobs, and then applying dummy leaf
deletions and vertex smoothings. The max is calculated over any arc ã in T̃
and its corresponding arc a in T , excluding the root arc ãr of T̃ from this
computation. This is because the length of the path above S, which must be
combined with ãr, is unknown when S is defined.

In more detail, we modify Algorithm 1 as follows:

Step 3b: no check is made on the lengths of the internal paths of S; instead
initialize µS as follows:

µS := max |λT (u′, v′)− `S(u, v)| ,

where the max is over all arcs (u′, v′) in T (B), and u, v are the images of
u′, v′ in S, respectively. Trivially, if B is just a vertex in N , the max above
is over an empty set, meaning that µS can be initialized to any sufficiently
small value (e.g., 0).

Step 3c: for each blob Ci that is a child of B:
– among the switchings stored for Ci, seek the switching S′ minimizing

max {µS′ , |`S(u, ai) + λN (ai) + `S′(ai, v)− λT (u′, v′)|} (4)

– set µS to max {µS , value of (4) for S′}

Do branch lengths help to locate a tree in a phylogenetic network? 21

Step 3d: store S along with µS , with the length of its root-path, and with
references to the child switchings S′ minimizing (4)

Step 4: seek the switching S stored for the root blob that has minimum µS ,
and combine it recursively to the switchings S′ found for its child blobs.
In the end, a switching S̃ for the entire network N is obtained, which can
be used to construct T̃ .

The correctness of the algorithm presented above is based on the following
observation, allowing our dynamic programming solution of the problem:

Observation. Let B be a blob of N , and Ci be one of its child blobs. If a
switching S of B is part of an optimal solution to closest-TCBL, then we
can assume that S must be combined with a switching S′ of Ci that minimizes
Eqn. (4). This means that even if there exists an optimal solution in which
S is combined with S′′, a non-minimal switching of Ci with respect to Eqn.
(4), then we can replace S′′ with S′ and the solution we obtain will still be
optimal.

Once again, space complexity is O(k ·2k ·n), as the only additional objects
to store are the references to the child switchings of S, and the value of µS for
each the O(2k ·n) stored switchings. As for time complexity, each query within
step 3c now involves scanning the entire set of O(2k) switchings stored for Ci,
thus taking time O(2k) – whereas the previous algorithms only required O(k)
time. Since there are again O(2k ·n) queries to make, the running time is now
O(22k · n). ut

We conclude this section by noting that, if we reformulate closest-TCBL
replacing the max with a sum, and taking any positive power of the absolute
value

∣∣λT (a)− λT̃ (ã)
∣∣ in the objective function, then the resulting problem

can still be solved in a way analogous to that described above.

Theorem 7 Consider the class of minimization problems obtained from closest-
TCBL by replacing its objective function with

⊎

a

∣∣λT (a)− λT̃ (ã)
∣∣d , (5)

with
⊎

representing either max or
∑

, and with d > 0.
If no blob of N is redundant, then any of these problems can be solved in

time O(22k · n) using O(k · 2k · n) space, where n is the number of taxa in N
and T , and k is the level of N .

Proof In the proof of Theorem 6, replace every occurrence of | . . . | with | . . . |d,
and – if

⊎
represents a sum – replace every occurrence of max with

∑
. ut

It is worth pointing out that the algorithm described in the proofs above
requires storing all switchings of a blob that are topologically compatible with
the input tree. This is unlike the algorithms shown before, where a number
of checks on arc lengths (quite stringent ones in the case of the algorithm for
TCBL) ensure that, on realistic instances, the number of switchings stored for
a blob with k reticulations will be much smaller than 2k.

22 Philippe Gambette et al.

Moreover, again unlike the previous algorithms, the queries at step 3c in-
volve considering all switchings stored for a child blob Ci, which is what causes
the factor 22k in the runtime complexity. We note that, for certain objective
functions, it might be possible to make this faster (with some algorithmic ef-
fort), but in order to achieve the generality necessary for Theorem 7, we have
opted for the simple algorithm described above.

5 Discussion

In this paper, we have considered the problem of determining whether a tree
is displayed by a phylogenetic network, when branch lengths are available.
We have shown that, if the network is permitted to have redundant blobs
(i.e. nontrivial biconnected components with only one outgoing arc), then the
problem becomes hard when at least one of the following two conditions hold:
(1) the level of the network is unbounded (Theorem 1), (2) branch lengths are
potentially long (Theorem 2). If neither condition holds (i.e. branch lengths
are short and level is bounded) then – even when redundancy is allowed – the
problem becomes tractable (Theorem 4). We note that phylogenetic networks
with redundant blobs are unlikely to be encountered in practice, as their re-
constructability from real data is doubtful [24,20,33]. This is relevant because,
if redundant blobs are not permitted, the problem becomes fixed-parameter
tractable in the level of the network (Theorem 3) irrespective of how long the
branches are.

Building on our result on networks with no redundant blobs, we have then
shown how the proposed strategy can be extended to solve a number of variants
of the problem accounting for uncertainty in branch lengths. This includes the
case where an interval of possible lengths is provided for each branch of the
input tree (Theorem 5), and the case where we want to find – among all trees
displayed by the network with the same topology as the input tree T – one
that is closest to T , according to a number of measures of discrepancy between
branch length assignments (Theorems 6 and 7).

The fixed parameter algorithms we present here have runtimes and storage
requirements that grow exponentially in the level of the network. However, in
the case of storage, this is a worst-case scenario: in practice, this will depend
on the number of “viable” switchings stored for each blob, that is, the switch-
ings that pass all checks on topology and branch lengths. In the case of the
algorithm for TCBL (Theorem 3), where strict equalities between arc lengths
in T and path lengths in N must be verified, we can expect it to be very rare
that multiple switchings will be stored for one blob. Similarly, in the case of
the algorithm for relaxed-TCBL (Theorem 5), when the input intervals are
sufficiently small, we can expect the number of stored switchings to be lim-
ited. In some particular cases, it might even be possible to find the few viable
switchings for a blob, without having to consider all O(2k) switchings, thus
removing this factor from the runtime complexity as well.

Do branch lengths help to locate a tree in a phylogenetic network? 23

The algorithm for TCBL (Algorithm 1) provides a good example of the
effect of taking into account branch lengths in the tree containment problems:
if all checks on branch lengths are removed, what is left is an algorithm that
solves the classic (topology-only) tree containment problem, and also provides
all ways to locate the input tree in the network (for each blob, it can produce
a list of possible images of the corresponding part of of the input tree). This
algorithm may run a little faster than Algorithm 1 (as no queries to child blobs
are necessary). However, for a small computational overhead, including branch
lengths allows to locate more precisely the displayed trees, and provides more
strict answers to the tree containment problem.

References

1. Abbott, R., Albach, D., Ansell, S., Arntzen, J., Baird, S., Bierne, N., Boughman, J.,
Brelsford, A., Buerkle, C., Buggs, R., et al.: Hybridization and speciation. Journal of
Evolutionary Biology 26(2), 229–246 (2013)

2. Bapteste, E., van Iersel, L., Janke, A., Kelchner, S., Kelk, S., McInerney, J.O., Morri-
son, D.A., Nakhleh, L., Steel, M., Stougie, L., et al.: Networks: expanding evolutionary
thinking. Trends in Genetics 29(8), 439–441 (2013)

3. Baroni, M., Semple, C., Steel, M.: Hybrids in real time. Systematic Biology 55(1),
46–56 (2006)

4. Bordewich, M., Tokac, N.: An algorithm for reconstructing ultrametric tree-child net-
works from inter-taxa distances. Discrete Applied Mathematics (2016). In press.

5. Boto, L.: Horizontal gene transfer in evolution: facts and challenges. Proceedings of the
Royal Society B: Biological Sciences 277(1683), 819–827 (2010)

6. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: A distance metric for a class of
tree-sibling phylogenetic networks. Bioinformatics 24(13), 1481–1488 (2008)

7. Chan, H.L., Jansson, J., Lam, T.W., Yiu, S.M.: Reconstructing an ultrametric galled
phylogenetic network from a distance matrix. Journal of Bioinformatics and Computa-
tional Biology 4(04), 807–832 (2006)

8. Choy, C., Jansson, J., Sadakane, K., Sung, W.K.: Computing the maximum agreement
of phylogenetic networks. Theoretical Computer Science 335(1), 93–107 (2005)

9. Cordue, P., Linz, S., Semple, C.: Phylogenetic networks that display a tree twice. Bul-
letin of Mathematical Biology 76(10), 2664–2679 (2014)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT
Press and McGraw-Hill (2001)

11. Doolittle, W.F.: Phylogenetic classification and the Universal Tree. Science 284, 2124–
2128 (1999)

12. Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity, vol. 4.
Springer (2013)

13. Doyon, J.P., Scornavacca, C., Gorbunov, K.Y., Szöllösi, G.J., Ranwez, V., Berry, V.: An
efficient algorithm for gene/species trees parsimonious reconciliation with losses, dupli-
cations, and transfers. In: Proceedings of the Eighth RECOMB Comparative Genomics
Satellite Workshop (RECOMB-CG’10), LNCS, vol. 6398, pp. 93–108. Springer (2011)

14. Gambette, P., Berry, V., Paul, C.: The structure of level-k phylogenetic networks. In:
CPM09, LNCS, vol. 5577, pp. 289–300. Springer (2009)

15. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal on Computing 4(4), 397–411 (1975)

16. Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Co.
(1979). A guide to the theory of NP-completeness, A Series of Books in the Mathematical
Sciences

17. Gramm, J., Nickelsen, A., Tantau, T.: Fixed-parameter algorithms in phylogenetics.
The Computer Journal 51(1), 79–101 (2008)

24 Philippe Gambette et al.

18. Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs
and Explicit Phylogenetic Networks. MIT Press (2014)

19. Hotopp, J.C.D.: Horizontal gene transfer between bacteria and animals. Trends in
Genetics 27(4), 157–163 (2011)

20. Huber, K.T., van Iersel, L., Moulton, V., Wu, T.: How much information is needed to
infer reticulate evolutionary histories? Systematic Biology 64(1), 102–111 (2015)

21. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic networks: concepts, algorithms
and applications. Cambridge University Press (2010)

22. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic net-
works. Genome Biology and Evolution 3, 23–35 (2011)

23. van Iersel, L.: Algorithms, haplotypes and phylogenetic networks. Ph.D. thesis, Eind-
hoven University of Technology (2009)

24. van Iersel, L., Moulton, V.: Trinets encode tree-child and level-2 phylogenetic networks.
Journal of Mathematical Biology 68(7), 1707–1729 (2014)

25. van Iersel, L., Semple, C., Steel, M.: Locating a tree in a phylogenetic network. Infor-
mation Processing Letters 110(23) (2010)

26. Jansson, J., Sung, W.K.: Inferring a level-1 phylogenetic network from a dense set of
rooted triplets. Theoretical Computer Science 363(1), 60–68 (2006)

27. Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the
network is hard. Theoretical Computer Science 401(1), 153–164 (2008)

28. Kubatko, L.S.: Identifying hybridization events in the presence of coalescence via model
selection. Systematic Biology 58(5), 478–488 (2009)

29. Mallet, J.: Hybrid speciation. Nature 446(7133), 279–283 (2007)
30. Meng, C., Kubatko, L.S.: Detecting hybrid speciation in the presence of incomplete

lineage sorting using gene tree incongruence: a model. Theoretical population biology
75(1), 35–45 (2009)

31. Morrison, D.A.: Introduction to Phylogenetic Networks. RJR Productions (2011)
32. Nolte, A.W., Tautz, D.: Understanding the onset of hybrid speciation. Trends in Ge-

netics 26(2), 54–58 (2010)
33. Pardi, F., Scornavacca, C.: Reconstructible phylogenetic networks: Do not distinguish

the indistinguishable. PLoS Comput Biol 11(4), e1004,135 (2015)
34. Posada, D., Crandall, K.A., Holmes, E.C.: Recombination in evolutionary genomics.

Annual Review of Genetics 36(1), 75–97 (2002)
35. Rambaut, A., Posada, D., Crandall, K., Holmes, E.: The causes and consequences of

HIV evolution. Nature Reviews Genetics 5(1), 52–61 (2004)
36. Vuilleumier, S., Bonhoeffer, S.: Contribution of recombination to the evolutionary his-

tory of hiv. Current Opinion in HIV and AIDS 10(2), 84–89 (2015)
37. Warnow, T.J.: Tree compatibility and inferring evolutionary history. Journal of Algo-

rithms 16(3), 388–407 (1994)
38. Yu, Y., Degnan, J.H., Nakhleh, L.: The probability of a gene tree topology within a

phylogenetic network with applications to hybridization detection. PLoS Genet 8(4),
e1002,660 (2012)

39. Yu, Y., Dong, J., Liu, K.J., Nakhleh, L.: Maximum likelihood inference of reticulate
evolutionary histories. PNAS 111(46), 16,448–16,453 (2014)

40. Zhaxybayeva, O., Doolittle, W.F.: Lateral gene transfer. Current Biology 21(7), R242–
R246 (2011)

HAL Id: hal-01609198
https://hal.science/hal-01609198

Submitted on 3 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anatomie, animaux, vocabulaire de la vivisection
Philippe Gambette, Tita Kyriacopoulou, Nadège Lechevrel, Claude Martineau

To cite this version:
Philippe Gambette, Tita Kyriacopoulou, Nadège Lechevrel, Claude Martineau. Anatomie, animaux,
vocabulaire de la vivisection : Construire des ressources lexicales pour visualiser une thématique dans
un corpus littéraire. Gisèle Séginger. Animalhumanité - Expérimentation et fiction : l’animalité au
cœur du vivant, LISAA, pp.223-231, 2018, Savoirs en Texte, 978-2-9566480-1-7. �hal-01609198�

Anatomie, animaux, vocabulaire
de la vivisection

Construire des ressources lexicales
pour visualiser une thématique dans un corpus littéraire

Philippe Gambette, Tita Kyriacopoulou,
Nadège Lechevrel, Claude Martineau

UPEM, laboratoire LIGM & ANR/DFG BIOLOGRAPHES, FMSH

Cet article propose une méthodologie d’annotation et de visualisation, en vue
de l’analyse, de textes d’un corpus littéraire sur la thématique de l’expérimenta-
tion animale. Elle se fonde notamment sur l’extraction du vocabulaire relatif à
cette thématique qui concerne plus précisément l’anatomie, les animaux ainsi que
l’expérimentation. Pour cela, nous combinons deux outils, Unitex et TreeCloud,
afin, d’une part, d’enrichir des ressources linguistiques pour la langue française
présentes dans la distribution d’Unitex, et d’autre part de visualiser les théma-
tiques d’intérêt au sein du corpus, au fil du texte, ou de manière synthétique.

Introduction

Le projet de recherche Animalhumanité visait à réunir chercheuses et
chercheurs en littérature, sciences du vivant et informatique pour des travaux
sur l’expérimentation et la fiction mettant l’animalité au cœur du vivant, en
valorisant à la fois les fonds des collections du musée Fragonard et le fonds
ancien de la bibliothèque de l’EnvA, École nationale vétérinaire d’Alfort. En
raison de la non-disponibilité en version numérique des ouvrages du fonds
ancien, nous nous sommes concentrés sur les descriptions des pièces du musée
Fragonard référencées sur le site de la Bibliothèque interuniversitaire de santé
de Paris 1, ainsi que sur un corpus constitué d’ouvrages, déjà numérisés et

 1 http://www.biusante.parisdescartes.fr/histoire/images/index.php?mod=a&orig=enva.

Gambette, Kyriacopoulou, Lechevrel, Martineau224

 disponibles en mode texte, suggérés par les collègues littéraires impliqués
dans le projet. Ce corpus a été traité par deux outils afin d’y mettre en valeur
les thématiques d’intérêt du projet : Unitex, un analyseur de corpus fondé sur
des ressources linguistiques et TreeCloud un logiciel issu de la textométrie
qui produit la visualisation d’un texte sous la forme de nuage arboré 2

Présentation du corpus

Plusieurs références ont été transmises par les chercheuses et chercheurs
en littérature impliqués dans le projet de recherche AnimalHumanité, en
vue de constituer un corpus textuel sur la thématique de l’expérimenta-
tion animale, ou plus précisément de la vivisection. Une première phase
du travail a consisté à rechercher des sources numérisées, disponibles au
format texte, pour ces références. Des sources variées ont été utilisées :
Wikisource, le site du Labex OBVIL, Gallica, Frantext, The Montaigne
Project, les Bibliothèques virtuelles humanistes, le Centre Flaubert, Les clas-
siques des sciences sociales, le Musée de La Fontaine et archive.org. Finalement,
un corpus de 34 textes a été constitué sur le principe de l’« échantillon de
convenance » 3, c’est-à-dire en combinant les besoins thématiques avec les
contraintes de disponibilité.

Ce corpus, dont la majorité des textes date du xixe siècle, est disponible
sur la page http://eclavit.univ-mlv.fr/animalhumanite. Il s’agit d’un corpus
de taille réduite (près de 3 Mo et 500 000 occurrences), relativement hétéro-
gène, en particulier du point de vue de la longueur des textes (certains n’étant
que des extraits) ou de la langue utilisée (romans, ouvrages scientifiques,
œuvres en français du xvie siècle non modernisé).

 2 Philippe Gambette. User Manual for TreeCloud, 2010. http://www.treecloud.org/DOWN-
LOADS/ManualTreecloud.pdf ; Philippe Gambette, Jean Véronis, “Visualising a Text with a
Tree Cloud”, IFCS’09 (Proceedings of the International Federation of Classification Societies
2009 Conference), Studies in Classification, Data Analysis, and Knowledge Organization n°40,
2010, p. 561-570. https://hal-lirmm.ccsd.cnrs.fr/lirmm-00373643/fr/.
 3 Mark Algee-Hewitt, Mark McGurl, “Between Canon and Corpus: Six Perspectives on
Twentieth-Century Novels”, Stanford Literary Lab Pamphlet n° 8, 2015, http://litlab.stanford.
edu/LiteraryLabPamphlet8.pdf.

Animalhumanité 225

Enrichissement des ressources
pour l’annotation des textes par Unitex

Une annotation automatique basée
sur des ressources lexicales et des motifs grammaticaux

Unitex est un logiciel libre multilingue et multiplateforme 4 d’analyse de
corpus qui fait appel à des ressources linguistiques (dictionnaires et gram-
maires locales). Il permet en particulier de localiser des motifs, c’est-à-dire
des mots ou groupes de mots qui correspondent à un patron combinant
des contraintes lexicales ou morphosyntaxiques. Ces contraintes peuvent
s’exprimer sous forme d’un automate, comme celui illustré en figure 1 5.
Les motifs détectés dans le texte sont alors annotés, c’est-à-dire que des
balises sont automatiquement ajoutées pour indiquer leur appartenance à
une catégorie donnée.

À partir de son interface, ce logiciel permet de ne traiter qu’un seul texte
à la fois. Pour traiter notre corpus, nous avons donc développé un script en
Perl qui appelle directement le cœur du logiciel Unitex et qui permet de
produire pour chacun des textes, un texte balisé avec des annotations. Ce
texte annoté est ensuite traité par le programme Perl qui génère une page web
dans laquelle chaque annotation est surlignée d’une couleur qui indique sa
catégorie. En plus du texte annoté, l’outil fournit aussi l’ensemble des motifs

 4 Unitex dispose d’un site internet : http://unitexgramlab.org.
 5 Sébastien Paumier, De la reconnaissance de formes linguistiques à l’analyse syntaxique,
thèse de doctorat, Université de Marne-la-Vallée, 2003, https://hal.archives-ouvertes.fr/tel-
01687029.

Figure 1 : Automate construit avec Unitex pour reconnaître des expressions du type
nom commun, ou groupe nominal, lié à la thématique « études », suivi d’un adjectif se

terminant par « iques » ou par « et » suivi d’un adjectif se terminant par « iques ».

Gambette, Kyriacopoulou, Lechevrel, Martineau226

reconnus, classés par fréquence décroissante ou par catégorie.
Nous avons donc annoté le corpus à l’aide de ce script et obtenu la page

web disponible à l’adresse http://eclavit.univ-mlv.fr/animalhumanite à partir
des 23 catégories indiquées en figure 2.

Catégorie Nb d’occ. Motifs diff. Catégorie Nb d’occ. Motifs diff.
Outil_Chirurgical 305 25 Animal_domestique 533 74
Médical 497 71 Mammifère 497 123
Anomalie 63 8 Oiseau 361 91
Biologie 1631 285 Insecte 732 110
Chimie 1294 244 Reptile 98 22
Profession 701 30 Animal 136 37
Expérimentation 1075 72 Pré_Animal 85 17
Homme_Animal 1089 58 Cat_Animal 251 74
Étude 4675 793 Partie_Corps 2432 304

Forme_Verbale 877 296 Partie_Corps_Animal 367 43
Personne 1318 391 Fluide_Corporel 384 33

Institution 37 3

Un enrichissement des ressources lexicales utilisées

Nous disposions déjà dans nos dictionnaires de traits de type animal,
parties du corps, etc. Cependant, certaines ressources étaient insuffisantes
ou inadéquates, ce qui nous a amenés à les compléter à partir de notre
corpus, à partir de règles linguistiques ou à partir de la base de données
des pièces du musée Fragonard.

En ce qui concerne l’ajout de traits plus précis que ceux déjà présents
dans nos ressources, nous avons créé des catégories « animal domestique »,
« mammifère », « oiseau », « insecte », « reptile » afin d’augmenter la finesse de
nos repérages. Un trait « parties du corps animal » a également été ajouté au
trait « parties du corps », pour repérer des mots comme « pattes » ou « bec ».

Nous avons également complété certains dictionnaires par des entrées sup-
plémentaires. Un certain nombre de ces nouvelles entrées, sur les parties du
corps animal, les animaux ainsi que des anomalies médicales par exemple, pro-
viennent d’une analyse arborée, montrée en figure 3, des titres des pièces du
musée Fragonard présents dans une base de données. L’arbre rapproche les mots
qui apparaissent fréquemment dans les mêmes titres, et il est coloré en fonction
des diverses catégories thématiques proposées (animaux en bleu, parties du corps
en rose, anomalies anatomiques en rouge, entités nommées en vert).

Figure 2 : Synthèse des 23 catégories recherchées dans le corpus, avec pour chacune le
nombre de motifs différents détectés (3204 au total)

et d’occurrences reconnues (19438 au total).

Animalhumanité 227

La méthode de recherche de motifs caractéristiques de certains traits,
implémentée par Unitex, est aussi utilisée pour ajouter de nouvelles entrées
à nos ressources lexicales. Par exemple, nous avons constaté lors de la lecture
du corpus que plusieurs parties relatives aux descriptions de débats scien-
tifiques font apparaître des mots composés avec des noms suivis d’adjectifs
se terminant par « ique », tels que « propriétés mécaniques » ou « sciences
biologiques ». Nous avons donc construit l’automate illustré en figure 1 pour
repérer ces expressions. À partir de la liste des résultats obtenus, nous avons
ajouté à nos dictionnaires ceux qui pouvaient être rattachés à la description
d’études scientifiques, en les associant à un trait « étude », et en ajoutant les
codes employés par Unitex pour reconnaître automatiquement les formes
fléchies, au pluriel, par exemple. Pour de plus amples explications sur ce
graphe on pourra consulter les sections 4.3 et 4.7 du manuel d’Unitex 6.

Finalement, plus de 2500 entrées spécifiques ont ainsi été ajoutées à nos
dictionnaires.

 6 Sébastien Paumier, Claude Martineau, Unitex 3.1, Manuel d’utilisation, 2016 http://
unitexgramlab.org/releases/3.1/man/Unitex-GramLab-3.1-usermanual-fr.pdf.

Figure 3 : Nuage arboré des mots présents dans mots dans au moins 15 descriptions de
pièces du musée Fragonard de l’EnvA, parmi les 3084 recensées dans la collection EnvA

BIU Santé. Disponible sur http://treecloud.univ-mlv.fr/treecloud-linker/fragonard.html en
version interactive avec des liens vers le formulaire de recherche dans la collection EnvA.

Gambette, Kyriacopoulou, Lechevrel, Martineau228

Visualisations et analyses du corpus

Notre corpus est assez large et contient plusieurs œuvres où seuls quelques
extraits concernent les thématiques du projet AnimalHumanité. Nous avons
donc commencé par extraire d’un nuage arboré construit sur l’ensemble du
corpus la liste des termes les plus fréquents liés à la thématique de l’expéri-
mentation animale : « expérience », « expériences », « supplice », « anatomie »,
« sang », « sanglants », « émotion », « pitié », « horreur », « peur », « scalpel »,
« aiguilles », « éther », « phosphore », « poisons », « morte », « mort », « horrible »,
« barbare », « assassin », « injecter », « enfermer », « souffrir », « mourir ». Nous
avons alors observé le voisinage de ces mots à l’aide de l’extraction de concor-
dances (10 mots avant et 10 mots après) et de leur visualisation en nuage arboré.

Dans ce nuage arboré montré en figure 4, le sous-arbre de gauche est consacré
aux démarches de recherche en sciences du vivant. Il mêle par exemple les disci-
plines (anatomie, physiologie, médecine), procédés d’étude (vivisection(s), dissec-
tion, expérience(s), expérimentation, dislocation), les objets d’étude (organisme,
vie, vivant, nature, animaux) et certains moyens utilisés (poison(s), instruments).

Deux sous-arbres en haut de la figure 4 sont consacrés au ressenti de
l’animal (douleur(s), peur, supplice(s), souffrance), alors qu’en bas un seul

Figure 4 : Nuage arboré des 100 mots les plus fréquents (hors mots vides)
dans le voisinage des termes de la catégorie « expérimentations ».

Animalhumanité 229

 sous-arbre mêle un lexique lié au féminin (mère, femme, morte) et à des
émotions ressenties en observant (vue, voir) les expérimentations (horreur,
pitié, cœur). Enfin, un sous-arbre à droite associe à la thématique de la
mort (mort(s), cadavres) un vocabulaire essentiellement dénué d’émotion
(le mot apparaît plutôt à côté de maladie et homme dans un autre sous-
arbre) et plutôt lié à des analyses scientifiques de cadavres (cause(s), obser-
vations anatomiques).

Il est aussi possible de se concentrer sur des catégories de mots issues des
ressources lexicales, en construisant par exemple avec Unitex les concor-
dances des termes issus de la liste des parties du corps animal. En les visua-
lisant de nouveau à l’aide d’un nuage arboré montré en figure 5, le nombre
important d’occurrences de « patte », au pluriel et au singulier, apparaît.
D’une façon générale, il y a beaucoup de « pattes » dans Les Scènes de la
vie privée de Balzac, Les Sabots de Noël d’Haraucourt, L’ennemi des lois de
Barrès et L’insecte de Michelet. Dans les textes, les pattes sont surtout celles
des chiens, des chats et des chevaux, et le thème des pattes ficelées revient
souvent car il est emblématique de la privation de liberté et de la souffrance :
être ligoté et retenu pour l’expérimentation.

Les mots « bras » et « pattes » apparaissent à proximité dans l’arbre : un
retour au texte montre qu’il peut y avoir des bras et des pattes pour diverses
raisons. Ici, dans le texte de Michelet, l’homme et l’animal sont confondus
dans une métaphore filée de « l’insecte géant qu’on appelle cerf-volant, l’un des
plus gros de nos climats, masse noire et luisante aux cornes armées de superbes
pinces » où il est tantôt prisonnier, tantôt Roméo 7. Michelet s’émeut égale-
ment devant les longs bras d’enfants d’un puceron 8.

L’anthropomorphisme facilite aussi la vulgarisation : Michelet évoque
ainsi les dents et la bouche pour décrire les mandibules d’une fourmi 9. Enfin,
la proximité inattendue dans ce corpus des mots « yeux » et « cœur » dans

 7 « Il la palpait de ses pattes et de ses bras tremblotants. Il parvint à la retourner, tâtonna (très
probablement il ne voyait plus), pour bien s’assurer si elle vivait. Il ne pouvait s’en séparer ;
l’on eût juré qu’il avait entrepris, lui mourant, de ressusciter cette morte. » (Jules Michelet.
L’Insecte, Paris, Librairie Hachette, 1858, http://corpus.biolographes.eu/titre.php?id=185).
 8 « Jeté sur le dos, il étalait un ventre très-gros, une très-petite tête informe qui ne semble
qu’un suçoir, et remuait toutes ses pattes qu’on eût dit plutôt de longs bras d’enfants. Au total,
un être innocent, et qui n’inspire aucune répugnance. » (Jules Michelet, ibid.)
 9 « Je profitai avec hâte de l’attitude pénible où je tenais ma fourmi : je regardai son visage.
Ce qui désoriente le plus et lui donne un aspect étrange, ce sont principalement les dents
ou mandibules, placées en dehors de la bouche, et partant l’une de droite, l’autre de gauche,
horizontalement, pour se rencontrer ; les nôtres sont verticales. Ces dents en avant menacent
et semblent présenter le combat. Cependant, comme nous l’avons dit, elles ont des usages
pacifiques et servent aussi de mains. Derrière ces dents apparaissent de petits filets ou palpes,
à l’entrée de la bouche. Ce sont en réalité comme de petites mains de la bouche, qui palpent,
manient, retournent ce qu’on y apporte. Du front partent les antennes, autres mains, mais du
dehors, mobiles à l’excès, sensibles, des mains électriques. » (Jules Michelet, ibid.)

Gambette, Kyriacopoulou, Lechevrel, Martineau230

Figure 5 : Nuage arboré des 100 mots les plus fréquents dans les contextes
(10 mots avant, 10 mots après) des mots de la catégorie « parties du corps animal ».

Animalhumanité 231

la figure 5 s’explique en partie par un extrait où Michelet s’interroge sur
l’humanité des insectes 10.

Ainsi, les parties des corps humain et animal sont interchangeables à sou-
hait dans les textes littéraires : c’est le pouvoir effroyable et monstrueux de
la vivisection qui fait de l’homme une bête, et révèle l’humanité de l’animal.

Conclusion

La méthode présentée ci-dessus a permis de définir 23 catégories corres-
pondant aux intérêts des personnes impliquées dans ce projet à l’interface
de la littérature, des sciences de la vie et de l’informatique. Notons toutefois
que les textes antérieurs au xixe ne sont que très faiblement représentés dans
le corpus en raison de leur moindre disponibilité et des difficultés à traiter
le français de l’époque avec les ressources linguistiques et les outils informa-
tiques dont nous disposons.

En appliquant des méthodes d’analyse linguistique et statistique à des
corpus littéraires, nous facilitons la fouille du corpus en ligne pour les col-
lègues, en fonction de leurs intérêts. Cela permet de mettre en relation des
extraits de texte avec des pièces du musée par exemple dans le cadre d’une
application mobile. Par ailleurs, les ressources lexicales construites peuvent
être utilisées sur d’autres applications ou corpus.

 10 « Point de regard dans ses yeux. Nul mouvement sur son masque muet. Sous sa cuirasse
de guerre, il demeure impénétrable. Son cœur (car il en a un) bat-il à la manière du mien ?
Ses sens sont infiniment subtils, mais sont-ils semblables à mes sens ? Il semble même qu’il
en ait à part, d’inconnus, encore sans nom. » (Jules Michelet, ibid.)

ar
X

iv
:1

90
9.

10
46

0v
3

 [
m

at
h.

C
O

]
 1

2
M

ar
 2

02
0

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2

MATHILDE BOUVEL, PHILIPPE GAMBETTE, AND MAREFATOLLAH MANSOURI

Abstract. Phylogenetic networks generalize phylogenetic trees, and have been introduced in
order to describe evolution in the case of transfer of genetic material between coexisting species.
There are many classes of phylogenetic networks, which can all be modeled as families of graphs
with labeled leaves. In this paper, we focus on rooted and unrooted level-k networks and pro-
vide enumeration formulas (exact and asymptotic) for rooted and unrooted level-1 and level-2
phylogenetic networks with a given number of leaves. We also prove that the distribution of
some parameters of these networks (such as their number of cycles) are asymptotically nor-
mally distributed. These results are obtained by first providing a recursive description (also
called combinatorial specification) of our networks, and by next applying classical methods of
enumerative, symbolic and analytic combinatorics.

Keywords: phylogenetic networks, level, galled trees, counting, combinatorial specification,
generating function, asymptotic normal distribution

Mathematics Subject Classification (2010): 05A15, 05A16, 92D15

1. Introduction

Phylogenetic networks generalize phylogenetic trees introducing reticulation vertices, which
have two parents, and represent ancestral species resulting from the transfer of genetic material
between coexisting species, through biological processes such as lateral gene transfer, hybridization
or recombination. More precisely, binary phylogenetic networks are usually defined as rooted
directed acyclic graphs with exactly one root, tree vertices having one parent and 2 children,
reticulation vertices having 2 parents and one child and labeled leaves. The leaves are bijectively
labeled by a set of taxa, which correspond to currently living species.

As for trees, phylogenetic networks can be rooted or unrooted. Ideally, phylogenetic networks
should be rooted, the root representing the common ancestor of all taxa labeling the leaves.
But several methods which reconstruct phylogenetic networks, such as combinatorial [HMSW18,
vIM18], distance-based [BDM12, WTM14] or parsimony-based methods [PC01, LV14], do not
produce inherently rooted networks, but provide unrooted networks where tree vertices and retic-
ulation vertices cannot be distinguished.

An important parameter that allows to measure the complexity of a phylogenetic networks is its
level. Phylogenetic trees are actually phylogenetic networks of level 0, and the level of a network
N measures “how far from a tree” N is.

The problem of enumerating (rooted or unrooted) trees is a very classical one in enumerative
combinatorics. Solving this problem actually led to general methods for enumerating other tree-
like structures, where generating functions play a key role. We will review some of these methods
in Section 3. These methods have successfully been used by Semple and Steel [SS06] to enumerate
two families of phylogenetic networks, namely unicyclic networks and unrooted level-1 networks
(also called galled trees). Their results include an equation defining implicitly the generating
function for unrooted level-1 networks (refined according to two parameters), which yields a closed
formula for the number of unrooted level-1 networks with n (labeled) leaves, k cycles, and a
total of m edges (also called arcs) across all the cycles. An upper bound on the number of
unlabeled galled trees is also provided in [CHT18]. Other counting results have been more recently
obtained on other families of phylogenetic networks, for example on so-called normal and tree-child
networks [MSW15, FGM19] and on galled networks [GRZ18].

In this paper, we extend the results of Semple and Steel in several ways. First, about un-
rooted level-1 networks, we provide an asymptotic estimate of the number of such networks with

1

2 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

n (labeled) leaves. We also prove that the two parameters considered by Semple and Steel are
asymptotically normally distributed. Second, we consider rooted level-1 networks, whose enu-
meration does not seem to have been considered so far in the literature. For these networks,
we provide a closed formula counting them by number of leaves, together with an asymptotic
estimate, and a closed formula for their enumeration refined by two parameters (the number of
cycles and number of edges across all the cycles). Moreover, we show that these two parameters
are asymptotically normally distributed. Finally, we consider both unrooted and rooted level-2
networks. Similarly, we provide in each case exact and asymptotic formulas for their enumeration,
and prove asymptotic normality for some parameters of interest, namely: the number of bridgeless
components of strictly positive level, and the number of edges across them. These parameters are
a generalization for level-k (k > 2) of those considered by Semple and Steel for level-1, in the sense
that they quantify how different from a tree these phylogenetic networks are.

The results of this paper rely heavily on analytic combinatorics [FS08]. This framework can also
be used to derive uniform random generators (for example with the recursive method [FZC94] or
with a Boltzmann sampler [DFLS04]) directly from the specifications of the classes of phylogenetic
networks given below. This could be useful for applications in bioinformatics, especially to generate
simulated data in order to evaluate the speed or the quality of the output of algorithms dealing
with phylogenetic networks.

Table 1 provides an overview of our results, and of where they can be found in the paper.

Type of network Unrooted, Rooted, Unrooted, Rooted,
level-1 level-1 level-2 level-2

Letter X denoting the class G (galled) R (rooted) U (unrooted) L (last)
Eq. for the EGF X(z) Thm. 4.1 (∗) Thm. 5.1 Thm. 6.1 Thm. 7.1
Exact formula for xn Thm. 4.1 (∗) Prop. 5.2 Prop 8.1 Prop. 8.2
Asymptotic estimate of xn Prop. 4.2 Prop. 5.3 Prop. 6.2 Prop. 7.2
Eq. for the multivariate EGF Eq. (3) (∗) Eq. (4) Eq. (5) Eq. (6)
Asymptotic normality Prop. 4.3 Prop. 5.5 Prop. 6.3 Prop. 7.3

Table 1. Overview of our main results. EGF means exponential generating
function. The results marked with (∗) also appear in the work of Semple and
Steel [SS06]. In addition, refined enumeration formulas for unrooted and rooted
level-1 networks are provided in [SS06, Thm. 4] and Prop. 5.4 respectively. (Al-
though the proof method applies to obtain such formulas for level-2 as well, the
computations would however be rather intricate, and the interest a priori of the
formulas so obtained questionable, hence our choice not to do it.)

For the reader’s convenience, we also include in this introduction the beginnings of the enumer-
ation sequences of the four types of networks we consider, as well as their asymptotic behavior –
see Table 2. We have added these sequences to the OEIS [OEI19], and we also include in Table 2
their OEIS reference. We also provide in the supplementary material the code in the DOT lan-
guage, as well as a visualization with GraphViz, of the 15 unrooted level-1 networks on 4 leaves,
the 3 rooted level-1 networks on 2 leaves, the 6 unrooted level-2 networks on 3 leaves and the 18
rooted level-2 networks on 2 leaves.

The remainder of the article is organized as follows. First, Section 2 recalls definitions and
properties of phylogenetic networks that are important for our purpose. Next, Section 3 reviews
some methods of enumerative and analytic combinatorics which we will apply to solve the enu-
meration of our networks in the following sections. Precisely, Sections 4 and 5 deal with level-1
networks, unrooted and rooted, while Sections 6 and 7 focus on level-2 networks.

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 3

n gn−1 rn un−1 ℓn

1 0 1 0 1
2 1 3 1 18
3 2 36 6 1 143
4 15 723 135 120 078
5 192 20 280 5 052 17 643 570
6 3 450 730 755 264 270 3 332 111 850

as n → ∞ c1 ≈ 0.20748 c1 ≈ 0.1339 c1 ≈ 0.07695 c1 ≈ 0.02931
xn ∼ c1c

n
2nn−1 with c2 ≈ 1.89004 c2 ≈ 2.943 c2 ≈ 5.4925 c2 ≈ 15.4333

OEIS reference A328121 A328122 A333005 A333006

Table 2. The numbers of rooted and unrooted level-1 or level-2 networks on n
leaves.

2. Some properties of phylogenetic networks

2.1. Rooted binary phylogenetic networks. In graph theory, a cut arc or bridge of a directed
graph G is an arc whose deletion disconnects G. A bridgeless component of a graph is a maximal
induced subgraph of G without cut arcs.

We define a binary rooted phylogenetic network N on a set X of leaf labels, for |X | ≥ 2 as a
directed acyclic graph having:

(1) exactly one root, that is an in-degree-0 out-degree-2 vertex;
(2) leaves, that is in-degree-1 out-degree-0 vertices which are bijectively labeled by elements

of X ;
(3) tree vertices, that is in-degree-1 out-degree-2 vertices;
(4) reticulation vertices, that is in-degree-2 out-degree-1 vertices;

and such that
(5) for each bridgeless component B of N , there exist at least two cut arcs of N whose tail1

belongs to B and whose head does not belong to B.

A binary rooted phylogenetic network N on a singleton x is a single vertex labeled by x.
As illustrated in Fig. 1, a binary rooted phylogenetic network N is said to be level-k (or called

a level-k network for short) if the number of reticulation vertices contained in any bridgeless
component of N is less than or equal to k. In a level-1 network N , each bridgeless component B
having at least two vertices consists of the union of two directed paths, which start and end at
the same vertices, called source and sink respectively. The source is actually either the root of N ,
or the head of a cut arc of N , and the sink is the unique reticulation vertex of B. Such bridgeless
components are called cycles.

Note that variations on the definition of rooted binary phylogenetic networks are around in the
literature, and a few comments on our choice of definition are in order. Like in most publications
about phylogenetic networks, our definition of binary rooted phylogenetic networks does not allow
multiple arcs. As our goal is to study a model of binary phylogenetic networks that could be
counted if their number of leaves and level are fixed, condition (5) is necessary to ensure that
there are finitely many phylogenetic networks with a given number of leaves and level. Note that
this restriction has already appeared in the literature under the name “networks with no redundant
biconnected components” [vIM14] or “with no redundant blobs” [GvIK+16]. Indeed, without it,
such networks have an unbounded number of vertices: this can be seen by replacing any cut arc
of the network by a sequence of networks isomorphic to the one in Fig. 4(2a), which has only one
incoming cut-arc and one outgoing cut-arc.

Similarly in some algorithmic-oriented papers about phylogenetic networks, bridgeless compo-
nents with three vertices and two outgoing arcs are forbidden because the information needed to
distinguish those components from simple tree vertices also connected with two outgoing arcs is
not available in the input data. In the perspective of counting those objects we do not impose this

1The tail of an arc is by definition its starting point. Its arrival point is called head.

4 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

restriction. But it could easily be added to our combinatorial descriptions and formulas below, to
be taken into account if needed.

2.2. Unrooted binary phylogenetic networks. Now, we extend the latter definition to un-
rooted phylogenetic networks. A cut-edge or bridge of an undirected graph G is an edge whose
removal disconnects the graph. A bridgeless component of a graph G is a maximal induced sub-
graph of G without cut-edges.

An unrooted binary phylogenetic network N on a set X of at least 2 leaf labels is a loopless
(undirected) graph whose vertices have either degree 3 (internal vertices) or degree 1 (leaves),
such that its set L(N) of leaves is bijectively labeled by X and such that for each bridgeless
component B of N having strictly more than one vertex, the set of cut-edges incident with some
vertex of B has size at least 3. An unrooted binary phylogenetic network N on a singleton x
is a single vertex labeled by x. An unrooted binary phylogenetic tree is an unrooted binary
phylogenetic network with no bridgeless component containing strictly more that one vertex. An
unrooted binary phylogenetic network is said to be level-k (or called an unrooted level-k network
for short) if an unrooted binary phylogenetic tree can be obtained by first removing at most k
edges per bridgeless component, and then, for each degree-2 vertex, contracting the edge between
this vertex and one of its neighbours. We denote by cycles the bridgeless components of unrooted
level-1 networks having strictly more than one vertex. (Indeed, they are just cycles – of size at
least 3 – in the graph-theoretical sense.)

Note that given a rooted level-k network N on n leaves, we can obtain an unrooted binary
phylogenetic network N ′ on n + 1 leaves with the following unrooting procedure: add a vertex
adjacent to the root of N , labeled with an extra leaf label (usually denoted #), and ignore all
arc directions. Theorem 1 of [GBP12] implies in addition that the network N ′ so obtained is
an unrooted level-k network. This unrooting procedure which consists of building an unrooted
level-k network from a rooted level-k network, illustrated in Fig. 1, can be reversed (see Lemma
4.13 of [JJE+18]), although not in a unique fashion. Indeed, given an unrooted level-k network
N ′ on n + 1 leaves, it is possible to choose any leaf and delete it, making its neighbour become
the root ρ of a rooted level-k network N obtained by:

(1) placing the bridgeless component B containing ρ at the top;
(2) orienting downwards all the cut-edges incident with vertices of B;
(3) choosing the tail t of one of these cut arcs as the sink of B;
(4) computing an ρ-t numbering [LEC67] on the vertices of B if there are more than one, that

is labeling vertices of B with integers from 1 to the number nB of vertices of B, such that
the labels of ρ and t are respectively 1 and nB and such that any vertex of B except ρ
and t is adjacent both to a vertex with a lower label and a vertex with a higher label;

(5) orienting each edge of B by choosing its vertex with the lower label as the tail;
and

(6) moving downwards into the network, recursively applying this procedure on all other
bridgeless components.

This correspondence is not one-to-one because of the choices of the leaf which is deleted, and most
importantly because of the choices of sinks in step 3 above.

2.3. Decomposition of rooted and unrooted level-k networks. For any bridgeless compo-
nent B with kB ≤ k reticulation vertices of a rooted level-k network N , the directed multi-graph
obtained by removing all outgoing arcs, and then contracting each arc from an in-degree-1 out-
degree-1 vertex to its child, is called a level-kB generator [vIKK+09, GBP09]. For each k > 0, there
exists a finite list of level-k generators which can be built from level-(k − 1) generators [GBP09].
Therefore, depending on the level kρ of the bridgeless component Bρ of N containing its root ρ,
N can be decomposed in the following way. It is either:

• a single leaf if kρ = 0 and ρ has out-degree 0;
• a root ρ being the parent of the root ρ1 of a rooted level-k network N1 and of the root

ρ2 of a rooted level-k network N2 with disjoint sets of leaf labels, if kρ = 0 and ρ has
out-degree 2;

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 5

ρ

l1 l2

l3 l4

l5
l6

ρ

l1
l2

l3 l4

l5

l6

N N ′

Figure 1. A rooted level-2 network N (where all arcs are directed downwards)
and the unrooted level-2 network N ′ obtained by applying the unrooting proce-
dure on N .

• a level-kρ generator Gρ containing the root, with 0 < kρ ≤ k, whose arcs are subdivided
to create new in-degree-1 out-degree-1 vertices, to which we add a set of cut arcs, whose
tails are the out-degree-0 vertices of Gρ and the newly created in-degree-1 out-degree-1
vertices, and whose heads are roots of rooted level-k networks with disjoint sets of leaf
labels.

Similarly, for any bridgeless component B of an unrooted level-k network N , the multi-graph
obtained by first removing all cut-edges incident with any vertex of B, then, for each degree-2
vertex, contracting the edge between this vertex and one of its neighbours, is called an unrooted
level-kB generator [GBP12, HMW16]. An unrooted level-kB generator can also be defined as a
single vertex for kB = 0, as two vertices linked by a multiple edge for kB = 1, and as a 3-regular
bridgeless multi-graph with 2kB − 2 vertices for kB > 1 (Lemma 6 of [HMW16]). Therefore, by
considering a leaf l# of any unrooted level-k network N and the bridgeless component B containing
the vertex adjacent to this leaf, depending on the level kB of B, N can be decomposed in the
following way.

• If kB = 0 and B consists of a single vertex of degree 1 in N , then N is just the leaf l#
adjacent to another leaf.

• If kB = 0 and B is not a single vertex of degree 1 in N , then the leaf l# is adjacent to a
vertex v of degree 3 in N , such that the other two edges incident to v are cut-edges. N is
described by the edge between l# and v, plus the two other edges incident with v, which
are in turn identified with edges of two unrooted level-k networks N1 and N2 with disjoint
sets of leaf labels (not containing #) in such a way that v is identified with a leaf l#1 (resp.
l#2) of N1 (resp. N2), removing the leaf labels of l#1 and l#2 during this identification.

• Otherwise 0 < kB ≤ k. In this case, N is described by taking a level-kB generator
whose edges are subdivided to insert vertices, and then performing identification of these
inserted vertices (in a same flavor as in the previous case). Specifically, one of these
inserted vertices is identified with the neighbour of l# in N , and all others are identified
with leaves of unrooted level-k networks with disjoint sets of leaf labels (not containing
#). Again, each leaf that is identified with another vertex looses its label during this
identification.

These decompositions of rooted and unrooted level-k networks will be the key to our counting
results below.

3. Generating functions: some basics tools and techniques

This section summarizes some of the basics on combinatorial classes and their generating func-
tions that we will use in our work. Our presentation follows closely [FS08] (although with much
less details), and the reader interested to know more on the topic is referred to [FS08, mainly

6 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

Chapters I.5, II.1, II.5, VI.3, VII.3, VII.4]. The reader familiar with the classical tools of analytic
combinatorics may safely skip this section.

3.1. (Univariate) generating functions and counting. Generally speaking, a combinatorial
class C is a set of discrete objects, equipped with a notion of size, such that for every integer n
there is a finite number of objects of size n in C. We denote by Cn the set of objects of size n in C,
and by cn the cardinality of Cn. Specifically in this paper, each combinatorial class we consider is
a family of level-k phylogenetic networks, and the size of such a network is its number of leaves.

Objects of size n in C can be seen as an arrangement (following some rules to be made pre-
cise) of n atoms, which are objects of size 1. In our context, these atoms are the leaves of the
networks, representing the current species, or taxa. When the atoms constituting an object are
distinguishable among themselves, the considered combinatorial objects are said to be labeled2.
Because leaves of level-k networks correspond to taxa, our networks are indeed labeled combina-
torial objects. Without loss of generality (i.e., up to relabeling), atoms in a labeled object of size
n are simply labeled by integers from 1 to n, and we will take this convention in our work.

To a (labeled) combinatorial class C, we can associate its exponential generating function C(z) =∑
n≥0 cn

zn

n! , which is a formal power series in z encapsulating the entire enumeration of C.
A specification for a combinatorial class is an unambiguous description of the objects in the class

using simpler classes and possibly the class itself. For instance, consider labeled rooted ordered
binary trees, and define their size to be the number of their leaves. Such a tree is unambiguously
described as being either a leaf or composed of a root to which a left and a right subtree are
attached, which are themselves labeled rooted ordered binary trees, with a consistent relabeling
of their atoms. By this, we mean the following: considering two trees whose atoms are labeled by
{1, . . . , k} and {1, . . . , k′}, we can build a tree using the first (resp. second) as left (resp. right)
subtree; the atoms of this tree are labeled by {1, . . . , k +k′}, and need to be such that the relative
order between the labels in the left (resp. right) subtree is preserved (and they may be in any
such way). This specification for labeled rooted ordered binary trees can be formally written as

follows: B = • ⊎
◦

B B
, where • represents a leaf (contributing 1 to the size of the object) and ◦

represents an internal node (which contributes 0 to the size).
Specifications describing (labeled) combinatorial classes can be translated into equations sat-

isfied by the corresponding (exponential) generating functions. The precise statement that we
refer to is [FS08, Theorem II.1]. The following proposition summarizes the simplest cases of this
translation, which we will often use later in this paper.

Proposition 3.1 (Dictionary). Let A and B be two labeled combinatorial classes. Denote by
A(z) and B(z) their respective exponential generating functions. Then the generating function of
the class which is the disjoint union of A and B (resp. the Cartesian product of A and B) is
A(z) + B(z) (resp. A(z) · B(z)). In addition, if A contains no object of size 0, the class which
consists of sequences of objects of A (i.e., m-tuples of objects of A, for any m ≥ 0) has generating
function 1

1−A(z) .

On the previous example of binary trees, it follows from the above proposition that the corre-
sponding generating function satisfies B(z) = z + B(z)2.

The next step is to have access to the enumeration sequence (cn) of a class C from an equation
satisfied by the generating function C(z) of C. A possible way, especially in the case of tree-like
objects, is to appeal to the Lagrange inversion formula ([FS08, Theorem A.2]). To state it, we
introduce the notation [zn]C(z) to denote the n-th coefficient of the series C(z); that is to say,
writing C(z) =

∑
n≥0

cn
n! z

n, we have [zn]C(z) = cn
n! , or equivalently cn = n! · [zn]C(z).

The Lagrange inversion formula is as follows.

Proposition 3.2 (Lagrange inversion formula). Assume that a generating function C satisfies
an equation of the form C(z) = zφ(C(z)) for φ(z) =

∑
n≥0 φnzn a formal power series such that

2Although it is also very classical, the case of unlabeled objects (with their corresponding ordinary generating
functions) will not be useful in our work, and is therefore omitted from our presentation.

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 7

φ0 6= 0. Then, we have:

[zn]C(z) =
1

n
[zn−1]φ(z)n.

Even though defined as formal power series, it is often useful to consider that generating func-
tions are analytic functions of the complex variable z, in a small disk of convergence around the
origin of the complex plane. This sometimes allows to find a closed form for the generating func-
tion in its disk of convergence, but not always. Even in this least favorable case, it enables to
inherit fundamental results from complex analysis, which can be used for the purpose of enu-
merating combinatorial objects. In particular, we have in this tool box the Singular Inversion
Theorem (Theorem VI.6 of [FS08]), which allows to derive asymptotic estimates of the coefficients
of generating functions.

Theorem 3.3 (Singular Inversion Theorem). Let C(z) be a generating function such that C(0) =
0, satisfying the equation C(z) = zφ(C(z)) for φ(z) =

∑
n≥0 φnzn a power series such that φ0 6= 0,

all φn are non-negative real numbers, and φ(z) 6= φ0 +φ1z. Denote by R the radius of convergence
of φ at 0. Assume that φ is analytic at 0 (so that R > 0), that the characteristic equation
φ(z) − zφ′(z) = 0 has a solution τ ∈ (0, R) (that is necessarily unique), and that φ is aperiodic3.
Then the followings hold:

• ρ = τ
φ(τ) is the radius of convergence of C at 0;

• near ρ, C(z) ∼ τ −
√

2φ(τ)
φ′′(τ)

√
1 − z

ρ ;

• when n grows, [zn]C(z) ∼
√

φ(τ)
2φ′′(τ)

ρ−n

√
πn3

.

3.2. Multivariate generating functions and estimating parameters. Until now, our gener-
ating functions had only a single variable, z, recording the size of the objects we were counting. We
now consider multivariate generating functions, where additional variables (x, y, . . .) record the
value of other parameters of our objects. In our cases, we will consider at most two such param-
eters, which are numbers of certain “substructures” occurring in our objects. Namely, denoting
cn,k,m the number of objects of size n in the combinatorial class C such that the first parameter has
value k and the second has value m, the multivariate exponential generating function we consider
is C(z, x, y) =

∑
n,k,m

cn,k,m

n! znxkym.
To continue our earlier example of binary trees, we could consider one additional parameter,

which is the number of internal nodes. (Of course,we are aware that the number of internal nodes is
always the number of leaves – i.e., the size – minus one; but we keep this example just to illustrate
definitions and tools available.) The coefficient of znxk in the generating function B(z, x) is then
the number of binary trees with n leaves and k internal nodes, divided by n!.

The “dictionary” translating combinatorial specifications to equations satisfied by the gener-

ating function extends to multivariate series, and our earlier specification B = • ⊎
◦

B B
gives

B(z, x) = z + xB(z, x)2.
Here again, the Lagrange inversion formula may be used to derive a closed formula for the coef-

ficients cn,k,m. Indeed, assuming that our multivariate exponential generating function C(z, x, y)
satisfies an equation of the form C(z, x, y) = zφ(C(z), x, y) for φ(z, x, y) =

∑
n≥0 φn(x, y)zn a

formal power series such that φ0 6= 0, then we have:

cn,k,m

n! = [znxkym]C(z, x, y) =
1

n
[zn−1xkym]φ(z, x, y)n.

Moreover, under some hypotheses, the following theorem (see [Drm09, Theorem 2.23]) allows to
prove that the considered parameters are asymptotically normally distributed. The notation used
in the statement of this theorem is as follows: if F is a function of several variables, including v,
Fv denotes the partial derivative of F with respect to v; as usual, E and Var respectively denote

3Aperiodicity is needed only for the third item below. The definition of aperiodicity is omitted from this paper,
and can be found in [FS08, Definition IV.5]. A sufficient condition for a power series to be aperiodic (which applies
to all examples considered in this paper), is to have φn > 0 for all n.

8 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

expectation and variance; N (0, 1) is the standard normal distribution; and
d−→ denotes convergence

in distribution.

Theorem 3.4. Assume that C(z, x) is a power series that is the (necessarily unique and ana-
lytic) solution of the functional equation C = F (C, z, x), where F (C, z, x) satisfies the following
assumptions: F (C, z, x) is analytic in C, z and x around 0, F (C, 0, x) = 0, F (0, z, x) 6= 0, and all
coefficients [znCm]F (C, z, 1) are real and non-negative.

Assume in addition that the region of convergence of F (C, z, x) is large enough for having
non-negative solutions z = z0 and C = C0 of the system of equations

C = F (C, z, 1)

1 = FC(C, z, 1)

with Fz(C0, z0, 1) 6= 0 and FCC(C0, z0, 1) 6= 0.
Then, if Xn is a sequence of random variables such that

ExXn =
[zn]C(z, x)

[zn]C(z, 1)
,

then Xn is asymptotically normally distributed.
More precisely, setting

µ =
Fx

z0Fz

σ2 = µ+ µ2 +
1

z0F 3
z FCC

(
F 2

z (FCCFxx − F 2
Cx)− 2FzFx(FCCFzx − FCzFCx) + F 2

x (FCCFzz − F 2
Cz)

)

where all partial derivatives are evaluated at the point (C0, z0, 1), we have

EXn = µn + O(1) and VarXn = σ2n + O(1)

and if σ2 > 0 then

Xn − EXn√
VarXn

d−→ N (0, 1).

3.3. Implementation and note about computations. Some of the computations used to
obtain the results of this paper were programmed in Maple. A companion Maple document is
available from the authors webpage4.

We also point out to the interested reader that a first version of this article was considering
a variant of the model of level-k phylogenetic networks, where multiple (i.e. parallel) edges are
allowed. The counting results for this alternate model of course differ (starting from level 2), and
can be found in [BGM19], again with an associated Maple document5. Similarly, these files can
easily be used to adapt the computations in case other restrictions are imposed on the structure
of level-1 or level-2 phylogenetic networks, for example if tiny cycles, defined in [HvIM+17] as
bridgeless components with exactly three vertices, are not allowed.

4. Counting unrooted level-1 networks

4.1. Generating function and exact enumeration formula. Unrooted level-1 networks (also
called unrooted galled trees) have been enumerated in [SS06]. The enumeration does not only
consider the number of leaves of the galled trees, but is refined according to two parameters: the
number of cycles (i.e., level-1 generators) and the total number of edges which are part of a cycle
(that we will call inner edges). We only reproduce in Theorem 4.1 a simplified version of the
results of [SS06], taking into account the number of leaves only.

4at http://user.math.uzh.ch/bouvel/publications/BouvelGambetteMansouri_Version2_WithoutMultipleEdges.mw
5available at http://user.math.uzh.ch/bouvel/publications/BouvelGambetteMansouri_Version1_WithMultipleEdges.mw

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 9

Theorem 4.1. For any n ≥ 0, let gn denote the number of unrooted level-1 networks with (n+1)

leaves, and denote by G(z) =
∑

n≥0 gn
zn

n! the corresponding generating function. Then G satisfies
the following equation:

G(z) = z +
1

2
G(z)2 +

1

2

G(z)2

1 − G(z)
,

or equivalently

G(z) = zφ(G(z)) with φ(z) =
1

1 − 1
2z(1 + 1

1−z)
.

Moreover, for any n ≥ 0, let gn denote the number of unrooted level-1 networks with (n + 1)
leaves. We have:

(1) gn =
(2n − 2)!

2n−1(n − 1)!
+

∑

1≤i≤k≤n−1

(n + i − 1)!(n + k − i − 2)!

k!(k − 1)!(i − k)!(n − i − 1)!
2−i.

Notice that even if the formulas seem different, Eq. (1) can be recovered from Theorem 4
of [SS06] by summing over k and m and performing the change of variable m = n − i + 3k − 1.
The first values of gn have been included in Table 2.

Proof. We recall the main steps of the proofs of Theorem 4.1 given in [SS06]. To prepare the
ground for future proofs, we emphasize their embedding in the context we presented in Section 3.

Since counting rooted objects is far easier that counting unrooted objects, we establish a bijec-
tive correspondence between unrooted level-1 networks, and a rooted version of these networks,
that we call pointed level-1 networks. Pointed level-1 networks on a set of taxa X are simply
unrooted level-1 networks on the set of taxa X ⊎ {#}, where we declare that the leaf labeled by
{#} is the “root” of the network. This provides a bijection between unrooted level-1 networks
on the set of taxa X ⊎ {#} and pointed level-1 networks on X , that have a root labeled by {#}.
Therefore, there are as many unrooted level-1 networks on the set of taxa X ⊎ {#} as pointed
level-1 networks on X rooted in a leaf labeled by # /∈ X . Hence gn is the number of pointed
level-1 networks with n leaves in addition to the root.

In a pointed level-1 network N (with at least two leaves), we consider the other extremity of
the edge to which the root belongs. This vertex may belong to a cycle or not. In the latter case,
N is simply described as an unordered pair of two pointed level-1 networks. In the former case,
it is described as a non-oriented sequence of at least two pointed level-1 networks. Taking into
account the trivial pointed level-1 network with one leaf, a specification for the pointed level-1
networks is therefore the one shown in Fig. 2, where an arrow labeled by sym indicates that there
is a symmetry w.r.t. the vertical axis to take into account, and the dashed edge corresponds to an
edge or a path with internal vertices that are incident with cut-edges, themselves identified with
edges of other pointed level-1 networks, the vertex lying on the cycle being identified with a leaf
of corresponding network.

#
⊎

=G
#

G G
←−→sym

⊎ #

GG
←−→sym

Figure 2. The combinatorial specification for unrooted level-1 networks (a.k.a.
galled trees).

10 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

Thanks to the “dictionary”, the generating function therefore satisfies G(z) = z + 1
2G(z)2 +

1
2

G(z)2

1−G(z) as claimed by Theorem 4.1. The second statement about G(z) in Theorem 4.1 is obtained

by simple algebraic manipulations.

From G(z) = zφ(G(z)), where φ(z) = 1
1− 1

2 z(1+ 1
1−z)

, we can apply Lagrange inversion to find

gn. Indeed, gn = n![zn]G(z) = (n − 1)![zn−1]φ(z)n.
Recall the following development of (1 − z)−n, for any n ≥ 1, which will be used here and

several times later on:

(2)

(
1

1 − z

)n

=
∑

i≥0

(
n + i − 1

i

)
zi.

Applying this identity twice and the binomial theorem, we get that

φ(z)n =
∑

i≥0

(
n + i − 1

i

)(
1

2
z

(
1 +

1

1 − z

))i

=
∑

i≥0

(
n + i − 1

i

)
1 +

i∑

k=1

∑

p≥0

(
i

k

)(
k + p − 1

p

)
zp


 1

2i
zi

=
∑

i≥0

(
n + i − 1

i

)
zi

2i
+
∑

i≥0

i∑

k=1

∑

p≥0

(
n + i − 1

i

)(
i

k

)(
k + p − 1

p

)
zi+p

2i
.

It follows that

[zn−1]φ(z)n =

(
2n − 2

n − 1

)
1

2n−1
+

n−1∑

i=0

i∑

k=1

1

2i

(
n + i − 1

i

)(
i

k

)(
n + k − i − 2

n − i − 1

)

and gn =
(2n − 2)!

2n−1(n − 1)!
+

∑

1≤k≤i≤n−1

(n + i − 1)!(n + k − i − 2)!

k!(k − 1)!(i − k)!(n − i − 1)!
2−i.

�

4.2. Asymptotic evaluation. From Theorem 4.1, we can furthermore derive an asymptotic
evaluation of the number gn of unrooted level-1 networks on (n + 1) leaves, using Theorem 3.3.

Proposition 4.2. The number gn of unrooted level-1 networks on (n+1) leaves is asymptotically
equivalent to c1 · cn

2 · nn−1 for constants c1 and c2 such that c1 ≈ 0.20748 and c2 ≈ 1.89004.

Proof. Recall that G(z) satisfies G(z) = zφ(G(z)), where φ(z) = 1
1− 1

2 z(1+ 1
1−z)

. Equivalently, this

can be rewritten as φ(z) = 2−2z
z2−4z+2 . So, φ(z) is a rational fraction, whose pole with smallest

absolute value is 2 −
√

2 ≈ 0.5858. As such, φ(z) is analytic at 0, with radius of convergence

R = 2 −
√

2. Moreover, owing to footnote 3, φ(z) is aperiodic. Finally, the characteristic equation
φ(z) − zφ′(z) = 0 can be numerically solved (see companion Maple worksheet), showing that it
admits a unique solution in the disk of convergence of φ, namely τ ≈ 0.34270. Therefore, the
hypotheses of Theorem 3.3 are all satisfied, and denoting ρ = τ

φ(τ) ≈ 0.19464, Theorem 3.3 gives:

[zn]G(z) ∼
√

φ(τ)

2φ′′(τ)

ρ−n

√
πn3

.

Using the Stirling estimate of the factorial n! ∼
(

n
e

)n √
2πn, we get:

gn ∼
(n

e

)n √
2πn

√
φ(τ)

2φ′′(τ)

ρ−n

√
πn3

∼ nn−1

(eρ)n

√
φ(τ)

φ′′(τ)
.

Replacing τ and ρ by their numerical approximations, we obtain the announced result. �

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 11

4.3. Refined enumeration and asymptotic distribution of parameters. From the speci-
fication of pointed level-1 networks seen in the proof of Theorem 4.1, it follows easily, as done
in [SS06], that the multivariate generating function G(z, x, y) =

∑
n,k,m

gn,k,m

n! znxkym, where
gn,k,m is the number of unrooted level-1 networks with n + 1 leaves, k cycles, and m inner edges,
satisfies

(3) G(z, x, y) = z +
1

2
G(z, x, y)2 +

1

2
xy3 G(z, x, y)2

1 − yG(z, x, y)
.

This equation can be rewritten as G(z, x, y) = zφ(G(z, x, y), x, y) where φ is defined by φ(z, x, y) =
1

1− 1
2 z

(
1+ xy3

1−yz

) . As done in [SS06], we can apply the Lagrange inversion formula to obtain an

explicit expression for gn,k,m – see [SS06, Thm. 4].
Using Theorem 3.4, the above equation may also be used to prove that the parameters “number

of cycles” and “number of inner edges” are both asymptotically normally distributed.

Proposition 4.3. Let Xn (resp. Yn) be the random variable counting the number of cycles (resp.
inner edges) in unrooted level-1 networks with n + 1 leaves. Both Xn and Yn are asymptotically
normally distributed, and more precisely, we have

EXn = µXn + O(1), VarXn = σ2
Xn + O(1) and

Xn − EXn√
VarXn

d−→ N (0, 1),

EYn = µY n + O(1), VarYn = σ2
Y n + O(1) and

Yn − EYn√
VarYn

d−→ N (0, 1),

where µX ≈ 0.46, σ2
X ≈ 0.18, µY ≈ 1.61 and σ2

Y ≈ 1.44.

Proof. Consider first Xn. Defining G(z, x) := G(z, x, 1), it holds that

ExXn =
[zn]G(z, x)

[zn]G(z, 1)
.

It follows from the equation for G(z, x, y) that G(z, x) = F (G(z, x), z, x), where F is defined
by F (G, z, x) = z 1

1− 1
2 G(1+ x

1−G)
. Being rational, we see immediately that F (G, z, x) is analytic

in G, z and x around 0. Moreover, performing the substitution z = 0 (resp. G = 0) gives
F (G, 0, x) = 0 (resp. F (0, z, x) = z, which is not identically 0). Finally, it is readily checked that
F satisfies [znGm]F (G, z, 1) ≥ 0 for all n, m (noting for instance that F is obtained using several
times the quasi-inverse operator A 7→ 1

1−A , which has a combinatorial counterpart, as seen in

Proposition 3.1). In addition, we can determine numerically that the system

G =F (G, z, 1)

1 =FG(G, z, 1)

admits a solution (G0, z0) such that G0 ≈ 0.3427 and z0 ≈ 0.1946, which satisfies the hypothesis
of Theorem 3.4 (see the companion Maple worksheet to determine the solution and to check it
satisfies the required hypotheses). The result then follows from Theorem 3.4, and the numerical
estimates of µX and σ2

X are obtained plugging the numerical estimates for G0 and z0 into the
explicit formulas given by Theorem 3.4 (see again companion Maple worksheet for details). The
proof for Yn follows the exact same steps, considering this time G(z, y) := G(z, 1, y) instead, and
adjusting the definition of F accordingly. As expected, the solution (G0, z0) of the associated
system is the same as above. �

Remark 4.4. In the above proof of Proposition 4.2 (resp. Proposition 4.3), we have provided
some details on how Theorem 3.3 (resp. Theorem 3.4) was used and on how its hypotheses were
checked. This is omitted in later proofs using Theorem 3.3 (see Propositions 5.3, 6.2 and 7.2) or
Theorem 3.4 (see Propositions 4.3, 5.5 and 6.3), since they work following the exact same steps.
Note also that all numerical resolutions of equations are done in the companion Maple worksheet.

12 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

5. Counting rooted level-1 networks

5.1. Combinatorial specification and generating function. As for unrooted level-1 net-
works, we start by a combinatorial specification that describes rooted level-1 networks (also called
rooted galled trees). Because every cycle in a rooted level-1 network not only has a tree vertex
above all other vertices of the cycle, but also a reticulation vertex which is below all other vertices
of the cycle, notice that these objects are different from the pointed level-1 networks that we
considered in the proof of Theorem 4.1.

Recall that each cycle of a level-1 network has strictly more than one outgoing arc (otherwise
there would be an infinite number of level-1 networks on n taxa).

Let us denote by R the set of rooted level-1 networks. The size of a network of R is the number
of its leaves. Distinguishing on the level (0 or 1) of the bridgeless component containing its root,
a network of R is described in exactly one of the following ways. It may be:

• a single leaf (case 0a);
• a binary root vertex with two children that are roots of networks of R, whose left-to-right

order is irrelevant (case 0b);
• a cycle containing the root with at least two outgoing cut arcs leading to networks of R.

This last possibility splits into two subcases, since the reticulation vertex of the cycle may
be a child of the root:

– a cycle whose reticulation vertex is attached to a network of R, is a child of the root
and is the lowest vertex of a path coming from the root, where a sequence of at least
one network of R is attached (case 1a);

– a cycle whose reticulation vertex is attached to a network of R, and such that a
sequence of at least one network of R is attached to each path of this cycle, the
left-to-right order of these two paths being irrelevant (case 1b).

The specification for R is therefore the one given in Fig. 3.

R R
←−→sym

R R

←−→sym

⊎⊎⊎•=R

Cases: 0a 0b 1a 1b

Figure 3. The combinatorial specification for rooted level-1 networks. (In this
picture, all arcs are directed downwards, the thick arcs each represent a directed
path which contains at least one internal vertex incident with a cut arc.)

Denoting rn the number of rooted level-1 networks on n leaves, and R(z) =
∑

n≥0 rn
zn

n! the
associated exponential generating function, we deduce from the specification that

R = z +
1

2
R2 +

R2

1 − R
+

R

2

(
R

1 − R

)2

.

Unlike for the other generating functions considered in this paper, the above equation for R
allows to find a closed formula for R. Indeed, the above equation has four solutions that can
be made explicit with the help of a solver. We can further notice that evaluating the generating
function R(z) at z = 0, we must obtain R(0) = r0 = 0. Among the four candidate solutions for
R, we therefore select the only one which has value 0 for z = 0 and obtain an explicit form for
R(z), given in Theorem 5.1.

Theorem 5.1. The exponential generating function R(z) of rooted level-1 networks is expressed
as

R(z) = −
√

2
√

−4(
√

1 − 8z − 2)z + 9
√

1 − 8z − 1

4(1 − 8z)
1
4

− 1

4

√
1 − 8z +

5

4

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 13

within its disk of convergence of radius 1
8 .

5.2. Exact enumeration formula. The first terms of the sequence (r0, r1, r2, . . .) can be read
on the Taylor expansion of R(z), and have been collected in Table 2:

R(z) = z + 3
z2

2!
+ 36

z3

3!
+ 723

z4

4!
+ 20280

z5

5!
+ o(z5).

More generally, we have:

Proposition 5.2. For any n ≥ 1, the number rn of rooted level-1 networks with n leaves is given
by

(2n − 2)!

2n−1(n − 1)!
+

∑

1≤k≤i≤n−1
0≤p≤k

(n + i − 1)!(n + k − i − 2)! 2p−i

(i − k)!(k − p)!p!(n − 1 − i − k + p)!(2k − p − 1)!
.

Proof. To obtain a generic formula for rn, we apply the Lagrange inversion formula, rewriting
R(z) as R(z) = zφ(R(z)) where φ(z) = 1

1− 1
2 z− z

1−z − 1
2 (

z
1−z)2

.

Using twice the usual development of (1 − z)−n (for n ≥ 1) which we recalled in Eq. (2) and
twice the binomial theorem, we obtain that

φ(z)n =
∑

i≥0

(
n + i − 1

i

)
zi

2i

+
∑

i≥0

i∑

k=1

k∑

p=0

∑

j≥0

(
n + i − 1

i

)(
i

k

)(
k

p

)(
2k − p + j − 1

j

)
zi+k−p+j

2i−p
,

and we deduce that

rn = n![zn]R(z) = n!
1

n
[zn−1]φ(z)n = (n − 1)![zn−1]φ(z)n

=
(2n − 2)!

2n−1(n − 1)!

+
∑

1≤k≤i≤n−1
0≤p≤k

(n + i − 1)!(n + k − i − 2)!

(i − k)!(k − p)!p!(n − 1 − i − k + p)!(2k − p − 1)!
2p−i

as announced. �

5.3. Asymptotic evaluation. The equation for R(z) also enables us to derive an asymptotic
estimate of rn.

Proposition 5.3. The number rn of rooted level-1 networks on n leaves is asymptotically equiv-

alent to c1 · cn
2 · nn−1 for c1 =

√
34(

√
17−1)

136 ≈ 0.1339 and c2 = 8
e ≈ 2.943.

Proof. Recall that R(z) = zφ(R(z)) where φ(z) = 1

1− 1
2 z− z

1−z − 1
2 (

z
1−z)2 so that we can apply the

Singular Inversion Theorem. Unlike in the case of unrooted level-1 networks, the solution τ of the
characteristic equation φ(z) − zφ′(z) = 0 to be considered has a nice explicit expression here, and

we have τ = 5−
√

17
4 . We obtain ρ = τ

φ(τ) = 1
8 and

√
φ(τ)

2φ′′(τ) =
√

17(
√

17−1)
136 . Consequently, from

Theorem 3.3 we have:

[zn]R(z) ∼
√

17(
√

17 − 1)

136

8n

√
πn3

.

Since rn = n![zn]R(z), using the Stirling estimate of the factorial, we finally get:

rn ∼
√

34(
√

17 − 1)

136

(
8

e

)n

nn−1.

�

14 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

Notice that with the explicit expression of the generating function R(z) in Theorem 5.1, another
way of proving Proposition 5.3 would have been to use the Transfer Theorem (Corollary VI.1
of [FS08]). We do not enter the details of this other method here, but we can check that it gives
the same result.

5.4. Refined enumeration formula. As in the work of Semple and Steel [SS06], we can refine
the enumeration of rooted level-1 networks according to two additional parameters, which are
typical of the “level-1” nature of our networks: their number of cycles and their total number of
arcs among cycles. To do so, let us introduce the multivariate generating function R(z, x, y) =∑ r(n,k,m)

n! znxkym, where r(n, k, m) is the number of rooted level-1 networks with n leaves, k
cycles and m inner arcs (i.e. the total number of arcs inside those k cycles is m). The specification
for R translates into the following equation for R = R(z, x, y):

(4) R = z +
1

2
R2 + x

R2y3

1 − yR
+ xR

1

2

(
Ry2

1 − yR

)2

.

The equation can be rewritten as follows:

R = zφ(R, x, y) where φ(z, x, y) =
1

1 − 1
2z − x zy3

1−yz − 1
2xy4

(
z

1−yz

)2 .

Applying the Lagrange inversion formula again, we have

r(n, k, m)

n!
= [znxkym]R(z, x, y) =

1

n
[zn−1xkym]φ(z, x, y)n,

and by the exact same steps of computation as in the proof of Proposition 5.2, we get:

Proposition 5.4. The number r(n, k, m) of level-1 networks with n leaves, k cycles and m inner
arcs (with k ≥ 1 and m ≥ 1) is

r(n, k, m) =

k∑

p=0

(2n + 3k − m − 2)!(m − 2k − 1)!2p+m+1−n−3k

(n + 2k − m − 1)!p!(k − p)!(m − 4k + p)!(2k − p − 1)!
.

Notice that from rn = r(n, 0, 0) +
∑n−1

k=1

∑n+2k−1
m=3k r(n, k, m) and the above theorem, we can

recover Proposition 5.2 by the change of variable m = n + 3k − i − 1.

5.5. Asymptotic distribution of parameters. As we have seen with Proposition 4.3, the
equation for the refined generating function does not only give access to the explicit formula
of Proposition 5.4 above, but also allows to prove that the two parameters of interest are each
asymptotically normally distributed.

Proposition 5.5. Let Xn (resp. Yn) be the random variable counting the number of cycles (resp.
inner arcs) in rooted level-1 networks with n leaves. Both Xn and Yn are asymptotically normally
distributed, and more precisely, we have

EXn = µXn + O(1), VarXn = σ2
Xn + O(1) and

Xn − EXn√
VarXn

d−→ N (0, 1),

EYn = µY n + O(1), VarYn = σ2
Y n + O(1) and

Yn − EYn√
VarYn

d−→ N (0, 1),

where µX ≈ 0.56, σ2
X ≈ 0.18, µY ≈ 1.93 and σ2

Y ≈ 1.24.

Proof. Recall that, defining φ(z, x, y) = 1

1− 1
2 z−x zy3

1−yz − 1
2xy4(z

1−yz)
2 , R(z, x, y) satisfies R = zφ(R, x, y).

We focus first on Xn, setting y = 1, and we consider R(z, x) := R(z, x, 1). It holds that

ExXn =
[zn]R(z, x)

[zn]R(z, 1)
.

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 15

Defining the function F by F (R, z, x) = zφ(R, x, 1), it also holds that R(z, x) = F (R(z, x), z, x).
It is readily checked that F satisfies all hypotheses of Theorem 3.4. Moreover, the system

R =F (R, z, 1)

1 =FR(R, z, 1)

admits a solution (R0, z0) with z0 = 1/8 and R0 ≈ 0.2192, which satisfies the hypothesis of
Theorem 3.4. The result and numerical estimates of µX and σ2

X then follow from Theorem 3.4.
For Yn instead of Xn, the proof works in the exact same way, considering this time R(z, y) :=

R(z, 1, y) instead, and adjusting the definition of F accordingly. As in the proof of Proposition 4.3,
we find the same solution (R0, z0) of the associated system, as it should be. �

6. Counting unrooted level-2 networks

6.1. Combinatorial specification. First of all, let us recall that any bridgeless component in an
unrooted level-2 network contains at least three vertices incident with a cut-edge (since otherwise
there would be an infinite number of such networks with a given number of leaves).

As in the case of level-1 unrooted networks, we consider pointed level-2 networks, that are
unrooted level-2 networks equipped with a fictitious root, which is a new leaf labeled by the
special taxa #. This provides a bijection between unrooted level-2 networks on the set of taxa
X ⊎ {#} and pointed level-2 networks on X . Therefore, there are as many unrooted level-2
networks of the set of taxa X ⊎ {#} as pointed level-2 networks on X rooted in a leaf labeled
by # /∈ X . Notice that pointed level-2 networks do not correspond to classical rooted level-2
networks. Indeed, every bridgeless component in a pointed level-2 network has a distinguished
vertex which could be considered as the equivalent of a root, but no reticulation vertices, whereas
it has both in the usual definition of rooted level-2 networks.

Let us denote by U the set of such pointed level-2 networks, the size of a network of U being
the number of its leaves different from the root. Let un be the number of networks of size n in
U . The above argument shows that un counts the number of unrooted level-2 networks on (n + 1)

leaves. We introduce U(z) =
∑

n≥0 un
zn

n! the associated exponential generating function.

To obtain a combinatorial specification for U , and hence an equation satisfied by U(z), we
describe the possible shapes of a network N of U , depending on the level (0, 1 or 2) of the
bridgeless component that contains the neighbouring vertex of the fictitious root.

Let v be the neighbor of the fictitious root. Then we have the following cases to consider,
depending on the level of the bridgeless component that contains v.

• The first case is that v is a leaf.
• If v does not belong to a cycle nor to a bridgeless component of level 2, then N is described

as an unordered pair of two pointed level-2 networks.
• If v belongs to a cycle but not to a bridgeless component of level 2, then N is described

as an unoriented sequence of at least two pointed level-2 networks.
(These first three cases are the same as in Section 5.)

• The last possibility is that v belongs to a bridgeless component of level 2. The underlying

level-2 generator, G, is necessarily of the shape

#

. In this case, we distinguish

many cases in Section 8.1 of the Appendix, depending on whether each edge of the level-2
generator contains exactly one vertex incident with a cut-edge, several or none.

16 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

6.2. Generating function. The specification is directly translated into the following equation
for the generating function U (see the Appendix for details):

U = z +
U2

2
+

U2

2(1 − U)
+

U2

2(1 − U)
+

3

2
U2 +

5U3

2(1 − U)
+

5U4

4(1 − U)2
+ U3 +

3U4

1 − U

+
3U5

(1 − U)2
+

U6

(1 − U)3
+

U4

4
+

U5

1 − U
+

3U6

2(1 − U)2
+

U7

(1 − U)3
+

U8

4(1 − U)4
.

This equation for the generating function allows to derive the first coefficients of the series
expansion of U(z), namely:

U(z) = z + 3z2 +
45

2
z3 +

421

2
z4 +

8809

4
z5 + · · · .

The corresponding first values of un have been included in Table 2. (Recall indeed that U(z) =∑
n≥0 un

zn

n! and that un is the number of unrooted level-2 networks on (n + 1) leaves).

The above equation for U(z) can also be rewritten as follows:

Theorem 6.1. The generating function U(z) satisfies:

U(z) = zφ(U(z)) where φ(z) =
1

1 − 3z5−16z4+32z3−30z2+12z
4(1−z)4

.

Proof. This is simply obtained from the above equation for U by algebraic manipulations. �

6.3. Exact enumeration formula. To obtain a closed form for un, we start from the equation
for U given in Theorem 6.1. By the Lagrange inversion formula we obtain that:

un = n![zn]U(z) =
n!

n
[zn−1]φn(z) = (n − 1)![zn−1]φn(z),

so, to compute the first values of un, we can compute the Taylor expansions of φn(z) and get the
values in Table 2.

As for the case of level-1 networks, we may also deduce with routine algebra an explicit formula
for un. This formula being however rather involved, we provide it only in Appendix.

6.4. Asymptotic evaluation. From Theorem 6.1, we can furthermore derive an asymptotic
evaluation of the number un of unrooted level-2 networks on (n + 1) leaves, using Theorem 3.3.

Proposition 6.2. The number un of unrooted level-2 networks on (n+1) leaves is asymptotically
equivalent to c1 · cn

2 · nn−1 for constants c1 and c2 such that c1 ≈ 0.07695 and c2 ≈ 5.4925.

Proof. Denoting by τ ≈ 0.12117 the unique solution of the characteristic equation φ(z)−zφ′(z) = 0
in the disk of convergence of φ, and ρ = τ

φ(τ) ≈ 0.06698, we have:

[zn]U(z) ∼
√

φ(τ)

2φ′′(τ)

ρ−n

√
πn3

.

Using the Stirling estimate of the factorial, we get:

un ∼
(n

e

)n √
2πn

√
φ(τ)

2φ′′(τ)

ρ−n

√
πn3

∼ nn−1

(eρ)n

√
φ(τ)

φ′′(τ)
.

Replacing τ and ρ by their numerical approximations, we get the announced result. �

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 17

6.5. Refined enumeration formula and asymptotic distribution of parameters. Consider
the refined generating function U(z, x, y) for unrooted level-2 networks, where the variable z counts
the size as before, the variable x counts the number of bridgeless components of level 1 or 2 (or
equivalently, the number of level-1 or level-2 generators in the decomposition of these networks),
and the variable y counts the number of inner edges, defined as the total number of edges across
all level-1 and level-2 bridgeless components. The specification provided in the Appendix can be
refined for these statistics, yielding the following equation for U := U(z, x, y):

U = z +
U2

2
+

xy3U2

2(1 − yU)
+

xy6U2

2(1 − yU)
+

3

2
xy6U2 +

5xy7U3

2(1 − yU)
+

5xy8U4

4(1 − yU)2

+ xy7U3 +
3xy8U4

1 − yU
+

3xy9U5

(1 − yU)2
+

xy10U6

(1 − yU)3
+

xy8U4

4
+

xy9U5

1 − yU

+
3xy10U6

2(1 − yU)2
+

xy11U7

(1 − yU)3
+

xy12U8

4(1 − yU)4
.(5)

From the above equation, and similarly to Proposition 5.4, it would be possible (although
computations and result are not reported in this paper) to derive an explicit formula for the
number of unrooted level-2 networks with n leaves, k bridgeless components of level 1 or 2, and m
edges across them. Furthermore, some information on the asymptotic behavior of these parameters
can be obtained from Eq. (5).

Proposition 6.3. Let Xn (resp. Yn) be the random variable counting the number of level-1 or
level-2 bridgeless components (resp. the number of edges across them) in unrooted level-2 networks
with n + 1 leaves. Both Xn and Yn are asymptotically normally distributed, and more precisely,
we have

EXn = µXn + O(1), VarXn = σ2
Xn + O(1) and

Xn − EXn√
VarXn

d−→ N (0, 1),

EYn = µY n + O(1), VarYn = σ2
Y n + O(1) and

Yn − EYn√
VarYn

d−→ N (0, 1),

where µX ≈ 0.69944, σ2
X ≈ 0.16919, µY ≈ 4.01349 and σ2

Y ≈ 4.68675.

Proof. Consider first Xn. Defining U(z, x) := U(z, x, 1), it holds that

ExXn =
[zn]U(z, x)

[zn]U(z, 1)
.

It follows from the equation for U(z, x, y) that U(z, x) = F (U(z, x), z, x) = z 1
1−A(U(z,x),z,x) with

A(U, z, x) =
U

2
+

xU

2(1 − U)
+

xU

2(1 − U)
+

3xU

2
+

5xU2

2(1 − U)
+

5xU3

4(1 − U)2
+ xU2

+
3xU3

1 − U
+

3xU4

(1 − U)2
+

xU5

(1 − U)3
+

xU3

4
+

xU4

1 − U
+

3xU5

2(1 − U)2

+
xU6

(1 − U)3
+

xU7

4(1 − U)4
.

It is readily checked that F satisfies all hypotheses of Theorem 3.4. The system

U =F (U, z, 1)

1 =FU (U, z, 1)

admits a solution (U0, z0) such that U0 ≈ 0.1212 and z0 ≈ 0.06698, which satisfies the hypothesis
of Theorem 3.4. The result then follows from Theorem 3.4, and the numerical estimates of µX

and σ2
X are obtained plugging the numerical estimates for U0 and z0 into the explicit formulas

given by Theorem 3.4. The proof for Yn follows the exact same steps, considering this time
U(z, y) := U(z, 1, y) instead, and adjusting the definition of F accordingly. Again, as expected,
the solution (U0, z0) of the associated system is the same as above. �

18 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

7. Counting rooted level-2 networks

7.1. Combinatorial specification and generating function. To derive a specification for
rooted level-2 networks, we distinguish cases depending on the level (0, 1 or 2) of the generator to
which the root belongs. The cases corresponding to levels 0 and 1 will be the same as in Section 5.
When the root of a rooted level-2 network belongs to a level-2 generator, we have to remember
that these generators have one vertex which is above all their other vertices (which is the root of
the network) and not just one but two reticulation vertices. As for rooted level-1 networks, it is
important to keep in mind that any bridgeless component of level 2 in a rooted level-2 network has
at least two outgoing cut arcs (since otherwise there would be an infinite number of such networks
with a given number of leaves).

We denote by L the set of rooted level-2 networks, where the size corresponds to the number of
leaves. And we denote by L(z) the corresponding exponential generating function. Distinguishing
on the level (0, 1 or 2) of the bridgeless component containing the root, we can see that any
network N of L satisfies exactly one of the following (see Fig. 4).

• N is just a leaf. This contributes z to the generating function (case 0a).
• The root of N belongs to a bridgeless component of level 0, that is to say it is a binary root

vertex. Its children are themselves networks of L whose left-to-right order is irrelevant.

This contributes L2

2 to the generating function (case 0b).
• The root of N belongs to a bridgeless component of level 1. This case splits into two

subcases, just as in Section 5.
– Either N consists of a cycle whose reticulation vertex is attached to a network of L, is

a child of the root and is the lowest vertex of a path from the root where a sequence

of at least one network of L is attached. This contributes L2

1−L to the generating

function (case 1a).
– Or N consists of a cycle whose reticulation vertex is attached to a network of L, and

a sequence of at least one network of L is attached to each path of this cycle (case

1b). This contributes L
2

(
L

1−L

)2

.

• The root of N belongs to a bridgeless component of level 2. The level-2 generators are
displayed in Fig. 4, cases 2a to 2d. From these generators, the networks whose root
belong to a bridgeless component of level 2 are obtained attaching networks of L to their
reticulation vertex or vertices with out-degree 0, and possibly replacing their arcs with
sequences of at least one network of L. Note that in cases 2b and 2d, depending on our
choices for such arcs, we may have to cope with horizontal and vertical symmetry. We
study these cases in order, and find their contribution to the generating function L(z).

– We first deal with the case where the level-2 generator to which the root belongs is
of type 2a. This generator has 5 internal arcs, all distinguished from each other by
the structure of the generator. A network of L is attached to its reticulation vertex
of out-degree 0. Moreover, recalling that each bridgeless component must be have
at least two outgoing cut arcs, at least one of the five internal arcs of the generator
must carry a non-empty sequence of networks of L. Therefore, the contribution of
case 2a to the generating function of L is

L ·
5∑

i=1

(
5

i

)(
L

1 − L

)i

.

– In the case where the level-2 generator to which the root belongs is of type 2b, we
similarly have 5 internal arcs in the generator, at least one of which must be replaced
by a non-empty sequence of networks of L. However, the two arcs e and e′ are not
distinguishable. The contribution to the generating function is therefore more subtle
to analyze, and we perform this detailed analysis in the Section 8.2 of the Appendix.
The overall contribution of case 2b to the generating function of L is then shown to

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 19

L L
←−→sym

L L

←−→sym

L
L

e e′

←−→sym

L L L

L

e1 e′
1

e2 e′
2

e3 e′
3

←−→sym

sym

⊎⊎⊎⊎

⊎⊎⊎•=L

0a 0b 1a 1b

2a 2b 2c 2d

Figure 4. The specification of the class L.

be

L
L

1− L
+

7

2
L

(
L

1− L

)2

+
9

2
L

(
L

1− L

)3

+
5

2
L

(
L

1− L

)4

+
1

2
L

(
L

1− L

)5

.

– We now consider the case where the level-2 generator to which the root belongs is
of type 2c. This generator has 6 internal arcs, all distinguished from each other
by the structure of the generator. Moreover, two networks of L are attached to its
reticulation vertices, so that the condition that each bridgeless component must be
have at least two outgoing cut arcs is already satisfied. Therefore, all 6 internal arcs
of the generator carry possibly empty sequences of networks of L. As a consequence,
the contribution of case 2c to the generating function of L is

L2

(
1

1 − L

)6

.

– Similarly, when the root belongs to a level-2 generator of type 2d, the 6 arcs of the
generator carry possibly empty sequences of networks of L. However, this generator
enjoys both a horizontal symmetry (mapping ei to e′

i for i = 1, 2, 3) and a vertical
symmetry (exchanging the indices 2 and 3 and the corresponding pending networks
of L). In case all arcs carry empty sequences, the horizontal symmetry is actually the
identity, so that only the vertical symmetry applies, yielding a factor 1

2 . Otherwise,
both the horizontal and the vertical symmetry need to be taken into account, yielding
a factor 1

4 . The total contribution of case 2d to the generating function of L is
therefore

1

2
L2 +

1

4
L2 ·

6∑

i=1

(
6

i

)(
L

1 − L

)i

.

Following this case analysis we obtain an equation characterizing the generating function of L.

Theorem 7.1. The exponential generating function L(z) of rooted level-2 networks counted by
number of leaves satisfies

L = z + L2 +
7L2

1 − L
+

3L3

2(1 − L)
+

14L3

(1 − L)2
+

15L4

4(1 − L)2
+

29L4

2(1 − L)3
+

5L5

(1 − L)3

+
15L5

2(1 − L)4
+

15L6

4(1 − L)4
+

3L6

2(1 − L)5
+

3L7

2(1 − L)5
+

L2

(1 − L)6
+

L8

4(1 − L)6
,

20 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

or equivalently

L(z) = zφ(L(z)) where φ(z) =
1

1 − 36z−102z2+159z3−148z4+81z5−24z6+3z7

4(1−z)6

.

We therefore obtain the first terms of the series expansion of L(z),

L(z) = z + 9z2 +
381

2
z3 +

20013

4
z4 +

588119

4
z5 +

37023465

8
z6 + · · · ,

as reported in Table 2.

7.2. Exact enumeration formula. As in the previous sections, Theorem 7.1 allows to derive
an explicit formula for the number ℓn of rooted level-2 phylogenetic networks with n leaves. This
complicated formula is given in Appendix.

7.3. Asymptotic evaluation. Similarly, from Theorem 7.1, we can also derive the asymptotic
behavior of ℓn.

Proposition 7.2. The number ℓn of rooted level-2 phylogenetic networks with n leaves behaves
asymptotically as

ℓn ∼ c1c
n
2nn−1,

where c1 ≈ 0.02931 and c2 ≈ 15.433.

Proof. Recall that

L(z) = zφ(L(z)) where φ(z) =
1

1 − 36z−102z2+159z3−148z4+81z5−24z6+3z7

4(1−z)6

.

Denoting by τ ≈ 0.0445 the unique solution of the characteristic equation φ(z)− zφ′(z) = 0 in the
disk of convergence of φ, and ρ = τ

φ(τ) ≈ 0.0238, the Singular Inversion Theorem gives:

[zn]L(z) ∼
√

φ(τ)

2φ′′(τ)

ρ−n

√
πn3

.

Like before, we get the claimed result from ℓn = n![zn]L(z) and the Stirling estimate of the
factorial. �
7.4. Refined enumeration formula and asymptotic distribution of parameters. Let
L(z, x, y) =

∑
n,k,m ℓn,k,m

zn

n! x
kym be the multivariate generating function counting rooted level-2

networks w.r.t. their number of leaves (variable z), their number of bridgeless components of level
1 or 2 (variable x) and their number of arcs across all these (variable y). From the specification
of L discussed earlier, L(z, x, y) = L is easily seen to satisfy the following equation:

L = z +
L2

2
+ x

(y6L2

2
+ (y3 + 6y6)

L2

1 − yL
+

3y7L3

2(1 − yL)
+ (y4

2 + 27y7

2)
L3

(1 − yL)2

+
15y8L4

4(1 − yL)2
+

29y8L4

2(1 − yL)3
+

5y9L5

(1 − yL)3
+

15y9L5

2(1 − yL)4
+

15y10L6

4(1 − yL)4

+
3y10L6

2(1 − yL)5
+

3y11L7

2(1 − yL)5
+

y6L2

(1 − yL)6
+

y12L8

4(1 − yL)6

)
.(6)

From the above equation, an explicit formula for ℓn,k,m could routinely be derived, as in Propo-
sition 5.4, although the computations are more involved. We decided not to report this formula
here. Eq. (6) also allows to study the asymptotic behavior of the considered parameters.

Proposition 7.3. Let Xn (resp. Yn) be the random variable counting the number of bridgeless
components of level 1 or 2 (resp. the number of edges across them) in rooted level-2 networks with
n leaves. Both Xn and Yn are asymptotically normally distributed, and more precisely, we have

EXn = µXn + O(1), VarXn = σ2
Xn + O(1)

EYn = µY n + O(1), VarYn = σ2
Y n + O(1)

where µX ≈ 0.8243, σ2
X ≈ 0.1232, µY ≈ 4.8133 and σ2

Y ≈ 3.5523.

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 21

Proof. To prove the result for Xn (resp. Yn), we specialize Eq. (6) for y = 1 (resp. x = 1)
and rewrite it as L(z, x, 1) = F (L(z, x, 1), z, x) for some explicit function F (resp. L(z, 1, y) =
F (L(z, 1, y), z, y), for an explicit different F). It is readily checked that F satisfies all hypotheses
of Theorem 3.4, as well as the solutions (L0, z0) of the system

L =F (L, z, 1)

1 =FL(L, z, 1)

whose approximate values are L0 ≈ 0.04447 and z0 ≈ 0.02384. The result then follows from
Theorem 3.4, and the numerical estimates of µX and σ2

X (resp. µY and σ2
Y) are obtained plugging

the numerical estimates for L0 and z0 into the explicit formulas given by Theorem 3.4. �

Acknowledgments

This work was supported by a “junior guest” grant by the LABRI and bilateral Austrian-
Taiwanese project FWF-MOST, grants I 2309-N35 (FWF) and MOST-104-2923- M-009-006-MY3
(MOST). We thank Carine Pivoteau for her insights about random generation of combinatorial
structures as well as two anonymous reviewers for their useful comments.

References

[BDM12] Alix Boc, Alpha B. Diallo, and Vladimir Makarenkov. T-rex: a web server for inferring, validating and
visualizing phylogenetic trees and networks. Nucleic Acids Research, 40(W1):W573–W579, 2012.

[BGM19] Mathilde Bouvel, Philippe Gambette, and Marefatollah Mansouri. Counting phylogenetic networks of
level 1 and 2. Technical report, Arxiv Preprint, Version 2, 2019.

[CHT18] Kuang-Yu Chang, Wing-Kai Hon, and Sharma V. Thankachan. Compact encoding for galled-trees and
its applications. In 2018 Data Compression Conference, pages 297–306, 2018.

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann samplers for the
random generation of combinatorial structures. Combinatorics, Probability and Computing, 13:577625,
2004.

[Drm09] Michael Drmota. Random Trees. Springer, 2009.
[FGM19] Michael Fuchs, Bernhard Gittenberger, and Marefatollah Mansouri. Counting phylogenetic networks

with few reticulation vertices: Tree-child and normal networks. Australasian Journal of Combinatorics,
73(2):385–423, 2019.

[FS08] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2008.
[FZC94] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for the random generation

of labelled combinatorial structures. Theoretical Computer Science, 132(1-2):1–35, 1994.
[GBP09] Philippe Gambette, Vincent Berry, and Christophe Paul. The structure of level-k phylogenetic net-

works. In Twentieth Annual Symposium on Combinatorial Pattern Matching (CPM’09), volume 5577
of Lecture Notes in Computer Science, pages 289–300. Springer, 2009.

[GBP12] Philippe Gambette, Vincent Berry, and Christophe Paul. Quartets and unrooted phylogenetic networks.
Journal of Bioinformatics and Computational Biology, 10(4):1250004.1–1250004.23, 2012.

[GRZ18] Andreas DM Gunawan, Jeyaram Rathin, and Louxin Zhang. Counting and enumerating galled net-
works, 2018. arXiv manuscript, https://arxiv.org/abs/1812.08569.

[GvIK+16] Philippe Gambette, Leo van Iersel, Steven Kelk, Fabio Pardi, and Celine Scornavacca. Do branch

lengths help to locate a tree in a phylogenetic network? Bulletin of Mathematical Biology, 78(9):1773–
1795, 2016.

[HMSW18] Katharina Huber, Vincent Moulton, Charles Semple, and Taoyang Wu. Quarnet inference rules for
level-1 networks. Bulletin of Mathematical Biology, 80:2137–2153, 2018.

[HMW16] Katharina Huber, Vincent Moulton, and Taoyang Wu. Transforming phylogenetic networks: Moving
beyond tree space. Journal of Theoretical Biology, 404:30–39, 2016.

[HvIM+17] Katharina Huber, Leo van Iersel, Vincent Moulton, Celine Scornavacca, and Taoyang Wu. Reconstruct-
ing phylogenetic level-1 networks from nondense binet and trinet sets. Algorithmica, 77(1):173–200,
2017.

[JJE+18] Remie Janssen, Mark Jones, Pter L. Erdös, Leo van Iersel, and Celine Scornavacca. Exploring the tiers
of rooted phylogenetic network space using tail moves. Bulletin of Mathematical Biology, 80:21772208,
2018.

[LEC67] Abraham Lempel, Shimon Even, and Israel Cederbaum. An algorithm for planarity testing of graphs.
In Theory of Graphs: International Symposium, pages 215–232, 1967.

[LV14] Anthony Labarre and Sicco Verwer. Merging partially labelled trees: hardness and a declara-
tive programming solution. IEEE/ACM Transactions in Computational Biology and Bioinformatics,
11(2):389–397, 2014.

22 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

[MSW15] Colin McDiarmid, Charles Semple, and Dominic Welsh. Counting phylogenetic networks. Annals of
Combinatorics, 19(1):205–224, 2015.

[OEI19] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. 2019. http://oeis.org.
[PC01] David Posada and Keith A. Crandall. Intraspecific gene genealogies: trees grafting into networks. TEE,

16(1):37–45, 2001.
[SS06] Charles Semple and Mike Steel. Unicyclic networks: compatibility and enumeration. IEEE/ACM Trans-

actions in Computational Biology and Bioinformatics, 3:398–401, 2006.
[vIKK+09] Leo van Iersel, Judith Keijsper, Steven Kelk, Leen Stougie, Ferry Hagen, and Teun Boekhout. Con-

structing level-2 phylogenetic networks from triplets. IEEE/ACM Transactions in Computational Bi-
ology and Bioinformatics, 6(4):667–681, 2009.

[vIM14] Leo van Iersel and Vincent Moulton. Trinets encode tree-child and level-2 phylogenetic networks. Jour-
nal of Mathematical Biology, 68(7):1707–1729, 2014.

[vIM18] Leo van Iersel and Vincent Moulton. Leaf-reconstructibility of phylogenetic networks. SIAM Journal
on Discrete Mathematics, 32:2047–2066, 2018.

[WTM14] Matthieu Willems, Nadia Tahiri, and Vladimir Makarenkov. A new efficient algorithm for inferring
explicit hybridization networks following the neighbor-joining principle. Journal of Bioinformatics and
Computational Biology, 12(5), 2014.

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 23

8. Appendix

8.1. Case analysis for unrooted level-2 generators. In the pictures below, we use thick lines
to represent paths containing at least 2 internal nodes incident with a cut-edge which is incident
with another pointed unrooted level-2 network. We use # to represent the fictitious root in the
pointed network, v to denote its neighbour, and U to represent any pointed network.

8.1.1. Case 1: One edge with an attached network. One edge of the generator carries a sequence
of at least two incident cut-edges. Because multiple edges are not allowed, it cannot be one of the
two edges incident to v. So, it can be only one of the two edges not incident to v (which are not
distinguished). The sequence is unoriented, because of symmetry, explaining the factor 1

2 below.

U2

2(1 − U)

#

8.1.2. Case 2: Two edges with attached networks.

Case 2A - Two edges of the generator carry exactly one incident cut-edge. Since multiple edges
are not allowed, it can either be one edge incident to v and one not, or both edges not incident to
v. In the latter case, the two edges should not be distinguished, hence the factor 1

2 .

U2 +
U2

2
=

3

2
U2

#

U

U

#

U U

Case 2B - One edge of the generator carries a single incident cut-edge and another edge carries
a sequence of at least two incident cut-edges. Again, these cannot be the two edges incident to
v. The only case where symmetries need to be taken care of is when the two edges are those not
incident to v: in this case, the sequence is not oriented, hence the factor 1

2 . In all other cases, the
orientation of the sequence is determined by the presence of the fictitious root or the outgoing arc
from the other edge with and attached network.

U3

1 − U
+

U3

1 − U
+

U3

2(1 − U)
=

5U3

2(1 − U)

#

U

#

U

#

U

24 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

Case 2C - Two edges of the generator (but not the two incident to v, as before) carry a sequence
of at least two incident cut-edges. If one arc is incident to v and the other not, then both sequences
are oriented and there is no symmetry factor. If the two arcs are those not incident to v, then
the two sequences they carry can be seen as an unordered pair of oriented sequences, seen up to
symmetry w.r.t. the vertical axis. This yields a factor 1

2 since the pair is unordered, and another

factor 1
2 to account for the symmetry w.r.t. the vertical axis.

U4

(1 − U)2
+

U4

4(1 − U)2
=

5U4

4(1 − U)2

#

8.1.3. Case 3: Three edges with attached networks.

Case 3A - Three edges of the generator carry exactly one incident cut-edge. The unused edge
can either be incident with v or not. In both cases, we have a factor 1

2 because of symmetry.

U3

2
+

U3

2
= U3

#

U

U U

#

U U

U

Case 3B - Two edges of the generator carry a single incident cut-edge and one carries a sequence
of at least two incident cut-edges. The only cases where a symmetry comes into play here are
when the edges carrying a single incident cut-edge are either the two edges incident to v or the
two edges not incident to v. This yield the factor 1

2 in these two cases. Moreover, all sequences
are oriented, because of the presence of the fictitious root or the single incident cut-edges.

U4

1 − U
+

U4

1 − U
+

U4

2(1 − U)
+

U4

2(1 − U)
=

3U4

1 − U

#

U

U

#

U

U

#

U U

#

U U

Case 3C - One edge of the generator carries a single incident cut-edge and two edges carry a
sequence of at least two incident cut-edges. Similarly to the previous case, we obtain a factor 1

2
for symmetry reasons when the two edges carrying sequences are either the two edges incident to
v or the two edges not incident to v. Moreover, all sequences are oriented, because of the presence
of the fictitious root or the single incident cut-edge.

U5

(1 − U)2
+

U5

(1 − U)2
+

U5

2(1 − U)2
+

U5

2(1 − U)2
=

3U5

(1 − U)2

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 25

#

U

#

U

#

U

#

U

Case 3D - Three edges of the generator carry a sequence of at least two incident cut-edges. In
both cases, we have a factor 1

2 for symmetry reason, but all sequences are oriented by the presence
of the fictitious root, or of the sequence on the edge(s) incident to v.

U6

2(1 − U)3
+

U6

2(1 − U)3
=

U6

(1 − U)3

#

8.1.4. Case 4: Four edges with attached networks.

Case 4A - The four edges of the generator each carry exactly one incident cut-edge. In this
case, the two edges incident to v can be exchanged without modifying the network, and the same
holds for the two edges not incident to v. This yields a factor 1

2 · 1
2 = 1

4 due to symmetries.

U4

4

#

U

U U

U

Case 4B - Three edges of the generator carry a single incident cut-edge and the fourth one
carries a sequence of at least two incident cut-edges. If this fourth edge is one incident to v, then
the sequence it carries is oriented by the presence of the fictitious root, but the two arcs pending
on the edges not incident to v are symmetric, hence a factor 1

2 . If on the contrary the edge carrying
the sequence is not incident to v, then the sequence is also oriented, this time because of the arcs
attached to the edges incident to v. Moreover, the picture has a symmetry w.r.t. the vertical axis,
hence a factor 1

2 .

U5

2(1 − U)
+

U5

2(1 − U)
=

U5

1 − U

#

U

U U

#

U U

U

26 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

Case 4C - Two edges carry a single incident cut-edge and the two others carry a sequence of
at least two incident cut-edges. In all cases, the sequences are oriented, by the presence of either
the fictitious root or of the single arcs attached to edges. If the edges carrying sequences are one
incident to v and the other not incident to v, all edges are in addition distinguished from each
other. In the other two cases, both edges incident to v form an unordered pair, as well as the two
edges not incident to v. In each case, we therefore have a factor 1

4 .

U6

(1 − U)2
+

U6

4(1 − U)2
+

U6

4(1 − U)2
=

3U6

2(1 − U)2

#

U

U

#

U U

#

U U

Case 4D - One edge of the generator carries a single incident cut-edge and three edges carry
a sequence of at least two incident cut-edges. As in the previous case, all sequences are oriented.
However, if the two edges incident to v carry a sequence, the picture has a symmetry w.r.t. the
vertical axis, hence a factor 1

2 . If on the contrary the two edges not incident to v carry a sequence,

these two edges are indistinguishable, hence a factor 1
2 also in this case.

U7

2(1 − U)3
+

U7

2(1 − U)3
=

U7

(1 − U)3

#

U

#

U
Case 4E - All four edges of the generator carry a sequence of at least two incident cut-edges.

Then all sequences are oriented, but the two edges not incident to v are indistinguishable. The
picture has in addition a symmetry w.r.t. the vertical axis. This yields a factor 1

4 .

U8

4(1 − U)4

#

8.2. Case analysis for the rooted level-2 generator 2b. In the pictures below, we use thick
lines to represent paths containing at least one internal node incident with a cut arc which is
incident with the root of another rooted level-2 network. All arcs are directed downwards. We
use L to represented any rooted level-2 network.

8.2.1. Case 1: Only one arc of the generator carries a sequence of at least one outgoing arc. This
arc can only be e or e′ (and these cases are indistinguishable), since otherwise the network would
contain multiple arcs, and this is not allowed.

L
L

1 − L

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 27

L

e e′

8.2.2. Case 2: Exactly two arcs of the generator carry a sequence of at least one outgoing arc. To
avoid multiple arcs, either these two arcs are e and e′ (and those two arcs are symmetric, hence
the factor 1

2), or one of them is e or e′ (which are not distinguished) and the other arc is chosen
among the three arcs different from e and e′.

1

2
L

(
L

1 − L

)2

+ 3L

(
L

1 − L

)2

=
7

2
L

(
L

1 − L

)2

L

e e′

←−→sym

L

e e′

L

e e′

L

e e′

8.2.3. Case 3: Exactly three arcs of the generator carry a sequence of at least one outgoing arc.
Here, there are two possibilities. Either both e and e′ are among those three arcs (and those two
arcs are symmetric, hence the factor 1

2). Or, to avoid multiple arcs, we must choose one of e and e′

(which are not distinguished from each other), and two additional arcs among the three remaining
arcs.

3

2
L

(
L

1 − L

)3

+ 3L

(
L

1 − L

)3

=
9

2
L

(
L

1 − L

)3

L

e e′

←−→sym

L

e e′

←−→sym

L

e e′

←−→sym

L

e e′

L

e e′

L

e e′

8.2.4. Case 4: Exactly four arcs of the generator carry a sequence of at least one outgoing arc.
Either both e and e′ are among those four arcs (and those two arcs are symmetric, hence the
factor 1

2), so the last two are chosen among the three other arcs of the generator. Or we choose
the three arcs of the generator other than e and e′, and e (which is undistinguishable from e′).

(
3
2

)

2
L

(
L

1 − L

)4

+ L

(
L

1 − L

)4

=
5

2
L

(
L

1 − L

)4

8.2.5. Case 5: All five arcs of the generator carry a sequence of at least one outgoing arc. The
fact that e and e′ are symmetric explains the factor 1

2 .

1

2
L

(
L

1 − L

)5

.

28 M. BOUVEL, P. GAMBETTE, AND M. MANSOURI

L

e e′

←−→sym

L

e e′

←−→sym

L

e e′

←−→sym

L

e e′

L

e e′

←−→sym

8.3. Exact enumeration formulas.

8.3.1. Unrooted level-2 networks.

Proposition 8.1. For any n ≥ 1, the number un of unrooted level-2 phylogenetic networks with
(n + 1) leaves is given by

un = (n − 1)!
∑

0≤s≤q≤p≤k≤i≤n−1
j=n−1−i−k−p−q−s≥0

i6=0

(n+i−1
i)(4i+j−1

j)(i
k)(

k
p)(

p
q)(

q
s)

×(3)i(−15
6)k(− 16

15)
p(− 1

2)
q(− 3

16)
s
.

Sketch. Recall that U(z) = zφ(U(z)) with φ(z) = 1

1− 3z5−16z4+32z3−30z2+12z

4(1−z)4

. Using first the classical

development of (1 − z)−n in series (see Eq. (2)), and then the binomial theorem, we have

φ(z)n =
∑

i≥0

(
n + i − 1

i

)(
12z

4(1 − z)4
+

−30z2 + 32z3 − 16z4 + 3z5

4(1 − z)4

)i

=
∑

i≥0

i∑

k=0

(
n + i − 1

i

)(
i

k

)(
12z

4(1 − z)4

)i−k (−30z2 + 32z3 − 16z4 + 3z5

4(1 − z)4

)k

.

We continue applying the binomial theorem inside the above formula, isolating each time the term

with the lowest degree in the numerator (that is, first −30z2

4(1−z)4 , second 32z3

4(1−z)4 , . . .). This yields

φ(z)n =
∑

i≥0

i∑

k=0

k∑

p=0

p∑

q=0

q∑

s=0

(n+ i− 1

i

)(i

k

)(k
p

)(p
q

)(q
s

)

(
12z

4(1− z)4

)i−k (−30z2

4(1 − z)4

)k−p (
32z3

4(1 − z)4

)p−q (−16z4

4(1− z)4

)q−s (
3z5

4(1− z)4

)s

=
∑

i≥0

i∑

k=0

k∑

p=0

p∑

q=0

q∑

s=0

(n+ i− 1

i

)(i

k

)(k
p

)(p
q

)(q
s

) (3)i(−15
6

)k(−16
15

)p(−1
2
)q(−3

16
)s

(1− z)4i
zi+k+p+q+s.

The result then follows from developing of (1 − z)−4i in series as (1 − z)−4i =
∑

j≥0

(
4i+j−1

j

)
zj

and using the Lagrange inversion formula. �

8.3.2. Rooted level-2 networks.

Proposition 8.2. For any n ≥ 1, the number ℓn of rooted level-2 phylogenetic networks with n
leaves is given by

ℓn = (n − 1)!
∑

0≤t≤m≤s≤q≤p≤k≤i≤n−1
j=n−1−i−k−p−q−s−m−t≥0

i6=0

(n+i−1
i)(6i+j−1

j)(i
k)(

k
p)(

p
q)(

q
s)(

s
m)(mt)

×(9)i(−17
6)

k
(−53

34)
p
(−148

159)
q
(−81

148)
s
(−8

27)
m
(−1

8)
t
.

COUNTING PHYLOGENETIC NETWORKS OF LEVEL 1 AND 2 29

Sketch. This follows again from the Lagrange inversion formula, using the equation L(z) =
zφ(L(z)) for the function φ given in Theorem 7.1. The computations involve the usual devel-
opment of (1−z)−n given by Eq. (2) and the binomial formula, applied following exactly the same
steps as in the proof of Proposition 8.1. Details of the computations are left to the reader. �

(MB) Institut für Mathematik, Universität Zürich, Winterthurerstr. 190, CH-8057 Zrich, Switzer-

land
E-mail address: mathilde.bouvel@math.uzh.ch

(PG) Université Paris-Est, LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPC, F-77454, Marne-la-
Vallée, France

E-mail address: philippe.gambette@u-pem.fr

(MM) Technische Universität Wien, Department of Discrete Mathematics and Geometry, Wiedner
Hauptstraße 8-10/104, A-1040 Wien, Austria.

E-mail address: marefatollah.mansouri@tuwien.ac.at

HAL Id: hal-03366097
https://hal.science/hal-03366097

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting Event-related Information from a Corpus
Regarding Soil Industrial Pollution

Chuanming Dong, Philippe Gambette, Catherine Dominguès

To cite this version:
Chuanming Dong, Philippe Gambette, Catherine Dominguès. Extracting Event-related Information
from a Corpus Regarding Soil Industrial Pollution. KDIR 2021, Oct 2021, Setúbal, Portugal. pp.217-
224, �10.5220/0010656700003064�. �hal-03366097�

Extracting Event-related Information from a Corpus Regarding Soil
Industrial Pollution

Chuanming Dong1,3 a, Philippe Gambette2 b and Catherine Dominguès1 c

1LASTIG, Univ. Gustave Eiffel, ENSG, IGN, F-77420 Champs-sur-Marne, France
2LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

3ADEME, Agence de l’Environnement et de la Maı̂trise de l’Énergie, F-49004, Angers, France
chuanming.dong@ign.fr, philippe.gambette@univ-eiffel.fr, catherine.domingues@ign.fr

Keywords: Information Extraction, Deep Learning, Word Embedding, Semantic Annotation, Industrial Pollution.

Abstract: We study the extraction and reorganization of event-related information in texts regarding industrial pollution.
The object is to build a memory of polluted sites that gathers the information about industrial events from
various databases and corpora. An industrial event is described through several features as the event trigger,
the industrial activity, the institution, the pollutant, etc. In order to efficiently collect information from a large
corpus, it is necessary to automatize the information extraction process. To this end, we manually annotated
a part of a corpus about soil industrial pollution, then we used it to train information extraction models with
deep learning methods. The models we trained achieve 0.76 F-score on event feature extraction. We intend
to improve the models and then use them on other text resources to enrich the polluted sites memory with
extracted information about industrial events.

1 INTRODUCTION

Pollution is becoming one of the major concerns for
French dwellers. The French Ministry of the Eco-
logical Transition (MTES) is responsible for collect-
ing and updating pollution data from industrial sites
which are gathered in a certain number of databases,
including BASOL, the database of (potentially) pol-
luted sites; BASIAS, a historical inventory of old in-
dustrial sites; and S3IC, the database of classified fa-
cilities.

With abundant information about industrial sites,
these databases are proven to be necessary for the
assessment of the situation of a polluted site and
the calculation of the cost for rehabilitating a waste-
land. Nevertheless, the information contained in them
can become inconsistent across databases due to their
specific objectives and different update rates. The
BASIAS database has been created to record the ac-
tivities of old industrial sites. Comparing to other
databases, it specializes at classifying the productive
activities of a site, but in the meantime some informa-
tion, for example the address of a site, may not be up
to date in this database. The S3IC database has been

a https://orcid.org/0000-0003-3232-8177
b https://orcid.org/0000-0001-7062-0262
c https://orcid.org/0000-0002-0362-6805

constructed through inspection of industrial facilities,
which means it contains the information about the op-
erations of facilities on a site, the authorization status
for the operations and the danger level of those facil-
ities. It classifies the industrial activities conducted
through those facilities from the point of view of an
MTES inspector, which makes S3IC different from
other databases about polluted sites. Lastly, BASOL
focuses on the pollution of industrial sites. In this
database, each site is described in details through the
potential pollution processes and/or the remediation
processes, as well as a list of pollutants detected in the
site, all of these are missing from the other databases.

The multiplication of databases and their content
variations make it difficult to have a synthetic view
of the situation of the sites. In addition, historical
information such as industrial events also plays an
important role in the assessment of sites, but this in-
formation is either missing or disorganized in these
databases.

Therefore, we have planned to create a memory
of sites that reorganizes the information from these
databases in a more invariable and efficient way. A
memory of sites is a database constructed on events
that happened in those sites. Eventually, users will
be able to query this database for polluted site infor-
mation, like location, pollutants and industrial activi-

ties etc. Since the existing databases do not share the
same objectives regarding the pollution treatment nor
the same definition of an industrial event, they do not
record the same events. Besides, those events are usu-
ally embedded in narrative texts as a part of databases,
and there are a lot more events described in the texts,
like regulatory reports, rather than in databases. So,
in this paper, we introduce an information extraction
model which enables event-related extraction from a
plain text. In the future, the chronological assembly
of these events will make it possible to build the mem-
ory of polluted sites.

The information extraction model suits the BA-
SOL narrative texts from which events must be ex-
tracted. So, after a brief introduction about related
work in section 2, section 3 describes the narrative
text corpus, the notion of event and the features which
describe industrial events and are looked for in the
corpus. The automatic annotation process is based on
deep learning; it combines a neural network and word
embeddings; they are explained in section 4. The au-
tomatic annotation of the event features is assessed in
section 5. The results are discussed, based on preci-
sion, recall and F-score measures in section 6. The
paper concludes with perspectives in section 7.

2 RELATED WORK

In natural language processing (NLP), an information
extraction task can be regarded as a sequence label-
ing task or a classification task. Information extrac-
tion tasks focused on event features are relatively new
to the NLP community. Over the last decade, sev-
eral approaches have been proposed by different re-
searchers. In (Arnulphy, 2012), a machine learning
model has been used to classify the words by their
predefined syntactic, morphologic, semantic and lex-
ical features in order to recognize the events. This
classifier is based on a decision tree algorithm, and
eventually gets a 0.74 F-score on linguistic feature
classification. In (Battistelli et al., 2013), a data min-
ing approach has been proposed, which involves ex-
tracting semantic patterns of sentences that describe
an event. So, sentences with similar patterns can be
extracted as events. Although these approaches are
different in usage of models and algorithms, they all
require the assistance of an abundant linguistic re-
source. For example, in (Arnulphy, 2012), French
lexicons including action verbs and event nouns are
used to define the lexical features of words. In re-
cent years, the development of artificial neural net-
work and language models has made the deep learn-
ing approaches much more viable for NLP tasks, in-

cluding sequence labeling tasks. In (Panchendrarajan
and Amaresan, 2018), a model trained on Bi-LSTM
neural network has gained a 0.90 F-score on named
entity annotation. In the work of (Shin et al., 2020), a
spatial information extraction model based on BERT
(Bidirectional Encoder Representations from Trans-
formers) is presented. By implementing the language
model BERT, the authors have successfully extracted
different types of spatial entities with a F-score of
0.90 in total. From these works, it can be seen that
the usage of artificial neural networks and language
models has improved the result in sequential labeling
tasks, especially semantic annotation, without imple-
menting extra linguistic resources.

Our project to build a memory of polluted sites
focuses on extracting information about industrial
events. As named entity extraction, event extraction is
also a semantic annotation task. Different from pre-
vious work, we seek to extract events with a certain
theme: pollution. This means that we need an ap-
proach with strong ability to process semantic fea-
tures in text. Our proposed approach is inspired by
recent work and is based on a deep learning method
and a language model.

3 THE BASOL CORPUS AND THE
INDUSTRIAL EVENTS

BASOL describes polluted or potentially polluted
sites, and soils requiring preventive or remedial action
by public authorities through a structured database of
the industrial events, which is complemented by nar-
rative texts. The description of industrial event in-
cludes specific features, which are relevant in the con-
text of pollution. The corpus extracted from the BA-
SOL database is first presented. The concept of in-
dustrial event with its characteristics is based on this
corpus; the design of the labels of the characteristics
and their use are then introduced.

3.1 Description of the Corpus

BASOL contains structured information about more
than 7 000 polluted sites since the 1990s, includ-
ing their geographic location, owners’ identity and
detected pollutants. In addition, narrative texts are
added to the database records and provide detailed
information concerning the facilities and the indus-
trial sites. The texts collected as a corpus provide the
source in which industrial events are looked for. The
corpus contains 155 587 sentences, with a vocabulary
of 48 032 words. The descriptive texts are meant to
clarify the industrial incidents that had an influence on

the site, so they include mentions of industrial events.
The vocabulary is focused on the topic of the indus-
trial pollution. Since this is an official database, the
usage of standard French is also a significant quality.
As an example, the following sentence is taken from
the corpus: La société BRODARD GRAPHIQUE
était installée depuis 1959 sur la zone industrielle
de Coulommiers (BRODARD GRAPHIQUE was es-
tablished since 1959 on the Coulommiers industrial
area).

3.2 The Concept of Event

The corpus details industrial events. But what exactly
is an event? By the definition of dictionary, an event
is “a thing that happens, especially something im-
portant”1. Various definitions of an event have been
made in previous works. In her doctoral thesis, (Ar-
nulphy, 2012) defines an event as something happens
that changes the state. In (Lecolle, 2009), an event
is regarded as a singular, unexpected and unrepeat-
able case. In (Battistelli et al., 2013), although there
is no clear definition of event, the importance of date
in event extraction is emphasized which implies that
event is a notion with significant temporal properties.
From these definitions, it is shown that event is a rel-
atively subjective notion which can be adapted to the
need of research. But there is a consistency in these
definitions. It is clear that the notions of “important”
and “happen” are crucial. These notions represent
two major aspects of an event: occurrence and im-
portance. From a semantic perspective, occurrence
can be interpreted as having a distinctive and closed
time range. And importance implies an impact on the
reality. Therefore an event can be defined as some-
thing that impacts the reality, with a distinctive and
terminated time marker.

In this project, we specifically study industrial
events. Based on the definition of event, an industrial
event can be defined as something impacts the indus-
trial situation, with a distinctive and terminated time
marker. According to this definition, several elements
must be defined to specify an industrial event. First, to
describe the occurrence of an event, a time marker, an
action and an actor are required. Since eventually the
events will be linked to industrial sites in the database,
a place marker is also crucial. With these elements ex-
tracted, we can describe the occurrence of an event as
“Who did What When and Where”. Second, the im-
portance of the event needs to be described. Although
the impact on industry can not be extracted directly
from a text, information may be found on the influ-

1https://www.oxfordlearnersdictionaries.com/
definition/american english/event

ence of an industrial event on the environment. To
gather this information, elements such as pollutants,
chemical components and products should also be ex-
tracted.

3.3 Label Design and Application

Therefore, we propose the following set of labels to
designate the features of an industrial event:

• O: an object, a nominal phrase that serves as an
argument of an action. It can be either the actor,
the receiver or the complement of an action;

• N: an action trigger of an event, usually a momen-
tary verb or its nominal derivation;

• A: an industrial activity; An activity is a repeating
action that a company conducts daily;

• T: an indicator of time, typically a date;

• L: an indicator of location, only geographic and
administrative locations;

• R: a relation, usually a prepositional phrase indi-
cating the logical relation between other labels;

• I: an institution’s name;

• S: a chemical element;

• U: a pollutant other than chemical elements;

• D: a pollutant in form of a container for other pol-
lutants, for example a wasteyard.

These labels, while covering the need for annotating
basic information, may cause a problem of overlap.
For example, in this segment that describes an indus-
trial activity, aspersion de Xylophène sur les poutres
de bois (in English: Xylophene sprinkling on the
wooden beams), label U should be assigned to the
chemical product Xylophène (Xylophene), while an-
other label A, industrial activity, is assigned to the
whole segment. In order to reduce the risk of over-
lapping, the labels have been separated into 2 groups.
The first one contains the labels O, N, T, A, L and
R, which are useful to describe an event or an activ-
ity. The I, D, S and U labels are in the second group;
they provide complementary information about pollu-
tion and institution. From a linguistic perspective, the
labels of the first group have a strong link to syntactic
features of words. The assignment of the first group
labels requires information about the part-of-speech
and the dependency relations between words, such as
whether the word is a noun or a verb, whether it is the
subject or the predicate in the sentence. The second
group is more related to semantic features, and it is by
knowing the meaning of the words that these labels
can be assigned. For example, Hydrocarbure (Hydro-
carbon) is identified as a chemical substance (label S)

not because it is the subject of a sentence, but because
it means an organic compound consisting entirely of
hydrogen and carbon2. In addition, a priority rule has
been defined in order to assign only one label to each
word. For example, a place name, annotated as a lo-
cation, L label (first group), may also be annotated O
(second group) as the object of an event trigger verb.
The rule which has been implemented priorizes the
indicator of location, which much more specifies the
event than the fact it is an object too.

On the other hand, the designation of the event
features are often made up of several words, for ex-
ample: La société BRODARD GRAPHIQUE, sur la
zone industrielle de Coulommiers. Therefore, the “B-
I-E-O” (begin, inside, end, outside) annotation format
has been implemented in the annotation work. Since
this format uses different labels for the beginning and
the end of an extracted expression, it enables to detect
multiword units. In this way, both category labels
and boundary labels can be assigned at the same time
to each word in a group. So, it is easy to distinguish
between groups of words, even if they are of the
same category. Consequently, the labels assigned
to each word is in fact a combination of a bound-
ary label and a category label. Here is an example:

Les installations de l’usine

BO IO IO EO
ont été démolies entre 1970 et 1980 .

BN IN EN BT IT IT ET

The two-character labels enable to delimit three
phrases: Les installations de l’usine (label O), ont été
démolies (label N), and entre 1970 et 1980 (label T).

As can be seen in this example, the assignment
of labels is realised within a sentence. Normally, the
boundary of a sentence does not necessarily match the
boundary of an event; some features of an event may
appear in a different sentence from the one that con-
tains the trigger of the event. However, the BASOL
corpus is a combination of brief texts that summarize
the activities and events that occur at a site. So, it
is more unlikely to find an event announced in two
sentences in this corpus. Consequently, the narrative
texts have been segmented and annotated into sen-
tences. This has several advantages. The sentence is a
perfect unit for the input of a deep learning algorithm
(see the next section), since a paragraph as a unit may
be too voluminous for the algorithm to run efficiently,
and a word as a unit risks loosing context features of
the word. The segmentation into sentences enables a

2https://en.wikipedia.org/wiki/Hydrocarbon

better control of the manual annotation workload.

4 AUTOMATIC ANNOTATION OF
EVENT FEATURES

The targeted memory of polluted sites is based on a
chronological assembly of pollution events. Each of
them is described through its features; the goal of the
information extraction model is to automatically iden-
tify and annotate the features. The model which is
proposed combines a neural network to identify the
phases, and word embeddings to distinguish between
the use contexts of each word occurrence. The two
components are independent and the choice of each
one is guided by criteria that are explained. The train-
ing of the model combines both components and is
based on the training corpus that has been manually
annotated.

4.1 Choice of the Information
Extraction Model

Several models are suitable to automatic information
extraction. The most adopted ones are the models
based on linguistic rules, and those trained with su-
pervised deep learning method.

The rule-based models can perform a very precise
information extraction. However, they rely on imple-
mented vocabularies and their performance may dete-
riorate when processing a corpus with new terminolo-
gies, which is known as an Out-of-Vocabulary prob-
lem (OOV). This could be a major drawback in our
case because the corpus could be extended to other
documents that deal with the same theme but with
another vocabulary (more technical or more regula-
tory) or with the mention of new institution names and
other chemical product names. Finally, we choose to
make a neural model based on deep learning method,
in order to solve OOV and to obtain a more flexible
tool. The supervised deep learning method on which
the model is made is called Bi-LSTM (Bidirectional
Long Short-Term Memory) (Basaldella et al., 2018).
LSTM is a recurrent neural network (RNN). Compar-
ing to other neural network structures, RNN is more
suitable for sequential learning task, especially in the
case where the output of an input can be influenced by
the previous inputs. This property of RNN suits the
feature annotation since a word’s label assignment is
strongly influenced by the words in its context. De-
rived from the traditional RNN, the Bi-LSTM neural
network is more flexible than RNN in sequence tag-
ging tasks because of its ability of reserving the influ-

ence of a word’s remote context during training. And
since this is a bi-directional model, it can learn from
both previous context and following context, and thus
it is more suitable for detecting the beginning and the
end boundaries of an expression.

4.2 Choice of Word Embeddings

For text data being able to be processed by the neural
network, one step is indispensable: word embedding.
Indeed, every input text word is substituted with its
vector that the algorithm can process. So, the vec-
tor returns the context of the word in the text. Sev-
eral word integration models exist, which influence
the performance of the information extraction mod-
els. At the beginning of the implementation, in order
to quickly test the performance of Bi-LSTM neural
network, we have tried training with one of the sim-
plest word embedding method: Word2vec (Mikolov
et al., 2013). This method, while able to efficiently
provides word vectors generated from the context of
each word, has some fundamental flaws that influ-
enced the performance of the models. First of all, the
vector generated by Word2vec is static, this means
each word form has one and only one vector for
the whole text unit, regardless of its different con-
texts. Consequently, the word vectors generated by
Word2vec model cannot represent polysemy, the case
where a word can have different meanings in differ-
ent context. Furthermore, unlike multi-layer deep
learning word embedding models, Word2vec cannot
generate vectors that embed complex linguistic infor-
mation of different levels, such as a word’s syntac-
tic and semantic features. Therefore, other word em-
bedding models have been taken into consideration,
specially some state of art language models. Finally,
we have decided to use the French language model
CamemBERT (Martin et al., 2020), a Transformer-
based model trained on a large French corpus. This
model is known for its state-of-art performance for
natural language processing tasks in French, includ-
ing part-of-speech tagging, dependency parsing and
named entity recognition. What makes this model
special is that it assigns different vectors to different
occurrences of the same word, according to the con-
texts. And for words it cannot recognize, it breaks
down the words into morphemes to assign them the
corresponding vectors. Thus, this model is not af-
fected by polysemy or OOV problems. Since this
model can efficiently integrate the semantic features
in the context, it would be helpful for recognizing the
labels closely related to word sense, the pollutants for
example.

4.3 Training and Validation Corpora

As explained above, the proposed model is based on
a neural bi-LSTM model. It must be trained with an
annotated corpus in order to learn the labels which an-
notate the event features. The annotated corpus must
be reliable (annotations must be manually checked),
consistent, suitable for the task and of sufficient size.
In addition, a part of the manually annotated corpus
must be reserved for the assessment task. In order to
reduce the manual annotation work, a “bootstrapping”
annotation-training process has been implemented.
First, the event-related information is manually anno-
tated in a small sample of corpus. Then, the model is
trained on this annotated sample to become a rough
trained annotation model. Through this model, an-
other corpus sample can be automatically annotated
and then manually corrected, resulting in a new train-
ing cycle for the model, which improves it. By re-
peating this process we can perform a “bootstrapping”
annotation-training process. It enables to accumulate
annotated and checked samples which are gathered to
form the final training corpus. Thus, the model can
be trained, as much as necessary, on an abundant and
reliable corpus and become an efficient tool.

As seen before, the narrative texts have been seg-
mented into sentences and annotated. Thus, each in-
put data unit of the model is a sentence which is in
the form of a tensor that contains the vector of every
sentence word.

The passage from a sentence to its words is based
on a tokenization process. To ensure the coherent
combination of the different components of the final
model, the tokenization method of the word embed-
ding provider, i.e. CamemBERT, has been adopted.
However, the way that CamemBERT splits certain
words into lexemes can cause inconvenience for man-
ual annotation or correction. Therefore, a script that
can transform the CamemBERT tokens to TreeTag-
ger (Schmid, 1994) tokens3 has been prepared, along
with their labels. The TreeTagger tokenization is the
one chosen for the manual annotation, but this script
can also transform CamemBERT tokens to any other
types of tokens. The script can also work in the op-
posite direction, and transform other tokenized sen-
tences to CamemBERT tokens.

This is a bootstrapping experiment that augments
the annotated text through the model training ses-
sions. For the first session, only 120 annotated sen-
tences were prepared for training the model, and 100
sentences to test and evaluate it. After applying the
model, we manually corrected the annotation result,

3https://github.com/DongChuanming/KDIR 2021
shared/blob/main/KDIR tokenization transformer.py

and thus obtained 100 more correctly annotated sen-
tences.

The second session has consisted of several steps:
first, a transitory model has been trained on the 220
annotated sentences, then by using this model, 301
new sentences have been automatically annotated.
This enables to efficiently obtain 301 more parsed
sentences by correcting the annotation result. Then
these sentences have been split into 3 groups: 130
sentences join the training data, giving 350 sentences
for model training; 120 sentences for developing,
more precisely for choosing the number of epochs;
and the evaluation set composed of those 120 sen-
tences complemented with the last 51 annotated sen-
tences.

Figure 1: Illustration of the bootstrap method used to aug-
ment the training and evaluation corpora.

5 EVALUATION OF
ANNOTATION MODELS

Since the labels have been separated into two groups,
two models (named Model 1 and Model 2) have been
implemented to automatically annotate the event fea-
tures. Both are based on the Bi-LSTM neural algo-
rithm and use the same word embeddings provided by
CamemBERT. They have been trained and assessed
with the same training and evaluation corpora. They
share the same training processes (numbers of epochs
and learning rate), named session below.

During model training, the evaluation has already
begun. In order to find the parameters that optimize
the training, we have tested the models with 120 de-
veloping sentences with different network configura-
tions. To illustrate, here is a graph that shows how the
F-score of each label of Model 1 evolves according
to different numbers of epochs, with learning rate at
0.01 :

According to figure 1, at epoch 400, most labels
have the highest F-score, thus 400 is the best epoch
number for Model 1 training if other parameters don’t
change. Aside from epoch number, we have also
tested other parameters like learning rate and butch
size, for both Model 1 and Model 2, to find their best
value. The evaluation results presented below are for

Figure 2: Evolution of the F-score computed on the devel-
oping set of the first session, by epoch number for each label
- Model 1.

models trained with the best parameters at the mo-
ment. Since all parameters have not yet been tested, it
is possible that the models will be further improved.
The evaluation results of the two models trained dur-
ing both sessions are shown in the following tables.
The evaluation is realised on each label separately.
Since event-related information has been extracted
through the category labels, at this stage, the bound-
aries labels have not been evaluated. Table 1 and 2 are
the evaluation of Model 1 and Model 2 trained during
the first session.

Table 1: Number of true positives (TP) and evaluation of the
precision (p), recall (r) and F-score of Model 1 on the test
set of the first training session (100 sentences, 400 epochs).

Label TP p r F-score
trigger (N) 143 0.66 0.57 0.61
activity (A) 64 0.40 0.58 0.47
object (O) 209 0.94 0.85 0.89
time (T) 184 0.93 0.88 0.90

location (L) 61 0.63 0.59 0.61
relation (R) 23 0.45 0.45 0.45

Total 684 0.72 0.70 0.71

Table 2: Result of Model 2 on the test set of the first training
session (100 sentences, 400 epochs).

Label TP p r F-score
institution (I) 28 0.93 0.46 0.62
chemicals (S) 29 0.88 0.58 0.70
pollutant (P) 2 0.10 0.40 0.16
container (D) 0 - - -

Total 59 0.71 0.50 0.59

Table 3 and 4 show the evaluation of Model 1 and
Model 2 trained during the second session.

Table 3: Result of Model 1 on the evaluation set of the sec-
ond training session (171 sentences, 400 epochs).

Label TP p r F-score
trigger (N) 308 0.77 0.69 0.73
activity (A) 120 0.62 0.64 0.63
object (O) 763 0.89 0.82 0.85
time (T) 194 0.89 0.93 0.91

location (L) 86 0.55 0.63 0.59
relation (R) 157 0.61 0.54 0.57

Total 1628 0.78 0.74 0.76

Table 4: Result of Model 2 on the evaluation set of the sec-
ond training session (171 sentences, 400 epochs).

Label TP p r F-score
institution (I) 146 0.95 0.77 0.85
chemicals (S) 95 0.90 0.82 0.86
pollutant (P) 54 0.75 0.47 0.57
container (D) 2 0.25 0.15 0.19

Total 297 0.87 0.68 0.77

6 RESULT ANALYSIS

Although we only used a small manually annotated
corpus, we already obtained promising results on the
models. For a simple comparison, we have also tested
two other NLP tools on date annotation, a popular
Python library called dateparser4, and NOOJ5, an
annotation software for linguists. Both of them are
based on rules. Considering the reliance of event on
its time marker, this comparison should be able to re-
flect the performance on event extraction too. As a
result, dateparser can only detect the date expres-
sions in our text with a 0.77 precision and a 0.48 re-
call; NOOJ obtained 0.98 precision, but only a 0.44
recall. This proves that our models have a state-of-art
performance for detecting certain entities. By observ-
ing the score of the different labels, and by comparing
the manual and automatic annotations, we have dis-
covered some interesting points to address. The score
of the different labels, and the comparison between
the manual and automatic annotations give clues to
improve the results of the automatic annotation of the
event features. The commentaries of the results and
the improvement clues are organized regarding three
themes : the confusion between labels, the improve-
ment due to the increase of the corpus, and the rele-
vance of the CamemBERT word embeddings.

4https://dateparser.readthedocs.io/en/latest/
5http://explorationdecorpus.corpusecrits.huma-num.fr/

nooj/

6.1 Comparison between Labels

The models do not work well on some labels. Com-
paring to time (T) and object (O) labels, event trigger
(N), industrial activity (A) and location (L) labels do
not have an impressive F-score. After observing the
automatic annotation results on these labels, we see
that certain sentences that should have been annotated
as event trigger, are annotated as industrial activity.
Based on our definition of event trigger, the action
that triggers an event should be a momentary verb or
its nominal derivation. In contrast, an industrial ac-
tivity is an action conducted by enterprises frequently
during a period of time, and should be designated by
a durative verb or its nominal derivation, or a repeat-
ing action. However, it is difficult to distinguish an
event trigger expression from an industrial activity ex-
pression, based on their syntactic features, especially
when they are all nominal derivation of verbs. Unlike
a verb, a noun does not have “momentary” nor “du-
rative” as properties. Therefore, once nominalized,
these event trigger expressions are confused with an
activity, usually in the form of a nominal phrase.

A similar problem can be found with the label lo-
cation. Since the expression of a location often has
a prepositional structure, the nominal part of a loca-
tion expression can easily be recognized as an object
if its position is close to an event trigger or an activ-
ity. Besides, based on its definition, the recognition
of a location expression is trickier. The location ex-
pressions we want to extract include only geographic
and administrative locations. For example, even if
the prepositional phrase dans les nappes des calcaires
grossiers (in the coarse limestone sheets) indicates a
position and hence is annotated by our model as a lo-
cation, it does not belong to either precedent types ,
and therefore should not be recognized as a location.

6.2 Improvement Due to the Corpus
Increase

An improvement can be observed between the two
sessions. Comparing to the first session, the models
trained in second session have a better performance
on annotating most labels due to the increase of the
training text. Also, it is noticeable that Model 2 has
benefited more from this training corpus increase. In-
deed, the labels of the second group are less frequent
than those of the first group. Consequently, there are
not enough second group annotation examples in the
first session; the category container (D) is even ab-
sent from the test corpus of the first session. With
more training text attached to the second session, the
models are able to learn the second group annotations

on more label instances and thus improve Model 2.

6.3 Relevance of the Word Embeddings

The use of the CamemBERT word embeddingds also
improved the results. The pollutant category (P) is the
one that benefits the most from the use of the vectors.
To compare, by using our preliminary model imple-
menting the Word2vec method, the pollutant annota-
tion precision is only 0.05 but by using the current
model the score has increased to 0.56 without low-
ering the recall. A pollutant expression is usually a
nominal phrase. It is very difficult to differ it from any
other nominal component, on syntactic level. And un-
like institution names or chemicals, the expression of
pollutants does not involve changes of word case or
the usage of nomenclatures. So the most promising
ways to recognize them are by analysing the polar-
ity (positive or negative) in the context, and by build-
ing the word meaning itself, all of which require us-
age of complicated semantic features. Unlike syntac-
tic features, semantic features are hard to extract and
to be comprehended by the algorithm. The Camem-
BERT model, which has embedded semantic features
in form of word vectors, enables the neural network to
learn annotation patterns on a semantic level. So, our
model can recognize some typical pollutant expres-
sions, like tensio actif (surfactant) and other chemi-
cal products, which is exactly the information which
must be extracted in order to build the memory of pol-
luted sites.

7 CONCLUSION

In this paper, we have described an approach for
event-related information extraction from a corpus fo-
cused on industrial pollution. With a supervised deep
learning method, we trained two models that can sim-
ulate our manual annotation on industrial event fea-
tures. Right now, the models trained with Bi-LSTM
neural networks have given promising results, but we
still need them to be better at detecting event trig-
gers and industrial activities in order to use them on
other text resources. Given the fact that the models
are trained with only a small portion of the corpus,
and the neural network configurations are not fully
explored, it could be possible to improve the model.
Aside from increasing training text data and adjust-
ing neural network setting, it is also interesting to see
if the model could have a better performance if we
use paragraphs instead of sentences as the input of the
neural networks, since the narration of an event is not
limited in a sentence.

This work is devoted to the construction of the
polluted sites memory, based on an only consistent
and complete database. Eventually, the event-related
information extracted by the models will be inserted
in the database. For future work, we will apply a syn-
tactic parser to link the extracted event features by
dependency relations, and train a classifier to catego-
rize the events, so that they can be integrated into the
database with an appropriate structure. The models
will also be tested and used on other corpora in the do-
main of industrial pollution, to connect other sources
of data and enrich the polluted site memory.

REFERENCES

Arnulphy, B. (2012). Désignations nominales des
événements: étude et extraction automatique dans les
textes. PhD thesis, Université Paris 11.

Basaldella, M., Antolli, E., Serra, G., and Tasso, C. (2018).
Bidirectional LSTM Recurrent Neural Network for
Keyphrase Extraction, pages 180–187. Springer.

Battistelli, D., Charnois, T., Minel, J.-L., and Teissèdre, C.
(2013). Detecting salient events in large corpora by a
combination of NLP and data mining techniques. In
Conference on Intelligent Text Processing and Com-
putational Linguistics, volume 17(2), pages 229–237,
Samos, Greece.

Lecolle, M. (2009). Éléments pour la caractérisation des
toponymes en emploi événementiel. In Evrard, I.,
Pierrard, M., Rosier, L., and Raemdonck, D. V., ed-
itors, Les sens en marge Représentations linguistiques
et observables discursifs, pages 29–43. L’Harmattan.

Martin, L., Muller, B., Ortiz Suárez, P. J., Dupont, Y., Ro-
mary, L., de la Clergerie, É., Seddah, D., and Sagot, B.
(2020). CamemBERT: a tasty French language model.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7203–
7219, Online. Association for Computational Linguis-
tics.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space.

Panchendrarajan, R. and Amaresan, A. (2018). Bidi-
rectional LSTM-CRF for named entity recognition.
In Proceedings of the 32nd Pacific Asia Conference
on Language, Information and Computation, Hong
Kong. Association for Computational Linguistics.

Schmid, H. (1994). Probabilistic part-of-speech tagging us-
ing decision trees.

Shin, H. J., Park, J. Y., Yuk, D. B., and Lee, J. S. (2020).
BERT-based spatial information extraction. In Pro-
ceedings of the Third International Workshop on Spa-
tial Language Understanding, pages 10–17, Online.
Association for Computational Linguistics.

HAL Id: hal-03413413
https://hal.science/hal-03413413v2

Submitted on 15 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reordering a tree according to an order on its leaves
Laurent Bulteau, Philippe Gambette, Olga Seminck

To cite this version:
Laurent Bulteau, Philippe Gambette, Olga Seminck. Reordering a tree according to an order on its
leaves. CPM 2022, Jun 2022, Prague, Czech Republic. pp.24:1-24:15, �10.4230/LIPIcs.CPM.2022.24�.
�hal-03413413v2�

Reordering a tree according to an order on its1

leaves2

Laurent Bulteau #3

LIGM, Université Gustave Eiffel & CNRS, Champs-sur-Marne, France4

Philippe Gambette1 #5

LIGM, Université Gustave Eiffel & CNRS, Champs-sur-Marne, France6

Olga Seminck #7

Lattice (Langues, Textes, Traitements informatiques, Cognition), CNRS & ENS/PSL & Université8

Sorbonne nouvelle, France9

Abstract10

In this article, we study two problems consisting in reordering a tree to fit with an order on its leaves11

provided as input, which were earlier introduced in the context of phylogenetic tree comparison for12

bioinformatics, OTCM and OTDE. The first problem consists in finding an order which minimizes13

the number of inversions with an input order on the leaves, while the second one consists in removing14

the minimum number of leaves from the tree to make it consistent with the input order on the15

remaining leaves. We show that both problems are NP-complete when the maximum degree is16

not bounded, as well as a problem on tree alignment, answering two questions opened in 2010 by17

Henning Fernau, Michael Kaufmann and Mathias Poths. We provide a polynomial-time algorithm18

for OTDE in the case where the maximum degree is bounded by a constant and an FPT algorithm19

in a parameter lower than the number of leaves to delete. Our results have practical interest not20

only for bioinformatics but also for digital humanities to evaluate, for example, the consistency of21

the dendrogram obtained from a hierarchical clustering algorithm with a chronological ordering22

of its leaves. We explore the possibilities of practical use of our results both on trees obtained by23

clustering the literary works of French authors and on simulated data, using implementations of our24

algorithms in Python.25

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact26

algorithms27

Keywords and phrases tree, clustering, order, permutation, inversions, FPT algorithm, NP-hardness,28

tree drawing, OTCM, OTDE, TTDE29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

Supplementary Material https://github.com/oseminck/tree_order_evaluation31

Funding Philippe Gambette: “Investissements d’avenir” program, reference ANR-16-IDEX-000332

(I-Site Future, programme “Cité des dames, créatrices dans la cité”).33

Olga Seminck: “Investissements d’avenir” program, reference ANR19-P3IA-0001 (PRAIRIE 3IA34

Institute)35

1 corresponding author

© Laurent Bulteau, Philippe Gambette and Olga Seminck;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Reordering a tree according to an order on its leaves

1 Introduction36

The problem of optimizing the consistency between a tree and a given order on its leaves37

was first introduced in bioinformatics in the context of visualization of multiple phylogenetic38

trees in order to highlight common patterns in their subtree structure [6], under the name39

“one-layer STOP (stratified tree ordering problem)”. The authors provided an O(n2) time40

algorithm to minimize, by exchanging the left and right children of internal nodes, the number41

of inversions between the left-to-right order of the leaves of a binary tree and an input order42

on its leaves. The problem was renamed OTCM (One-Tree Crossing Minimization)43

in [9], where an O(n log2 n) time algorithm is provided, as well as a reduction to 3-Hitting44

Set of a variant of the problem where the goal is to minimize the number of leaves to delete45

from the tree in order to be able to perfectly match the input order on the remaining leaves,46

called OTDE (One-Tree Drawing by Deleting Edges). An O(n log2 n/ log log n) time47

algorithm is later provided for OTCM by [1], improved independently in 2010 by [10] and [22]48

to obtain an O(n log n) time complexity. About OTDE, the authors of [10] note that “the49

efficient dynamic-programming algorithm derived for the related problem OTCM [. . .] cannot50

be transferred to this problem. However, we have no proof for NP-hardness for OTDE nor51

TTDE, either”. TTDE (Two-Tree Drawing by Deleting Edges) is a variant of OTDE52

where two leaf-labeled trees are provided as input and the goal is to delete the minimum53

number of leaves such that the remaining leaves of both trees can be ordered with the54

same order. We give below an answer to both sentences, providing a dynamic-programming55

algorithm solving OTDE for trees with fixed maximum degree as well as an NP-hardness56

proof in the general case for OTDE and for TTDE.57

Although this problem was initially introduced in the context of comparing tree embed-58

dings, one tree having its embedding (that is the left-to-right order of all children) fixed,59

we can note that only the order on the leaves of the tree with fixed embedding is useful60

to define both problems OTCM and OTDE. Both problems therefore consist not really in61

comparing trees but rather in reordering the internal nodes of one tree in order to optimize62

its consistency with an order on its leaves provided as input. A popular problem consisting63

in finding an optimal order on the leaves of a tree is “seriation”, often used for visualization64

purposes [7], where the optimized criterion is computed on data used to build the tree. For65

example, a classical criterion, called “optimal leaf ordering”, is to maximize the similarity66

between consecutive elements in the optimal order [2, 3, 4]. Another possibility is to minimize67

a distance criterion, the “bilateral symmetric distance”, computed on pairs of elements in68

consecutive clusters [5]. Seriation algorithms have been implemented for example in the69

R-packages seriation [12] and dendsort [19].70

With the OTCM and OTDE problems, our goal is not to reorder a tree using only the71

original data from which it has been built, but using external data about some expected order72

on its leaves. In the context where the leaves of the tree can be ordered chronologically, for73

example, this would help providing an answer to the question: how much is this tree consistent74

with the chronological order? This issue is relevant for several fields of digital humanities,75

when objects associated with a publication date are classified with a hierarchical clustering76

algorithm, for example literature analysis [14], political discourse analysis [15] or language77

evolution [17], as noticed in [11]. In these articles, the comments about the chronological78

signal which can be observed in the tree obtained from the clustering algorithm are often79

unclear or imprecise. For example, in [17], the author observes about Figure 15 on page 1780

that “the cluster tree gives a visual representation consistent with what is independently81

known of the chronological structure of the corpus”. However, the structure of the tree82

L. Bulteau, P. Gambette, O. Seminck 23:3

does not perfectly reflect the chronology2. The algorithms solving the OTCM and OTDE83

problems can also prevent researchers from claiming having obtained perfect chronological84

trees with clustering, whereas there are still small inconsistencies that are not easy to spot85

with the naked eye. For example, although “Chez Jacques Chirac, l’examen des parentés86

[dans ses discours de vœux] ne suppose aucune rupture, la chronologie étant parfaitement87

représentée”3 is claimed about Figure 2.4 in [15], the 1999 speech cannot be ordered between88

1998 and 2000.89

In this article, we first give useful definitions in Section 1.1. We answer two open problems90

from [10], proving that OTDE and TTDE are NP-complete, as well as OTCM, in Section 2.91

We then provide a dynamic programming algorithm solving OTDE in polynomial time for92

trees with fixed maximum degree in Section 3. This algorithm also works in the more general93

case where the order on the leaves is not strict. We then provide an FPT algorithm for the94

OTDE problem parameterized by the deletion-degree of the solution, which is lower than95

the number of leaves to delete, in Section 4. We also give an example of a tree and an order96

built to have a distinct solution for the OTCM and OTDE problems in Section 5. Finally,97

we illustrate the relevance of this problem, and of our implementations of algorithms solving98

them, for applications in digital humanities, with experiments on trees built from literary99

works, as well as simulated trees, in Section 6.100

1.1 Definitions101

Given a set X of elements, we define an X-tree T as a rooted tree whose leaves are bijectively102

labeled by the elements of X. The set of leaves of T is denoted by L(T) and the set of leaves103

below some vertex v of T is denoted by L(T, v) (or simply L(v) if T is clear from the context).104

A set of vertices of T is independent if no vertex of T is an ancestor of another vertex of T .105

We say that σ is a strict order on X if it is a bijection from X to [1..n] and that it106

is a weak order on X if it is a surjection from X to [1..m], where |X| ≥ m. Given any107

(strict or weak) order σ, we denote by a ≤σ b the fact that σ(a) ≤ σ(b) and by a <σ b108

the fact that σ(a) < σ(b). Considering the elements x1, . . . , xn of X such that for each109

i ∈ [1..n − 1], σ(xi) ≤ σ(xi+1), we denote by (x1x2 . . . xn) the (weak or strict) order σ.110

Given an X-tree T and a (weak or strict) order σ on X, we say that an independent111

pair {u, v} of vertices of T is a conflict wrt. σ if there exist leaves a, c ∈ L(u) and b ∈ L(v)112

such that a <σ b <σ c. Conversely, if {u, v} is not a conflict, then either a ≤σ b for all113

a ∈ L(u), b ∈ L(v), or b ≤σ a; we then write u ⪯σ v or v ⪯σ u, respectively. We say that σ114

is suitable on T if T has no conflict with respect to σ.115

Given two (strict or weak) orders σ1 and σ2 on X and two elements a ̸= b of X, we say116

that {a, b} is an inversion for σ1 and σ2 if a ≤σ1 b and b <σ2 a, or b ≤σ1 a and a <σ2 b.117

Given an X-tree T , a subset X ′ of X and an order σ on X, we denote by σ[X ′] the order118

σ restricted to X ′, and by T [X ′] the tree T restricted to X ′, that is the X ′-tree obtained from119

T by removing leaves labeled by X \ X ′ and contracting any arc to a non-labeled leaf, any120

arc from an out-degree-1 vertex. We define the deletion-degree of X ′ as the maximum degree121

of the tree induced by the deleted leaves, i.e., T [X \ X ′]. Intuitively, the deletion-degree122

measures how deletions in different branches converge on a few nodes or if they merge123

2 For example 1380Gawain.txt cannot be ordered between 1375AllitMorteArthur.txt and
1400YorksPlays.txt.

3 “For Jacques Chirac, the examination of the genealogy [of his new year addresses] shows no discontinuity,
the chronology being perfectly represented”

CVIT 2016

23:4 Reordering a tree according to an order on its leaves

progressively. Note that by definition, the deletion-degree of X ′ is upper-bounded both by124

the maximum degree of T and by the size of X \ X ′.125

C
F
E

D
A
B

A
B
C
D
E
F

A
D
B

C
F

E

A
B
C
D
E
F

A
D
B

C
F

E

A
B
C
D
E
F

Figure 1 Example for the OTDE and OTCM problem. Left: a tree T on leaves {A, . . . , F}, the
reference permutation is σ = (A, B, C, D, E, F) (more precisely, σ(A) = 1, . . . , σ(F) = 6). Middle: a
solution for OTDE with cost 2. The subtree T [X ′] for X ′ = {A, D, E, F} is ordered to show the absence
of conflicts with σ[X ′]. Right: a solution for OTCM with cost 3. The order σ′ = (A, D, B, E, C, F) is
suitable for T and yields three inversions with σ.

We now define the two main problems addressed in this paper (see Figure 1 for an126

illustration). As explained in the introduction, we differ from previous definitions which127

considered two trees, one with a fixed order on the leaves, as input, as only the leaf order of128

the second tree is useful to define the problem and not the tree itself.129

We therefore define the OTCM (One-Tree Crossing Minimization) problem as130

follows:131

Input: An X-tree T , an order σ on X and an integer k.132

Output: Yes if there exists an order σ′ on X suitable on T such that the number of133

inversions for σ′ and σ is at most k, no otherwise.134

We also define the OTDE (One-Tree Drawing by Deleting Edges) problem as135

follows:136

Input: An X-tree T , an order σ on X and an integer k.137

Output: Yes if there exists a subset X ′ of X of size at least |X| − k such that σ[X ′] is138

suitable on T [X ′], no otherwise.139

We finally define the TTDE (Two-Tree Drawing by Deleting Edges) problem in140

the following way:141

Input: Two X-trees T1 and T2 and an integer k.142

Output: Yes if there exists a subset X ′ of X of size at least |X| − k and an order σ′ on143

X ′ that is suitable on T1[X ′] and on T2[X ′], no otherwise.144

2 NP-hardness145

2.1 OTDE and TTDE are NP-complete for trees with unbounded146

degree147

▶ Theorem 1. The OTDE problem is NP-complete for strict orders and therefore for weak148

orders.149

Proof. First note that OTDE is in NP, since, given an X-tree T , an order σ and a set L150

of leaves to remove, we can check in linear time, by a recursive search of the tree, saving151

on each node the minimum and the maximum leaf in σ[X − L] appearing below, whether152

L. Bulteau, P. Gambette, O. Seminck 23:5

σ[X − L] is suitable on T [X − L]. Regarding NP-hardness, we now give a reduction from153

Independent Set, which is NP-hard on cubic graphs [16], to OTDE when the input trees154

have unbounded degree.155

We consider an instance of the Independent Set problem, that is a cubic graph156

G = (V = {v1, . . . , vn}, E) such that |E| = m = 3n/2 and an integer k. For each vertex vi,157

we write e1
i , e2

i and e3
i for the three edges incident with vi (ordered arbitrarily).158

We now define an instance of the OTDE problem. The set of leaf labels consists of vertex159

labels denoted vi and v′
i for each i ∈ [1..n], one edge label for each edge (also denoted ej

i for160

the jth edge incident on vertex vi), and a set of n2 separating labels Bi = {b1
i , b2

i , . . . bn2

i } for161

each i ∈ [1..n − 1].162

First, we define the strict order σ(G) = (v1e1
1e2

1e3
1v′

1b1
1b2

1 . . . bn2

1 v2e1
2e2

2e3
2v′

2b2
1b2

2 . . . bn2

n−1vne1
n163

e2
ne3

nv′
n). Then, let Tvi

be the tree with leaves vi and v′
i attached below the root, Te be the tree164

with leaves ei′
i and ej′

j attached below the root for each edge e = {vi, vj} of G (with i′, j′ ∈165

[1..3]), and TBi
be the tree with leaves b1

i , . . . , bn2

i attached below the root for each i ∈ [1..n−1].166

We finally define T (G) as the tree such that Tv1 , Tv2 , . . . , Tvn
, Te1 , Te2 , . . . Tem

, TB1 , TB2 , . . .167

and TBn−1 are attached below the root.168

We claim that G has an independent set of size at least k ⇔ the instance (T (G), σ(G))169

of the OTDE problem has a solution with a set L of at most m + n − k leaves to remove.170

⇒: Suppose that there exists a size-k independent set S = {s1, . . . , sk} of G. We then171

remove the following leaves (also contracting along the way the edge from their parent to the172

root of T (G)) in order to get a new tree T ′:173

for each edge e = {vi, vj} = ei′
i = ej′

j with i < j, we remove ei′
i and call T

ej′
j

= Te if174

vi ∈ S or if neither vi nor vj belong to S; and we remove ej′

j and call Tei′
i

= Te if vj ∈ S175

(as S is an independent set we cannot have both vi and vj in S);176

for each vertex vi not in S we remove v′
i.177

By ordering the children of the root of T (G) such as in Figure 2(1), that is by putting, for each178

vi with i ∈ [1..n], Tvi
, then Te1

i
, Te2

i
and Te3

i
for each of the ei′

i which were not removed and179

then TBi (except for i = n), the order σ(G) restricted to the remaining m + n + k + n2(n − 1)180

leaves is suitable on T ′.181

⇐: Suppose that there exists a set L of at most m + n − k leaves such that σ(G)[X − L]182

is suitable on T (G)[X − L]. For each parent pBi
of the leaves of Bi and any other vertex v of183

T such that {pBi
, v} is a conflict wrt. σ(G), we can delete this conflict either by deleting no184

leaf of Bi or all leaves of Bi. As each Bi has size n2 > m + n − k, its leaves cannot belong to185

the set L of leaves to be deleted.186

We now consider the trees Tei for each i ∈ [1..m]: by construction of σ(G), as both leaves187

of each such tree are separated by some Bi′ , therefore by n2 > m + n − k leaves, one of these188

two leaves has to be removed, so it has to belong to L. We call L′ the set of such leaves of L,189

therefore there exists a set L − L′ of at most n − k other leaves to delete. So there exists a190

subset SL of [1..n] of size at least k such that for any element i ∈ SL, neither vi, nor v′
i, nor191

any of the leaves ej
i for j ∈ {1, 2, 3} belong to L − L′. Note that for such i ∈ SL, all vertices192

vi and v′
i are not in L and all ej

i are in L′. We claim that the vertices of G corresponding193

to SL are an independent set of G. Suppose for contradiction that it is not the case, then194

there exists an edge e = ei′
i = ej′

j between two vertices vi and vj of G. By construction of195

L′, exactly one of the leaves labeled by ei′
i and ej′

j is in L′ so the second one is in L − L′:196

contradiction. ◀197

▶ Corollary 2. The TTDE problem is NP-complete.198

CVIT 2016

23:6 Reordering a tree according to an order on its leaves

(1) (2)

Figure 2 Illustration of the reductions of Independent Set to OTDE and of OTDE to TTDE. (1,
left) A graph G with independent set S = {v1, v4} of size 2. (1, right) The corresponding tree T (G)
as well as the order σ(G). By removing all leaves connected with dotted lines to the corresponding
element in σ(G), the resulting subtree of T (G) is suitable for the order (since the remaining arcs
are non-crossing). (2) Reduction from an OTDE instance (T, σ) (top) to a TTDE instance (T1, T2)
(bottom). A large set of leaves labelled Y can be seen as a fixed-point, around which T1 must be
ordered according to σ, and T2 according to the input tree T .

Proof. TTDE is clearly in NP. We prove hardness by reduction from OTDE (see Figure 2(2)199

for an illustration). Consider an instance (T, σ) of OTDE with σ a strict order on n labels200

X. Introduce a set Y of n new labels. Build T1 as a caterpillar with n + 1 internal nodes201

forming a path r1, . . . , rn+1 (with root r1) and 2n leaves where each ri with i ≤ n has one202

leaf attached with label σ−1(i) ∈ X (in the same order), and rn+1 has n leaves attached203

labelled with Y . Build T2 as a tree, where the root has two children y, t, where y has n204

children which are leaves labelled with Y , and t is the root of a subtree equal to T .205

We now show our main claim: given 0 ≤ k < n, OTDE(T, σ) admits a solution with at206

most k deletions ⇔ TTDE(T1, T2) admits a solution with at most k deletions.207

⇒ Let X ′ be a size-(n − k) subset of X such that σ[X ′] is suitable on T [X]. Then let γ208

be any order on Y : the concatenation σ[X ′]γ is suitable both on T1[X ′ ∪ Y] and T2[X ′ ∪ Y],209

L. Bulteau, P. Gambette, O. Seminck 23:7

so it is a valid solution for TTDE(T1, T2) of size 2n − k, i.e., with k deletions.210

⇐ Let X ′, Y ′ be subsets of X, Y , respectively, and σ′ be an order on X ′ ∪ Y ′ such that211

σ′ is suitable on both T1[X ′ ∪ Y ′] and T2[X ′ ∪ Y ′], and such that |X ′ ∪ Y ′| ≥ 2n − k > n212

(in particular, Y ′ contains at least one element denoted y, and |X ′| ≥ n − k). From T2, it213

follows that σ′ is the concatenation (in any order) of an order σx of X ′ suitable for T [X ′]214

and an order σy of Y ′. Assume first that σx appears before σy. Then consider each internal215

node ri of the caterpillar T1 with i ≤ n and a child c labelled with an element X ′. Then this216

child must be ordered before all leaves below ri+1 since the corresponding subtree contains217

all leaves labelled with Y . Thus, the nodes in X ′ are ordered according to σ[X ′], hence218

σx = σ[X ′], and T [X ′] is suitable with σ[X ′]. For the other case, where σy is ordered before219

σx, then for each ri with a child in X ′, this child must be after the subtree with root ri+1220

(containing Y), and the nodes in X ′ are ordered according to the reverse of σ[X ′] (i.e.,221

σx = σ[X ′]). Thus, the reverse of σ[X ′] is suitable for T [X ′], and σ[X ′] as well (this is222

obtained by reversing the permutation of all children of internal nodes of T). In both cases,223

X ′ is a solution for OTDE(T, σ) with |X ′| ≥ n − k. ◀224

2.2 OTCM is NP-complete for trees with unbounded degree225

▶ Theorem 3. The OTCM problem is NP-complete for strict orders and therefore for weak226

orders.227

Proof. First note that OTCM is in NP, since, given an X-tree T with its leaves ordered228

according to an order σ′ on X suitable on T , an order σ and a set L of leaves, the number of229

inversions between σ′ and σ can be counted in O(|L|2). Regarding NP-hardness, we now230

give a reduction from Feedback Arc Set, which is NP-hard [13], to OTCM.231

We consider an instance of the Feedback Arc Set problem, that is a directed graph232

G = (V = {v1, . . . , vn}, A) such that |A| = m and an integer f .233

We now define an instance of the OTCM problem, illustrated in Figure 3. The set X234

of leaf labels is {vj
i | i ∈ [1..n], j ∈ [1..2m]}. We define the order σ(G) in the following way.235

For each arc (vi, vj) of G, whose rank in the lexicographic order is k, we add to σ(G) a kth236

supplementary ordered sequence (which we will later call a “block” corresponding to this arc)237

v2k−1
i v2k−1

j X2k−1
i,j X

2k

i,jv2k
i v2k

j , where Xk′
i,j is the ordered sequence of vk′

i′ where i′ ranges from238

1 to n, excluding i and j, and X
k′

i,j is the reverse of Xk′
i,j (i.e., the ordered sequence of vk′

i′239

where i′ ranges from n down to 1, excluding i and j). The tree T (G) is made of a root with240

n children v1 to vn, each vi having 2m children, the leaves labeled by vk′
i for k′ ∈ [1..2m].241

Figure 3 Illustration of the reduction of Feedback Arc Set to OTCM: a graph G with feedback
arc set S = {(v4, v1)} of size 1 and the corresponding tree T (G) as well as the order σ(G).

Given an ordering σ′ suitable for T , and an inversion (vk
i , vk′

i′) forming an inversion242

between σ(G) and σ′, we say that this pair is short-ranged if k = k′, and long-ranged243

CVIT 2016

23:8 Reordering a tree according to an order on its leaves

otherwise. Furthermore, we say that σ′ is vertex-consistent if, for every i and k < k′, we have244

σ′(vk
i) < σ(vk′

i). Finally, given σ′, we write σ′′ for the permutation of the [1..n] corresponding245

to the children of the root.246

We first claim that for any σ′ suitable for T , there are at least 2
(

n
2
)(2m

2
)

long-range247

inversions between σ′ and σ(G), and this bound is reached if σ′ is vertex-consistent. Indeed,248

pick any pair (vk
i , vk′

i′) with i ≠ i′ and k ̸= k′. Then vk
i <σ(G) vk′

i′ iff k < k′ (since they are in249

blocks k and k′ of σ(G)), respectively, and vk
i <σ′ vk′

i′ iff σ′′(i) < σ′′(i′) (since they are in250

L(T, vi) and L(T, vi′), respectively). Overall, among 4
(

n
2
)(2m

2
)

such pairs of elements, there251

are 2
(

n
2
)(2m

2
)

pairs creating an inversion (which is long-range by definition). For the case252

i = i′, note that pairs (vk
i , vk′

i) do not create any inversion iff σ′ is vertex-consistent, which253

completes the proof of the claim.254

Towards counting the number of short-ranged inversions, we say that an arc (vi, vj) of255

G is satisfied by σ′′ if σ′′(i) < σ′′(j). Let i, j ∈ [1..n] and k ∈ [1..m], and consider the two256

pairs (v2k−1
i , v2k−1

j) and (v2k
i , v2k

j). Then these two pairs are, by construction of T , in the257

same order in σ′ (as defined by σ′′). If the kth arc of G is (vi, vj), then these two pairs258

are also in the same order in σ, i.e., together they account for either 0 or 2 (short-ranged)259

inversions. More precisely they yield 0 short-ranged inversions if (vi, vj) is satisfied by260

σ′′, and 2 inversions otherwise. If the kth arc of G is any other arc, then exactly one of261

(v2k−1
i , v2k−1

j), (v2k
i , v2k

j) forms a short-ranged inversion. Overall a pair {i, j} such that one262

of (vi, vj), (vj , vi) is a satisfied arc yields m−1 short-ranged inversions, a pair {i, j} such that263

one of (vi, vj), (vj , vi) is an unsatisfied arc yields m + 1 short-range inversions, and any other264

pair {i, j} with i ̸= j yields m short-ranged inversions. Overall, if there are f unsatisfied265

arcs, σ′ yields
(

n
2
)
m − m + 2f inversions.266

We can now complete the proof with our main claim: G has a feedback arc set of size267

at most f ⇔ the OTCM problem has a solution with at most 2
(

n
2
)(2m

2
)

+
(

n
2
)
m − m + 2f268

inversions.269

⇒: If G has a feedback arc set F of size f , as G[A−F] is acyclic, we consider an order σ′′270

over n such that for all arcs (vi, vj) in A − F , σ′′(i) < σ′′(j) (i.e., σ′′ is the topological order271

of the vertices in G[A − F]). We now order the children vi of the root of T (G) according to272

this order σ′′ and call σ′ the induced order on the leaves of T (G) (also sorting all leaves vj
i273

below each vi by increasing values of j). Note that σ′ is vertex-consistent, and that an arc274

(vi, vj) is satisfied by σ′′ iff (vi, vj) /∈ F . Thus, σ′ yields 2
(

n
2
)(2m

2
)

+
(

n
2
)
m − m + 2f inversions.275

⇐: Consider an order σ′ suitable for T with at most 2
(

n
2
)(2m

2
)

+
(

n
2
)
m−m+2f inversions.276

Let σ′′ be the corresponding order on the leaves of the root, and let F be the set of arcs277

unsatisfied by σ′′. Since σ′ has at least 2
(

n
2
)(2m

2
)

long-range inversions, it has at most278 (
n
2
)
m − m + 2f short-range inversions, and |F | ≤ f . Finally, since all arcs in A − F are279

satisfied by σ′′, G[A − F] is acyclic and F is a feedback arc set. ◀280

3 A polynomial-time algorithm for fixed-degree trees281

We start by presenting a dynamic programming algorithm for fixed-degree trees, which is282

easy to implement and leads to an algorithm in O(n4) time for binary trees. The FPT283

algorithm presented in the next section has a better complexity but is more complex and284

reuses the dynamic programming machinery presented in this section, which explains why285

we start with this simpler algorithm.286

▶ Theorem 4. The OTDE problem can be solved in time O(d!nd+2) for trees with fixed287

maximum degree d and for strict or weak orders.288

L. Bulteau, P. Gambette, O. Seminck 23:9

Proof. Given a vertex v of a rooted tree T , a (strict or weak) order σ : L(T) → [1..m] and289

two integers l ≤ r ∈ [1..m]. We denote by X (v, l, r) a subset of L(T, v) of maximum size290

such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and ∀ℓ ∈ X (v, l, r), σ(ℓ) ∈ [l, r]. Note that291

X (v, l, r) also depends on T and σ but we simplify the notation by not mentioning them as292

they can clearly be identified from the context.293

Denoting by c1, . . . , ck the children of v in T , we claim that the following formula allows294

to recursively compute X (v, l, r) in polynomial time:295

|X (v, l, r)| = max
permutation π of [1..k]

x1=l≤x2≤...≤xk≤xk+1=r

k∑
i=1

∣∣X (cπ(i), xi, xi+1)
∣∣ if v is an internal node of T ;296

for any leaf ℓ of T , |X (ℓ, l, r)| = 1 if σ(ℓ) ∈ [l, r], 0 otherwise.297

Correctness: We prove by induction on the size of L(v) that X (v, l, r) is indeed a298

subset of L(T, v) of maximum size such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and299

∀ℓ ∈ X (v, l, r), σ(ℓ) ∈ [l, r].300

This is obvious for any leaf, so let us consider a vertex v of T with a set {c1, . . . ck} of301

children. Suppose for contradiction that there exists a set of integers l ≤ r and a subset302

X ′ of L(v) of size strictly greater than X (v, l, r) such that σ[X ′] is suitable with T [X ′] and303

∀ℓ ∈ X ′, σ(ℓ) ∈ [l, r]. We then denote by X ′
1, . . . and X ′

k the sets of leaves L(c1) ∩ X ′, . . .304

and L(ck) ∩ X ′, respectively. Without loss of generality we consider that the children ci305

of v are labeled such that maxℓ∈X′
i
{σ(ℓ)} ≤ minℓ∈X′

i+1
{σ(ℓ)}. For all i ∈ [2..k], we define306

mi = minℓ∈X′
i
{σ(ℓ)}, m1 = l and mk+1 = r. Using the induction hypothesis we know that307

for each i ∈ [1..k], |X ′
i| ≤

∣∣∣X (v, minℓ∈X′
i
{σ(ℓ)}, maxℓ∈X′

i
{σ(ℓ)})

∣∣∣, so |X ′
i| ≤ |X (v, mi, mi+1)|308

because
[
minℓ∈X′

i
{σ(ℓ)}, maxℓ∈X′

i
{σ(ℓ)}

]
⊆ [mi, mi+1]. Therefore, |X ′| =

∑k
i=1 |X ′

i| ≤309

∑k
i=1 |X (v, mi, mi+1)| so by definition of σ[X (v, l, r)], |X ′| ≤ σ[X (v, l, r)]: contradiction!310

We therefore obtain a correct solution of OTDE(T, σ) by computing X (root(T), 0, m).311

Running-time: For each v, we compute the table of the O(n2) values of X (v, l, r) for all312

intervals [l, r]. Each of these values can be computed by generating the k! permutations of313

children of v to consider any possible order among the children and splitting the interval [l, r]314

into any possible configurations of d consecutive intervals with integer bounds partitioning315

[l, r], which can be done in time O(nd−1). So the computation of each X (v, l, r) is done in time316

O(d!nd−1), therefore the total computation of all X (v, l, r) is done in time O(n×n2 ×d!nd−1),317

that is in O(d!nd+2). ◀318

4 An FPT algorithm for the deletion-degree parameter for OTDE319

We recall that with a reduction of OTDE to 3-Hitting Set [10], using the best algorithm320

known so far to solve this problem4, we can obtain an algorithm to solve OTDE O∗(2.08k) [23],321

where k is the number of leaves to delete and the O∗ notation ignores the polynomial factor.322

In this section we obtain an FPT algorithm in time O(n4d∂2∂), where d is the maximum323

degree of the tree and ∂ is the deletion-degree of the solution.324

▶ Theorem 5. The OTDE problem parameterized by the deletion-degree ∂ of the solution is325

FPT and can be solved in time O(n4d∂2∂) for strict or weak orders.326

We adapt the dynamic programming algorithm from Theorem 4, using a vertex cover327

subroutine to have a good estimation of the permutation of the children of each node.328

4 http://fpt.wikidot.com/fpt-races

CVIT 2016

23:10 Reordering a tree according to an order on its leaves

Figure 4 An instance (T, σ) of OTDE (top-left), with a vertex v having children set Cv =
{a, b, c, d, e}. The conflict graph of Cv (right) has a size-2 vertex cover K = {b, d}. Based on the
span of each vertex (bottom-right), the dynamic programming algorithm tests permutations of Cv

such that (a, c, e) appear in this order, interleaved in any possible way with b and d. In particular,
the final solution corresponds to the permutation (a c d b e) of Cv. Note that since σ may be a weak
order (two leaves are labelled 3 in the example), the conflict graph does not correspond exactly to
the intersection graph of the span intervals, e.g. vertices a and c are not in conflict, even though
their spans overlap.

We first introduce some definitions (see Figure 4 for a illustration of these definitions329

and the algorithm in general). Given any vertex v of T , let Cv be the (independent) set of330

children of v, and let Gv be the conflict graph with vertex set Cv and with one edge per331

conflict. Let K be a vertex cover of Gv. Then the vertices of Cv \ K have a canonical order332

(w1, . . . , wk′), with k′ = |Cv \ K| and wi ⪯σ wj for all i ≤ j (ties may happen when two333

children contain a single leaf each which are equal, such ties are broken arbitrarily). We say334

that P ⊆ Cv is a prefix of Cv wrt. K if P \ K is a prefix of this order (i.e., for some i ≤ k′,335

P \ K = {w1, . . . , wi}). In other words, ignoring all subtrees below vertices of K, all leaves336

below vertices of a prefix P are necessarily ordered before leaves below vertices outside of P .337

▶ Lemma 6. If X ′ is a solution of OTDE with deletion-degree ∂, then for any vertex v of T ,338

the conflict graph Gv admits a vertex cover of size at most ∂.339

Proof. Given a subset X ′ of X, we say that a node v of T has a deletion if some L(v) ̸⊆ X ′,340

i.e., if v has a leaf in X \ X ′. Let {u, v} be any conflict (edge) of the conflict graph Gv, then341

at least one of u, v has a deletion for X ′ (indeed, the conflict involves three leaves a, b, c, of342

which at least one must be deleted). Thus, the vertices with a deletion in Gv form a vertex343

cover of this graph. The lemma follows from the fact that at most ∂ vertices have a deletion344

in each conflict graph. ◀345

The first step of our algorithm consists in computing, for each node v of the graph, the346

set C of children of v, its conflict graph Gv, and a minimum vertex cover Kv of GC . Since347

each Kv has size at most ∂ (by Lemma 6), Kv can be computed in time O(1.3∂ + ∂n) [5],348

and overall this first step takes O(1.3∂n + ∂n2).349

We proceed with the dynamic programming part of our algorithm. To this end, we350

generalize the table X to sets of nodes (instead of only v) as follows: X (P, l, r) corresponds351

to the largest set X of leaves in
⋃

u∈P L(u) such that σX is suitable for T [X]. Note that for352

a node v with children set C, X (v, l, r) = X ({v}, l, r) = X (C, l, r).353

We first compute X ({v}, l, r) for each leaf v: clearly X ({v}, l, r) = {u} if l ≤ σ(v) ≤ r,354

and X ({v}, l, r) = ∅ otherwise. For each internal vertex v (visiting the tree bottom-up), we355

L. Bulteau, P. Gambette, O. Seminck 23:11

obtain X ({v}, l, r) by first computing X (P, l, r) for each prefix P of Cv by increasing order356

of size, using the following formulas:357

|X (P, l, r)| = ∅ if P = ∅358

= max
x∈[l..r], u∈P

P \{u} prefix of Cv

|X (P \ {u}, l, x)| + |X ({u}, x, r)|359

|X ({v}, l, r)| = |X (Cv, l, r)|360
361

Each vertex v has at most d2∂ prefixes, so the dynamic programming table X has at362

most n3d2∂ cells to fill. For each prefix P , there exist at most ∂ + 1 vertices u ∈ P such that363

P \ {u} is a prefix (u can be any vertex in P ∩ Kv, or the maximum vertex for ⪯σ in P \ Kv).364

Overall, the max is taken over O(n∂) elements, and X can be filled in time O(n4d∂2∂).365

Before proving the correctness of the above formula, we need a final definition: given366

a set of leaves X ′ ⊆ X and a vertex v of T , we write spanX′(v) for the smallest interval367

containing σ(u) for each leaf u ∈ L(u) ∩ X ′ (note that spanX′(v) may be empty, if all its368

leaves are deleted in X ′).369

▶ Lemma 7. Let X ′ be a solution of OTDE(T, σ), v ∈ T and 1 ≤ l ≤ r ≤ m such that370

spanX′(v) ⊆ [l, r]. Then there exists a permutation (c1 . . . ck) of the children of v and371

integers x0 = l ≤ x1 ≤ . . . ≤ xk = r such that, for each i ≤ k,372

(a) spanX′(ci) ⊆ [xi−1, xi], and373

(b) Pi = {c1, . . . , ci} is a prefix of the children of v wrt. σ.374

Proof. Recall that we write Cv and Kv, respectively, for the set of chidren of v and the375

vertex cover in the conflict graph induced by these children. For each element c of Cv with a376

non-empty span, let x(c) = max(span(c)). For each element wi of Cv \ Kv with an empty377

span (taking i for the rank according to the canonical order), let x(wi) = x(wi−1) (and378

x(w1) = l for i = 1). For the remaining vertices (in Kv with an empty span), set x(c) = l.379

Finally, order vertices c1, . . . , ck by increasing values of x(ci) (breaking ties according to the380

canonical order when applicable, or arbitrarily otherwise), and set xi = x(ci).381

Condition (a) follows from the fact that X ′ is a solution for OTDE(T, σ), so that the382

span covered by the leaves under siblings do not overlap. For condition (b) we refer to the383

definition of prefix: each Pi \ Kc is indeed a prefix in the canonical ordering of Cv \ Kv. ◀384

The dynamic programming formula follows from the above remark: one can build the385

solution by incrementing prefixes one vertex at a time (rather than trying all possible386

permutations of children, as in Theorem 4).387

5 Optimizing OTCM and OTDE are two different things388

In order to ensure that finding the smallest k such that OTCM or OTDE outputs a positive389

answer actually consists in optimizing different criteria, we provide in Figure 5 an example of390

X-tree and an order of its leaves where the order reaching the best k for a positive answer of391

the OTCM problem does not provide the optimal value for the number of leaves to delete in392

a positive answer of OTDE and where the best k for a positive answer of the OTDE problem393

does not provide an optimal value for the number of inversions for a positive answer of the394

OTCM problem.395

We checked the optimality for both criteria by implementing the “naive” dynamic396

programming O(n2) algorithm described in Section 2.1 of [10] to solve the OTCM problem397

and the O(n4) algorithm described in Section 3 to solve the OTDE problem on binary trees.398

CVIT 2016

23:12 Reordering a tree according to an order on its leaves

Both implementations are available in Python, under the GPLv3 licence, at https://github.399

com/oseminck/tree_order_evaluation, as well as the file inputCounterExample1b.txt400

containing the Newick encoding for the tree of Figure 5.401

T σ1 σ σ σ2 T

Figure 5 Two planar embeddings of a rooted tree T : the one on the left is optimal for the OTDE
problem (deleting the 3 gray leaves makes the order σ suitable on T restricted to the remaining
leaves, but the order σ1 suitable on T has 11 inversions, shown with empty circles, with σ); the
other one is optimal for the OTCM problem with the order σ2 suitable on T having 10 inversions
with σ but not for the OTDE problem (4 leaves, for example the 4 gray ones, need to be deleted to
make the order σ suitable on T restricted to the remaining leaves).

6 Experiments and discussion402

In this section, we investigate the potential for use of OTCM and OTDE in applications403

where the tree of elements is obtained from a clustering algorithm taking as input distances404

between those elements, and where we want to test whether this clustering reflects some405

intrinsic order on the elements, for example the chronological order. We both test the running406

time of OTCM and OTDE on real data, and the performance of OTDE on simulated data407

to detect possibly misplaced leaves in the order.408

The first experiment deals with text data: the CIDRE corpus [20] that contains the works409

of 11 French 19th century fiction writers dated by year (every file contains a book that is410

annotated with its year of writing). We apply apply hierarchical clustering on the different411

corpora using the AgglomerativeClustering class from the package sklearn [18]. Distance412

matrices on which the clustering is based are obtained by using the relative frequencies413

of the 500 most frequent tokens5 in each corpus. Distance matrices were generated using414

the R package stylo [8], with the canberra distance metric. We obtain the results given in415

Table 1, which provides the running time in milliseconds of the algorithms we implemented416

to solve OTCM and OTDE. They show that both algorithms on binary trees are quick417

enough to handle typical instances of the OTCM and the OTDE problems relevant for digital418

humanities, a few milliseconds for the first one and a few seconds for the second one, for419

5 A token is (a part of) a word form or a punctuation marker. The last sentence would yield the following
tokens: [“A”, “token”, “is”, “(”, “a”, “part”, “of”, “)”, “a”, “word”, “form”, “or”, “a”, “punctuation”,
“marker”, “.”] Deliberately, we do not use the term “word”, because the word can be seen as a linguistic
unit of form and meaning, and henceforward “punctuation marker” would be one word and the period
in the end of the sentence would not be one.

L. Bulteau, P. Gambette, O. Seminck 23:13

tree # leaves OTCM
time # inversions pOT CM

OTDE
time

deleted
leaves pOT DE

Ségur 22 1 40 0.24 200 9 1
Féval 23 2 47 0.38 268 8 0

Aimard 24 1 35 0 401 8 0
Lesueur 31 1 48 0 676 13 0
Zévaco 29 1 42 0 727 11 0
Zola 35 2 60 0 1203 9 0

Gréville 36 2 105 0 2211 18 1
Ponson 42 3 167 2.23 3447 18 0
Balzac 59 4 248 0 8292 34 0
Verne 58 3 183 0 13446 27 0
Sand 62 4 283 0 17557 39 1
Table 1 Results of our implementations for problems OTCM and OTDE on binary trees generated

from corpora of French novels of the 19th century. Time durations are given in milliseconds.

instances of about 50 elements in the tree and in the order.420

Investigating precisely whether the numbers of inversions or deleted leaves shown in421

Table 1 are sufficiently small to reflect consistency with a chronological signal is beyond the422

scope of this paper. However, we also provide pOT CM and pOT DE , the percentage of cases423

when the best order on the leaves of the tree has the same number of inversions, or less424

than the chronological order, among 10000 randomly generated orders for OTCM and 100425

randomly generated orders for OTDE, respectively6. These numbers illustrate that in all426

cases, it is unlikely that the observed optimal numbers of inversions or deleted leaves are due427

to chance, as we get equal or smaller values of inversions or deleted leaves on less than 3% of428

random orders (for Ponson du Terrail the number of inversions is 167 or less for 2.23% of429

random orders; for one of the 10 000 simulated random orders, it reached as little as 124430

inversions). These preliminary results obtained thanks to reasonably small running times431

open new perspectives in investigating further the practical use of these algorithms, and432

comparing their results with other methods to search for signals of chronological evolution in433

textual data [21].434

Our second experiment involves simulated data, to check whether, in the case the tree is435

built to be consistent with the input order, our algorithm finding the minimum of leaves in436

the tree to remove inconsistencies with the order is able to detect errors that we intentionally437

add to the order. We produced 100 instances of the OTDE problem, for each chosen value of438

n, the number of leaves, and e < n, the number of errors, in the following manner:439

1. we randomly pick n distinct integers from the interval [0, 999], which will be our set X of440

leaves;441

2. we build a distance matrix in which the distance between two elements from X is simply442

the absolute difference between both; we add some noise to this matrix by adding or443

subtracting in each cell a random quantity equal to at most 10% of the cell value, obtaining444

a noisy matrix, from which we build an X-tree T using the AgglomerativeClustering445

class from the package sklearn;446

3. we randomly pick a set Le of e leaves in X and replace their value by another integer,447

6 We chose to generate less random orders for OTDE in our simulations, as our algorithm is slower to
solve this problem than OTCM.

CVIT 2016

23:14 Reordering a tree according to an order on its leaves

n = # leaves e = # errors proportion of cases when L = Le when |L − Le| = 1
20 1 0.79 1
20 2 0.62 0.96
20 3 0.39 0.88
20 4 0.33 0.77
20 5 0.27 0.67
50 1 0.93 1
50 2 0.83 0.99
50 3 0.70 0.98
50 4 0.59 0.91
50 5 0.56 0.90

Table 2 Results of the attempts to perfectly detect the set Le of randomly relabeled leaves in
simulated trees (when L = Le); the situation when |L − Le| = 1 corresponds to finding only e − 1
leaves among the e randomly relabeled leaves).

randomly chosen from the interval [0, 999], distinct from other leaf labels; σ is the set of448

leaves ordered by increasing value taking into account these new values;449

4. by solving the OTDE problem on T and σ, we compute the minimum set L of leaves to450

remove to make σ[X − L] suitable on T [X − L], and check whether L = Le.451

This experiment simulates the situation where we would have dating errors on the elements452

we clustered in a tree. Note that like in the case of dating errors, the error in our simulation453

may not change the overall order on the leaves. Table 2 provides, for each chosen values of454

n and e, the proportion of simulated instances of OTDE where L = Le, that is when our455

algorithm removed exactly the e leaves whose label had been randomly modified. We can456

observe that this happens in a majority of cases only when the number of modified leaves is457

small compared with the total number of leaves (up to 2 for 20 leaves, up to 4 for 50 leaves).458

Solving OTDE still allows to identify e − 1 among the e modified leaves in a majority of459

cases in all our experiments.460

7 Conclusion and perspectives461

In this article, we addressed two problems initially introduced with motivations from bioin-462

formatics, OTCM and OTDE. We stated them in a more simple framework with a tree463

and an order as input, instead of two trees as was the case when they were introduced,464

opening perspectives for new practical uses in digital humanities and proving that they are465

not equivalent. We proved that both problems, as well as a problem on two trees, TTDE,466

are NP-complete in the general case. We gave a polynomial-time algorithm for OTDE on467

trees with fixed maximum degree and an FPT algorithm in a parameter possibly smaller468

than the size of the solution for arbitrary trees.469

We also investigated their potential for practical use, checking that the algorithms we470

implemented with open source code in Python to solve them are well suited for applications471

in digital humanities in terms of running time. We also observed on simulated data that it472

is possible to identify a small number of leaves for which there would be an ordering error473

if the tree is built from distance data derived from an order on its leaves. Future research474

includes the search for FPT algorithms, with relevant parameters, for OTCM and TTDE.475

L. Bulteau, P. Gambette, O. Seminck 23:15

References476

1 Mukul S Bansal, Wen-Chieh Chang, Oliver Eulenstein, and David Fernández-Baca. Gen-477

eralized binary tanglegrams: Algorithms and applications. In International Conference on478

Bioinformatics and Computational Biology, pages 114–125. Springer, 2009. doi:10.1007/479

978-3-642-00727-9_13.480

2 Ziv Bar-Joseph, Erik D. Demaine, David K. Gifford, Nathan Srebro, Angèle M. Hamel, and481

Tommi S. Jaakkola. K-ary clustering with optimal leaf ordering for gene expression data.482

Bioinformatics, 19(9):1070–1078, 2003. doi:10.1093/bioinformatics/btg030.483

3 Ziv Bar-Joseph, David K Gifford, and Tommi S Jaakkola. Fast optimal leaf ordering for hierar-484

chical clustering. Bioinformatics, 17(suppl 1):S22–S29, 2001. doi:10.1093/bioinformatics/485

17.suppl_1.S22.486

4 Ulrik Brandes. Optimal leaf ordering of complete binary trees. Journal of Discrete Algorithms,487

5(3):546–552, 2007. doi:10.1016/j.jda.2006.09.003.488

5 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical489

Computer Science, 411(40):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.490

6 Tim Dwyer and Falk Schreiber. Optimal leaf ordering for two and a half dimensional phyloge-491

netic tree visualisation. In APVis ’04: Proceedings of the 2004 Australasian symposium on492

Information Visualisation, volume 35, pages 109–115, 2004. doi:10.5555/1082101.1082114.493

7 Denise Earle and Catherine B. Hurley. Advances in dendrogram seriation for application494

to visualization. Journal of Computational and Graphical Statistics, 24(1):1–25, 2015. doi:495

10.1080/10618600.2013.874295.496

8 Maciej Eder, Jan Rybicki, and Mike Kestemont. Stylometry with R: a package for computa-497

tional text analysis. R Journal, 8(1):107–121, 2016. URL: https://journal.r-project.org/498

archive/2016/RJ-2016-007/index.html.499

9 Henning Fernau, Michael Kaufmann, and Mathias Poths. Comparing trees via crossing mini-500

mization. In International Conference on Foundations of Software Technology and Theoretical501

Computer Science, pages 457–469. Springer, 2005. doi:10.1007/11590156_37.502

10 Henning Fernau, Michael Kaufmann, and Mathias Poths. Comparing trees via crossing503

minimization. Journal of Computer and System Sciences, 76(7):593–608, 2010. doi:10.1016/504

j.jcss.2009.10.014.505

11 Philippe Gambette, Olga Seminck, Dominique Legallois, and Thierry Poibeau. Evaluat-506

ing hierarchical clustering methods for corpora with chronological order. In EADH2021:507

Interdisciplinary Perspectives on Data. Second International Conference of the European508

Association for Digital Humanities, Krasnoyarsk, Russia, September 2021. EADH. URL:509

https://hal.archives-ouvertes.fr/hal-03341803.510

12 Michael Hahsler, Kurt Hornik, and Christian Buchta. Getting things in order: an introduction511

to the R package seriation. Journal of Statistical Software, 25(3):1–34, 2008. doi:10.18637/512

jss.v025.i03.513

13 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer514

computations, pages 85–103. Springer, 1972.515

14 Cyril Labbé and Dominique Labbé. Existe-t-il un genre épistolaire? Hugo, Flaubert et516

Maupassant. In Nouvelles Journées de l’ERLA, pages 53–85. L’Harmattan, 2013.517

15 Jean-Marc Leblanc. Analyses lexicométriques des vœux présidentiels. ISTE Group, 2016.518

16 Bojan Mohar. Face covers and the genus problem for apex graphs. Journal of Combinatorial519

Theory, Series B, 82(1):102–117, 2001. doi:10.1006/jctb.2000.2026.520

17 Hermann Moisl. How to visualize high-dimensional data: a roadmap. Journal of Data Mining521

& Digital Humanities, 2020. doi:10.46298/jdmdh.5594.522

18 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,523

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,524

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine525

Learning Research, 12:2825–2830, 2011.526

CVIT 2016

23:16 Reordering a tree according to an order on its leaves

19 Ryo Sakai, Raf Winand, Toni Verbeiren, Andrew Vande Moere, and Jan Aerts. dendsort:527

modular leaf ordering methods for dendrogram representations in R. F1000Research, 3, 2014.528

doi:10.12688/f1000research.4784.1.529

20 Olga Seminck, Philippe Gambette, Dominique Legallois, and Thierry Poibeau. The corpus for530

idiolectal research (CIDRE). Journal of Open Humanities Data, 7:15, 2021. doi:10.5334/531

johd.42.532

21 Olga Seminck, Philippe Gambette, Dominique Legallois, and Thierry Poibeau. The evolution533

of the idiolect over the lifetime: A quantitative and qualitative study on French 19th century534

literature, 2022. Under review.535

22 Balaji Venkatachalam, Jim Apple, Katherine St John, and Dan Gusfield. Untangling tan-536

glegrams: comparing trees by their drawings. IEEE/ACM Transactions on Computational537

Biology and Bioinformatics, 7(4):588–597, 2010. doi:10.1109/TCBB.2010.57.538

23 Magnus Wahlström. Algorithms, measures and upper bounds for satisfiability and related prob-539

lems. PhD thesis, Department of Computer and Information Science, Linköpings universitet,540

2007. URL: http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Aliu%3Adiva-8714.541

HAL Id: hal-03540226
https://inria.hal.science/hal-03540226v2

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Normalisation of Early Modern French
Rachel Bawden, Jonathan Poinhos, Eleni Kogkitsidou, Philippe Gambette,

Benoît Sagot, Simon Gabay

To cite this version:
Rachel Bawden, Jonathan Poinhos, Eleni Kogkitsidou, Philippe Gambette, Benoît Sagot, et al.. Auto-
matic Normalisation of Early Modern French. LREC 2022 - 13th Language Resources and Evaluation
Conference, European Language Resources Association, Jun 2022, Marseille, France. pp.3354-3366,
�10.5281/zenodo.5865428�. �hal-03540226v2�

Automatic Normalisation of Early Modern French

Rachel Bawden1 Jonathan Poinhos2 Eleni Kogkitsidou2

Philippe Gambette2 Benoı̂t Sagot1 Simon Gabay3

1Inria, Paris, France
2LIGM (UMR 8049), Université Gustave Eiffel, CNRS, 77454 Marne-la-Vallée, France

3Université de Genève, Switzerland
firstname.lastname@{inria.fr,univ-eiffel.fr,unige.ch},

Abstract
Spelling normalisation is a useful step in the study and analysis of historical language texts, whether it is manual analysis by
experts or automatic analysis using downstream natural language processing (NLP) tools. Not only does it help to homogenise
the variable spelling that often exists in historical texts, but it also facilitates the use of off-the-shelf contemporary NLP
tools, if contemporary spelling conventions are used for normalisation. We present FREEMnorm, a new benchmark for the
normalisation of Early Modern French (from the 17th century) into contemporary French and provide a thorough comparison of
three different normalisation methods: ABA, an alignment-based approach and MT-approaches, (both statistical and neural),
including extensive parameter searching, which is often missing in the normalisation literature.

Keywords: Digital Humanities, Normalisation, Spelling, Modern French, Machine Translation, Historical

1. Introduction
Computational approaches have recently been playing
an increasing role in the humanities (Gabay, 2021),
especially concerning the study of textual documents.
Historical documents are particularly interesting, as
they are an invaluable source of historical information
and are crucial witnesses of language evolution.
Whether documents are to be studied manually by
philologists and literary experts or analysed automat-
ically using downstream natural language processing
(NLP) tasks such as part-of-speech (PoS) tagging and
parsing, a useful preliminary step is normalisation,
which consists in modernising the spelling of the doc-
uments to conform to contemporary spelling conven-
tions. Normalisation has the effect of (i) reducing
spelling variation present in historical documents, of-
ten written at a time spelling was not standardised, and
(ii) reducing the gap between the historical state of the
language and the contemporary state. Importantly, this
allows us to apply off-the-shelf NLP tools to old texts
and limit the performance drop that can usually be ex-
pected, for example for tagging and parsing (Petters-
son et al., 2013b) or geographical named entity recog-
nition (Kogkitsidou and Gambette, 2020).
There has been a considerable amount of previous re-
search in historical spelling normalisation, with a range
of methods being developed, including manually de-
veloped rules (Porta et al., 2013; Baron and Rayson,
2009; Riguet, 2019), those exploiting edit distances
and other external resources such as lexicons (Mitankin
et al., 2014) and machine translation (MT) approaches,
both statistical (Scherrer and Erjavec, 2013; Domingo
and Casacuberta, 2018a) and neural (Bollmann and
Søgaard, 2016; Hämäläinen et al., 2018). Despite
this, questions still remain regarding which method is
the most effective, particularly between statistical MT
(SMT) and neural MT (NMT) approaches. There has

for example been little research in optimising these
models for the particular task, which could lead to false
conclusions being drawn about which model is best;
as has been previously shown for low-resource tasks,
neural models in particular are sensitive to model size,
training parameters and the degree of subword seg-
mentation applied to texts (Sennrich and Zhang, 2019;
Fourrier et al., 2021).
Our focus in this paper is on the normalisation into
contemporary French of Early Modern French (also
known as Modern French or Classical French), which
is French from the 17th century. Despite several re-
cent efforts (Gabay and Barrault, 2020; Gabay et al.,
2019; Riguet, 2019), there has so far been very little re-
search carried out on spelling normalisation for histori-
cal French, and so we aim to fill this gap. Figure 1 illus-
trates a few of the normalisation types observed, from
simple typographic changes (e.g. T → s), changes to
segmentation (long temps ‘a long time’ → longtemps),
changes reflecting language change (eTtoit ‘(s/he) was’
→ était) and the use of classical false etymological
spellings (e.g. ç being used in Modern French Tçavoir
‘to know’ as a link to Latin scire, from which it does
not originate).
In this paper, we present the parallel normalisation
corpus, FREEMnorm (for Early Modern French), on
which we train and evaluate, and, in addition to
baseline models, we compare three methods: (i) an
alignment-based approach, called ABA, using auto-
matically learned word correspondences from a paral-
lel corpus, (ii) phrase-based SMT, and (iii) NMT, com-
paring an LSTM model (Bahdanau et al., 2015) and a
Transformer (Vaswani et al., 2017). We find that de-
spite extensive parameter optimisation for NMT mod-
els, SMT produces the best results overall, with all
methods largely exceeding the baselines. Our compar-
ison shows that the methods exhibit quite different be-

Figure 1: A Modern French sentence and its contemporary French normalisation.

haviour in terms of how conservative or inventive they
are, which could be useful information depending on
the downstream task (e.g. as a pre-annotation tool for
manual annotation or a downstream NLP application).
Our main contributions can be summarised as follows:

• Introduction of a new benchmark for the normal-
isation of Modern French, which can be used in
further research.

• Extensive experiments comparing an alignment-
based approach (ABA) with three MT approaches
(SMT, LSTM and Transformer), with best results
achieved by SMT. We also show that a lexicon-
based post-processing step can systematically im-
prove over all other methods tested.

• We freely distribute the data,1 scripts and state-of-
the-art normalisation models.2,3

2. Related Work
A considerable amount of work has been carried out
in historical spelling normalisation, across various lan-
guages, with research dating back to the 1980s (Fix,
1980). A range of different approaches have been
developed, including rule-based (Porta et al., 2013;
Riguet, 2019), the use of various types of edit-distance
(Hauser and Schulz, 2007; Bollmann, 2012; Petters-
son et al., 2013a) and MT-style approaches, both sta-
tistical (Vilar et al., 2007; Scherrer and Erjavec, 2013;
Ljubesic et al., 2016; Domingo et al., 2017) and neural
(Korchagina, 2017; Domingo and Casacuberta, 2018b;
Tang et al., 2018). Interestingly, all of these approaches
remain useful today, thanks to their different strengths,
depending on the type of normalisation and the amount
of data available (Bollmann, 2019).

2.1. Word Lists, Rules and Edit-based
Methods

Approaches relying on word lists, consisting in simply
replacing historical variants by their normalised equiv-
alent have been developed in several languages: En-
glish (Reynaert et al., 2012), German, Portuguese (Pi-
otrowski, 2012) and Slovene (Erjavec et al., 2011).

1
https://doi.org/10.5281/zenodo.5865428

2
https://github.com/rbawden/ModFr-Norm

3See https://freem-corpora.github.io for the project page.

Many rule-based and edit-distance-based approaches
are unsupervised (i.e. they do not require parallel data),
which is a considerable advantage, especially for his-
torical varieties for which annotated data is not read-
ily available. Rules can be developed manually by
experts (Porta et al., 2013; Baron and Rayson, 2009;
Riguet, 2019) or be extracted from a comparison of his-
torical and modern word lists or parallel data if this is
available (Bollmann et al., 2011).
The use of edit distance, using for example Levenshtein
distance is often a strong baseline (Pettersson et al.,
2013a), due to the fact that the surface forms of his-
torical and contemporary spellings are often very sim-
ilar and the alignment between both words and char-
acters in the two varieties is almost perfectly mono-
tonic. Basic edit-distance can be enhanced with spe-
cific weights for different edits (Bollmann et al., 2011)
or based on characters or character groups (Hauser and
Schulz, 2007; Bollmann, 2012), given the observation
that certain errors are more serious than others.

2.2. Normalisation as MT
MT approaches to the problem have been popular, with
the historical and modern states of the language being
treated as the source and target languages respectively.

Characters, Subword or Words? Most previous re-
search has focused on character-based MT, which mod-
els transformations at the level of individual characters
(Vilar et al., 2007; Scherrer and Erjavec, 2013; Petters-
son et al., 2013b; Domingo and Casacuberta, 2021),
which makes sense for the task of spelling normali-
sation, as it often involves local transformations and
largely monotonic alignments between source and tar-
get sentences. However, there has since been work
exploring word translation, subword translation (Tang
et al., 2018) or a mixture of these (Vilar et al., 2007;
Domingo and Casacuberta, 2021). It is rare however
for works in historical spelling normalisation to explore
the optimal degree of segmentation, although Tang et
al. (2018) do find subwords to be more effective than
character-based: character-based segmentation offers
a greater possibility for generalisation with the caveat
that it requires the model to learn to translate longer
sequences and learn patterns better, whereas word or
subword segmentation can exploit models’ ability to

memorise, but may run the risk of limited generalisa-
tion, especially to unseen or less frequent words.
SMT or NMT? The first approaches were with SMT
(Koehn et al., 2007), which proved more effective than
rule-based and edit-distance based approaches (Pet-
tersson et al., 2014; Hämäläinen et al., 2018; Boll-
mann, 2019), when there is parallel data available, and
even when this data is produced synthetically (Scherrer
and Erjavec, 2013; Domingo and Casacuberta, 2018a).
NMT approaches to historical spelling normalisation
were developed as it took off in the domain of general
MT (Bollmann and Søgaard, 2016; Hämäläinen et al.,
2018). Comparisons between SMT and NMT show dif-
ferent results, with SMT being superior in some cases
(Domingo and Casacuberta, 2018a), and NMT in oth-
ers (Bollmann, 2019), provided enough parallel data is
available (Bollmann, 2019). Importantly, the methods
appear to have different behaviours and therefore their
own strengths and weaknesses, meaning that a single
method (including rule-based approaches) is not nec-
essarily a systematically better choice (Hämäläinen et
al., 2018; Robertson and Goldwater, 2018).
Word Translation vs. Sentence Translation A con-
siderable portion of the research in historical normali-
sation is based on the normalisation of word lists, so of
words in isolation. However, as discussed in (Ljubesic
et al., 2016), it can be beneficial in some contexts to
normalise whole sentences (where there is ambiguity in
the normalised form that should be chosen). This has
the disadvantage of creating longer sequences to pro-
cess, but is necessary in order to hope to handle all phe-
nomena. The development of parallel corpora rather
than word lists has encouraged research in this direc-
tion (Tjong Kim Sang et al., 2017; Gabay and Barrault,
2020; Ortiz Suarez et al., 2022).

2.3. Normalisation for Historical French
Despite there being a plethora of research on histori-
cal spelling normalisation, little research has been done
so far on historical French, with most work focusing
on Dutch, German, Hungarian, Slovene, and Swedish,
helped by the existence of benchmark data (Dipper and
Schultz-Balluff, 2013) and shared tasks (Ljubesic et al.,
2016; Tjong Kim Sang et al., 2017).
A collaborative word list associating normalised ver-
sions of historical words in French was started in 2009
on the Wikisource digital library,4 which is available
for automatic normalisation through word substitu-
tion (The French Wikisource Community, 2022). Re-
cently, there has been some preliminary research, with
the development of a parallel corpus for the normalisa-
tion of Modern French (from the 17th c.) (Ortiz Suarez
et al., 2022) and first baselines, including rule-based
(Riguet, 2019) and NMT-style approaches (Gabay et
al., 2019; Gabay and Barrault, 2020). Gabay and Bar-
rault (2020) compare character-based SMT and NMT

4On 17th January 2022, the whole list contains 15,470
words and expressions and their normalised equivalents.

at different granularities (words, subwords and char-
acters): NMT outperformed SMT, and for NMT, the
best input representations were found to be words, then
characters, then subwords. However, they do not seem
to perform a comparison of different levels of sub-
word segmentation or of different sizes of architecture,
which has been shown to be important when draw-
ing conclusions about the usability of NMT in low-
resource settings (Sennrich and Zhang, 2019).

3. Approaches Compared
We present and compare several approaches, represent-
ing a wide range of techniques: (i) an alignment-based
method using a parallel corpus (Section 3.1), (ii) statis-
tical MT (Section 3.2.1), (iii) neural MT, testing both
LSTM and Transformer models (Section 3.2.2). In ad-
dition to comparing these approaches to two baselines
described in Section 6.1, we also assess the impact of a
lexicon-based post-processing described in Section 3.3.

3.1. ABA: Alignment-based
The ABA method (short for alignment-based method),
is a hybrid approach consisting of (i) word-level trans-
formation rules that are automatically learned from an
aligned corpus and (ii) character-level transformation
rules, which were manually designed by observing fre-
quent character transformations in the aligned corpus.
The ABA normalisation method, which has similari-
ties with the approach of VARD2 developed for En-
glish (Baron and Rayson, 2009), works as follows.

Creation of a Word Substitution Lexicon The first
step is to learn a word replacement lexicon using a par-
allel training set. This is done using the classical dy-
namic programming Needleman-Wunsch alignment al-
gorithm (Needleman and Wunsch, 1970) to optimally
align tokenised parallel sentences at the token level,
adding a score of 4 for matching words in lowercase
(or for et and & ‘and’ which are considered equiv-
alent) and a penalty of -1 for word insertions, dele-
tions or mismatches if the non-matching words have
a weighted Levenshtein distance of at least 4 or at least
the length of each word. For mismatches between
words at weighted Levenshtein distance d < 4 and
strictly smaller than the length of both words, 4 − d
is the mismatch score taken into account by the align-
ment algorithm. Note that the weighted Levenshtein
distance is computed with a penalty of 1 for insertions
and deletions and 2 for character mismatches. These
scores were adjusted experimentally after considering
the alignment results on a training corpus.

Substitution Step The second step uses this replace-
ment lexicon as well as a contemporary French lex-
icon built by combining Morphalou 3.1 (ATILF,
2019) with lexicons of proper nouns developed for
CasEN 1.4 (Maurel et al., 2011): CasEN Dico.dic,
Prolex-Unitex-BestOf 2 2 fra.dic (CasEN
Team, 2019) and Prolex-Unitex 1 2.dic (Pro-
lex Team, 2013). It proceeds in the following way:

after simple tokenisation5 of the input text, for each
token: 1) if it is present in the contemporary French
lexicon, it is kept as it is; 2) otherwise, if it is present
in the word replacement lexicon, it is replaced by the
associated normalised version in this lexicon; 3) other-
wise, it is transformed by a combination of character
replacement rules detailed in Appendix A, designed af-
ter careful analysis of the aligned words in the training
corpus and available in the apply rules function of
the modern.py script in ABA’s distribution:6 among
the obtained candidate tokens, the first one found in the
contemporary French lexicon is selected; 4) otherwise,
if no candidate generated by character transformation
rules is selected, then the original token is kept.

3.2. MT: SMT and NMT
Following promising results for other languages
(Scherrer and Erjavec, 2013; Tang et al., 2018) and
Modern French (Gabay et al., 2019; Gabay and Bar-
rault, 2020), we provide a comparison of phrase-based
statistical MT and NMT.

3.2.1. Phrase-based SMT
The aim of SMT is to automatically find the most prob-
able translation t̂ given a source sentence s such that
t̂ = argmaxt∈T P (s|t)P (t) , where P (s|t) models
the adequacy of translation, and P (t) the target lan-
guage model probability, which can be seen as a mea-
sure of the fluency/grammaticality of the prediction.
The state of the art in SMT is phrase-based MT, where
a prediction’s score is the sum of scores from various
scoring components, including a phrase table (for the
translation probability), a language model (for the lan-
guage model probability), a reordering (or distortion)
model and a length penalty. The main implementation
used for phrase-based SMT is the Moses toolkit (Koehn
et al., 2007), which we use here in this paper.
Phrase-based SMT was the state of the art in MT until
around 2015, when NMT first outperformed it (Bah-
danau et al., 2015). The main disadvantages of SMT
with respect to NMT is the limited ability to model
longer distance dependencies and to model semantic
relationships between input units, given that proba-
bilities are calculated based on discrete surface forms
rather than continuous representations. It nevertheless
remains relevant in certain settings, notably when lit-
tle parallel training data is available (Trieu et al., 2017;
Fourrier et al., 2021). For historical spelling normali-
sation, some works have shown that it can outperform
neural approaches, particular in these lower-resource
settings (Domingo and Casacuberta, 2018a).

3.2.2. NMT (LSTM and TRANSFORMER)
NMT uses neural networks to find the most probable
translation. The standard architecture is an encoder-
decoder with an attention mechanism (Bahdanau et al.,

5Splitting the sentence on whitespace, the characters . , !
? ; : and both kinds of apostrophe.

6https://github.com/johnseazer/aba.

2015). The role of the encoder is to encode the source
sequence and of the decoder to sequentially produce the
target sequence, given the previously translated words
and a representation of the input sequence specific to
that decoding step (calculated using attention). Impor-
tantly, these models work with continuous representa-
tions of words, allowing for a greater capacity to gen-
eralise across forms and an improved handling of com-
plex linguistic phenomena. The first such models were
based on recurrent neural networks (using recurrent
units such as LSTM for example), involving sequen-
tially encoding the input and sequentially decoding the
output. The current state of the art is the Transformer,
which replaces recurrence with self-attention (Vaswani
et al., 2017). Transformers have the advantage of speed
in training and tend also to perform better, although
this does not always hold for very low-resource settings
(Fourrier et al., 2021).
NMT model performance is sensitive to the size of the
architecture, subword segmentation and training pa-
rameters. Sennrich and Zhang (2019) show that previ-
ous conclusions about the superiority of SMT systems
over NMT in low-resource scenarios do not necessarily
hold as long as the NMT parameters are well chosen,
highlighting the need to perform adequate parameter
search before drawing conclusions. In line with this,
we perform extensive hyper-parameter searches of both
LSTM and Transformer models (Section 6.3).

3.3. Optional Lefff -based post-processing
All three approaches described above rely on parallel
training data. Despite the generalisation capabilities
of such models, it might be the case that rare situa-
tions are not properly dealt with. On the other hand,
large-scale lexicons of contemporary French, such as
the Lefff (Sagot, 2010), can provide high-coverage lex-
ical information regarding the target language of the
normalisation process.
Based on this observation, we developed a lexicon-
based post-processing tool that can be used after any
normalisation model and is based on the Lefff (ver-
sion 3.4). It relies on the idea that a normalised text
should mostly contain words known to a large-scale
contemporary French lexicon. Any token (whitespace-
and/or punctuation-separated character sequence) that
does not begin with a capital letter (to avoid proper
nouns) and that is unknown to the lexicon is eligible for
further normalisation. For every such token, we com-
pute a list of possible normalisations based on a small
list of permitted transformations.7 We then look up all
normalisation candidates in our lexicon. If exactly one
of the normalisation candidates is known to our lexi-
con, we replace the input token with this candidate. In
all other cases, we leave the token unchanged.

7The rules: Vs → V̂ where V is any vowel, es → é, add
each possible diacritic to each non-diacritised letter that can
have a diacritic (e.g. u → ü), v → u when preceded by a
vowel, u → v when preceded by a consonant, i → y.

4. Evaluating Normalisation
In terms of automatic metrics, the most commonly used
are translation edit rate (TER), word accuracy (based
on the gold normalised tokens, non-symmetrised) and
some works have used traditional metrics for MT
(Gabay and Barrault, 2020), in particular BLEU (Pa-
pineni et al., 2002) and CHRF (Popović, 2015). Ar-
guably the most interpretable metric is word accuracy,
since it gives an idea about the number of lexical units
that would have to be corrected, whereas MT metrics
are less interpretable, given that they are designed to
incorporate a certain degree of flexibility concerning
word order, which is not relevant for the task of spelling
normalisation. On the other hand, they have the advan-
tage of penalising predictions that contain additional
(hallucinated) tokens as well as correct tokens, a sit-
uation that is plausible given the use of sentence-level
MT models.
We therefore choose to use a symmetrised version of
word accuracy, which is the average between tradi-
tional word accuracy (aligning each gold token to pre-
dicted (sub)token(s)) and the reverse calculation (align-
ing each predicted token to gold (sub)token(s)).8 More
details on evaluation can be found in Appendix C. We
also evaluate using MT metrics to test how they corre-
late with word accuracy.

5. Data
For training, development and test data, we present
the FREEM corpus (short for FREnch Early Modern)
called FREEMnorm.9 The data covers a range of differ-
ent genres of text throughout different decades of the
17th century, written in prose or verse, which have been
semi-automatically normalised (Gabay et al., 2019)
and manually corrected. Most of these texts belong
to the belles-lettres (literature in its broadest sense),
which is the type of source we want to normalise, but
additional texts from different traditions (science, law,
etc.) are present in the corpus. Some of the transcrip-
tions have been produced specifically for this corpus
and others have been borrowed from other projects:
transcription rules are therefore not strictly equivalent
from one text to another regarding, for instance old
characters (e.g. T) or abbreviations (e.g. õ→on). “Nor-
malisation” is understood here as a partial alignment
with contemporary French: in some specific cases, spe-
cific spellings are maintained to keep the meter of the
verse intact (e.g. the adverbial -s: jusques+vowel→
jusques and not jusqu’ to maintain the three syllables).
The dataset has been split into train, dev and test sets,
for which basic statistics can be found in Table 1. The
split was done such that the test set contains a variety
of different genres and periods (see Tables 7 and 5 in

8We first perform character-level alignment using Leven-
shtein and then realign on the token level with respect to the
tokenisation of the gold and predicted sequences respectively.

9
https://doi.org/10.5281/zenodo.5865428

Appendix B), some of which are covered in the train
and dev set and some of which are unseen.
In terms of the difficulty of the task, although many
words remain unchanged between the original Mod-
ern French and their contemporary French normalisa-
tions (75.7% of all words in the training set), there
are a non-negligible number of tricky cases. There are
a large number of out-of-vocabulary (OOV) items in
both the dev and test sets with respect to the training
set, and approximately 0.3% of tokens are ambiguous
(i.e. they correspond to several possible normalisations
depending on the context). Aside minor differences
such as punctuation (which is nevertheless not arbi-
trary, since it can be determined by context), capitals
and accents, there are some interesting cases, such as
ambiguity concerning verbal conjugations, which may
require more contextual information (see Table 2 for
two examples). For these cases, it is necessary to nor-
malise words whilst taking into account their context
(as in traditional MT). This justifies processing whole
sentences rather than isolated words.

6. Experiments
6.1. Baselines
We compare the approaches described in Section 3 with
two baseline approaches, the identity function and a ba-
sic rule-based approach.

Identity function This keeps the text unchanged.

Rule-based This is a stronger baseline comprising
several dozen regular expressions, which were man-
ually written based on simple corpus statistics from
our training set. They range from purely typographic
rules, which reflect the evolution of the writing system,
to lexical rules, which reflect the evolution of the lan-
guage. Here are a few examples, ordered from purely
typographic to fully lexical:

• T → s, õ → om if followed by m, b or p, or on
otherwise;

• i → j at the beginning of a word when followed by
a vowel other than i;

• estoit → était and estoient → étaient.

In addition, we also assess the impact of the lexicon-
based post-processing step on these baselines.

6.2. Experimental setup
All NMT models are trained using Fairseq (Ott et al.,
2019), with default parameters unless otherwise speci-
fied. All models are trained until convergence; the best
checkpoint is chosen based on symmetrised word accu-
racy on the dev set. Subword segmentation is applied
using SentencePiece (Kudo and Richardson, 2018) and
the BPE strategy (Sennrich et al., 2016).
We train SMT models using Moses (Koehn et al., 2007)
and language models using KenLM (Heafield, 2011).
We tune using kbmira to maximise BLEU.

#tokens #unique tokens #OOV
Set #sentences. ModFr Fr ModFr Fr ModFr Fr

Train 17,930 264,311 263,669 21,329 17,238 - -
Dev 2,443 40435 40294 6736 5993 1,766 1,312
Test 5,706 86,432 86,211 10,457 8,915 3,596 2,530

Table 1: Statistics for the FREEMnorm corpus for Modern French (ModFr) and contemporary French (Fr). Texts
are tokenised using the Moses tokeniser (Koehn et al., 2007) to calculate statistics and #OOV corresponds to the
number of unique out-of-vocabulary tokens.

Normalisation example 1 Normalisation example 2

nostre ‘our’ quel malheur est le nôtre Les larmes sont trop peu pour pleurer notre mal
‘what woe is ours’ ‘The tears are too few to cry (for) our pain’

appellez ‘call’ N’appelez point des yeux le Galant à votre aide ...Royaumes, par nous vulgairement appelés Siam
‘Do not call the Galant for help with your eyes’ ‘...kingdoms, known popularly by us as Siam’

Table 2: Two examples of context-dependent ambiguity (Modern French words nostre and appellez) when normal-
ising to contemporary French.

6.3. Best Model Search
6.3.1. Neural models
For LSTM and Transformer models, we performed
hyper-parameter searches to maximise the sym-
metrised word accuracy on the development set. We
explored (i) the network size (cf. Table 3 for LSTM
models and Table 4 for Transformer models), (ii) the
degree of subword segmentation via different BPE vo-
cabulary sizes (500 1k, 2k, 4k, 8k, 16k, 24k), (iii) the
learning rate (0.0005, 0.001, 0.001) and (iv) the batch
size (1000, 2000, 3000, 4000 tokens). In order to avoid
having to explore the combination of all parameters, we
explored hyper-parameters in a step-wise fashion from
(i) to (iv), keeping the best parameters from the previ-
ous step. We then explored variations on the network
size parameters, varying attributes one below and one
above the default values. Results were calculated as an
average of three differently seeded runs for each com-
bination. We began with default values for all hyper-
parameters and varied only those mentioned.
Both models performed best with a BPE vocabulary of
1k, batch size of 3000 and learning rate of 0.001. The
best network sizes were M for the LSTM, and a vari-
ant of the M model for the Transformer, with only 2
encoder layers rather than 4.

6.3.2. Statistical MT model
As for the neural models, we test several different gran-
ularities of segmentation: character-based, 500, 1k and
2k.10 We use a 4-gram language model trained on the
target side of either the parallel training data or the nor-
malised texts of the FREEMmax corpus (Gabay et al.,
2022). The best subword segmentation is with vocabu-
lary size 500 (interestingly not character-based as what
has previously been used) and with the language model
trained on the target side of the parallel training data.

10Larger vocabulary sizes result in worse scores and were
also more difficult to train because of memory problems.

Size #enc. layers #dec. layers embed. dim.

XS 1 1 128
S 2 2 256
M 3 3 384
L 4 4 512

Table 3: Network sizes explored for LSTM models.

#attn. #layers Dim.
Size heads enc. dec. embed. ffwd.

S 2 2 2 128 512
M 4 4 4 256 1024
L 8 6 6 512 2048

Table 4: Network sizes explored for Transformer mod-
els. L corresponds to Transformer-base.

7. Results
We compare the approaches described in Section 3
according to the three evaluation metrics discussed
in Section 4: symmetrised word accuracy (written as
WordAcc), BLEU and CHRF.
Results are shown in Table 5. For MT approaches, we
run each model three times with three random seeds
and report the average score and standard deviation.
Models (1)-(4) are baselines and already achieve rel-
atively high scores. This is unsurprising, given the
large number of words that do not need modifying:
the identity function (copying the source text) gives
72.73% word accuracy. The rule-based approach is sig-
nificantly better than the first baseline, and adding the
post-processing step (+Lefff) considerably improves
both results. The two statistical approaches, the hy-
brid ABA and SMT, both perform better than the base-
lines, with SMT actually performing the best out of all
approaches. The NMT models perform slightly worse
according to all metrics than SMT. Although the scores

Model WordAcc (%) BLEU ChrF

Baseline models
(1) Identity 72.73 40.25 73.77
(2) Identify + Lefff 86.12 66.78 87.40
(3) Rule-based 89.05 72.47 89.94
(4) Rule-based + Lefff 90.85 76.90 91.70

Alignment-based approach
(5) ABA 95.14 87.70 95.84

MT approaches
(6) SMT 97.10±0.02 92.59±0.05 97.71±0.01
(7) LSTM 96.14±0.08 91.77±0.21 96.85±0.08
(8) TRANSFORMER 95.89±0.07 91.30±0.08 96.65±0.05

+ Lexicon-based post-processing
(9) ABA + Lefff 95.44 88.37 96.13
(10) SMT + Lefff 97.24±0.02 92.97±0.05 97.85±0.01
(11) LSTM + Lefff 96.25±0.10 92.07±0.25 96.95±0.10
(12) TRANSFORMER + Lefff 96.01±0.09 91.62±0.14 96.76±0.08

Table 5: Results on the test set. “+ Lefff ” indicates that the lexicon-
based post-processing was applied.

OOV WordAcc (%)

43.00
64.84
60.22
66.51

69.50

75.64±0.18
76.69±0.70
75.73±0.38

73.54
78.37±0.20
78.35±0.79
77.51±1.00

Table 6: Word accuracy on
OOV target tokens (%)

of LSTM and TRANSFORMER are very similar, LSTM
scores are slightly higher. It is an interesting finding
that the SMT outperforms NMT in our scenario, as
this goes against recent findings for Modern French
(Gabay and Barrault, 2020), despite us having more
parallel data available. As for the baselines, adding the
post-processing step improves both statistical and neu-
ral models, with the best result being SMT+Lefff with
a symmetrised word accuracy of 97.24%.
As recommended by Robertson and Goldwater (2018),
we also calculate word accuracy for OOV tokens
(based on the gold tokens). Results (Table 6) show
that the highest scoring model for OOV accuracy is
LSTM, although if post-processing is applied, both
SMT and LSTM show similar scores. Adding the
post-processing step significantly helps the OOV ac-
curacy of all methods, showing that it is an important
complementary step.
The three evaluation metrics reveal the same pattern in
results for these models, with BLEU varying more in
absolute scores than the other metrics.

8. Comparative Analysis
8.1. How Similar are the Methods?
In Figure 2, we compare the predictions token by token
and report the percentage of identical normalisations
between methods.11 Unsurprisingly, the neural meth-
ods (LSTM and TRANSFORMER) are most similar to
each other. SMT is the most similar to TRANSFORMER
and ABA is most similar to SMT.

8.2. Conservative or Zealous?
Depending on how the tool is to be applied, it can be
better to have a more conservative or zealous model.

11The analysis is computed against the first prediction for
methods for which three random seeds were used.

Figure 2: The percentage of identically normalised test
set tokens between methods.

If automatic normalisation is to be used as a pre-
annotation tool to help experts manually normalise
texts, it is important for the automatic step not to intro-
duce serious errors that could be more difficult to de-
tect and time-consuming to correct. This is a concern
notably for NMT-based models (Gabay and Barrault,
2020), which can be more creative in their transforma-
tion than either rule-based or SMT-based approaches.
It may however be less of a problem if normalisation is
to be used for certain downstream tasks using standard
contemporary NLP tools (e.g. PoS-tagging or parsing).
This is because a more zealous normalisation could
provide better performance (by providing contempo-
rary word forms), without the word forms themselves
having to necessarily correspond to the correct ones.

To compare the methods for their conservative-
ness/zealousness, we align the output of each method
with the source text and calculate (i) how often it
changes a token that should have been kept as it is (Ta-
ble 3), and (ii) how often it leaves a token untouched

Figure 3: Comparison in the number of ‘over-modified’
test set tokens for each method.

Figure 4: Comparison in the number of ‘under-
modified’ test set tokens for each method.

that should be modified (Table 4). The identity func-
tion, rule-based system and ABA rarely over-modify,
contrarily to SMT and NMT. Logically, the methods
show the the inverse pattern for under-modification,
with the identity and rule-based approaches being the
most conservative and under-modifying the most. The
SMT and NMT models under-modify at very similar
rates, suggesting that performance differences could
largely stem from over-modification rather than how
much they under-modify. The best method, SMT, has
the lowest rate of under-modification and a medium
level of over-modification. ABA is interesting, because
it under-modifies less than the baselines and yet does
not over-modify as much as the MT approaches.
Adding the Lefff -based post-processing step has the
effect of both correcting some over-modifications that
were introduced and providing normalisations for pre-
viously unmodified tokens, thereby significantly im-
proving the processing of OOV words.

8.3. Qualitative analysis of approaches
In this section, we compare the results of the
best rule-based approach, ABA + Lefff and the
best MT approach, SMT + Lefff , by using an
alignment of the normalised versions of the dev
data (available at https://freem-corpora.
github.io/models/norm_model/).
Unsurprisingly, given that the substitution rules are not
contextual, ABA + Lefff makes many errors in am-
biguous cases, such as A instead of À, prés instead of

près, voila instead of voilà, or mes feux redoublez in-
stead of mes feux redoublés. Taking into account fre-
quency scores either for the word replacement or for the
character transformation rules in the training data may
help avoid those mistakes. ABA + Lefff is also very
sensitive to mistakes in the training corpus. For ex-
ample, it succeeds in transforming auoient into avaient
but not avoient, whereas SMT + Lefff succeeds. It
also lacks some rules. For example it has no rule to
normalise double consonants (for example principalles
normalised into principales, assouppit into assoupit),
whereas SMT + Lefff performs pretty well in this case.
The SMT approach displays some more creative er-
rors, but which appear easy spot if the normalised text
is manually proof-read), e.g. ma pẽTée transformed into
ma pmentsée. It is also prone to deleting certain words
such as determiners, possibly because in some contexts
they are less probable according to the language model.
Finally, considering the fact that it is often the case
that, when one of the two methods makes a mistake,
the other one performs a correct normalisation, find-
ing a relevant post-processing approach seems like a
promising way to increase the quality of the results.

9. Conclusion
We have presented FREEMnorm, a new benchmark
for the normalisation of Early Modern French, and
compared a range of normalisation methods, includ-
ing an alignment-based approach and various MT-
based methods, with SMT outperforming all other ap-
proaches. Adding a post-processing with a contempo-
rary French lexicon systematically helps, particularly
for OOV tokens. We compare the strengths of the
different methods, with rule- and alignment-based ap-
proaches being more conservative and MT approaches
being less so. While MT approaches achieve the best
accuracy, a model such as the alignment-based ABA is
possibly more adapted to pre-annotation as it offers a
good compromise between making good normalisation
choices without overly normalising tokens that should
not have been modified. We release all our data, models
and scripts to encourage further research on this topic
by the digital humanities community.

Acknowledgements
This work was performed using HPC resources from
GENCI-IDRIS (Grant 20-AD011012254). It benefits
from a State funding managed by the National Re-
search Agency (ANR) under the Investments for the
Future program (reference ANR-16-IDEX-0003, I-Site
FUTURE, Cité des dames, créatrices dans la cité) in
addition to the contributions of institutions and part-
ners involved. It was also partly funded by the first
and penultimate authors’ chairs in the PRAIRIE insti-
tute funded by the French national agency ANR as part
of the “Investissements d’avenir” programme under the
reference ANR-19-P3IA-0001.

10. Bibliographical References
Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural

machine translation by jointly learning to align and
translate. In Proceedings of the International Con-
ference on Learning Representations, San Diego,
CA, USA.

Baron, A. and Rayson, P. (2009). Automatic standard-
isation of texts containing spelling variation: How
much training data do you need? In Proceedings of
the Corpus Linguistics Conference: CL2009, Uni-
versity of Liverpool, UK.

Bollmann, M. and Søgaard, A. (2016). Improving
historical spelling normalization with bi-directional
LSTMs and multi-task learning. In Proceedings of
COLING 2016, the 26th International Conference
on Computational Linguistics, pages 131–139, Os-
aka, Japan.

Bollmann, M., Petran, F., and Dipper, S. (2011). Rule-
based normalization of historical texts. In Proceed-
ings of the Workshop on Language Technologies for
Digital Humanities and Cultural Heritage, pages
34–42, Hissar, Bulgaria.

Bollmann, M. (2012). (Semi-)automatic normaliza-
tion of historical texts using distance measures and
the Norma tool. In Proceedings of the Second Work-
shop on Annotation of Corpora for Research in the
Humanities (ACRH-2), pages 3–14, Lisbon, Portu-
gal.

Bollmann, M. (2019). A large-scale comparison of
historical text normalization systems. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3885–3898, Min-
neapolis, Minnesota.

Domingo, M. and Casacuberta, F. (2018a). A Ma-
chine Translation Approach for Modernizing His-
torical Documents Using Back Translation. In Pro-
ceedings of the 15th International Workshop on Spo-
ken Language Translation (IWSLT 2018), pages 38–
47, Bruges, Belgium.

Domingo, M. and Casacuberta, F. (2018b). Spelling
Normalization of Historical Documents by Using a
Machine Translation Approach. In Proceedings of
the 21st Annual Conference of the European Associ-
ation for Machine Translation, pages 129–137, Ali-
cante, Spain.

Domingo, M. and Casacuberta, F. (2021). A compar-
ison of character-based neural machine translations
techniques applied to spelling normalization. In Al-
berto Del Bimbo, et al., editors, Pattern Recogni-
tion. ICPR International Workshops and Challenges,
pages 326–338, Cham. Springer International Pub-
lishing.

Domingo, M., Chinea-Rios, M., and Casacuberta,
F. (2017). Historical documents modernization.
The Prague Bulletin of Mathematical Linguistics,
108:295–306.

Fix, H., (1980). Automatische Normalisierung - Vo-
rarbeit zur Lemmatisierung eines diplomatischen al-
tisländischen Textes, pages 92–100. Max Niemeyer
Verlag.

Fourrier, C., Bawden, R., and Sagot, B. (2021). Can
cognate prediction be modelled as a low-resource
machine translation task? In Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP
2021, pages 847–861, Online.

Gabay, S. and Barrault, L. (2020). Traduction automa-
tique pour la normalisation du français du XVIIe
siècle. In Actes de la 6e conférence conjointe
Journées d’Études sur la Parole (JEP, 33e édition),
Traitement Automatique des Langues Naturelles
(TALN, 27e édition), Rencontre des Étudiants
Chercheurs en Informatique pour le Traitement Au-
tomatique des Langues (RÉCITAL, 22e édition). Vol-
ume 2 : Traitement Automatique des Langues Na-
turelles, pages 213–222, Nancy, France.

Gabay, S., Riguet, M., and Barrault, L. (2019). A
Workflow For On The Fly Normalisation Of 17th c.
French. In Proceedings of the 2019 Digital Human-
ities Conference, Utrecht, Netherlands.

Gabay, S. (2021). Beyond Idiolectometry? On
Racine’s Stylometric Signature. In Maud Ehrmann,
et al., editors, Conference on Computational Hu-
manities Research 2021, pages 359–376, Amster-
dam, Netherlands.

Hämäläinen, M., Säily, T., Rueter, J., Tiedemann, J.,
and Mäkelä, E. (2018). Normalizing early En-
glish letters to present-day English spelling. In Pro-
ceedings of the Second Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
87–96, Santa Fe, New Mexico.

Hauser, A. W. and Schulz, K. U. (2007). Unsuper-
vised Learning of Edit Distance Weights for Retriev-
ing Historical Spelling Variations. In Proceedings of
the First Workshop on Finite-State Techniques and
Approximate Search, pages 1––6.

Heafield, K. (2011). KenLM: Faster and smaller lan-
guage model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C.,
Federico, M., Bertoldi, N., Cowan, B., Shen, W.,
Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin,
A., and Herbst, E. (2007). Moses: Open Source
Toolkit for Statistical Machine Translation. In Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion for Computational Linguistics Companion Vol-
ume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic.

Kogkitsidou, E. and Gambette, P. (2020). Normalisa-
tion of 16th and 17th century texts in French and ge-
ographical named entity recognition. In Proceedings
of the 4th ACM SIGSPATIAL Workshop on Geospa-
tial Humanities, pages 28–34, Seattle, Washington,

USA.
Korchagina, N. (2017). Normalizing medieval Ger-

man texts: from rules to deep learning. In Proceed-
ings of the NoDaLiDa 2017 Workshop on Process-
ing Historical Language, pages 12–17, Gothenburg.
Linköping University Electronic Press.

Kudo, T. and Richardson, J. (2018). SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.

Ljubesic, N., Zupan, K., Fiser, D., and Erjavec, T.
(2016). Normalising Slovene data: historical texts
vs. user-generated content. In Stefanie Dipper, et al.,
editors, Proceedings of the 13th Conference on Nat-
ural Language Processing, KONVENS 2016, vol-
ume 16 of Bochumer Linguistische Arbeitsberichte,
pages 146–155, Bochum, Germany.

Maurel, D., Friburger, N., Antoine, J.-Y., Eshkol, I.,
and Nouvel, D. (2011). Cascades de transducteurs
autour de la reconnaissance des entités nommées.
Traitement automatique des langues, 52(1):69–96.

Mitankin, P., Gerdjikov, S., and Mihov, S. (2014). An
approach to unsupervised historical text normalisa-
tion. In Proceedings of the First International Con-
ference on Digital Access to Textual Cultural Her-
itage, DATeCH ’14, pages 29–34, Madrid, Spain.

Needleman, S. B. and Wunsch, C. D. (1970). A gen-
eral method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal
of molecular biology, 48(3):443–453.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S.,
Ng, N., Grangier, D., and Auli, M. (2019). fairseq:
A Fast, Extensible Toolkit for Sequence Modeling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics (Demonstrations), pages 48–53,
Minneapolis, Minnesota, USA.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.
(2002). Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsyl-
vania, USA.

Pettersson, E., Megyesi, B., and Nivre, J. (2013a).
Normalisation of historical text using context-
sensitive weighted Levenshtein distance and com-
pound splitting. In Proceedings of the 19th Nordic
Conference of Computational Linguistics (NoDaL-
iDa 2013), pages 163–179, Oslo, Norway.

Pettersson, E., Megyesi, B., and Tiedemann, J.
(2013b). An SMT Approach to Automatic Anno-
tation of Historical Text. In Proceedings of the
19th Nordic Conference of Computational Linguis-
tics (NoDaLiDa 2013), pages 54–69, Oslo, Norway.

Pettersson, E., Megyesi, B., and Nivre, J. (2014). A
Multilingual Evaluation of Three Spelling Normali-

sation Methods for Historical Text. In Proceedings
of the 8th Workshop on Language Technology for
Cultural Heritage, Social Sciences, and Humanities
(LaTeCH), pages 32–41, Gothenburg, Sweden.

Piotrowski, M. (2012). Natural language processing
for historical texts, volume 5(2) of Synthesis lectures
on human language technologies. Morgan & Clay-
pool Publishers.

Popović, M. (2015). chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal.

Porta, J., Sancho, J.-L., and Gomez, J. (2013). Edit
Transducers for Spelling Variation in Old Spanish.
In Proceedings of the Workshop on Computational
Historical Linguistics (NoDaLiDa 2013), pages 70–
79, Oslo, Norway.

Reynaert, M., Hendrickx, I., and Marquilhas, R.
(2012). Historical spelling normalization. A com-
parison of two statistical methods: TICCL and
VARD2. In Proceedings of the Second Workshop on
Annotation of Corpora for Research in the Humani-
ties (ACRH-2), Lisbon, Portugal.

Robertson, A. and Goldwater, S. (2018). Evaluating
historical text normalization systems: How well do
they generalize? In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
720–725, New Orleans, Louisiana.

Scherrer, Y. and Erjavec, T. (2013). Modernizing his-
torical Slovene words with character-based SMT. In
Proceedings of the 4th Biennial International Work-
shop on Balto-Slavic Natural Language Processing,
pages 58–62, Sofia, Bulgaria.

Sennrich, R. and Zhang, B. (2019). Revisiting low-
resource neural machine translation: A case study.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 211–
221, Florence, Italy. Association for Computational
Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neu-
ral machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1715–1725, Berlin,
Germany.

Tang, G., Cap, F., Pettersson, E., and Nivre, J. (2018).
An Evaluation of Neural Machine Translation Mod-
els on Historical Spelling Normalization. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 1320–1331, Santa
Fe, New Mexico, USA.

Tjong Kim Sang, E., Bollmann, M., Boschker, R.,
Casacuberta, F., Dietz, F., Dipper, S., Domingo, M.,
van der Goot, R., van Koppen, M., Ljubešić, N.,
Östling, R., Petran, F., Pettersson, E., Scherrer, Y.,
Schraagen, M., Sevens, L., Tiedemann, J., Vanalle-

meersch, T., and Zervanou, K. (2017). The CLIN27
shared task: Translating historical text to contempo-
rary language for improving automatic linguistic an-
notation. Computational Linguistics in the Nether-
lands Journal, 7:53–64.

Trieu, H. L., Tran, D.-V., and Le Nguyen, M. (2017).
Investigating phrase-based and neural-based ma-
chine translation on low-resource settings. In Pro-
ceedings of the 31st Pacific Asia Conference on Lan-
guage, Information and Computation, pages 384–
391, Cebu City, Philippines.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, Ł. U., and Polo-
sukhin, I. (2017). Attention is all you need. Ad-
vances in Neural Information Processing Systems,
30:5998–6008.

Vilar, D., Peter, J.-T., and Ney, H. (2007). Can we
translate letters? In Proceedings of the Second
Workshop on Statistical Machine Translation, pages
33–39, Prague, Czech Republic.

11. Language Resource References
ATILF. (2019). Morphalou. https://hdl.
handle.net/11403/morphalou/v3.1.
ORTOLANG (Open Resources and TOols for
LANGuage).

CasEN Team. (2019). Casen 1.4. https:
//tln.lifat.univ-tours.fr/
medias/fichier/casen-fr-1-4_
1596032302677-zip?ID_FICHE=332027&
INLINE=FALSE.

Dipper, S. and Schultz-Balluff, S. (2013). The Anselm
Corpus: Methods and perspectives of a parallel
aligned corpus. In Proceedings of the workshop on
computational historical linguistics at NoDaLiDa
2013, pages 27–42, Oslo, Norway.

Erjavec, T., Ringlstetter, C., Žorga, M., and
Gotscharek, A. (2011). A lexicon for process-
ing archaic language: the case of XIXth century
Slovene. In First International Workshop on Lexical
Resources.

Gabay, S., Bartz, A., Chagué, A., and Gambette, P.
(2022). FreEM max. https://github.com/
FreEM-corpora/FreEMmax_OA.

Ortiz Suarez, P., Gabay, S., Bartz, A., Bawden, R.,
Sagot, B., and Gambette, P. (2022). From FreEM
to D’AlemBERT: a Large Corpus and a Language
Model for Early Modern French. In Proceedings
of the 13th International Conference on Language
Resources and Evaluation (LREC’22), Marseille,
France.

Prolex Team. (2013). Prolex 1.2. https:
//tln.lifat.univ-tours.fr/medias/
fichier/prolex-unitex-1-2_
1562935068094-zip?ID_FICHE=321994&
INLINE=FALSE.

Riguet, M. (2019). Normalisa, Script à base
de règles pour normaliser les textes français du

XVIe au XIXe siècle. https://github.com/
mriguet/Normalisa/.

Sagot, B. (2010). The Lefff, a Freely Available and
Large-coverage Morphological and Syntactic Lexi-
con for French. In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta.

The French Wikisource Community. (2022).
Wikisource:dictionnaire. https://fr.
wikisource.org/wiki/Wikisource:
Dictionnaire.

A. ABA Normalisation Rules
The character transformation rules used in the second
step of ABA include ſ → s, ß → ss, & → et; the resolu-
tion of letters with a tilde used to abbreviate an n or an
m; sç → s; final oing → oin; final y → i; sch → ch; aye
→ aie, oye → oie. The obtained word is considered
as an initial candidate followed by the supplementary
candidates obtained with the following rules: ct → t;
vowel followed by dv → same vowel followed by v;
final ans → ands, final ens → ends, final ans → ants,
final ens → ents; final ois → ais (same with oit and
oient); final ez → és, final és → ez; st → t, est → ét;
as followed by m n q or t → â followed by the same
letter (same with es, is, os and us); y → i; ü or eü →
u. Finally, for all generated candidates, the following
transformation rules are applied: is → ı̂, ai → aı̂, u →
v, v → u, non final e not followed by s → é.

B. Distribution of the Datasets by
Decade and Genre

Figure 5: Distributions of data in terms of decades.

Genre Train Dev Test

Caractères 190 25 25
Comédie 4870 619 623
Tale 120 15 15
Correspondence 1533 198 199
Law 61 0 0
Fables 899 112 114
Journalism 142 0 0
Medicine 0 59 114
Philosophy 455 57 200
Physics 0 0 182
Poetry 1777 224 226
Novel 1071 132 730
Memoir novel 213 27 27
Theology 560 70 72
Tragedy 5847 708 3155
Travel 192 24 24

Table 7: Number of sentences per genre.

C. Evaluation details
Word accuracy is calculated by aligning the set of sen-
tences (each reference sentences and its normalised
sentence) on the character level and then using the
alignment matrix to produce a token-level alignment.

Initial Character-level Alignment Character-level
alignment is performed using a modified (weighted)
version of Levenshtein, whereby certain characters are
considered equivalent (e.g. accented and non-accented
versions of characters, long s (ſ) and s). The alignment
is also designed to avoid tokenisation and punctuation
mismatches unless they are really necessary for a suc-
cessful alignment:

• by default, the cost of a substitution is 1, whereas
the cost of an insertion or a deletion is 0.8;

• the cost of a substitution of a reference white-
space character with a non-white-space is pro-
hibitive (1,000,000);

• the cost of a substitution of a reference non-white-
space character with a white-space is 30;

• the cost of a substitution involving a punctuation
mark (within ,.;-!?’) is 20;

• the cost of the deletion of a white-space character
in the reference is prohibitive;

• the cost of the insertion of a white-space character
in the reference is 2.

Token-level alignment The token-level alignment
must necessarily be carried out with respect to the to-
kenisation of one of the sequences (there is not al-
ways a one-to-one mapping between reference and nor-
malised tokens). We carry out tokenisation prior to
character-level alignment using a very basic tokeniser
lightly adapted to French (breaking on whitespace and
around punctuation) and use then use whitespace to-
kens to delimit tokens when token-aligning the two se-
quences. We can either take the tokenisation of the ref-
erence sequence or of the normalised sequence as the
basis for alignment. We preserve information about to-
ken boundaries such that different segmentations will
be penalised even if the non-whitespace characters are
identical.

(1) Ref: surtout j’ai choisi davantage ses écrits
MT: sur tout ji choisi d’avantage ses escrits,

(2) Align: surtout||||sur tout j’||||j
ai||||i choisi davantage||||d’ avantage ses
écrits||||escrits

For example, given a reference (Ref) and a predicted
normalisation (MT) as shown in Example 1, the align-
ment in Example 2 is produced, where:

• ||| indicates that the reference and MT output do
not match for that token;

• indicates that there is a token boundary intro-
duced by the tokeniser in the aligned sequence
of characters. Where there is also a space in the
original sequence (before tokenisation), a double

is indicated (case of over-merging);

• indicates that there is no token boundary to the
right (case of over-splitting).

Symmetrised Accuracy Once aligned, the accuracy
is the number of tokens for which the corresponding to-
ken is identical divided by the total number of tokens.
We calculate a symmetrised accuracy, which is the av-
erage between the two accuracies: (i) the reference sen-
tences are used as the basis for alignment and (ii) the
normalised sentences are used as the basis for align-
ment. This is important because it helps to penalise
very poor normalisations, such as those that can be pro-
duced by some MT-style models, where words can be
hallucinated. If the accuracy is only computed accord-
ing to the reference tokenisation, it is possible for all
hallucinated words to be aligned to a single reference
token and therefore penalised very little with respect to
the amount of noise added.

HAL Id: hal-03767854
https://hal.science/hal-03767854

Submitted on 23 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Evolution of the Idiolect over the Lifetime: A
Quantitative and Qualitative Study of French 19th

Century Literature
Olga Seminck, Philippe Gambette, Dominique Legallois, Thierry Poibeau

To cite this version:
Olga Seminck, Philippe Gambette, Dominique Legallois, Thierry Poibeau. The Evolution of the
Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature.
Journal of Cultural Analytics, 2022, 7 (3), �10.22148/001c.37588�. �hal-03767854�

ARTICLE

The Evolution of the Idiolect over the Lifetime: A Quantitative and
Qualitative Study of French 19th Century Literature
Olga Seminck 1 , Philippe Gambette 2 , Dominique Legallois 1 , Thierry Poibeau 1

1 Laboratoire Langues, Textes, Traitements informatiques, Cognition UMR 8094, 2 Laboratoire d'Informatique Gaspard-Monge UMR 8049

Keywords: idiolect, French literature, authorship, stylometry, literature

https://doi.org/10.22148/001c.37588

Journal of Cultural Analytics
Vol. 7, Issue 3, 2022

The way in which authors express themselves is unique but changes over their
lifetime. However, quantitative studies of this idiolectal evolution are rare. Using
the Corpus for Idiolectal Research (CIDRE) that contains the dated works of 11
prolific 19th century French fiction writers, we propose new methods to identify,
quantify and describe the grammatical-stylistic changes that take place using
lexico-morphosyntactic patterns, also called motifs. To examine the strength of
the chronological signal of change, we developed a method to calculate if a
distance matrix of literary works contains a stronger chronological signal than
expected by chance. Ten out of 11 corpora showed a higher than chance
chronological signal, leading us to conclude that the evolution of the idiolect is in
a mathematical sense monotonic, supporting the rectilinearity hypothesis
previously put forward in the stylometric literature. The rectilinear property of
the evolution of the idiolect found for most authors in CIDRE subsequently
enabled us to propose a machine learning task: predicting the year in which a
work was written. For the majority of the authors in our corpus, the accuracy and
the amount of variance that is explained by the model were high and we discuss
why the technique might fail for others. After applying a feature selection
algorithm, we examined the most important features, i.e. the motifs that have the
greatest influence on idiolectal evolution. We find that some of those features are
stylistic and have been previously identified in qualitative literature studies. We
report some remarkable stylistic constructions revealed by our algorithm to
illustrate which kind of stylistic patterns can be extracted using our method.

1. Introduction
Is it true that we do not speak at 20 as we do at 60? In this article we examine
if an individual’s representation of a language — the idiolect — and the
utterances that are its product, are fixed once and for all or not. Little research
has been carried out to characterize and measure the evolution of the idiolect
in an extensive manner. Our main goal was thus to develop methods in this
direction that can also be applied to other longitudinal corpora. We evaluated
our methods on a corpus containing the idiolects of 11 French fiction writers.

There are several reasons why it is interesting to take into account interpersonal
variation over time. First, the notion of idiolect is relevant for corpus
linguistics. As Heck stressed, idiolects are the primary objects of study in
linguistics (in the end, we can only observe utterances that are the products of
idiolects). However, most often corpora are considered as homogenous, and do
not take into account the influence of individual authors on their content. It is
somehow assumed that the large number of different authors in a resource will
erase any individual differences. But taking these differences into account could

Seminck, Olga, et al. “The Evolution of the Idiolect over the Lifetime: A Quantitative and
Qualitative Study of French 19th Century Literature.” Journal of Cultural Analytics, vol.
7, no. 3, Sept. 2022, doi:10.22148/001c.37588.

help better understand to what extent some features are specific to a genre,
a community or, on the contrary, to an individual author or speaker. In this
article, we focus on the chronological evolution of the idiolect.

Let us start by introducing some important terminology. The first term that
needs to be clarified is idiolect. In Bloch's original definition, the idiolect
represents: “The totality of the possible utterances of one speaker at one time
in using a language to interact with one other speaker.” More recently, Dittmar
(111) proposed this definition: an idiolect is “the language of the individual,
which because of the acquired habits and the stylistic features of the
personality differs from that of other individuals and in different life phases
shows, as a rule, different or differently weighted CM [communicative
means]”.

In addition to this, we believe that the definition of idiolect should take into
account the fact that every utterance (written or oral) of an individual is part
of a particular discursive practice — or, put differently, of a particular textual
genre (informal conversation, tweet, philosophical essay, etc.). The idiolect
should thus necessarily be considered in relation to a particular practice: it
corresponds to the use by an individual of only part of the possible linguistic
forms related to a discursive practice. Bloch takes this into account when he
states “that a given speaker may have different idiolects at successive stages of
his career, and […] that he may have two or more different idiolects at the same
time.”

Another relevant notion is style. Style corresponds to linguistic forms that an
observer considers as remarkable from an aesthetic point of view, in a particular
discourse, compared to the discourse of others. Although the definitions of
idiolect and style are intertwined, especially for those working with literary
corpora, the main difference is that, for stylistic studies, a judgement has
generally to be performed on the stylistic value of the linguistic phenomena
under study. It should be noted that the notion of stylistic judgement is in
itself highly subjective, and no clear criteria seem to be available to determine
what has a stylistic value and what does not. Consequently, we focused on the
evolution of idiolects, instead of styles, so as to avoid aesthetic judgements. We
therefore use Bloch's definition of the idiolect that includes “the totality of
possible utterances”, instead of Dittmar's that focuses on stylistic features.

In this article, after the presentation of related work, we present two
computational experiments to study the chronological evolution of the
idiolect, followed by a qualitative analysis. We start by examining the
rectilinearity hypothesis mentioned in the work of Stamou, i.e. “the hypothesis
that certain aspects of an author’s writing style evolve rectilinearly over the course
of an author’s lifetime, hence with appropriate methods and stylistic markers,
such changes ought to be detectable”. First, we evaluate the chronological signal
in corpora including the dated works of French 19th century authors by so-
called Robinsonian matrices. Second, we build linear regression models for

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 2

each author studied to see whether it is possible to predict the year in which
a particular novel was written by extrapolation from other works by the same
author. Our regression models rely on special linguistic-stylistic patterns, called
motifs (Legallois et al.) and are able to identify the patterns that play the
greatest role in the chronological evolution of the idiolect. We discuss the
stylistic value of some of these motifs in a qualitative analysis presented in
section 6. The article ends with a discussion and conclusion.

2. Literature Review
Our work is directly in line with the notion of stylochronometry, a special
research “niche” that studies the diachronic evolution of style. The term was
coined by Forsyth and encompasses the characterization of style according to
different time periods, as well as the attribution of tentative dates to literary
works. Stamou reviewed a large number of studies on this topic, discussing
literary works by writers such as the poet W.B. Yeats (Jaynes), or the prose
of Samuel Becket (Opas), to the lyrics of the Beatles (Whissell). The review
draws some important conclusions that are still valid today. The first is that
even though dating methods would eventually be most useful to date works
with an uncertain date of creation — such as texts by Plato, Euripides and
Shakespeare — these methods should be developed, tested and evaluated using
gold standard corpora (where texts can be reasonably associated with a precise
date of creation so as to get a solid performance evaluation), a criterion that
was already underlined by Forsyth. Despite this, there is a large literature on
the topic of stylochronometry with experiments investigating only works with
problematic dating (e.g. Cox and Brandwood; Wishart and Leach; T. M.
Robinson; Ledger; Temple on Plato’s works; Devine and Stephens; Cropp
and Fick; Smith and Kelly on Euripides, and Brainerd; Derks; Jackson on
Shakespeare), making it difficult to evaluate the results. Experiments in which
the methods used are carefully compared to reference corpora with known
dates are rather rare (however, see Can and Patton, on two modern Turkish
writers). Daelemans also underlines this evaluation problem and suggests using
evaluation methods from the field of Natural Language Processing (NLP). In
the same vein, Craig states that “stylistic analysis needs finally to pass the same
tests of rigor, repeatability, and impartiality as authorship analysis if it is to offer
new knowledge”.

Specifically for works on French, we came across studies using off-the-shelf
methods developed for statistical textual analysis (Pincemin), for instance stylo
R (Eder et al.), Lexico (Lamalle et al.), TXM (Heiden et al.), Le Trameur
(Fleury and Zimina), and Hyperdeep (Vanni et al.). For example, Guaresi et
al. study the evolution of style on a corpus of the annals of the congress of
the French communist party from 1936 to 2018 using correspondence analysis
on the vocabulary. However, a drawback of off-the-shelf methods is that they
provide mainly exploratory analyses or visualizations which leave considerable
room for interpretation and cannot be used directly to focus on specific
stylochronometry questions or hypotheses with a rigorous evaluation

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 3

procedure. We will therefore not go into detail about this type of study but
will instead discuss more focused studies that have, in our opinion, developed
interesting and relevant approaches for the task.

Mollin investigated Tony Blair’s idiolect. Her goal was to identify ‘‘maximizer
collocations’’ (collocations involving adverbs such as fully, entirely or
absolutely) that were specific to Blair’s idiolect, when compared to the English
language in general (comparing a three million word corpus of Tony Blair with
the British National Corpus (BNC XML Edition)). Collocations were selected
using the three measures: relative frequency, Mutual Information (Church et
al.) and the log-likelihood measure (Dunning). A series of collocations that are
typical of Blair’s idiolect was identified using these three measures.

Mollin's article nicely combines quantitative and qualitative analysis and
presents a clear methodology. Unfortunately, we could not find an online
accessible repository of the Tony Blair Corpus, but the methods are explained
to an extent that the research should be replicable. Mollin's results suggest that
the notion of idiolect is indeed a relevant linguistic concept, and that there are
some linguistic patterns that are highly idiosyncratic for a speaker (even though
her study only included one individual).

A second researcher working on the notion of idiolect is Barlow. He studied
the idiolect of five White House Press Secretaries who held this function from
1 to 4 years. For each person the author collected a corpus of approximately
200K to 1200K tokens and compared the individual frequencies of the most
frequent bigrams (lexical and Part of Speech) of each press secretary against
the others. He showed that individual patterns are highly recognizable and that
inter-speaker variability is much larger than intra-speaker variability. Moreover,
he found that the inter-speaker differences were “core aspects of language and
not peripheral idiosyncrasies”, meaning that they play a role in the use of
function words and high frequency words, such as ‘by the’ and ‘we have’. He
also found that the speech of an individual remained remarkably stable over
time, but of course, one needs to keep in mind that the maximum period for a
secretary in the corpus was only four years.

Another study that concluded in favour of the staticness of the idiolect is
Meyerhoff and Walker. They tried to determine to what extent the grammar
of individuals is morpho-syntactically similar to that of a community. They
studied the absence of the verb ‘be’ in a community speaking an English-
based creole compared to other members of this community who had joined
an urban community speaking a more ‘standard’ English. Their conclusions
are mixed, suggesting that, despite the possibility of the idiolect evolving,
conservatism can also play an important role. However, it should be noted
that this study only applied to one grammatical construction in a multilingual
setting, so that the reported results may be hard to generalize.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 4

Evans wrote her PhD thesis on diachronic morpho-syntactic changes in the
idiolect of Queen Elizabeth I from a sociolinguistic perspective by comparing
her letters, speeches and translations (forming a corpus of 78K tokens) from
before her ascension to those from the period after this event, which is often
speculated to have had the greatest influence on Elizabeth’s language by other
scholars. Interestingly, Evans used a reference corpus — the Corpus of Early
English Correspondence (Raumolin-Brunberg and Nevalainen) — and
previous studies on it to identify 9 morpho-syntactic features present in this
corpus and the corpus of Queen Elizabeth. The goal was to see whether the
two corpora evolved in the same way. The author found that the ascension to
the throne only influenced two features (the increase in the use of the royal ‘we’
and the decrease in the use of periphrastic superlative adjectives), and that time
in general and the long education of Queen Elizabeth had a constant influence
on the development of her idiolect. Evans’ study provides a good example of
how corpus linguistics and qualitative analysis can jointly contribute to the
study of the evolution of the idiolect.

In the field of stylochronometry, the work of Klaussner and Vogel of 2015 and
2018 and Klaussner of 2017 should be mentioned. They developed regression
models and evaluated them on two individual corpora of North American
writers, a reference corpus and against a baseline. They used a machine learning
task that aimed to predict the year of writing of a given work, using a relevant
evaluation metric. Their methods play an important role in the second part
of our quantitative study (Section 5) and will therefore be discussed in more
detail below. However, we can already conclude that the methods proposed by
Klaussner and Vogel show how quantitative machine learning methods can be
used to fuel qualitative research on stylistic changes.

We have said that relevant large scale resources in this domain are scarce. We
should however mention a large recent resource: the EMMA corpus (Petré
et al.). It features 87 million words of prolific English 17th century writers.
Various studies on the evolution of the idiolect were conducted using this
resource, for example Petré and Van de Velde — although using an earlier
slightly smaller version of the corpus — investigated the role of individual
language users and the language community in the semantic and
morphosyntactic process of grammaticalization of a specific construction: ‘be
going to INF’. They show how the rate of this construction was influenced
before, during and after its conventionalization and observe differences
between generations. Their method shows how the process of
grammaticalization can be studied for individuals but also for a community
at the same time. Anthonissen and Petré also show how the use of larger
corpora helps to study lifespan changes affecting syntactic constructions; they
demonstrate by the example of the construction ‘be going to’ that individual
writers in the EMMA corpus can adopt and continue to participate in
grammatical innovations during adulthood.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 5

Contrary to most of the studies examined in this section, our approach takes
into account all kinds of patterns (called motifs) and not only a handful of
predefined and carefully selected sequences. With this more comprehensive
approach, we hope to produce a more robust and reliable model of the
evolution of the idiolect.

3. Corpus
For this study, we used the Corpus for Idiolectal Research (CIDRE) (Seminck
et al.). This corpus features 11 French 19th and early 20th century prolific
fiction writers, with a total of 37 million words. All the works have been
carefully dated and the corpus includes only works of fiction, so that the
problem of individuals having different idiolects related to their social situation
does not interfere.

To address the question of diachronic language evolution in general in
opposition to idiolectal evolution, we assembled a ‘reference corpus’. This
corpus contains 361 works of fiction by French authors from the same time
period as the works in CIDRE, but no particular attention was paid to
individual authors: they can be included in the resource if they wrote only one
work. To assemble the reference corpus, we used the online tool GutenTag
(Brooke et al.) that enables one to download a subcorpus from Project
Gutenberg. With a semi-automatic approach to run GutenTag several times, to
filter sufficiently long books and to automatically date the first edition of each
work using the catalogue of the Bibliothèque nationale de France, we were able
to obtain a total of 361 works of fiction in French, dated with a reasonably
good precision (mean error of 1.71 years per book for books present in the
CIDRE corpus). The quality of this corpus can be considered sufficient for
it to be used as a reference corpus that serves to account for language change
in general. Note that there is a substantial overlap between the content of the
CIDRE corpus and our reference corpus (146 novels out of the 361).

4. Testing the rectilinearity hypothesis
In the introduction, we mentioned the rectilinearity hypothesis which posits
that some aspects of the idiolect evolve in a linear fashion over time and that
this evolution should be detectable. Importantly, the hypothesis does not say
that this evolution is relevant for all linguistic features and should affect the
same features for each individual. The use of some linguistic features may
remain stable, but some evolution should nevertheless be observed for some
others, contradicting the conservatist hypothesis (which assumes no linguistic
changes). Furthermore, we add the prediction that idiolects evolve constantly
and do not return to earlier stages, even if some linguistic features might.

4.1. Methods: Robinsonian Matrices
Robinsonian matrices are distance matrices that have cells whose values
increase when moving away from the diagonal. They were introduced in the
context of archeological deposits, to study the chronological evolution of the

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 6

Table 1. An example of a Robinsonian distance matrix: both (text1, text2) and (text2, text3) are lower than (text1, text3).

text1 text2 text3

text1 0 2 4

text2 0 1

text3 0

Figure 1. Illustration of the idea of Robinsonian distances between texts.

The colored dots (schema on the left) and arrows (schema on the right) represent distances. If the chronology of the text in the corpus is
reflected in the measured distances, we expect that max(δ(texti, textj), δ(textj, textk)) ≤ δ(texti, textk) is true.

style of pottery fragments (W. S. Robinson). More formally, applying this
concept to texts, given a matrix δ expressing the distance between novels, we say
that δ is Robinsonian if for any set of three distinct texts texti, textj and textk
such that date(texti) < date(textj) < date(textk),
max(δ(texti, textj), δ(textj, textk)) ≤ δ(texti, textk).

To evaluate the rectilinearity hypothesis on a distance matrix reflecting changes
in the idiolect, we measure to what extent the distance matrices corresponding
to the texts of the CIDRE corpus are Robinsonian. In order to do this, we can
compute the Robinsonian score, which we define as the percentage of triples of
cells (δ(texti, textj), δ(textj, textk), δ(texti, textk)), for which the inequality above
is verified.

It is also possible to estimate a p-value, i.e. the probability that a Robinsonian
score as high as the one being tested could be obtained by chance, by evaluating
this score again after randomly changing the order of the texts. Getting a low
p-value would support the rectilinearity hypothesis.

Before evaluating the rectilinearity hypothesis on the CIDRE corpus, we first
used a dated corpus of Maurice Leblanc as a testbed to compare different
feature representations for the texts and different ways of measuring distance.
We used tokens, characters, lemmas and so-called motifs (Legallois et al.) as
features. A motif is a sequence of lemmas and POS-tags. As function words
tend to be the most relevant features of idiolectal signals (Barlow), grammatical
information, i.e. function words and POS-tags, are crucial for the task.
However, the tagset of our part-of-speech tagger is not fine-grained enough,
losing important information for some categories. For example the difference

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 7

Table 2. Examples of unigrams and bigrams and the different types of features

“Il est
fâcheux
que cela
traîne en
longueur…”

tokens characters lemmas motifs

unigrams [‘Il’, ‘est’,
‘fâcheux’, ‘que’,
‘cela’, ‘traîne’,
‘en’, ‘longueur’,
‘...’]

[‘I’, ‘l’, ‘ ’, ‘e’, ‘s’, ‘t’, ‘ ’, ‘f’, ‘â’,
‘c’, ‘h’, ‘e’, ‘u’, ‘x’, ‘ ’, ‘q’, ‘u’, ‘e’,
‘ ’, ‘c’, ‘e’, ‘l’, ‘a’, ‘ ’, ‘t’, ‘r’, ‘a’, ‘î’,
‘n’, ‘e’, ‘ ’, ‘e’, ‘n’, ‘ ’, ‘l’, ‘o’, ‘n’,
‘g’, ‘u’, ‘e’, ‘u’, ‘r’, ‘...’]

[‘il’, ‘être’, ‘fâcheux’, ‘que’, ‘cela’,
‘traîner’, ‘en’,
‘longueur’, ‘…’]

[‘il’, ‘être’, ‘ADJ’, ‘que’,
‘cela’, ‘PRES’, ‘en’, ‘NC’,
‘...’]

bigrams [(‘Il’,‘est’),
(‘est’,‘fâcheux’),
(‘fâcheux’,‘que’),
(‘que’,‘cela’),
(‘cela’,‘traîne’),
(‘traîne’,‘en’),
(‘en’,‘longueur’),
(‘longueur’,‘...’)]

[‘Il’, ‘l ’, ‘ e’, ‘es’, ‘st’, ‘t ’, ‘ f’,
‘fâ’, ‘âc’, ‘ch’, ‘he’, ‘eu’, ‘ux’,
‘x ’, ‘ q’, ‘qu’, ‘ue’, ‘e ’, ‘ c’, ‘ce’,
‘el’, ‘la’, ‘a ’, ‘ t’, ‘tr’, ‘ra’, ‘aî’,
‘în’, ‘ne’, ‘e ’, ‘ e’, ‘en’, ‘n ’, ‘ l’,
‘lo’, ‘on’, ‘ng’, ‘gu’, ‘ue’, ‘eu’,
‘ur’, ‘r...’]

[(‘Il’,‘être’),
(‘être’,‘fâcheux’),(‘fâcheux’,‘que’),
(‘que’,‘cela’), (‘cela’,‘traîner’),
(‘traîner’,‘en’), (‘en’,‘longueur’),
(‘longueur’,‘...’)]

[(‘Il’,‘être’),
(‘être’,‘ADJ’),(‘ADJ’,‘que’),
(‘que’,‘cela’),
(‘cela’,‘PRES’),
(‘PRES’,‘en’), (‘en’,‘NC’),
(‘NC’,‘...’)]

between ‘un’ and ‘le’ (‘a’ and ‘the’) is ignored, and both are tagged as
determiners. We therefore used the following strategy: content words were
replaced with their POS-tags while function words were replaced with their
lemma. This approach allowed us to keep relevant linguistic information,
especially at the grammatical level. Legallois et al. proved that these motifs were
effective in finding author-specific style characteristics, making it possible to
identify interesting examples in corpus studies.

We compared different lengths of n-grams (unigrams to pentagrams) of tokens,
characters, lemmas and motifs (see Table 2 for examples of different types of
features). The texts of the corpus were represented by the top 500 features with
the highest relative frequency. The different distance metrics we used come
from stylo R (Eder et al.), in which we entered our corpora. Figure 2 shows
the percentage of the distance matrix (calculated for the Leblanc corpus) that is
Robinsonian for different feature configurations.

We therefore decided to detect the chronological signal in the corpora of
CIDRE and the reference corpus using motif trigrams and the canberra metric
as the default option, since trigrams are a medium size and the canberra metric
performed slightly better than the others. However, the choice of motifs was
motivated by the use of these features in the second series of experiments
presented next in this section and by the fact that the lower part of the error bar
in Figure 2 is at the highest level of all four tested features. The feature vectors
in this experiment contain the scores of the 500 features with the highest
relative frequencies.

4.2. Results
The scores for the different authors of the CIDRE corpus and the reference
corpus can be found in Table 3. To know whether these scores are meaningful,
we compared them with a distribution of random permutations of the distance
matrix. For 10 000 random permutations, we calculated the percentage that
obtained a Robinsonian score higher than the score of the actual distance

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 8

Figure 2. Robinsonian scores for different configurations of features used (eight different distance metrics, four different
types of features, five different lengths of n-grams).

Each combination of distance metric, type of features and length of n-gram was tested. Error bars represent the 95% confidence interval of
the mean score of all configurations that includes a given parameter. No configuration is significantly better than others. The highest result
of 0.50 is obtained using quadrigrams of lemmas with the canberra metric, but this experiment does not allow us to identify a combination
of features that is significantly the best to capture the chronological signal in the data.

matrix. Table 3 demonstrates that the distance matrices obtained are
significantly more Robinsonian for all the authors than random permutations,
except for Comtesse de Ségur.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 9

Table 3. The Robinsonian scores for the authors in CIDRE and the reference corpus, followed by the probability of obtaining these scores by
chance if the chronological signal in the data is absent.

Corpus Robinsonian
score

Probability of Robinsonian score if no chronological signal is present in the
data

Comtesse de Ségur 0.38 0.14

Daniel Lesueur 0.41 0.00

Pierre-Alexis Ponson du
Terrail

0.41 0.00

Gustave Aimard 0.42 0.01

Honoré de Balzac 0.44 0

Michel Zévaco 0.46 0

Jules Verne 0.47 0

George Sand 0.49 0

Paul Féval 0.49 0.00

Henry Gréville 0.62 0

Émile Zola 0.63 0

Reference Corpus 0.34 0

Decimal numbers come from rounding and plain zeros have not been rounded.

4.3. Discussion
First, it should be noted that the percentage of Robinsonian cells in the matrix
is dependent on the number of works in the corpus. Larger corpora lower the
probability of getting Robinsonianness by chance. Therefore, the score of 0.34
for the reference corpus seems low, but is actually very high for this number of
works. Second, it should be kept in mind that only the absolute order of works
plays a role in our method and that it does not take into account the exact
difference in years between works. That is to say: if max(δ(texti, textj), δ(textj,
textk)) ≤ δ(texti, textk) is false, it does not matter how much more max(δ(texti,
textj), δ(textj, textk)) is than δ(texti, textk).

The fact that different types of features produce similar results on the Maurice
Leblanc corpus is not that unexpected regarding the literature. Stamou
identified a number of stylistic markers that were of interest in many
stylochronometric studies, namely: punctuation, characters, part of speech
tags, most common words including function words, frequencies of selected
content words, hapax and vocabulary richness. She suggested that there might
not be a “single universal stylochronometer” that can apply to every corpus.

The results from our experiments show that there is a strong chronological
signal in the data, except for the corpus of Comtesse de Ségur. A possible
explanation for this exception could be that this corpus is too small,
representing only 3.8% of the total tokens in CIDRE. Another explanation
is that this corpus might be heterogeneous, as it includes children’s stories,
bible stories for children and fairy tales. However, in general our results are in
line with the rectilinearity hypothesis: the style of an author generally evolves
smoothly over time. No regression (texts stylistically similar to earlier texts) can
be observed.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 10

In the next section, we discuss our second series of experiments in which we
trained a linear regression model to automatically predict the date of writing of
various novels from our reference corpus.

5. Predicting Year of Writing using Linear Regression
In this section, we first examine the chronological evolution of the idiolect
(and the reference corpus) by training models on the corpora of idiolects in
CIDRE and then predicting the year of writing of different works using cross-
validation. The hypothesis is simple: if this type of experiment is successful,
the results are in favor of the rectilinearity hypothesis. In other words, the
frequency of some linguistic forms increases or decreases in a linear fashion
to such an extent that we can detect the year of writing. Second, we do not
just want to verify if there is a chronological signal, but also if we can identify
the linguistic material at the heart of this evolution. Therefore, we will present
a feature selection method that identifies the features that change the most
in frequency over time. These features will be used for the qualitative study
in section 6. Furthermore, besides these hypotheses and goals, we also have
the general objective of proposing new ways to evaluate stylometric methods.
For this purpose, we will have recourse to the state of the art literature on
linear regression models and verify that it can be used in the stylochronometry
context.

5.1. Methods: Regression Models
Various previous studies have used regression techniques in order to date
literary works. For example, Frischer used regression techniques (among other
methods) to date the Ars Poetica of Horace. However, by today’s standards, the
number of features in this regression was very low so we will mainly discuss
more recent work. A representative study using regression is Klaussner and
Vogel work from 2018 (henceforth K&V). They used it in a machine learning
task that consisted in predicting the year of writing of a work, focusing on two
corpora in English: the work of Henry James and that of Mark Twain. They
also used the years 1860-1919 of The Corpus of Historical American English
(COHA; Davies et al.) as a reference corpus to capture the ‘general’ language in
North America at the time, to check whether the changes detected in the work
of James and Twain were shared by the community or were idiosyncratic. Four
types of features were considered: character n-grams, part-of-speech tags, word
stems, and lemmas with POS-tags; for each of them unigrams to quadrigrams
were tested. This resulted in a total of 32 models (2 authors, 4 types of features
and 4 types of n-grams). On each model, the elastic nets algorithm was applied
to reduce the number of parameters. The models were evaluated using the
measure of root mean squared error (RMSE), which reflects the difference
(measured in years) between the prediction and the real year of writing. At this
point, note that one should keep in mind that this metric is quite sensitive to
outliers, as the error is squared. A baseline performance was also measured “by
using the mean of the data for the prediction of every instance”; meaning that
every work that was dated by the baseline received the same prediction (the

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 11

mean of all training instances). This would correspond to a model that has a R²
score of 0 (Field). The best results were obtained by K&V using lemmas with
POS-tags in unigrams and bigrams.

Although our experiments share many similarities with K&V, we made some
different choices for our models. First, we used only motifs consisting of n-
grams (unigram to pentagram, but all incorporated in the same model instead
of different models as in K&V). The notion of motif is anchored in previous
studies: it has been shown that they are helpful through qualitative analysis
(Legallois et al.). Second, the feature section algorithm we chose is Lasso LARS
(Efron et al.) with cross validation of 5 (80% training, 20% testing) and not
elastic nets. We chose this algorithm because our aim was not to find the
most compact model, unlike K&V, but a model that drastically reduces the
number of features so that they can be inspected manually (see our qualitative
study, Section 6 of this paper). Moreover, as a selection criterion of features,
we require that the features be present in at least 20% of an author’s texts,
whereas in the work of K&V, features had to be present in all data points. This
much lower threshold was chosen here because we think it is possible — at
least theoretically — for a language innovation to be totally new or for some
structures to entirely disappear. Also, K&V concatenated texts written in the
same year into one data point by putting the texts behind each other in the
same file, whereas we kept them as separate data points with the same value
for the year, since we believe that this better represents the data. However,
to ensure comparability with K&V, we decided to measure the RMSE and
the RMSE-baseline for our experiments. We also compared our results to our
reference corpus, and tried the algorithm of elastic nets,1 as well as elastic
nets cross validated.2 In the end, however, we found that Lasso LARS cross
validated performed much better on most of our corpora and that the number
of features it selected was better suited for qualitative studies (the elastic nets
selected either no features or thousands of features, making a qualitative study
impossible). Details about the comparison of feature selection algorithms can
be found in the supplementary material.3

5.2. Results
For every author, we measured the correlation between the actual year and
the predicted year and the value of R² (expressed between 0 and 1), which
represents the amount of variation of the data that is explained by the model
(Field). The results can be found in Table 4 and Figure 3. Excellent results were
obtained for Jules Verne, Émile Zola, George Sand, Henry Gréville, Daniel-
Lesueur and Honoré de Balzac: the models (selected n-grams of motifs) were
capable of predicting the large majority of the variation in the data. The models

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html#sklearn.linear_model.ElasticNetCV

The filename is: ‘results_LassoLars_vs_ElasticNet.txt’.

1

2

3

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 12

Table 4. The regression experiment was very successful in explaining the variance of the corpora in gray, and considerable for the other corpora,
except for Pierre Alexis Ponson du Terrail, where it was inefficient.

Author Correlation R² #β RMSE RMSE-b Remarks

Jules Verne 0.94 0.89 57 3.91 11.83

Daniel-Lesueur 0.92 0.84 14 3.39 8.46

Émile Zola 0.92 0.83 34 4.50 11.02

Honoré de
Balzac

0.90 0.78 42 2.44 5.26

George Sand 0.88 0.77 61 6.13 12.78

Henry Gréville 0.78 0.55 31 2.85 4.27 Regressors in active set degenerate (1/5
folds)

Michel Zévaco 0.75 0.55 23 3.52 5.22 ConvergenceWarning: Regressors in
active set degenerate (2/5 folds)

Gustave Aimard 0.70 0.49 21 5.96 8.21

Paul Féval 0.51 0.26 17 8.72 10.14 ConvergenceWarning: Regressors in
active set degenerate (3/5 folds)

Comtesse de
Ségur

0.45 0.18 18 3.57 3.96 ConvergenceWarning: Regressors in
active set degenerate (1/5 folds)

Pierre Alexis
Ponson du
Terrail

-0.04 -0.55 10 5.69 4.57

Reference
corpus

0.84 0.70 208 11.30 20.50

explained a substantial amount of variation in the data for the authors Michel
Zévaco, Gustave Aimard, la Comtesse de Ségur and Paul Féval, but less than
half of it. Lastly, for Pierre Alexis Ponson du Terrail, the model was not able
to explain any variance in the data, and thus the experiment was not successful
at all. The same observations can also be made by comparing the evaluation
metric root mean squared error (RMSE) and the baseline metric (RMSE-
baseline) put forward by K&V.

It is important to mention that the modelling does not always (completely)
converge for a given K-fold. This problem is mostly noticeable for Paul Féval.
There seems to be a relation between the performance and this issue, but
convergence cannot explain the poor performance of the model on the corpus
of Pierre Alexis Ponson du Terrail: all the models on this corpus converged.
We also had a look at which works were well predicted and which ones were
outliers. See for example Figure 4, where it can be seen that L’Auberge des
Saules by Daniel-Lesueur was predicted about 6 years too late, but Comédienne
exactly at the time it was written. Other figures in the same style can be found
in the supplementary material (directory plots_regression_par_auteur).

5.3. Discussion
The average proportion of each author in our whole corpus is 9% since we have
11 authors. Our results show that larger corpora (Sand: 15.3% of the whole
corpus, Verne: 14%, Zola: 13% and Zévaco: 10.5%) perform very well and that
smaller corpora obtain lower scores (Ségur: 3.8%, Aimard: 5.4%, Féval: 6.4%).
This suggests that Petré and Van de Velde are right when they say that corpus
size matters a lot, even if it does not explain why our worst performing corpus

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 13

Figure 3. The results of the regression experiment for all corpora in CIDRE, sorted by performance (left to right, top to
bottom).

The blue line represents a perfect correlation.

is Pierre Alexis Ponson du Terrail, which is a medium size corpus (representing
9.1% of the total size of CIDRE). However, it is possible of course that we are
not aware of certain circumstances in the publication process of the different
authors that might explain these results or that the dating of this corpus is of
lesser quality. For example, the literary work of Ponson du Terrail is less well
known than that of some other writers in CIDRE: his works were dated using
information mostly from Wikipedia, which is not as reliable a source as those
used for other authors. If the poorer dating of some novels by this writer is
the source of the failure of our model, it means that our method is sensitive
to individual data points. Indeed, going back to the previous experiment and
Table 3, we see that there is a highly significant chronological signal for this
corpus, which means that the approach works globally and that specific cases
of failure should be further investigated.

However that may be, for most of the authors we get a very high value of R²,
which means that the chronology can explain almost all the variance of the
models. This is confirmed by the fact that the value of RMSE is much lower
than the RMSE-baseline value. We can thus conclude that the results on all our
corpora minus one are in line with the rectilinearity hypothesis.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 14

Figure 4. The result of the regression experiment for the corpus of Daniel-Lesueur with annotated data points on the
scatterplot.

The blue line represents a perfect correlation.

A second interesting result that we obtained is the number of features selected
per model (column #β in Table 4). For all the corpora in CIDRE the number
lies between 10 and 61, which are numbers that make it possible to examine all
the features of a corpus in a qualitative study. A direct comparison with K&V is
difficult, as we did not work on the same corpora. However, we observe that the
number of predictors per model (column #β in Table 4) has a smaller range for
the different models we developed (the models of K&V range from counting
1 predictor to 315). Nevertheless, it should be kept in mind that our feature
selection algorithm probably removes correlated features and that the random
seed plays a role in which ones. Therefore, for a complete qualitative study
of one author, it might be worthwhile repeating the regression experiment a
number of times with different random seeds.

The features that characterize the evolution of an author do not necessarily
have to be frequent. While some features are quite frequent, such as the
increasing motif ‘y’ (anaphor referring to a prepositional phrase beginning with
the preposition ‘à’) found for Zola, which obtains the relative frequency of
0.0027 at its maximum, some others, such as the decreasing motif ‘autrui’
(other people), have a low relative frequency, 0.0008 at its maximum. This

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 15

conclusion is similar to a finding in Koppel and Schler, who found that
idiosyncratic features that play an important role in authorship attribution also
tend to be of low frequency. How we explore the features of the models will be
discussed in the next section.

6. A Qualitative Study of some Motifs Sensitive to Diachronic
Change
In this section, we look more closely at features selected by the regression
algorithm (presented in the previous section). These features, or motifs, are at
the heart of idiolectal evolution and are assumed to be easily interpretable. Let’s
examine if this is true.

6.1. Methods: Manual Inspection
We scrutinized the motifs relevant for four authors on whom our models
obtained good results: Balzac, Daniel-Lesueur, Sand and Zola (looking deeper
into the motifs attached to authors for whom we obtained poor results would
not make much sense). For these authors, we inspected whether the selected
motifs were interpretable by looking at examples from the corpus in context, to
see if they corresponded to meaningful linguistic patterns.

First, it is clear that some forms are not interpretable: in Balzac, for example,
there is a decrease in the use of adverbs over time, but the adverbial category
is relatively heterogeneous so that it is difficult to interpret this phenomenon.
The same can be observed with the motif “NC_,_avoir” (also in Balzac) which
increases; this motif is realized in sequences (patronne, avait - mistress, had;
frère, ont -brother, had; ciel, as - heaven, have) of which, at first sight, nothing
really relevant can be said. Another group of difficult motifs in Balzac is the
more frequent use of the pronoun “on” (“on PRES”, “. on”, “ADJ que on”).
These patterns are hard to interpret, especially since the pronoun “on” has a
fairly wide range of referential values.

Another example from Zola concerns verbs such as bouleverser (to upset) and
convaincre (to convince), which have an increasing frequency over time. But
here again, there is no immediate explanation for this usage. However, we were
pleased to see that most motifs are interpretable (for example, we estimated
that about three quarters of the motifs retained for Zola were). In the rest
of this section, we will discuss some of the (groups of) motifs that we found
interesting, or that have been previously noticed by researchers of the field of
stylistic analysis.

6.2. Results
A number of interpretable motifs can be considered as stylemes. For example,
in Zola, there is a set of motifs organized around “. Et” (the conjunction “and”
at the beginning of the sentence): “. Et le NC être” ; “. Et, dès” ; “. Et ce être”
whose use increases, as shown in example 1:

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 16

(1) Quoi donc ? Était-ce la fin ? Un souffle glacé avait couru sur le
camp, anéanti de sommeil et d’angoisse. Et ce fut alors que Jean
et Maurice reconnurent le colonel de Vineuil […]
(Zola, La débâcle)

What then? Was it the end? An icy breath had run over the camp,
annihilated by sleep and anguish. And it was then that Jean and
Maurice recognized Colonel de Vineuil […]

This use (called the revival “et”) was noticed very early by stylisticians
(Thibaudet; but see Bordas and Badiou-Monferrand for modern accounts). It
is not considered an idiosyncrasy, since this motif was also used by Flaubert,
who can be said to have been imitated by Zola (Thibaudet; Gauthier). Flaubert
considered that it was “an old biblical tic which is annoying”.

Another set of motifs is, meanwhile, on the decline, including “NCCOR”, a
tag for parts of the human body, which are used in the physical description of
the characters (épaules; tête; main; yeux, etc. - shoulders; head; hand; eyes, etc.).
It is difficult to interpret the reason for this decrease; perhaps the form, or at
least its repetition, was considered a cliché by the author.

In the same way, in Sand, we also notice that motifs linked to units referring
to parts of the body tend to decrease, for example “NCCOR avec NCABS”:
et se jeta dans mes bras avec joie; Suzanne baissa la tête avec embarras…
and threw herself into my arms with joy; Suzanne lowered her head in
embarrassment. This motif associates a movement of the body with a feeling.
Again, this change could be considered to be due to the avoidance of a cliché,
but this is a hypothesis that will have to be verified in further analysis.

Among the positive motifs of Sand, we note these two forms (“, et, comme”,
“, et, si ce”) which share the same rhythmic pattern (see examples 2 and 3).
Without going into detail, these patterns may highlight the subordinate
sentence by a kind of tension (↗), while the main phase is constructed in
detension (↙).

(2) Après avoir fait quelques tours sous les galeries, il se crut
assez calme pour retourner à l’atelier, et, comme il redescendait
l’escalier des Géants, il se trouva tout à coup face à face avec le
Bozza.
(Sand, Les Maîtres mosaïstes)

After having taken a few turns under the galleries, he believed
himself calm enough to return to the workshop, and, as he went
back down the staircase of the Giants, he found himself suddenly
face to face with the Bozza.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 17

(3) Dès lors, j’espérais qu’elle pourrait aimer Narcisse, et, si cet
excellent jeune homme pouvait être heureux par elle, c’était à la
condition de ne plus souffrir du passé. (Sand, Narcisse)

From then on, I hoped that she would be able to love Narcisse,
and, if this excellent young man could be happy thanks to her,
it was on the condition of not suffering from the past anymore.

For Balzac, we found the decreasing motif “tout_à_NC” which corresponds in
the vast majority of cases to the adverb “tout à coup” all of a sudden. Again,
we suspect that the decrease of this motif could be caused by the avoidance
of clichés. An interesting example of increasing motifs of Balzac is the motif
“dire_à_NP” "say to Proper Name". When inspecting the corpus, we noticed
that this phrase is used in different ways: sometimes it is inserted inside a
dialogue as illustrated in example (4), often it is used to mark the transition
from narration to dialogue as in (5) and vice-versa, as in (6). We consider it
a stylistic means to dynamize the switches between narratives and dialogues.
Often this construction is used to put a long grammatical subject after the verb
and direct object (as in 4 and 6), which also creates a stylistic effect.

(4) Il ne faut pas demander à monsieur pourquoi il vient, dit à
Castanier une vieille portière, vous ressemblez trop à ce pauvre
cher défunt.
(Balzac, Melmoth reconcilié)

One shouldn’t ask this gentleman why he came, said an old
doorkeeper to Castanier, you look too much like the poor, dear
deceased.

(5) Le commandant, qui l’ étudiait, s’apercevant de cette
insensibilité, dit à Gérard : Le serin n’en sait pas long.
(Balzac, Les Chouans)

The commander, who was studying him, and noticed this
insensitivity, said to Gérard: The fool does not know much.

(6) J’attends la réponse, dit à Rastignac le commissionnaire de
madame de Nucingen.
(Balzac, Le père Goriot)

I’m waiting for an answer, said the commissioner of Madame de
Nucingen to Rastignac.

Finally, for Daniel-Lesueur, it is worth mentioning the increasing motif
“…_DETPOSS_NC_…” (see examples 7 and 8), by which a noun preceded by
a possessive determiner in between two ellipsis punctuation marks dramatizes
reported thoughts and speech by invoking a close relation mon enfant; ma
soeur; mon amie (my child; my sister; my friend).

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 18

(7) Ah ! ma mère … ma mère … pensait Hervé, […]
(Daniel-Lesueur, Le Masque d’Amour II - Madame de Ferneuse)

Ah ! my mother … my mother… thought Hervé, […]

(8) Je suis perdue ! … Perdue ! … Ma chérie … Invente quelque
chose ! … Ah ! sauve-moi !
(Daniel-Lesueur, Justice de femme)

I’m lost! … Lost! … My darling… Think of something! … Ah!
save me!

6.3. Discussion
As already mentioned, not all the motifs identified automatically are
interpretable. Many, however, are stylistic in nature without it being possible to
determine whether these uses are a deliberate choice by the author, or whether
they are a form of automatism. To shed light on this question, a more precise
analysis involving literary expertise should be undertaken. Our analysis
provides the literary scholar, the stylistician and the linguist with statistically
relevant evidence of the evolution of certain forms. It is up to these specialists
to show correlations between forms, to propose interpretations. This type
of approach can provide an empirical basis for more theoretical research
(Philippe). Our hope is to have demonstrated that our method, which
combines the use of motifs and the feature selection method of Lasso LARS,
identifies a large number of stylistically interesting patterns and can be a useful
tool in the qualitative analysis of the evolution of the idiolect.

7. General Discussion and Future Work
7.1. Contribution of the Work
In this article we investigated the chronological evolution of the idiolect. We
examined whether support could be found for the rectilinearity hypothesis
which states that the evolution of the idiolect is rectilinear in time, and whether
the linguistic structures at the heart of idiolectal change could be identified.
Using the Corpus for Idiolectal Research (CIDRE), we developed two
methods that could help reach these goals. First, we introduced the idea of
evaluating to what extent the distance matrices of works of one author are
robinsonian. For ten out of eleven corpora in CIDRE, we found that the
Robinsonian score was significantly high, suggesting that chronology plays a
crucial role in the idiolect of an author. Second, we developed linear regression
methods to predict the year of writing of a work and selected linguistic features
that are key in the process of idiolectal change. We found that the majority
of regression models were highly successful, again supporting the rectilinearity
hypothesis. Third, these models allowed us to find a number of features (in
the form of motifs) that lent themselves to manual examination in a qualitative
study, demonstrating both the usefulness of these features and the validity of
our methods. We believe that the use of motifs is complementary to the use

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 19

of lemmas and tokens. As for example Brunet illustrates in his study of the
vocabulary used by Zola, using lemmas allows a researcher to interpret the
topics of a writer. In the present study we demonstrate that motifs, on the
other hand, might give more insights in stylistic forms.

We believe that working on the concepts of idiolect and chronological change
can have an impact on related research themes. Modeling the idiolect could be
useful, for example for the task of automatic text dating that was included in
the 2015 SemEval campaign: Task 7: Diachronic Text Evaluation (Popescu and
Strapparava). A corpus of snippets from newspaper articles dating from 1700
until 2010 was composed and the task consisted in dating these snippets. It
could be interesting to see if the idiolect plays a role and if it can enhance the
classification results.

A theme for which the concept of chronological variation could be interesting
is authorship attribution and authorship verification, which involves checking
whether a pair of documents are written by the same person (Kestemont et al.).
Nowadays, the chronology of the writing is not taken into account; only the
idiolect of each author in the corpus is modeled. It is quite possible, however,
that taking the date of writing into consideration would enhance the modeling.
Many different features have been explored to model the idiolect of authors
for this task: n-grams of words or characters (e.g. Stamatatos; Antonia et al.;
Sari et al.), syntactic structures (Sundararajan and Woodard; Zhang et al.) and
even discourse structure (Ding et al.) but we are not aware of models that take
idiolectal variance over time into account. However, especially for writers with
long careers, it could be meaningful.

In this study, we focused on methods and on the evaluation of results. We argue
that the use of standard corpora, baselines and evaluation metrics could help
enhance the comparability of studies in the field of stylometry and that this
would help the research community gain greater insight into the robustness of
the results. In our experiment on the Robinsonian matrices, we used random
results as a baseline. For research questions that have not yet been addressed in
the literature, this is a useful starting point, as shown in the work of Bulteau
et al., who developed two algorithms to estimate the probability that a tree
produced by a hierarchical clustering algorithm — for instance produced by
stylo R (Eder et al.) — reflects a chronological order by chance. In our
experiment using regression models, we compared our methods with those of
Klaussner and Vogel from their 2018 publication, using their baseline RMSE
and the standard baseline of regression models, R2 (Field).

An important contribution of this study is that it addresses questions of
evaluation. We have seen that the development of off-the-shelf-packages has
made it possible to shed new light on long-standing research questions. For
example Schmidt-Petri et al. used the rolling-classification algorithm from stylo
R (Eder et al.) to examine the contribution of Harriet Taylor Mill to the
essay On Liberty, which is officially contributed solely to John Stuart Mill,

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 20

her husband. They found that there is stylometric evidence that she should
indeed be considered a co-author of the work. However, as stylo R does not
enable any statistical evaluation of the classification results, the authors had
no straightforward means of interpreting their reliability and had to undertake
considerable extra work to estimate the robustness of the results. We therefore
think that working on the question of evaluation of stylometric methods is a
topic in the field of stylometry that needs to be developed further and we hope
to have made a useful contribution to it.

7.2. Future Work
The most obvious future work that should result from this study is a detailed
qualitative analysis of the selected motifs in CIDRE, for which the regression
models obtain good results. These studies should also contain a detailed
comparison with the reference corpus in order to decide if the observed change
can be interpreted as a rather general diachronic language change or an
idiosyncrasy, using for example the methods that Mollin used to identify
idiosyncratic collocations. This should be done, however, in collaboration with
literary experts of the writers in question in order to compare the findings of
the method with what is already known in the field of stylometry and stylistics.
In addition to the identification of idiosyncratic motifs, collaborations with
literary experts would allow us to get a more precise interpretation of the
motifs of an author. Indeed, we could for example examine the role that
dialogs, narratives, and descriptions play when experts provide us with
theoretically and empirically motivated hypotheses on specific authors.

Another straightforward direction for future work is to repeat our experiments
on other text genres, for example drama or correspondence. We are considering
trying our methods on plays, for example by using the Théâtre Classique corpus
of Fièvre. However, as theatrical works might be influenced/written by the
actors in the plays, the idiolectal signal of the playwright may not be as strong
as for works of fiction. Correspondence could be interesting in order to
investigate idiolectal changes with respect to the addressee of the letter. We
could for example use the Corpus of Early English Correspondence
(Raumolin-Brunberg and Nevalainen) and the correspondence of George
Sand. Another advantage of using correspondence is that dating letters might
be more precise than dating works of fiction. However, it would probably
result in corpora that are significantly smaller than the corpora of the authors in
CIDRE. As we suspect a strong relation between corpus size and the statistical
power of the experiments, the success is not guaranteed for smaller corpora.
But on the other hand, the number of letters per author is probably higher than
the number of books in CIDRE, which could enhance the statistical power.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 21

A third direction for future work is to evaluate how different people influence
each other with their idiolects. Evans investigated how the idiolect of Queen
Elizabeth I was influenced by others. It could be interesting to develop a
methodology on how influence could be established between authors or even
between literary movements.

8. Conclusion
Our experiments demonstrate that there is a significant evolution of the
idiolect during an author’s lifetime. Our experiments also suggest that some
features evolve in a rectilinear manner, steadily increasing or decreasing as the
years go by. These features are sufficiently clear-cut to be used to date the year
of writing of a book very accurately. We therefore conclude that we found
strong support for the rectilinearity hypothesis and that the evolution of the
idiolect is a relevant type of intrapersonal variation that exists alongside the
strong signal of interpersonal variation. We thus dismiss the proposal that
idiolects are stable over time, even though it is true that not all linguistic
features evolve. A second contribution of our article is the development of
new methods for which we have demonstrated the usefulness in 1) assessing
the chronological signal of the idiolect in corpora and 2) identifying linguistic
structures that are at the heart of this evolution. These features can in turn be
used for qualitative studies with stylistic objectives.

Peer-Reviewers: Simon DeDeo, David Mimno

All scripts, supplementary materials and data used for our experiments are
available in the online Harvard Dataverse directory: https://doi.org/10.7910/
DVN/WCMZOK, except for the CIDRE corpus, that is freely available in the
following Zenodo repository: https://doi.org/10.5281/zenodo.4707812.

Acknowledgments
We thank the two reviewers for their insightful comments and suggestions.
This work has been developed in the framework of the IRN (International
Research Network) Cyclades (Corpora and Computational Linguistics for
Digital Humanities). This work was also supported in part by the French
government under management of Agence Nationale de la Recherche as part
of the “Investissements d’avenir” program, reference ANR19-P3IA-0001
(PRAIRIE 3IA Institute) and reference ANR-16-IDEX-0003 (I-Site Future,
programme “Cité des dames, créatrices dans la cité”).

Submitted: February 02, 2022 EDT, Accepted: April 26, 2022 EDT

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International License (CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/

by/4.0 and legal code at http://creativecommons.org/licenses/by/4.0/legalcode for more information.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 22

references

Anthonissen, Lynn, and Peter Petré. “Grammaticalization and the Linguistic Individual: New
Avenues in Lifespan Research.” Linguistics Vanguard, vol. 5, no. s2, June 2019, doi:10.1515/
lingvan-2018-0037.

Antonia, A., et al. “Language Chunking, Data Sparseness, and the Value of a Long Marker List:
Explorations with Word n-Grams and Authorial Attribution.” Literary and Linguistic Computing,
vol. 29, no. 2, May 2013, pp. 147–63, doi:10.1093/llc/fqt028.

Badiou-Monferrand, Claire. “Rémanence Des Et de Relance En Français Moderne et Contemporain:
Du ‘Résidu’ Au ‘Reliquat.’” Le Français Moderne, vol. 88, no. 2, 2020, pp. 295–312.

Barlow, Michael. “Individual Usage: A Corpus-Based Study of Idiolects.” Proceedings of LAUD
Conference, 2010.

Bloch, Bernard. “A Set of Postulates for Phonemic Analysis.” Language, vol. 24, no. 1, Jan. 1948, pp.
3–46, doi:10.2307/410284.

Bordas, Éric. “Et La Conjonction Resta Tensive. Sur Le et de Relance Rythmique.” Français
Moderne, vol. 73, no. 1, 2005, pp. 23–39.

Brainerd, Barron. “The Chronology of Shakespeare’s Plays: A Statistical Study.” Computers and the
Humanities, vol. 14, no. 4, Dec. 1980, pp. 221–30. Crossref, doi:10.1007/bf02404431.

Brooke, Julian, et al. “GutenTag: An NLP-Driven Tool for Digital Humanities Research in the
Project Gutenberg Corpus.” Proceedings of the Fourth Workshop on Computational Linguistics for
Literature, 2015, pp. 42–47, doi:10.3115/v1/w15-0705.

Brunet, Etienne. Le Vocabulaire de Zola. Slatkine, Champion, 1985.
Bulteau, Laurent, et al. “Reordering a Tree According to an Order on Its Leaves.” 33rd Annual

Symposium on Combinatorial Pattern Matching (CPM 2022), Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2022. Google Scholar, doi:10.4230/LIPIcs.CPM.2022.24.

Can, Fazli, and Jon M. Patton. “Change of Writing Style with Time.” Computers and the Humanities,
vol. 38, no. 1, Feb. 2004, pp. 61–82, doi:10.1023/b:chum.0000009225.28847.77.

Church, Kenneth, et al. “Using Statistics in Lexical Analysis.” Lexical Acquisition: Exploiting on-Line
Resources to Build a Lexicon, Psychology Press, 1991, pp. 115–64.

Cox, D. R., and Leonard Brandwood. “On a Discriminatory Problem Connected with the Works of
Plato.” Journal of the Royal Statistical Society: Series B (Methodological), vol. 21, no. 1, Jan. 1959,
pp. 195–200. Crossref, doi:10.1111/j.2517-6161.1959.tb00329.x.

Craig, Hugh. “Stylistic Analysis and Authorship Studies.” A Companion to Digital Humanities, vol.
3, 2004, pp. 233–334.

Cropp, Martin, and Gordon Fick. “Resolutions and Chronology in Euripides: The Fragmentary
Tragedies.” Bulletin Supplement (University of London. Institute of Classical Studies), 1985, pp.
iii–92.

Daelemans, Walter. “Explanation in Computational Stylometry.” Computational Linguistics and
Intelligent Text Processing, edited by Alexander Gelbukh, vol. 7817, Springer Berlin Heidelberg,
2013, pp. 451–62. Crossref, doi:10.1007/978-3-642-37256-8_37.

Davies, Mark, et al. “The 400 Million Word Corpus of Historical American English (1810–2009).”
English Historical Linguistics 2010: Selected Papers from the Sixteenth International Conference on
English Historical Linguistics (ICEHL 16), Pécs, 23-27 August 2010, vol. 325, John Benjamins
Publishing, 2012, pp. 231–62, doi:10.1075/cilt.325.11dav.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 23

Derks, Peter L. “Clockwork Shakespeare: The Bard Meets the Regressive Imagery Dictionary.”
Empirical Studies of the Arts, vol. 12, no. 2, July 1994, pp. 131–39. Crossref, doi:10.2190/
h489-jh64-lq8c-l4t1.

Devine, A. M., and Laurence D. Stephens. “A New Aspect of the Evolution of the Trimeter in
Euripides.” Transactions of the American Philological Association (1974-), vol. 111, 1981, p. 43.
Crossref, doi:10.2307/284118.

Ding, Steven H. H., et al. “Learning Stylometric Representations for Authorship Analysis.” IEEE
Transactions on Cybernetics, vol. 49, no. 1, Jan. 2019, pp. 107–21. Crossref, doi:10.1109/
tcyb.2017.2766189.

Dittmar, Norbert. “Explorations in ‘Idiolects.’” Amsterdam Studies in the Theory and History of
Linguistic Science Series 4, 1996, pp. 109–28.

Dunning, Ted E. “Accurate Methods for the Statistics of Surprise and Coincidence.” Computational
Linguistics, vol. 19, no. 1, 1993, pp. 61–74.

Eder, Maciej, et al. “Stylometry with R: A Package for Computational Text Analysis.” The R Journal,
vol. 8, no. 1, 2016, doi:10.32614/rj-2016-007.

Efron, Bradley, et al. “Least Angle Regression.” The Annals of Statistics, vol. 32, no. 2, Apr. 2004, pp.
407–99, doi:10.1214/009053604000000067.

Evans, Mel. Aspects of the Idiolect of Queen Elizabeth I: A Diachronic Study on Sociolinguistic Principles.
University of Sheffield, 2011.

Field, Andy. Discovering Statistics Using SPSS: Book plus Code for E Version of Text. SAGE
Publications Limited, 2009.

Fièvre, Paul. “Théâtre Classique.” Université Paris-IV Sorbonne Http://Www. Theatreclassique. Fr,
2007.

Fleury, Serge, and Maria Zimina. “Trameur: A Framework for Annotated Text Corpora Exploration.”
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics:
System Demonstrations, 2014, pp. 57–61.

Forsyth, R. “Stylochronometry with Substrings, or: A Poet Young and Old.” Literary and Linguistic
Computing, vol. 14, no. 4, Dec. 1999, pp. 467–78. Crossref, doi:10.1093/llc/14.4.467.

Frischer, Bernard. Shifting Paradigms New Approaches to Horace’s Ars Poetica. 1991.
Gauthier, E. Paul. “Zola as Imitator of Flaubert’s Style.” Modern Language Notes, vol. 75, no. 5, May

1960, p. 423, doi:10.2307/3039860.
Guaresi, Magali, et al. “Entre Rupture et Continuité, Le Discours Du PCF (1920-2020).” Histoire &

Mesure, vol. XXXVII–1, no. 2, Dec. 2021, pp. 125–62, doi:10.4000/histoiremesure.14904.
Heck, Richard. “Idiolects.” Content and Modality: Themes from the Philosophy of Robert Stalnaker,

Oxford University Press on Demand, 2006, pp. 61–92.
Heiden, S., et al. Manuel de TXM, Version 0.7.9. ENS de Lyon & Université de Franche-Comté,

2018, http://textometrie.ens-lyon.fr/files/documentation/
Manuel%20de%20TXM%200.7%20FR.pdf.

Jackson, MacD. P. “Pause Patterns in Shakespeare’s Verse: Canon and Chronology.” Literary and
Linguistic Computing, vol. 17, no. 1, Apr. 2002, pp. 37–46. Crossref, doi:10.1093/llc/17.1.37.

Jaynes, Joseph T. “A Search for Trends in the Poetic Style of WB Yeats.” ALLC Journal, vol. 1, 1980,
pp. 11–18.

Kestemont, Mike, et al. “Overview of the Cross-Domain Authorship Attribution Task at PAN 2019.”
CLEF (Working Notes), 2019.

Klaussner, Carmen. “Elements of Style Change.” University of Dublin, Ireland, 2017.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 24

Klaussner, Carmen, and Carl Vogel. “Stylochronometry: Timeline Prediction in Stylometric
Analysis.” Research and Development in Intelligent Systems XXXII, edited by Max Bremer and
Miltos Petridis, Springer International Publishing, 2015, pp. 91–106. Crossref, doi:10.1007/
978-3-319-25032-8_6.

---. “Temporal Predictive Regression Models for Linguistic Style Analysis.” Journal of Language
Modelling, vol. 6, no. 1, Aug. 2018, doi:10.15398/jlm.v6i1.177.

Koppel, Moshe, and Jonathan Schler. “Exploiting Stylistic Idiosyncrasies for Authorship
Attribution.” Proceedings of IJCAI’03 Workshop on Computational Approaches to Style Analysis and
Synthesis, vol. 69, 2003, pp. 72–80.

Lamalle, C., et al. Lexico 3 Version 3.41 Février 03. Outils de Statistique Textuelle. Manuel
d’Utilisation. Laboratoire SYLED-CLA2T, Université de la Sorbonne nouvelle - Paris 3, 2003,
http://www.lexi-co.com/ressources/manuel-3.41.pdf.

Ledger, Gerard R. Re-Counting Plato a Computer Analysis of Plato’s Style. 1989.
Legallois, Dominique, et al. “The Balance Between Quantitative and Qualitative Literary Stylistics:

How the Method of ‘Motifs’ Can Help.” The Grammar of Genres and Styles: From Discrete to Non-
Discrete Units, 2018, pp. 164–93.

Meyerhoff, Miriam, and James A. Walker. “The Persistence of Variation in Individual Grammars:
Copula Absence in ?Urban Sojourners? And Their Stay-at-Home Peers, Bequia (St Vincent and the
Grenadines).” Journal of Sociolinguistics, vol. 11, no. 3, June 2007, pp. 346–66. Crossref,
doi:10.1111/j.1467-9841.2007.00327.x.

Mollin, Sandra. “‘I Entirely Understand’ Is a Blairism: The Methodology of Identifying Idiolectal
Collocations.” International Journal of Corpus Linguistics, vol. 14, no. 3, Aug. 2009, pp. 367–92,
doi:10.1075/ijcl.14.3.04mol.

Opas, L. L. “A Multi-Dimensional Analysis of Style in Samuel Beckett’s Prose Works.” Research in
Humanities Computing 4., edited by S. Hocking and N. Ide, Clarendon Press., 1996.

Petré, Peter, et al. “Early Modern Multiloquent Authors (EMMA): Designing a Large-Scale Corpus of
Individuals’ Languages.” ICAME Journal, vol. 43, no. 1, Mar. 2019, pp. 83–122, doi:10.2478/
icame-2019-0004.

Petré, Peter, and Freek Van de Velde. “The Real-Time Dynamics of the Individual and the
Community in Grammaticalization.” Language, vol. 94, no. 4, 2018, pp. 867–901, doi:10.1353/
lan.2018.0056.

Philippe, Gilles. Pourquoi le style change-t-il? Les Impressions Nouvelles, 2021, doi:10.14375/
np.9782874498671.

Pincemin, Bénédicte. Sept Logiciels de Textométrie. 2018.
Popescu, Octavian, and Carlo Strapparava. “Semeval 2015, Task 7: Diachronic Text Evaluation.”

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015, pp.
870–78, doi:10.18653/v1/s15-2147.

Raumolin-Brunberg, Helena, and Terttu Nevalainen. “Historical Sociolinguistics: The Corpus of
Early English Correspondence.” Creating and Digitizing Language Corpora, edited by Joan C.
Beal, et al., Palgrave Macmillan UK, 2007, pp. 148–71, doi:10.1057/9780230223202_7.

Robinson, T. M. “Plato and the Computer.” Ancient Philosophy, vol. 12, no. 2, 1992, pp. 375–82,
doi:10.5840/ancientphil19921228.

Robinson, W. S. “A Method for Chronologically Ordering Archaeological Deposits.” American
Antiquity, vol. 16, no. 4, Apr. 1951, pp. 293–301, doi:10.2307/276978.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 25

Sari, Yunita, et al. “Continuous N-Gram Representations for Authorship Attribution.” Proceedings of
the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, 2017, pp. 267–73, doi:10.18653/v1/e17-2043.

Schmidt-Petri, Christoph, et al. “Who Authored On Liberty? Stylometric Evidence on Harriet Taylor
Mill’s Contribution.” Utilitas, vol. 34, no. 2, Dec. 2021, pp. 120–38, doi:10.1017/
s0953820821000339.

Seminck, Olga, et al. “The Corpus for Idiolectal Research (CIDRE).” Journal of Open Humanities
Data, vol. 7, 2021, p. 15, doi:10.5334/johd.42.

Smith, Joseph A., and Coleen Kelly. “Stylistic Constancy and Change across Literary Corpora: Using
Measures of Lexical Richness to Date Works.” Computers and the Humanities, vol. 36, no. 4, 2002,
pp. 411–30. Crossref, doi:10.1023/a:1020201615753.

Stamatatos, Efstathios. “On the Robustness of Authorship Attribution Based on Character N-Gram
Features.” JL & Pol’y, vol. 21, 2012, p. 421.

Stamou, C. “Stylochronometry: Stylistic Development, Sequence of Composition, and Relative
Dating.” Literary and Linguistic Computing, vol. 23, no. 2, Oct. 2007, pp. 181–99. Crossref,
doi:10.1093/llc/fqm029.

Sundararajan, Kalaivani, and Damon Woodard. “What Represents ‘Style’ in Authorship
Attribution?” Proceedings of the 27th International Conference on Computational Linguistics, 2018,
pp. 2814–22.

Temple, J. T. “A Multivariate Synthesis of Published Platonic Stylometric Data.” Literary and
Linguistic Computing, vol. 11, no. 2, June 1996, pp. 67–75. Crossref, doi:10.1093/llc/11.2.67.

Thibaudet, Albert. Gustave Flaubert. Éditions Gallimard, 1922.
Vanni, Laurent, et al. “Hyperdeep: Deep Learning Descriptif Pour l’analyse de Données Textuelles.”

JADT 2020, 2020.
Whissell, Cynthia. “Traditional and Emotional Stylometric Analysis of the Songs of Beatles Paul

McCartney and John Lennon.” Computers and the Humanities, vol. 30, no. 3, 1996, pp. 257–65,
doi:10.1007/bf00055109.

Wishart, David, and Stephen V. Leach. “A Multivariate Analysis of Platonic Prose Rhythm.”
Computer Studies in the Humanities and Verbal Behavior, vol. 3, no. 2, 1970, pp. 90–99.

XML, BNC. The British National Corpus XML Edition DVD. Oxford: Oxford University Press,
2007, http://www.natcorp.ox.ac.uk/docs/URG/.

Zhang, Richong, et al. “Syntax Encoding with Application in Authorship Attribution.” Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 2742–53,
doi:10.18653/v1/d18-1294.

The Evolution of the Idiolect over the Lifetime: A Quantitative and Qualitative Study of French 19th Century Literature

Journal of Cultural Analytics 26

HAL Id: hal-04080842
https://hal.science/hal-04080842

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Distances between Words with Parameters
Pierre Bourhis, Aaron Boussidan, Philippe Gambette

To cite this version:
Pierre Bourhis, Aaron Boussidan, Philippe Gambette. On Distances between Words with Pa-
rameters. CPM 2023, Jun 2023, Champs-sur-Marne, Marne-la-Vallée, France. pp.6:1-6:23,
�10.4230/LIPIcs.CPM.2023.6�. �hal-04080842�

On Distances between Words with Parameters1

Pierre Bourhis #2

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France3

Aaron Boussidan #4

LIGM, Université Gustave Eiffel, CNRS, France5

Philippe Gambette #6

LIGM, Université Gustave Eiffel, CNRS, France7

Abstract8

The edit distance between parameterized words is a generalization of the classical edit distance where9

it is allowed to map particular letters of the first word, called parameters, to parameters of the second10

word before computing the distance. This problem has been introduced in particular for detection11

of code duplication, and the notion of words with parameters has also been used with different12

semantics in other fields. The complexity of several variants of edit distances between parameterized13

words has been studied, however, the complexity of the most natural one, the Levenshtein distance,14

remained open.15

In this paper, we solve this open question and close the exhaustive analysis of all cases of16

parameterized word matching and function matching, showing that these problems are np-complete.17

To this aim, we also provide a comparison of the different problems, exhibiting several equivalences18

between them. We also provide and implement a MaxSAT encoding of the problem, as well as a19

simple FPT algorithm in the alphabet size, and study their efficiency on real data in the context of20

theater play structure comparison.21

2012 ACM Subject Classification Theory of computation → Pattern matching22

Keywords and phrases String matching, edit distance, Levenshtein, parameterized matching,23

parameterized words, parameter words, instantiable words, NP-completeness, MAX-SAT.24

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.1625

© Pierre Bourhis, Aaron Boussidan and Philippe Gambette ;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 16; pp. 16:1–16:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

16:2 On Distances between Words with Parameters

1 Introduction26

Measuring the similarity between text strings is a fundamental problem in computer27

science, and has applications in bioinformatics [23], databases [1, 16] and natural language28

processing [27]. Among the measures of similarities between strings, the Levenshtein29

distance [28] is the most commonly used, both for its practicality and its ease of computation.30

This distance quantifies the minimum number of operations of insertion, deletion, and31

substitution needed to transform a string into another one. It has a wide range of applications,32

ranging from biological sequence alignment [33] to dialect pronunciation differences [25] or33

signature authentication [34]. Computing the edit distance between two strings of length34

n and m can be achieved in time O(nm), by computing the distance between all their35

prefixes, and storing the results in a dynamic programming fashion [37]. The success of the36

Levenshtein distance generated many extensions and generalization on more complex models,37

such as trees [38] or automata [32].38

However, a limitation of the Levenshtein distance is that it only captures proximity39

between strings (or objects) written on the same alphabet. Evaluating the proximity of40

strings written on different alphabets is a problem that arises in various applications, such as41

bioinformatics [35], image processing [17] and code duplication [6, 7]. In all those contexts,42

the technique used is the one of parameterized matching [6, 7]. Instead of using classical43

strings, parameterized matching uses “parameterized words” written using both constant44

parts, which are expensive to rename, and parameters, which are meant to be renamed freely.45

Formally, two equal-length strings u and v over an alphabet Π are said to be parameterized46

matching if there exists a 1-to-1 function f : Π → Π such that f(u) = v, where f(u) is47

defined as f(u1) . . . f(u|u|).48

Words with parameters also occur in other frameworks, and are often used in slightly49

different ways. The first of those frameworks was initially introduced in the context of50

Ramsey theory in the 80s [36], and is called “parameter words”. In this context, parameters51

are labelled according to their order of first occurrence. Parameter words are also equipped52

with a composition operation, where parameters of the first word can be instantiated by53

characters or parameters of the second word. Parameter words can also be seen as equivalence54

classes of parameterized words, which are the main focus of this article.55

A second framework using parameters is the one of parameterized regular expressions56

introduced in [10], where parameters can only be instantiated by constants, and not by other57

parameters. The focus in this context is therefore made on the set of all possible valuations58

of the parameters. Then, when defining algorithmic problems on such objects, two distinct59

semantics can be studied: either the “certainty semantics”, where all valuations need to60

have some property, or the “possibility semantics”, where at least one valuation needs to61

have this property. To make a difference with the parameterized word framework mentioned62

below, we choose to call these words “instantiable words”. Finally, this notion of words with63

parameters can also be seen as a refined version of partial words (words containing a wildcard64

character) [15]. The notion of partial words is also important in the context of databases65

where paths of incomplete graphs can be interpreted as instantiable words [9].66

This article aims at studying similarity by using edit distances in the framework of words67

with parameters. In this framework, the pattern matching problem, which consists in looking68

for the first string as a subword of the second string, has been extensively studied, either69

looking for exact occurrences, with efficient algorithms [4, 19, 30] or approximate ones, which70

is often NP-hard [21, 22]. In the case where we compare the two input strings in their71

entirety, various exact parameterized matching problems have been studied for parameterized72

P. Bourhis, A. Boussidan and P. Gambette 16:3

d ∅ D I DI
∅ P [8] np-complete (Th. 12) np-complete (Cor. 14) np-complete [26]
S P [24] np-complete (Cor. 14) np-complete (Cor. 14) np-complete (Th. 13)

Figure 1 Complexity of the variants of parameterized matching P Md, depending on the kind of
operations (D: deletion, I: insertion, S: substitution) allowed in the edit distance d.

pattern matching, namely string parameterized matching [7], single pattern parameterized73

matching [7, 3], multiple pattern parameterized matching, or 2-dimensional parameterized74

matching, many of those works being compiled in [29] and [31]. Different approximate variants75

of parameterized matching using edit distance have already been studied, but the problem76

has not been completely solved: the first work on the topic is [8], in which Baker introduces77

a form of approximate parameterized pattern matching in which the replacement of any78

substring by another one that is in parameterized matching with it is considered as a base79

edit operation. Parameterized matching under the Hamming distance, i.e., with a distance80

allowing only substitutions, has been covered in [24], where the authors prove that the string81

matching problem with at most k mismatches can be solved in time O(m + k1.5). The LCPS82

(Longest Common Parameterized Subsequence) problem, equivalent to the parameterized83

pattern matching problem with insertions and deletions, is shown to be np-hard in [26],84

which also provides an approximation algorithm. Those two different complexity classes for85

these problems raise the question of the complexity of the problem under the Levenshtein86

distance. This problem was left as an open question in the conclusion of [24].87

Our paper establishes that this problem is np-complete. Moreover, the result also extends88

to any possible edit distances obtained from deletion, insertion, and substitution as soon89

as substitution is not the only operation allowed, as summarized in Figure 1. Our main90

proof also implies the main theorem of [26] with a different np-completeness reduction.91

This contrasts with the problems of exact parameterized pattern matching which are all92

polynomial-time solvable, as well as all variants of the string matching problem with deletions,93

insertions or substitutions.94

We also extend these results to function matching, which is the problem obtained by95

relaxing the 1-to-1 restriction in parameterized matching, as defined in [2]. This generalization,96

by breaking the symmetry of parameterized matching, actually gives rise to two close but97

different problems, depending of the order of operations that are considered. We study the98

links between all these problems and their computational complexity, and study two practical99

ways to solve them, parameterized complexity and the use of maxSAT solvers.100

We also make a direct connection with the framework of instantiable words, more precisely101

with a natural problem of distance between languages. We show how instantiable word102

problems can be reduced to parameterized matching ones, under the right assumptions. This103

allows us to open new perspectives on the complexity of several language repair problems.104

In Section 2, we give basic definitions and notations, and recall the existing formalism105

of parameterized matching and instantiable words. In Section 3 we discuss approximate106

parameterized matching and its various generalizations. We also link it to instantiable107

words. In Section 4, we first prove a collection of technical results that build up to the108

np-completeness proofs for parameterized matching and function matching problems defined109

above. In Section 5, we study two approaches to solve one of the variants of parameterized110

matching in practice, a simple FPT algorithm parameterized by the alphabet size and a111

MaxSAT encoding. We show in Section 6 that these implementations can solve real instances112

of the problem, motivated by structure comparison of theater plays.113

CPM 2023

16:4 On Distances between Words with Parameters

Finally, in Section 7, we conclude the paper and give a few perspectives on the notion of114

distance between parameterized languages.115

2 Notations and Definitions116

2.1 Basic Notations on Words and Editions117

Words118

An alphabet is a set of letters. A word on an alphabet A is a finite sequence of letters from119

A, indexed starting from 1. Let u be a word on A. Unless defined differently, we note ui the120

i-th letter of u, and |u| is the length of u. If i /∈ [1, |u|], ui is defined as the empty word ε. If x121

is a letter from A, |u|x is the number of times x appears in u. Similarly, if X is a set of letters,122

|u|X =
∑

x∈X

|u|x is the number of occurrences of letters of X in u. If f is a function defined123

on an alphabet A, we extend it to A∗ in the usual way, so that f(u) = f(u1) . . . f(u|u|).124

If f is a function, we denote by D(f) the domain of f . Two functions f and g are said125

to be compatible if f |D(g)∩D(f) = g|D(g)∩D(f). The identity function on D is defined as126

IdD(x) = x for all x in D.127

Edit Operations128

In this paper, we consider the three classical edit operations which are deletion, substitution129

and insertion. Let u = u1 . . . un be a word of size n. Let i be an integer between 0 and n and130

x be a letter of the alphabet, the insertion at position i is the operation that transforms u131

to u1 . . . uixui+1 . . . un Let j be an integer between 1 and n, the deletion at position j is132

the operation that transforms u into u1 . . . uj−1uj+1 . . . un. Let y be a letter of the alphabet133

and y ̸= uj , the substitution to y at position j is the operation that transforms u into134

u1 . . . uj−1yuj+1 . . . un. A sequence of operations or rewriting sequence ρ is a sequence135

of edit operations. We denote by ρ(u) the word obtained by applying the edit operations of136

ρ one after another, in the order defined by ρ, to u.137

Distances138

Given a set of edit operations E and two words u and v, the edit distance between u and139

v is defined as the length of a shortest sequence of operations of E changing u into v. We140

denote by D the distance obtained on words by allowing only deletion operations: that is to141

say D(u, v) = k iff v can be obtained by deleting k letters from u. Similarly, we note I and S142

the distances obtained by allowing only insertions and substitutions respectively (note that143

S is the Hamming distance). We also combine these notations to define DI as the distance144

with insertions and deletions, and so on. We also denote the Levenshtein distance DIS by L.145

Note that some of these edit distances are not metrics, because they are not symmetrical.146

We emphasize this by calling symmetric edit distances the distances DI, S, and L.147

2.2 Comparing Words with Parameters148

Conceptually, a word with parameters is a word in which some letters are not yet determined.149

In order to distinguish the parameters from the constants, we split the alphabet into Σ,150

the alphabet of the constants and Π, the alphabet of the parameters. By definition, these151

alphabets are finite. A word with parameters can either be seen as representing a “word152

template” (i.e., a word with variable parts), or a set of words (determined by all possible153

P. Bourhis, A. Boussidan and P. Gambette 16:5

affectations of its parameters). Depending on the definition chosen, comparing two words154

w1 and w2 is done in two different ways. In the first setting [6, 7, 8, 31, 2, 5, 24, 29, 26, 17],155

parameters of w1 are renamed through a function f that maps the set of parameters to itself,156

and acts as identity on the set of constants. It is then possible to compare f(w1) and w2,157

which are written on the same alphabet. In the second setting, constants are seen as the158

concrete values parameters can take [11]. Parameters are instantiated through two functions159

f1 and f2 that map constants to themselves, but also map parameters to constants. The160

words f1(w1) and f2(w2) are then made only of constants, and can be compared. Formally,161

this gives rise to the two following different definitions:162

On the one hand, a parameterized word is a word on an alphabet Σ ∪Π. In all that163

follows, Σ and Π are two disjoint alphabets, respectively called the alphabet of constants164

and the alphabet of parameters. Alphabets Σ and Π are considered to be finite, unless165

specified otherwise.166

Two parameterized words u and v are said to be in function matching if there exist167

fΠ : Π → Π and f : Π ∪ Σ → Π ∪ Σ such that f |Π = fΠ, f |Σ = IdΣ, and f(u) = v. In168

the classical setting [6], f is also constrained to be 1-to-1, and this relationship is called169

parameterized matching. Note that parameterized matching is an equivalence relation on170

parameterized words. Testing if two words are parameterized matching can be achieved in171

linear time [7].172

On the other hand, an instantiable word is a word on the alphabet Σ ∪ Π. Given173

f : Π→ Σ, we extend it to constants by setting f(x) = x for all x ∈ Σ, and we then define174

the language of an instantiable word u to be L(u) = {w ∈ Σ∗ | ∃f : Π→ Σ, f(u) = w}.175

This definition is akin to the L⋄ semantic of a parameterized regular expression defined176

in [11], but restricted here to a single instantiable word. Two instantiable words w1 and w2177

describe the same elements if their languages are equal, i.e. L(w1) = L(w2).178

3 Different Definitions for Different Semantics and Problems179

In this section, we introduce various new approximate variants of parameterized matching,180

and compare them, highlighting their differences on examples.181

3.1 Variants of Parameterized Matching182

In parameterized matching, the function f renaming parameters is generally considered to183

be 1-to-1. In this paper, we also consider the function matching problem, which is the184

case where f is not constrained to be injective anymore, as defined in [2]. We also introduce185

multiple approximate variants of the parameterized matching problems, depending on several186

edit distances obtained by combining insertion, deletion and substitution operations.187

3.1.1 Edit distances for parameterized matching between two strings:188

PMd
189

▶ Definition 1. If d is an edit distance, we denote by PMd the parameterized matchingproblem190

under d, which is the following:191

Input: two parameterized words u, v, a parameter alphabet Π , an alphabet Σ of constants,192

and a natural number k.193

Problem: Does there exist u′ such that d(u, u′) ≤ k and u′ and v are parameterized194

matching, i.e. there exists a 1-to-1 function f : Π ∪ Σ → Π ∪ Σ such that f |Σ = IdΣ,195

f(Π) = Π, and f(u′) = v ?196

CPM 2023

16:6 On Distances between Words with Parameters

P MDIS F MDIS
1 F MDIS

2

u = aabba u = aabba u = aabbay L : (u1 → b, u2 → b)
y L : (u1 → b, u2 → b)

y f : [a → a, b → a]

u′ = bbbba u′ = bbbba v′ = aaaaay f : [b → a, a → b]
y f : [b → a, a → b]

x L : (v5 → a)

v = aaaab v = aaaab v = aaaab

Figure 2 Side-by-side comparison of P MDIS , F MDIS
1 and F MDIS

2

In that case, we say that u′ and f realize the matching between u and v. We sometimes197

write that only f or u′ realize the matching if the other one is not relevant to a proof.198

In cases where Σ and Π are already defined, we omit them and simply call PMd(u, v, k)199

the result of the decision problem. Furthermore, PMd(u, v) denotes the minimum integer k200

(potentially infinite) such that PMd(u, v, k) is true.201

We can note that this problem can be solved in polynomial time adapting the classical202

dynamic programming algorithm [33, 37] when the alphabet sizes are fixed.203

3.1.2 Edit distances for function matching between 2 strings: FMd
i204

To denote function matching problems, we use FM instead of PM : FMD denotes the205

function matching problems with deletions.206

Furthermore, if P is one of the problems defined above, we note P1 the problem where207

edit operations are only applied to the first argument, and P2 the one where they are only208

applied to the second argument.209

▶ Definition 2. The FMd
1 and FMd

2 problems are defined as follows. For both problems,210

the input is the following:211

Input: two parameterized words u, v, a parameter alphabet Π, a constant alphabet Σ,212

and a natural number k.213

The problems are then:214

Problem FMd
1 : ∃u′ such that d(u, u′) ≤ k and u′ and v are function matching?215

Problem FMd
2 : ∃v′ such that d(v, v′) ≤ k and u and v′ are in function matching?216

Note that the renaming function f is always applied to one input only. These definitions are217

illustrated on an example in Figure 2.218

3.2 Comparing Variants of PM219

In this subsection, we compare the different variants of our problem.220

Regarding the one-to-one parameterized matching PM , note that the definition we221

give above is designed to be easily extended to the different variants when we drop the222

one-to-one restriction. In [24], the authors consider that the “correct way for defining the223

edit distance problem” is “to allow the operations and then apply the edit distance”. By224

extending the definition of FMd
1 and FMd

2 to define PMd
1 and PMd

2 in the case of one-to-one225

matching, we see that it is actually possible to switch the order of operations, and to reverse226

them (deletions then become insertions and vice versa, and the renaming function f−1 is227

well-defined), in this case. This makes our definition consistent with the quote from [24]228

P. Bourhis, A. Boussidan and P. Gambette 16:7

above. Formally, this gives the following equalities, for all parameterized words u and v:229

PM I
1 (u, v) = PMD

1 (v, u) = PMD
2 (u, v) = PM I

2 (v, u).230

More generally, it holds that for every edit distance d, PMd
1 (u, v) = PMd−1

1 (v, u) =231

PMd−1

2 (u, v) = PMd
2 (v, u), where d−1 denotes the converse distance of d, i.e. d−1 contains232

deletions if d contains insertions, insertions if d contains deletions, and substitutions if d233

contains substitutions.234

However, for function matching, we only have the following equalities: FM I
1 (u, v) =235

FMD
2 (u, v) and FMD

1 (u, v) = FM I
2 (u, v).236

By taking u = ab and v = cc, we can notice that FM I
1 (u, v) = 0 and FMD

1 (v, u) =∞,237

so the equality FM I
1 (u, v) = FMD

1 (v, u) does not hold.238

Finally, note the following inequalities:239

▶ Proposition 3. Let u and v be parameterized words over Σ ∪Π. Then:240

1. FMd
1 (u, v) ≤ PMd(u, v);241

2. If d is a symmetric edit distance, FMd
2 (u, v) ≤ FMd

1 (u, v).242

Proof. The first point comes from the fact that any solution to PMd is also a solution to243

FMd
1 . For the second point, let k = FMd

1 (u, v), and let u′ and f realize FMd
1 (u, v). We244

construct a word v′, obtained by applying to v the same operations applied to u to obtain245

u′, but "mirrored". That is to say, for every operation used in u, we apply an operation in v,246

in the following way:247

If a letter a is inserted in u, there exists a position i in u′ such that u′
i = a, and f(u′

i) = vi.248

Hence, we delete vi in v.249

Similarly, if a letter is substituted for another letter a′ in u, there exists i such that250

u′
i = a, and we substitute vi to f(a).251

If a letter a is deleted in u at position i, we insert f(a) in v at position i instead.252

It then holds that f(u) = v′, and hence PMd
2 (u, v) ≤ k. ◀253

Note that the above proof does not work to prove the converse inequality between FMd
1254

and FMd
2 , as it would require to consider an element of f−1(a), which might be empty. This255

is illustrated in the following example, on the alphabet Π = {a, b}:256

▶ Example 4. Let N ∈ N and consider u = aN bN b and v = aN aN b. u and v are not in257

parameterized matching, hence FMDIS
1 (u, v) > 0 and FMDIS

2 (u, v) > 0. By substituting258

the last b in v for a a, and picking a function f such that f(a) = f(b) = a, we get259

FMDIS
2 (u, v) = 1 (see Figure 2 for an example with N = 2). For FMDIS

1 , since b appears260

in v, it holds that for any function f realizing FMDIS
1 , f(a) = b or f(b) = b. Hence, at least261

N occurrences of b appear in f(u). Since there is only one occurrence of b in v, it is clear262

that FMDIS
1 (u, v) ≥ N − 1.263

The difference between FMd
1 and FMd

2 comes from the fact that Π is fixed in the input.264

In the case where Π could be extended, both problems can be shown equivalent (for example265

if we allow a new letter c in the example of Figure 2, we also get FMDIS
1 (u, v) = 1 by setting266

u5 → c and f : [a→ a, b→ a, c→ b]), by using the same proof as Proposition 3.267

3.3 Instantiable Words versus Parameterized Words268

The parameterized word formalism and the instantiable word formalism give rise to two269

different definitions of distances between words. Given an edit distance d on words, there are270

two ways to extend it to words with parameters. Let w1 and w2 be two words over Σ ∪Π.271

The two possible extensions are the following:272

CPM 2023

16:8 On Distances between Words with Parameters

The distance between w1 and w2 is defined as d(w1, w2) = PMd(w1, w2). Alternatively,273

the function distance between w1 and w2 is defined as FMd
1 (w1, w2).274

The distance between w1 and w2 is the distance between their respective languages275

seen as sets, that is to say d(w1, w2) = d(L(w1), L(w2)) = supu∈L(w1) infv∈L(w2) d(u, v).276

Equivalently, d(w1, w2) ≤ k if and only if for all f1 : Π→ Σ, there exists f2 : Π→ Σ such277

that d(f1(w1), f2(w2)) ≤ k.278

This second definition stems from the definition of distance between languages, as defined279

and studied in [12, 13, 14].280

▶ Example 5. Consider the words u = axyb and v = xbby, on the alphabets Σ = {a, b}281

and Π = {x, y}, and consider the distance S. On the one hand, FMS
1 (u, v) = 4, because282

regardless of the matching chosen, every letter of f(u) has to be substituted. On the other283

hand, for any function f1 : Π→ Σ, choosing f2 such that f2(x) = a and f2(y) = b yields a284

distance d(f1(u), f2(v)) of at most 2, by substituting the 2 middle letters.285

Given a big enough alphabet, those two definitions can in fact be shown equivalent:286

▶ Proposition 6. Let w1 and w2 be words over Σ∪Π, and let d be a symmetric edit distance287

on Σ ∪ Π. Suppose |Σ| ≥ |w1| + |w2|, and let k be an integer. Then, the following are288

equivalent:289

1. FMd
1 (w2, w1) ≤ k290

2. d(L(w1), L(w2)) ≤ k291

Notice how w1 and w2 change position between the two distances. This is not benign, as292

FMd
1 is not symmetric.293

Proof. Suppose FMd
1 (w2, w1) ≤ k. There exists f : Π→ Π such that d(f(w2), w1) ≤ k. For294

this proof, we will use the characterization of the distance betweeen languages with f1 and f2.295

Let f1 : Π→ Σ. Define f2 = f1◦f . Since d(w1, f(w2)) ≤ k, we have d(f1(w1), f1◦f(w2)) ≤ k,296

by following the same edit operations. Hence d(f1(w1), f2(w2)) ≤ k.297

Suppose now d(L(w1), L(w2)) ≤ k. Let f1 : Π → Σ be a 1-to-1 function such that for298

all parameters x in w1, f(x) does not appear in w1 or w2. This is possible since Σ is large299

enough. There exists f2 : Π→ Σ such that d(f1(w1), f2(w2)) ≤ k. Let h : Σ→ Π∪Σ be such300

that if x ∈ Π, h(f1(x)) = x, and if x /∈ f1(Π), h(x) = x. We then have h ◦ f1 = Id. What301

is more, since h is injective, d(f1(w1), f2(w2)) = d(h(f1(w1)), h(f2(w2)) = d(h(f2(w2)), w1).302

Hence, FMd
1 (w2, w1) ≤ k. ◀303

4 Hardness Results for Approximate Parameterized Matching304

In this section, we study the complexity of the various parameterized matching problems.305

We show the np-completeness of the simplest problems using only deletions, which will be306

sufficient to show the np-completeness of all the other problems. We start by proving some307

practical lemmas, and then proceed to the reductions.308

4.1 “Block by block” Lemmas309

In this section, we regroup a few useful technical lemmas. We start of by stating two simple310

results on distance and words, for which the proofs can be found in Appendix A. We then311

turn to block lemmas, which will later be useful in the proofs of Theorems 12,17 and 15, to312

combine the various gadgets defined during the reduction.313

This lemma simply states a commutativity result between the application of a matching314

f and the rewriting steps.315

P. Bourhis, A. Boussidan and P. Gambette 16:9

▶ Lemma 7. Let d be a distance, k an integer and u, v two parameterized words such that316

PMd(u, v) ≤ k, and let f realize this parameterized match. Then: d(f(u), v) ≤ k. The same317

result holds for FMd
1 (u, v).318

Proof idea: The proof is done by induction on k. We discuss whether the (k + 1)-th319

operation is an insertion, a deletion, or a substitution, and show that a corresponding320

operation can be used in f(u).321

▶ Lemma 8. Let z, u and v be (parameterized) words, and let d be a distance. Then322

d(zu, zv) = d(u, v).323

Proof Idea: We show that we can consider every rewriting operation to be applied in u only:324

if z is modified during an optimal rewriting sequence, the words have some redundancy, and325

the same operations could have been carried in u instead. We proceed again by induction,326

and focus on the base case by studying the 3 possible cases, one for each type of operation.327

Next, we turn to prove “block by block” matching lemmas. Those results state that it is328

possible to encode multiple parameterized matching instances into a single one. They hold329

for every type of problems considered here, but their proofs vary slightly; we present them330

in order of increasing complexity. Note that all the constructions given can be achieved in331

polynomial time.332

▶ Lemma 9. Let u1, . . . un and v1, . . . vn be parameterized words over Σ ∪Π such that for333

1 ≤ i ≤ n, ki = |ui| − |vi| ≥ 0, and k =
n∑

i=1
ki. There exist u and v two parameterized words334

over {#} ∪ Σ ∪Π, where # is a fresh variable, such that the following are equivalent:335

1. PMD(u, v) = k336

2. For all 1 ≤ i ≤ n, PMD(ui, vi) = ki and the applications fi realizing those matchings are337

all compatible.338

Proof. The idea behind this proof and all the following ones is that we can introduce a339

separator # to concatenate all the words, and that this separator will never be touched by340

any deletions or applications of f .341

Let # be a fresh constant. We define u = u1#u2# . . . #un, and v = v1#v2# . . . #vn.342

2. =⇒ 1.: For every 1 ≤ i ≤ n, take u′
i and fi to realize the matchings. We can obtain343

u′ = u′
1#u′

2 . . . #u′
n from u by applying the same deletions. Taking f to be the smallest344

function extending all the fi, we get PMD(u, v) ≤ k.345

1. =⇒ 2.: Assume PMD(u, v) ≤ k. Let u′ and f realize this parameterized match.346

Since the # symbols are constants, we have f(#) = #. Since u′ is obtained from u by347

deletions, we have |u′|# ≤ |u|#. Since f is injective and f(#) = #, |f(u′)|# ≤ |f(u)|#.348

Hence, it holds that |v|# = |f(u′)|# ≤ |f(u)|# = |u|#. Since |u|# = |v|#, this is an equality,349

and |f(u′)|# = |f(u)|#. Hence |u′|# = |u|#, and no # character is deleted. The word u′350

is then of the form u′
1#u′

2# . . . #u′
n, where |u′

i|# = 0 and D(ui, u′
i) = ki for all i. Thus,351

f(u′) = f(u′
1)#f(u′

2)# . . . #f(u′
n) = v1#v2# . . .# vn. Since no other # letter appear in any352

f(u′
i) and vi, we can deduce that f(u′

i) = vi for all i. Finally, this yields PMD(ui, vi) = k,353

and taking all the fi = f gives all compatible functions, which concludes the proof. ◀354

In this proof, we used a constant #. However, it can also be conducted without using355

a constant alphabet; indeed, constants can be encoded with parameters, as shown in356

Appendix B.357

Lemma 9 is still valid if PMD is replaced by FMD
2 . This time, we conduct this proof358

without resorting to the use of constants. This result will be used twice : once for the proof359

CPM 2023

16:10 On Distances between Words with Parameters

of theorem 17, and again to show that we can once more encode constants into Π using360

Lemma 25 in Appendix B.361

▶ Lemma 10. Let u1, . . . un and v1, . . . vn be parameterized words over Π such that ki =362

|vi| − |ui| ≥ 0, and k =
n∑

i=1
ki. Then there exist u and v, two parameterized words over363

Π ∪ {#}, where # is a fresh variable, such that the following are equivalent:364

1. FMD
2 (u, v) ≤ k365

2. For all 1 ≤ i ≤ n, FMD
2 (ui, vi) ≤ ki, and the applications fi realizing those matchings366

are all compatible.367

Proof idea: The same technique as Lemma 9 is used but u and v are defined as u =368

#k+1u1#u2# . . . #un and v = #k+1v1#v2# . . . #vn where #k+1 denotes k + 1 repetitions369

of the character #. The full proof can be found in Appendix A.370

Finally, the same block result holds for FMD
1 , and will be used in the proof of theorem 15371

▶ Lemma 11. Let u1, . . . un and v1, . . . vn be parameterized words over Π such that for every372

1 ≤ i ≤ n, ki = |ui| − |vi| ≥ 0, and k =
n∑

i=1
ki. Then there exist u and v two parameterized373

words over Π ∪ {#}, where # is a fresh variable, such that the following are equivalent:374

1. FMD
1 (u, v) ≤ k375

2. For all 1 ≤ i ≤ n, FMD
1 (ui, vi) ≤ ki, and the applications fi realizing those matchings376

are all compatible.377

Proof idea: The difference with Lemma 10 is that some # symbols might be deleted,378

while some base letters could be mapped to #. To ensure this does not happen, we define379

u = #N u1#N u2 . . . #N un#N and v = #N v1#N v2 . . . #N vn#N . The full proof can be found380

in Appendix A.381

The technique of block-by-block matching will be used in all the reductions, to encode382

multiple constraints in a single PM or FM instance.383

4.2 1-to-1 Parameterized Matching PM384

We now focus on the complexity of the PMd problems. These problems, as well as function385

matching problems, are all clearly in np: given the list of deletion, insertion or substitution386

operations to do and the matching to apply, it is easy to check that the solution is correct.387

For the reductions in this paper, we always assume that words are written without388

constants, that is to say Σ = ∅, since this is sufficient for np-completeness results. This389

choice is also motivated by the results of Appendix B, which show that Σ can in most cases390

be coded into Π.391

▶ Theorem 12. The 1-to-1 Parameterized Matching with deletions PMD is np-complete.392

The proof is a reduction from the np-complete problem 3-coloring[20]. Given an instance393

G of 3-coloring, we will construct two words u and v. The word v will represent the list of394

vertices and edges of G, while the word u will list the color of each vertex, and the possible395

coloring of each pair of vertices joined by an edge. By deleting characters from u, we make a396

choice for the coloring of each vertex, and thus each edge. The function f answering the397

parameterized matching problem will assign a choice of color to each vertex. The instance398

that we define should be positive iff G is 3-colorable. More formally:399

Proof. The 3-Coloring problem is defined as follows :400

P. Bourhis, A. Boussidan and P. Gambette 16:11

Input: G = (V, E) a graph with vertices V and edges E401

Output: A coloring c : V → {c1, c2, c3} such that for all {u, v} ∈ E, c(u) ̸= c(v)402

Let G = (V, E) be an instance of 3-Coloring, and let V = {x1, . . . , xn} be the set of its403

n vertices, and E = {e1, . . . , em} be the set of its edges. The parameter alphabet Π, of404

polynomial size in O(|G|) will contain:405

x1, . . . xn, corresponding to the vertices of G;406

n copies of the parameters corresponding to the colors c1, c2 and c3: ci
1, ci

2, ci
3 for 1 ≤ i ≤ n;407

for every edge e, the delimiters Y e and □e
1, . . .□e

6;408

2n bottom symbols, ⊥i
1, ⊥i

2 for 1 ≤ i ≤ n, which will be used to fix the image of some409

parameters.410

First, we define words that will encode the constraint that each vertex is colored, and411

we make sure that the unused color variables cannot be assigned elsewhere. For 1 ≤ i ≤ n,412

ui
1 = ui

⊥ = ci
1ci

2ci
3, vi

1 = xi and vi
⊥ = ⊥i

1⊥i
2. We then define words that include all413

possible colorings of each edge, and we make sure to use enough brackets. For every edge414

e = {xi, xj}, we define ue
2 = □e

1ci
1cj

2□e
1 □e

2ci
1cj

3□e
2 □e

3ci
2cj

1□e
3 □e

4ci
2cj

3□e
4 □e

5ci
3cj

1□e
5 □e

6ci
3cj

2□e
6415

and ve
2 = Y exixjY e.416

Applying Lemma 9 to u1
1, . . . un

1 , u1
⊥, . . . un

⊥, ue1
2 , . . . uem

2 and v1
1 . . . vn

1 , v1
⊥, . . . vn

⊥, ve1
2 , . . . vem

2 ,417

we obtain u and v. Let k = |u| − |v| = 3n + 20m. We now show that G is 3-colorable ⇔418

PMD(u, v) ≤ k.419

⇒: Suppose G is 3-colorable. Let c : V → {c1, c2, c3} be a 3-coloring of G. We define f420

in the following way, for 1 ≤ y ≤ 3:421

f(ci
y) =





xi if c(xi) = cy,

⊥i
1 if y is the smallest integer in {1, 2, 3} such that c(xi) ̸= cy,

⊥i
2 otherwise.

422

For every edge e = {xi, xj} ∈ E, since c is a valid coloring, and since every allowed423

arrangements of the colors is in ue
2, there exists a unique factor of the form □e

yf−1(xi)f−1(xj)□e
y424

in ue
2, for some 1 ≤ y ≤ n. Hence, we define f(□e

y) = Y e. The function f can then be425

extended in any way to be 1-to-1 (the remaining characters whose image under f are not yet426

defined will all be deleted in what follows, so their image doesn’t matter).427

By using f defined in this way:428

For 1 ≤ i ≤ n, PMD(ui
1, vi

1) ≤ 2, by deleting the 2 colors not matching the color of xi;429

For 1 ≤ i ≤ n, PMD(ui
⊥, vi

⊥) ≤ 1;430

For every edge e ∈ E, PMD(ue
2, ve

2) ≤ 20, by keeping only the factor delimited by the431

□e
y symbols defined above.432

Thus Lemma 9 yields PMD(u, v) ≤ k.433

⇐: We now suppose u and v are a parameterized match with k deletions. The following434

can then be derived about f :435

1. Since the ui
1 and vi

1 are matching for 1 ≤ i ≤ n, there exists an element c ∈ {ci
1, ci

2, ci
3}436

such that f(c) = xi. Each of these matchings is done with exactly 2 deletions, for a total437

of 2n.438

2. Since the ui
⊥ and vi

⊥ are in matching, the two other colors that are not sent to xi are sent439

to ⊥i
1 and ⊥i

2. Each of these matchings is done with exactly one deletion, for a total of n.440

3. For every edge e ∈ E, ue
2 and ve

2 are in matching. Let ue′
2 realize this matching. For every441

1 ≤ i ≤ n and 1 ≤ i′ ≤ 3 the colors ci
i′ have images that are different from Y e, so there442

necessarily exists 1 ≤ y ≤ 6 such that f(□e
y) = Y e. Furthermore, since f is injective,443

|ve
2|Y e = |ue′

2 |□e
y
. Since |ve

2|Y e = |ue
2|□e

y
= 2, no □e

y is deleted from u. Since there are two444

CPM 2023

16:12 On Distances between Words with Parameters

characters between the Y e in ve
2 and none outside, ue′

2 has the same structure, and all445

other □e
y′ for y′ ̸= y and all other colors are deleted from ue

2.446

Finally, ue′
2 is of the form □e

yctct′□e
y, where t ̸= t′ are elements of {1, 2, 3}. Each of these447

matchings is done with exactly 20 deletions, for a total of 20m.448

The function f then implies a coloring of G. Formally, we define col(ci
y) = cy for 1 ≤ i ≤ n449

and 1 ≤ y ≤ 3. We can then define c : V → {c1, c2, c3} such that c(xi) = col(f−1(xi)).450

Point 1 above ensures that this function definition is correct. Furthermore, for every edge451

e = {xi, xj}, point 3 ensures that c(xi) ̸= c(xj), and thus c is a valid coloring of G. ◀452

This first np-completeness results yields a few immediate corollary results, and in453

particular, the np-completeness of the problem under the Levenshtein distance:454

▶ Theorem 13. The problem PMDIS of parameterized matching under the Levenshtein455

distance is np-complete.456

Proof. We do a simple reduction from PMD. Let u, v, k be an instance of PMD. If the457

instance is trivially false (that is to say, k ̸= |u| − |v|), answer negatively. Else, consider458

u, v, k as an instance of PMDIS . If this is a negative instance for PMDIS , it is also negative459

for PMD. Furthermore, if it is a positive instance for PMDIS , exactly k deletions should be460

applied, and so no substitution or insertion are used in that solution. Hence, that solution is461

also a solution to PMD, and the reduction holds. ◀462

The same result in fact holds for all other distances, and in particular the longest common463

sub-word distance ID. This proves once again the result shown in [26]:464

▶ Corollary 14. The problems PM I , PMDI , PM IS, PMDS are all np-complete.465

Proof. From Section 3.2, PM I and PMD are equivalent in the 1-to-1 case. For the other466

problem, we do an immediate reduction from PM I or PMD analog to the proof of Theorem 13.467

◀468

We now turn to proofs of np-completeness without the restriction asking f to be injective.469

4.3 Function Matching FMd
1470

The problem considered in this section is the one where both deletions and f are applied to471

the first word. A reduction very similar to the one given for PMD is used.472

▶ Theorem 15. FMD
1 is np-complete.473

Proof idea: The reduction follows the same idea as in Theorem 12. Since the function f474

realizing the matchings is not injective in this version, it will be used to send every vertex to475

its color. Moreover, we add more “sink” ⊥ letters to force the image of every unused letter.476

The full proof can be found in Appendix A.477

This again ensures the np-completeness of the problem for all edit distances, using the478

same proof as for Theorem 13.479

▶ Corollary 16. The problem FMDIS
1 of function matching under the Levenshtein distance480

is np-complete. The problems FM I
1 , FM ID

1 , FM IS
1 , FMDS

1 are all np-complete too.481

We can notice that the problem FMS
1 , where substitution is the only operation allowed,482

is polynomial-time solvable. Intuitively, for each parameter, consider the possible parameters483

that it could be mapped to, and their respective number of occurrences. Then, choose the484

letter with the highest number of occurrences for the mapping. The remaining letters are485

then substituted.486

P. Bourhis, A. Boussidan and P. Gambette 16:13

4.4 Function Matching FMd
2487

The problem considered in this section is the one where deletions are applied to the second488

word, while f is applied to the first word.489

▶ Theorem 17. FMD
2 is np-complete.490

Proof Idea: The proof is very similar to the previous case, but the bracketing has to be491

adapted. Separators Y e are duplicated enough times to ensure that no vertex variable is492

mapped to them. The full proof can be found in Appendix A.493

▶ Corollary 18. FM I
1 , FMDI

2 , and FML
2 are all np-complete.494

Proof. FM I
1 is equivalent to FMD

2 . For the two other problems, we use a reduction from495

FMD
2 exactly like in Corollary 14. ◀496

This last result completes the picture of np-completeness proofs, and indicates that497

computing the distances between parameterized words defined in Section 3.3 is in general an498

np-complete problem.499

Similarly to FMS
1 , FMS

2 is also polynomial-time solvable.500

5 Approaches to Solve Parameterized Matching501

In this section, we discuss two ways to get around the difficulty of the parameterized matching502

problems. The first one is to design an FPT algorithm in the alphabet size, and the second503

one is to translate the problem into a SAT formalism, with the intent of using a SAT-solver.504

5.1 An FPT Algorithm in the Alphabet Size505

The fact that Σ and Π are part of the input is what makes the various parameterized matching506

problems NP-hard. When the alphabet size is considered fixed, a simple polynomial algorithm507

can be used, which generalizes the “naïve” brute force algorithm of Theorem 1 of [26]:508

Algorithm 1 Simple FPT algorithm for F Md

m← 0
for all functions f : Π→ Π do

dist← d(f(u), v)
if dist ≤ m then

m← dist

end if
end for

▶ Theorem 19. Let d be a distance. Algorithm 1 computes FMd(u, v) in time O(|Π||Π||u||v|)509

Proof. Algorithm 1 uses an exhaustive search and finds min
f :Π→Π

d(f(u), v), which is the510

definition of FMd(u, v). Furthermore, there are |Π||Π| functions from Π to Π, and computing511

d(f(u), v) is done in time O(|f(u)||v|) = O(|u||v|), hence a total running time in O(|Π||Π||u||v|).512

◀513

Note that this also leads to a similar algorithm for PMd by iterating over injective514

functions rather than all functions from Π to Π.515

CPM 2023

16:14 On Distances between Words with Parameters

5.2 A MaxSat Formulation of Parameterized Matching516

In this section, we encode PMd problems into SAT problems, with the intent of solving them517

with a SAT solver. More precisely, we will use the weighted max-SAT variant of SAT, which518

is defined in the following way :519

Input: a set V of literals, a formula φ =
n∧

i=1
φi on V in conjunctive normal form (CNF),520

a weight function w : J1, nK→ N.521

Output : a valuation ν : V → {0, 1} such that
∑

ν⊨φi

w(i) is maximal.522

Moreover, we will sometimes use a partially weighted variant of Max-SAT, which is523

defined in the following way :524

Input: a set V of literals, a satisfiable formula φc on V in CNF, a formula φw =
n∧

i=1
φi525

on V in CNF and a weight function w : J1, nK→ N.526

Output : a valuation ν : V → {0, 1} such that ν ⊨ φc and
∑

ν⊨φi

w(i) is maximal.527

In that case, clauses of φc are called “hard” clauses while clauses of φw are called “soft528

clauses”. We give a proof of the equivalence in Proposition 26 of Appendix C.529

We will define an encoding of an instance (u, v) of PMd such that an assignment of the530

variables of V will define an alignment between u and v. First, we make a link between the531

ID edit distance and the length of the optimal alignment between two strings.532

▶ Definition 20. Let u and v be two words on Π, such that p = |u| and p′ = |v|. A set533

A ⊂ J1, |u|K× J1, |v|K is an alignment between u and v iff the following are true:534

1. Each position of u appears at most once : For all 1 ≤ i ≤ p and 1 ≤ j, j′ ≤ p′, if (i, j) ∈ A535

and (i, j′) ∈ A, then j = j′.536

2. Each position of v appears at most once : For all 1 ≤ j ≤ p′ and 1 ≤ i, i′ ≤ p, if (i, j) ∈ A537

and (i′, j) ∈ A, then i = i′.538

3. There are no crossings : if (i, j) ∈ A, (i′, j′) ∈ A, and i′ > i, then j′ > j.539

4. Aligned positions match in u and v : if (i, j) ∈ A, then ui = vj540

An alignment relates to the insertion/deletion distance ID in the following way :541

▶ Theorem 21. Let u, v be words on Π and k ≤ |u|+ |v| be an integer. The following are542

equivalent :543

1. There exists an alignment A such that 2|A| = |u|+ |v| − k544

2. ID(u, v) ≤ k.545

Proof. The proof, which works by induction, can be found in Appendix C. ◀546

We now turn to the max-SAT encoding of our problem.547

▶ Theorem 22. Let u and v be two words over Π. There exists a formula φu,v = φc ∧ φw548

and a weight function w, instance of the partially weighted Max-SAT problem such that the549

following are equivalent:550

ν is a solution to this partially weighted Max-SAT instance and satisfies k clauses of φw551

There exists a function f : Π→ Π and an alignment between f(u) and v of size k.552

The formula φ uses |m||p|+ |Π|2 variables and is of size O(m2p2) , where m = |u| and553

p = |v|. Moreover, there exists φinj of size O(|Π|3) such that the above result is true for f554

injective by replacing φc with φ′
c = φc ∧ φinj.555

P. Bourhis, A. Boussidan and P. Gambette 16:15

In particular, finding the valuation maximizing k gives a maximal alignment between u556

and v, and with Theorem 21, the distance ID(u, v).557

Proof. For this proof, we fix an ordering on the alphabet Π = {a1, . . . , an}.558

We define the set of literals V as V = {xi,j | 1 ≤ i ≤ |u|, 1 ≤ j ≤ |v|} ∪ {ya,b | a ∈ Π, b ∈ Π}.559

Intuitively, xi,j represents a match between position i and j in the alignment, and ya,b will560

represent the fact that f(a) = b. We define the following sets of formulas, where all indices i561

are taken between 1 and m and all j between 1 and p, and a and b are taken in Π :562

∀i ∀j′ ̸= j, φA1
i,j,j′ ≡ xi,j =⇒ ¬xi,j′ (NoDouble i)563

∀j ∀i′ ̸= i, φA2
i,i′,j ≡ xi,j =⇒ ¬xi′,j (NoDouble j)564

∀i′ > i ∀j′ < j, φC
i′,i,j,j′ ≡ xi,j =⇒ ¬xi′,j′ (NoCrossing)565

∀a∀b ̸= b′, φf
a,b,b′ ≡ ya,b =⇒ ¬ya,b′ (Function)566

∀a ̸= a′∀ ≠ b, φinj
a,a′,b ≡ ya,b =⇒ ¬ya′,b (Injectivity)567

∀i∀j, φM
i,j ≡ xi,j =⇒ yui,vj (Match)568

∀i, φ∃
i ≡

∨

1≤j≤p

xi,j (ExistsMatch)569

570

We then define φc as the conjunction of all the formulas (NoDouble i), (NoDouble j),571

(NoCrossing), (Function), and (Match). Furthermore, we define φinj as the conjunction of572

all the (Injectivity) formulas. Lastly, we define φw =
∧

1≤i≤m

φ∃
i , and set w(C) = 1 for every573

clause C of φw.574

There are m
(

p
2
)

(NoDouble i) formulas, p
(

m
2
)

(NoDouble j),
(

m
2
)(

p
2
)

(NoCrossing), n
(

n
2
)

575

(Function) and (Injectivity) formulas, pm (Match) formulas and n (ExistsMatch) formulas.576

We now prove both implications of the theorem. Suppose ν is a valuation satisfying φc577

and k clauses of φw. We define, for all a, b ∈ Pi, f(a) = b if and only if ν(ya,b) = ⊤. Since ν578

satisfies all the (Function) formulas, this is a correct definition of a (partial) function. We579

define A = {(i, j) | ν(xi,j)=⊤}. A is an alignment between f(u) and v. Indeed : (NoDouble580

i) and (NoDouble j) ensures point 1. and 2. of Definition 20, (NoCrossing) ensures point 3.,581

and Match ensures point 4. The size of A is the number of xi,j instantiated to ⊤, which is582

exactly the number of clauses of φc satisfied, i.e., k.583

Suppose now that there exists a function Π → Π and an alignment A between f(u) and584

v. Similarly, we define ν(ya,b) = ⊤ if and only if f(a) = b, and ν(xi,j) = ⊤ if and only if585

(i, j) ∈ A. Since A is an alignment, ν satisfies (NoDouble i),(NoDouble j), and (NoCrossing).586

Since f is a function, (Function) is satisfied. Finally, if ν(xi,j) = ⊤, then (i, j) ∈ A, and587

since A is a matching, f(u)i = f(ui) = vj and ν(yui,vj
) = ⊤.588

The proof for φb is the same, and (Injectivity) ensures the injectivity of f . ◀589

What is more, this proof can be adapted to change the ID distance to the Levenshtein590

distance, simply by choosing to consider all the (Match) formulas as soft clauses.591

6 Experiments592

The two approaches presented in Section 5 were implemented in Python to solve PM ID.593

They are available under the GPL license at https://github.com/AaronFive/paramatch.594

The FPT algorithm of Section 5.1 is implemented in the function parameterizedAlignment595

CPM 2023

16:16 On Distances between Words with Parameters

of file fpt_alphabet_size.py. The MaxSAT-reduction of Section 5.2 is implemented in the596

function make_sat_instance of file sat_instance.py. The MaxHS solver [18] available at597

http://www.maxhs.org is used by our script to solve the MaxSAT instances derived from598

the PM ID instances.599

Our initial motivation to introduce parameterized matching under various distances600

is theater play comparison. To represent the structure of a theater play, we represent601

each character by a letter of the alphabet, and create the parameterized word obtained by602

considering the succession of all consecutive speakers. To check their adequacy with real data,603

we use a corpus of theater plays in which each character is represented by one letter of the604

alphabet, and each act of the play is represented by a string corresponding to the sequence of605

speaking characters. A letter may be duplicated in this string if the corresponding characters606

has lines in the end of a scene and in the beginning of the next one. Therefore, the edit607

distance between two parameter words representing acts will be small if both acts have a608

similar structure in terms of succession of speaking characters. We selected a corpus of 10609

pairs of plays where one inspired the other, and performed 47 comparisons between pairs610

of acts. Among those comparisons, 26 were solved by the maxSAT algorithm and all by611

the FPT algorithm (detailed results are presented in the supplementary material available612

at https://github.com/AaronFive/paramatch/tree/main/corpus10pairs), with a 800613

second timeout. The computation times are obtained on a XMG laptop running on Windows,614

with a 2.60 Ghz processor and 16 Gb RAM. Only the running time of MaxHS is provided,615

the encoding into a MaxSAT formula usually runs in approximately 1 second. Note that616

all instances are solved faster by the FPT algorithm than by the MaxSAT approach. The617

analysis of running times depending on the product of the lengths of the input strings (see618

supplementary material) shows that the MaxSAT approach may be relevant for strings with619

more than 10 distinct characters, but where the product of the length of input strings may620

not exceed 2000.621

7 Conclusion622

In this paper, we studied the complexity of several variants of the edit distance problem623

between parameterized words. We proved the np-completeness of all previously unsolved cases,624

including the Levenshtein distance left open in [24], and provided practical approaches to625

solve real instances of those problems. We also studied similar problems for various definitions626

of words with parameters, namely parameter words and parameterized expressions, proving627

some relationships with parameterized word problems.628

As future work, we will study the restrictions introduced in [21, 22] for a pattern matching629

problem with patterns in the parameter, in order to obtain polynomial time algorithms for630

the edit distance between parameterized words. Moreover, we will explore the question of631

distance between sets of words, in particular when they are defined through generalizations of632

automata. These problems are variants of the notion of distance between regular languages633

as defined in [12]. In this context, we can notice that different notions of automata can be634

considered: either automata generating parameterized words, or automata using parameters635

to define languages over classical words, with two different semantics as defined in [11].636

References637

1 Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in sequence638

databases. In International conference on foundations of data organization and algorithms,639

pages 69–84. Springer, 1993.640

P. Bourhis, A. Boussidan and P. Gambette 16:17

2 Amihood Amir, Yonatan Aumann, Richard Cole, Moshe Lewenstein, and Ely Porat. Function641

matching: Algorithms, applications, and a lower bound. In Proceedings of the 30th International642

Conference on Automata, Languages and Programming, pages 929–942, 2003. doi:10.1007/643

3-540-45061-0_72.644

3 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in parameterized645

matching. Information Processing Letters, 49(3):111–115, 1994. doi:10.1016/0020-0190(94)646

90086-8.647

4 Dana Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21(1):46–62,648

1980. doi:10.1016/0022-0000(80)90041-0.649

5 Alberto Apostolico, Péter L. Erdős, and Moshe Lewenstein. Parameterized matching with650

mismatches. Journal of Discrete Algorithms, 5(1):135–140, 2007. URL: https://www.651

sciencedirect.com/science/article/pii/S1570866706000256, doi:https://doi.org/10.652

1016/j.jda.2006.03.014.653

6 Brenda S. Baker. A theory of parameterized pattern matching: Algorithms and applications.654

In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC655

’93, page 71–80, New York, NY, USA, 1993. Association for Computing Machinery. doi:656

10.1145/167088.167115.657

7 Brenda S. Baker. Parameterized duplication in strings: Algorithms and an application to658

software maintenance. SIAM Journal on Computing, 26:1343–1362, 1997.659

8 Brenda S. Baker. Parameterized diff. In Proceedings of the Tenth Annual ACM-SIAM660

Symposium on Discrete Algorithms, SODA ’99, page 854–855, USA, 1999. Society for Industrial661

and Applied Mathematics.662

9 Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying graph patterns. In Maurizio663

Lenzerini and Thomas Schwentick, editors, Proceedings of the 30th ACM SIGMOD-SIGACT-664

SIGART Symposium on Principles of Database Systems (PODS 2011), pages 199–210. ACM,665

2011. doi:10.1145/1989284.1989307.666

10 Pablo Barceló, Juan Reutter, and Leonid Libkin. Parameterized regular expressions and their667

languages. Theoretical Computer Science, 474:21–45, 2013. doi:10.4230/LIPIcs.FSTTCS.668

2011.351.669

11 Pablo Barceló, Leonid Libkin, and Juan Reutter. Parameterized regular expressions and their670

languages. Theoretical Computer Science, 474:21–45, 2011. doi:10.1016/j.tcs.2012.12.036.671

12 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. The cost of traveling between672

languages. In Luca Aceto, Monika Henzinger, and Jiří Sgall, editors, Automata, Languages673

and Programming, pages 234–245, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.674

13 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Regular repair of specifications.675

In 2011 IEEE 26th Annual Symposium on Logic in Computer Science, pages 335–344, 2011.676

doi:10.1109/LICS.2011.43.677

14 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Bounded repairability of word678

languages. Journal of Computer and System Sciences, 79(8):1302–1321, 2013. doi:10.1016/j.679

jcss.2013.06.001.680

15 Francine Blanchet-Sadri. Algorithmic Combinatorics on Partial Words (Discrete Mathematics681

and Its Applications). Chapman, Hall/CRC, 2007.682

16 William W. Cohen. Integration of heterogeneous databases without common domains using683

queries based on textual similarity. SIGMOD Rec., 27(2):201–212, 1998. doi:10.1145/276305.684

276323.685

17 Richard Cole, Carmit Hazay, Moshe Lewenstein, and Dekel Tsur. Two-dimensional686

parameterized matching. ACM Trans. Algorithms, 11(2), oct 2014. doi:10.1145/2650220.687

18 Jessica Davies. Solving MAXSAT by Decoupling Optimization and Satisfaction. PhD thesis,688

University of Toronto, Canada, 2014. URL: http://hdl.handle.net/1807/43539.689

19 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Pbwt: Achieving690

succinct data structures for parameterized pattern matching and related problems. In691

Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),692

CPM 2023

16:18 On Distances between Words with Parameters

pages 397–407, 2017. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611974782.693

25, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.25, doi:10.1137/694

1.9781611974782.25.695

20 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of696

NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, first edition697

edition, 1979.698

21 Pawel Gawrychowski, Florin Manea, and Stefan Siemer. Matching patterns with variables699

under hamming distance. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International700

Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27,701

2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 48:1–48:24. Schloss Dagstuhl - Leibniz-702

Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.48.703

22 Pawel Gawrychowski, Florin Manea, and Stefan Siemer. Matching patterns with variables704

under edit distance. In Diego Arroyuelo and Barbara Poblete, editors, String Processing705

and Information Retrieval - 29th International Symposium, SPIRE 2022, Concepción, Chile,706

November 8-10, 2022, Proceedings, volume 13617 of Lecture Notes in Computer Science, pages707

275–289. Springer, 2022. doi:10.1007/978-3-031-20643-6_20.708

23 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and709

Computational Biology. Cambridge University Press, 1997.710

24 Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parameterized matching.711

ACM Trans. Algorithms, 3(3):29–es, 2007. doi:10.1145/1273340.1273345.712

25 Wilbert Jan Heeringa. Measuring dialect pronunciation differences using Levenshtein distance.713

PhD thesis, University of Groningen, 2004.714

26 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. On the longest common parameterized715

subsequence. Theoretical Computer Science, 410(51):5347–5353, 2009. doi:10.1016/j.tcs.716

2009.09.011.717

27 Lillian Jane Lee. Similarity-based approaches to natural language processing. PhD thesis,718

Harvard University, 1997.719

28 Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and720

reversals. In Soviet physics doklady, volume 10(8), pages 707–710. Soviet Union, 1966.721

29 Moshe Lewenstein. Parameterized Matching, pages 635–638. Springer US, Boston, MA, 2008.722

doi:10.1007/978-0-387-30162-4_282.723

30 Florin Manea and Markus L. Schmid. Matching patterns with variables. In Robert Mercas and724

Daniel Reidenbach, editors, Combinatorics on Words - 12th International Conference, WORDS725

2019, Loughborough, UK, September 9-13, 2019, Proceedings, volume 11682 of Lecture Notes726

in Computer Science, pages 1–27. Springer, 2019. doi:10.1007/978-3-030-28796-2_1.727

31 Juan Mendivelso, Sharma V. Thankachan, and Yoan Pinzón. A brief history of parameterized728

matching problems. Discrete Applied Mathematics, 274:103–115, 2020. Stringology Algorithms.729

doi:10.1016/j.dam.2018.07.017.730

32 Mehryar Mohri. Edit-distance of weighted automata: General definitions and algorithms.731

International Journal of Foundations of Computer Science, 14(06):957–982, 2003.732

33 Saul B Needleman and Christian D Wunsch. A general method applicable to the search733

for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,734

48(3):443–453, 1970.735

34 Sascha Schimke, Claus Vielhauer, and Jana Dittmann. Using adapted levenshtein distance736

for on-line signature authentication. In Proceedings of the 17th International Conference on737

Pattern Recognition (ICPR 2004), volume 2, pages 931–934. IEEE, 2004.738

35 T. Shibuya. Generalization of a suffix tree for RNA structural pattern matching. Algorithmica739

(New York), 39(1):1–19, 2004. doi:10.1007/s00453-003-1067-9.740

36 Bernd Voigt. The partition problem for finite abelian groups. Journal of Combinatorial Theory,741

Series A, 28(3):257–271, 1980.742

37 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,743

21(1):168–173, 1974. doi:10.1145/321796.321811.744

P. Bourhis, A. Boussidan and P. Gambette 16:19

38 Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between745

trees and related problems. SIAM Journal on Computing, 18(6):1245–1262, 1989.746

CPM 2023

16:20 On Distances between Words with Parameters

A Details of the proofs747

Proof of Lemma 7. We proceed by induction on k. If k = 0, then u and v are parameterized748

matching, and f(u) = v, thus d(f(u), v) = 0. Suppose the result holds until a fixed k. Suppose749

PMd(u, v) = k + 1. There exist f , u′′ and u′ such that d(u, u′′) = 1, d(u′′, u′) = k, and750

f(u′) = v. Hence PMd(u′′, v) ≤ k, and by induction hypothesis d(f(u′′), v) ≤ k. Moreover,751

since d(u, u′′) = 1, we get u′′ from u by applying only one operation. We prove that regardless752

of this operation, d(f(u), f(u′′)) = 1, and thus d(f(u), v) ≤ d(f(u), f(u′′))+d(f(u′′), v) ≤ k+1753

which will conclude the proof. There are 3 cases to consider:754

If the operation is a deletion, u = v1xv2 and u′′ = v1v2 for some words v1 and v2 and755

some letter x. Then f(u) = f(v1)f(x)f(v2) and we can obtain f(v1)f(v2) = f(u′′) by756

deleting f(x).757

If it is an insertion, u = v1v2 and u′′ = v1xv2, and we can similarly go from f(u) to f(u′′)758

by inserting f(x).759

If it is a substitution, u = v1xv2 and u′′ = v1yv2, and we can go from f(u) to f(u′′) by760

replacing f(x) with f(y).761

Hence d(f(u), f(u′′)) = 1, which concludes the proof for PMd.762

Since this proof does not use the fact that f is 1-to-1, it also stands for FMd
1 . ◀763

Proof of Lemma 8. It is obvious that d(zu, zv) ≤ d(u, v), so we only prove d(u, v) ≤764

d(zu, zv). We prove that any rewriting sequence from zu to zv can be modified such that no765

edit operation is applied in z. This will be enough to prove the result, as the edit sequence766

obtained can be seen as an edit sequence between u and v. We proceed by induction on767

the size of z. Suppose |z| = 1. Then z = a ∈ Σ ∪Π. We can consider that no character is768

modified twice in an edit sequence (i.e. no character is inserted and then deleted, or inserted769

and then substituted etc.), as that is always sub-optimal. Suppose z is modified. There are 3770

possible cases:771

1. There is an insertion in z, hence a word w ends up being inserted before a. Since zv = av772

starts with a, w must start with an a, hence w = aw′. We insert w′a to the right of z773

instead with the same operations. If z should be deleted or substituted, we apply the774

same operation to the new a instead. These operations yield the same result, and do not775

modify z.776

2. There is a deletion in z, and hence a is deleted. Since this an optimal rewriting sequence,777

no a is created at that position through insertion or substitution afterwards. Since av778

starts with an a, u must be of the form u = sau′, where all the characters in s are deleted,779

and a isn’t. Deleting sa instead of as yields the same result, and doesn’t modify z.780

3. There is a substitution in z, hence a is modified into a character b ̸= a, that will not be781

further modified. Since av starts with a, an a has to be inserted in z, which is handled in782

case 1.783

Hence, we can consider that every edit operations is done in u, and d(au, av) = d(u, v).784

Suppose now that the result is proven for |z| = k, and let z = az′, with |z′| = k. Using the785

base case and the case for |z| = k, we have d(zu, zv) = d(azu, azv) = d(zu, zv) = d(u, v),786

which concludes the proof. ◀787

Proof of Lemma 10 . Let # be a fresh parameterized letter. Let then u = #k+1u1#u2# . . .788

#un and v = #k+1v1#v2# . . . #vn, where #k+1 denotes k + 1 repetitions of the character #.789

The proof of the reverse direction is the same as in Lemma 9, so we only prove the other one.790

Assume FMD
2 (u, v) ≤ k. Let v′ and f realize this parameterized match.791

P. Bourhis, A. Boussidan and P. Gambette 16:21

We prove that f(#) = #, and that no other character is sent to # by f . Indeed,792

v starts with k + 1 symbols #, which ensure that v′ starts with the letter #. Since u793

starts with # and f(u) = v′, f(#) = #. Furthermore, this implies that since |u|# = k + n,794

|f(u)|# = |v′|# ≥ k+n. Since v′ is obtained from v by deletions, we have |v′|# ≤ |v|# = k+n.795

Hence |v′|# = k + n and all those inequalities are equalities, which is only the case when no796

symbols is deleted from v, and that for all x ̸= #, f(x) ̸= #.797

Since all the # symbols are left untouched, the rest of the proof is the same as in Lemma 9,798

and all of the factors ui and vi are parameterized matching. ◀799

Proof of Lemma 11. Let # be a fresh parameterized letter, and N = k + 2.800

Let then u = #N u1#N u2 . . . #N un#N and v = #N v1#N v2 . . . #N vn#N . Once again,801

we only prove the non-trivial implication.802

Suppose FMD
1 (u, v) ≤ k, and let f and u′ realize this matching. Since u starts with k + 1803

copies of #, u′ starts with #. Since v starts with # too, f(#) = #.804

We now prove that we can consider that for all x ̸= #, f(x) ̸= #. This will also imply that805

no # symbol is deleted from u. Let S = {a ∈ Π | f(a) = #} be the set of symbols (different806

from #) sent to #. Since |u|# = |v|#, the number of deleted # symbols from u is exactly807

|u|S , hence |u|S ≤ k. Let us now consider the leftmost occurrence of an element of S in u′,808

that we denote by a. The letter a appears in u in a factor of the form #N w1aw2#N . Since809

all # in v appear in blocks of size N , a must contribute to such a block, after deletions and810

application of f . We distinguish two cases:811

1. The entirety of the word w1 is deleted. In this case, at least one symbol # from the812

left #N block is deleted; otherwise f(#N)f(a) = #N+1 would be a factor of v, which is813

impossible. Thus, choosing not to delete # and to delete a instead yields the same result.814

2. w1 is not deleted. Since no character from S appears to the left of a, f(a) is the start of815

a #N block. Furthermore, since |u|S ≤ k, it is not possible to form #N with only a and816

w2, and characters from the right #N contribute to it. Hence, at least one # symbol817

from this right block is deleted. Like before, the same result can be obtained by not818

deleting it, and deleting a instead.819

Either way, we can repeat this process to eliminate all occurrences of characters of S and of820

deletions of #, which proves that we can consider that for all x ̸= #, f(x) ̸= #. Once again,821

we are taken back to the conditions of Lemma 9, and the rest of the proof follows. ◀822

Proof of Theorem 15. We define Π like in Theorem 12, and we add the letters ⊥1,⊥2,⊥3,⊥4
and ⊥5. Similarly, we define ui

1, vi
1, ui

⊥, vi
⊥, ue

2, and ve
2 just like in Theorem 12. Additionally,

we define for every edge e,

ue
⊥ = □e

1□e
2□e

3□e
4□e

5□e
6 and ve

⊥ = ⊥1⊥2⊥3⊥4⊥5.

We then apply Lemma 11 with

u1
1, . . . un

1 , u1
⊥, . . . un

⊥, ue1
2 . . . uem

2 , ue1
⊥ , . . . uem

⊥

and
v1

1 , . . . vn
1 , u1

⊥, . . . vn
⊥, ve1

2 . . . vem
2 , ve1

⊥ , . . . vem

⊥

to obtain u, v, and k. We show that G is 3-colorable ⇔ FMD
1 (u, v) ≤ k.823

⇒ Suppose G is 3 colorable. Define f like in Theorem 12 on the ci
y and □e

y. Let e be an824

edge and ke ∈ [1, 6] be the integer such that f(□e
ke

) is defined. We map every remaining □e
y825

CPM 2023

16:22 On Distances between Words with Parameters

in the following way:826

f(□e
i) =





⊥i if i < ke,
Y e if i = ke,
⊥i−1 if i > ke.

(1)827

It is then easy to check that d(f(u), v) = k, and thus FMD
1 (u, v) ≤ k.828

⇐ Suppose FMD
1 (u, v) ≤ k, and let f and u′ realize it. We define a coloring of G based829

on f . We note, for 1 ≤ i ≤ n and 1 ≤ t ≤ 3, col(ci
t) = ct. If xi is a vertex of G, define c(xi)830

to be col(ci
k), where ci

k is the only element such that f(ci
k) = xi. We show in what follows831

that (1) this function definition is correct and (2) it is a valid coloring, i.e. if e = {xi, xj} is832

an edge, c(xi) ̸= c(xj).833

(1): The same points 1. and 2. from the proof of Theorem 12 apply, hence for every834

1 ≤ i ≤ n, exactly one element from {ci
1, ci

2, ci
3} is sent to xi, while the two others are sent to835

⊥i
1 and ⊥i

2, hence the result.836

(2): Let e be an edge. The words ue
⊥ and ve

⊥ are in matching, which is done with exactly837

one deletion. Hence, there exists ke such that838

f(□e
i) =

{
⊥i if i < ke,
⊥i−1 if i > ke.

(2)839

Moreover, ue
2 and ve

2 are in matching. Since Y e appears in ve
2 and all the characters in ue

2840

apart from □e
ke

have an image different from Y e, f(□e
ke

) = Y e. Hence, the only characters841

that are not suppressed from ue
2 are the two characters between the □e

ke
. Denoting them by842

c and c′, the construction of the word ensures that col(c) ̸= col(c′). Hence, if e = {xi, xj},843

we have proven c(xi) ̸= c(xj), which is (2).844

The coloring c is therefore valid, which concludes the proof. ◀845

Proof of Theorem 17. Let G = (V, E), with V = {x1, . . . , xn} and {e1, . . . , em}. Like in846

the 1-to-1 case, we construct factors ui and vi to encode vertex coloring. The parameter847

alphabet contains:848

x1, . . . xn, corresponding to V ,849

the colors c1, c2, c3,850

for every e ∈ E, the delimiters Y e,851

for every e ∈ E and every 1 ≤ i, j ≤ 3, i ̸= j, the delimiters Y e
i,j .852

We define for 1 ≤ i ≤ n, ui
1 = xi and vi

1 = c1c2c3. If e is an edge and ci and cj are two colors,853

we denote we(ci, cj) = Y e
i,jY e

i,jY e
i,j cicj Y e

i,jY e
i,jY e

i,j For every edge e = {xi, xj}, we now define854

ue
2 = Y eY eY e xixj Y eY eY e and ve

2 = we(c1, c2)we(c1, c3)we(c2, c1)we(c2, c3)we(c3, c1)we(c3,855

c2).856

We now apply Lemma 10 with u1
1, . . . un

1 , ue1
2 . . . uem

2 , v1
1 , . . . vn

1 , ve1
2 . . . vem

2 , to obtain u and v.857

⇒ Suppose G is 3-colorable, and let c : V → {c1, c2, c3} be a valid coloring. Define858

f |V = c. For every edge e = {xi, xj}, let s and t be such that c(xi) = cs and c(xj) = ct.859

We then define f(Y e) = Y e
s,t. It is easy to check now that d(f(u), v) = k, and hence860

FMD
2 (u, v) ≤ k.861

⇐ Suppose now that FMD
2 (u, v) ≤ k. We will show that f |V defines a 3-coloring of G,862

by showing that (1) for all x ∈ V , f(x) ∈ {c1, c2, c3} and (2) If {x, y} ∈ E, then f(x) ̸= f(y).863

Lemma 10 ensures that the words ui and vi are in matching, which proves (1).864

Lemma 10 also ensures that the words ue and ve are in matching. Let e ∈ E, with865

e = xs, xt. We have |ue
2|Y e = 6, hence |f(ue

2)|f(Y e) ≥ 6. Since c1, c2 and c3 each occur866

P. Bourhis, A. Boussidan and P. Gambette 16:23

exactly 4 times in ve
2, they cannot occur 6 times after deletions, and f(Ye) /∈ {c1, c2, c3}.867

Hence, there exist i ̸= j with 1 ≤ i, j ≤ 3 such that f(Y e) = Y e
i,j . This implies that all868

but one of the we factors from ve
2 are suppressed, and that the remaining one is we(ci, cj).869

Hence f(xs) = ci and f(xt) = cj , which proves (2).870

◀871

B Encoding Constant Alphabet Σ in Π872

We show why it is always possible to consider that Σ = ∅ for certain problems. These results873

use the lemmas proved in Section 4.1.874

▶ Lemma 23. Let d be a distance, k an integer and u and v be two parameterized words875

over the alphabet of constants Σ and the alphabet of parameters Π. There exist words ũ and876

ṽ over the alphabet of constants ∅ and the alphabet of parameters Π′ = Π ⊎ Σ such that the877

following are equivalent:878

PMd(u, v, k) is realized by f ;879

PMd(ũ, ṽ, k) is realized by f .880

In particular, this implies that if PMd(ũ, ṽ) ≤ k, all functions f realizing this matching881

verify that for all x ∈ Σ, f(x) = x, and for all x ∈ Π, f(x) ∈ Π.882

Proof. Let N = k + 1. If Σ = {a1, . . . , an}, we define z to be aN
1 aN

2 . . . aN
n u and ũ = zu,883

ṽ = zv. It is clear that if PMd(u, v) ≤ k then PMd(ũ, ṽ) ≤ k, by following the same884

operations, and applying the same renaming function.885

Suppose now that PMd(ũ, ṽ) ≤ k, and let f and u′ realize it. Let i ∈ [1, n]. All the letters886

of u between position Ni and N(i + 1) are ai. At most k of these positions can be modified887

with an edit operation. Since N > k, at least one of these positions is not modified, and thus888

there exists j ∈ [Ni, N(i + 1)] such that u′
j = ai. Since all letters in v between position Ni889

and N(i + 1) are ai, in particular vj = ai, and hence f(ai) = ai. This proves that for all890

x ∈ Σ, f(x) = x, and thus f(z) = z. Since f is 1-to-1, this entails f(Π) ⊆ Π. By Lemma 7,891

d(f(ũ), ṽ) ≤ k. Hence d(f(zu), zv) = d(zf(u), zv) ≤ k and by Lemma 8, d(f(u), v) ≤ k.892

Hence PMd(u, v) ≤ k. ◀893

▶ Remark 24. Note that the words ũ and ṽ have a size increased by NΣ. If less operations894

are considered, it is possible to reduce this overhead. For example, in the case of PMD, we895

can take z to be of the form a1 . . . anzN , to reduce the overhead to N + Σ.896

Similarly, constants can be encoded in Π in some FM problems. We prove this result for897

FMD
2 , with the help of the block decomposition allowed by Lemma 10.898

▶ Lemma 25. Let u and v be two parameterized words over the alphabet of constants Σ and899

the alphabet of parameters Π. There exist words ũ and ṽ over the alphabet of constants ∅900

and the alphabet of parameters Π′ = Π ⊎ Σ such that the following are equivalent:901

FMD
2 (u, v, |v| − |u|) is realized by f ;902

FMD
2 (ũ, ṽ, |ṽ| − |ũ|) is realized by f .903

Proof. We write Σ = {a1, . . . an} and Π = {b1, . . . , bm}. We define zΣ = a1 . . . an, and zΠ =904

b1 . . . bm. Let ũ and ṽ be the words obtained by applying Lemma 10 to zΣ, b1, b2, . . . , bm, u and905

zΣ, zΠ, zΠ, . . . , zΠ, v. If FMD
2 (u, v, k) is realized by a function f , it realizes FMD

2 (ũ, ṽ, |ṽ|−|ũ|)906

too. Indeed, it is enough to apply the same operations in v, and to delete all the characters907

but f(bi) in the i-th copy of zΠ.908

Suppose now that FMD
2 (ũ, ṽ) ≤ k, and let f realize it. Then, by Lemma 10, we have:909

CPM 2023

16:24 On Distances between Words with Parameters

D(z, f(z)) = 0, and hence f(z) = z, which implies that for all x ∈ Σ, f(x) = x.910

For every 1 ≤ i ≤ m, D(zΠ, f(bi)) = |Π| − 1. Hence f(bi) is a character of zΠ, which is911

some character bj ∈ Π.912

D(v, f(u)) ≤ k.913

Hence f verifies D(f(v), u) ≤ k and respects the conditions on Π and Σ, which implies that914

is also realizes FMD
2 (u, v, k). ◀915

The overhead to pay for this transformation is O(|Σ|+ |Π|2 + k), where the term in k916

comes from the proof of Lemma 10.917

Transposing the technique used for Lemma 25 is not sufficient to get a similar result for918

FMD
1 . The question thus remains open in this context.919

C Proofs Regarding the Max-SAT Encoding920

Proof of theorem 21. We proceed by induction on |u|+ |v|. If |u|+ |v| = 0, both u and v921

are the empty string, and the equivalence is trivial. Fix n ∈ N and suppose now that the922

result holds up for all words u, v such that |u|+ |v| ≤ n− 1. Let u and v be two words such923

that |u|+ |v| ≤ n. Without loss of generality, consider |u| ≥ |v|.924

Suppose ID(u, v) ≤ k. Let ρ be a rewriting sequence between u and v of length k. If there925

is no deletion in u in ρ, there are only insertions in v, and v is a sub-word of u, and there926

exists another rewriting sequence ρ′ only deleting letters from u. Hence, we can consider927

that there is at least a deletion in u in ρ. Let p be a position at which such a deletion occur,928

and let a = up. The word u can be written as u = u′au′′ for some words u′ and u′′. Define929

w = u′u′′. It holds that d(w, v) ≤ k − 1 and |w| = |u| − 1. By induction, there exists an930

alignment A between w and v such that 2|A| = |w|+ |v| − (k − 1) = |u|+ |v| − k. We define931

r(i) =
{

i if i < p

i− 1 if i > p
, and B = {(r(i), j) | (i, j) ∈ A}. Since A is an alignment, so is B: it932

satisfies conditions 1 to 3 of Definition 20, and since wr(i) = ui, it also satisfies condition 4.933

Finally, |B| = |A|, hence 2|B| = |u|+ |v| − k, hence the result.934

Suppose now that there exists an alignment A such that 2|A| = |u|+ |v| − k. Similarly,935

consider p, a position in u such that there does not exist a j with (p, j) ∈ A. If no such position936

exist, since |u| ≥ |v|, u = v and the result is proven. Consider w the word obtained by deleting937

up from u. It then holds that |w| = |u| − 1 and that 2|A| = |u|+ |v| − k = |w|+ |v| − (k− 1).938

Defining B in the same way as above yields an alignment between w and v of the same size,939

and thus by induction, d(w, v) ≤ k − 1, and since d(u, w) = 1, d(u, v) ≤ k. ◀940

▶ Proposition 26. Weighted Max-SAT and partial weighted Max-SAT are equivalent.941

Proof. Encoding a weighted Max-SAT instance as a partially weighted Max-SAT instance is942

straightforward, as we just have to choose φc to be empty.943

Conversely, given a satisfiable CNF formula φc, a CNF formula φw, and a weight function w944

on the clauses of φw, we can define a weighted Max-Sat instance in the following way :945

We define φ = φc ∧ φw946

We set W = 1 +
∑

Ciclause ofφc

w(Ci), and extend w to clauses of φc such that w(Cj) = W947

for all clauses Cj of φc948

If ν is a valuation, we denote by w(ν) the sum of the weights of all clauses it satisfies
∑

ν⊨Ci

w(Ci).949

Since φc is satisfiable, there exists a valuation νc such that νc ⊨ φc, and w(νc) ≥ |φc|W . Let950

now ν be a valuation no satisfying a clause of φc. Then w(νc) ≤ (|φc|−1)W +(W−1) < w(νc),951

hence nuc is not maximal and cannot be a solution to the weighted Max-SAT instance. ◀952

198

