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Graphs: labelled/unlabelled

« Graphs are classically labelled at vertices

» Unlabelled graphs = graphs up to isomorphisms

« Example: connected graphs on 3 vert|ces

_______________________________________

______________________________________




Families of graphs

* Planar graphs: can be embedded in the plane

not planar

* Quterplanar graphs: there exists an outerplanar embedding



Recent asymptotic results

- Definition: a sequence c,, is of subexponential order a if

Cp~CY' MY asn — oo

for some positive constants c, y

- Subexb. orders: Labelled Unlabelled
p. ) Cn = |gn|/n! Cn = |gn‘
Planar -7/2 ?
Series-parallel -5/2 -5/2
Outerplanar -5/2 -5/2

Labelled: [Gimenez, Noy’05], [Bodirsky, Gimenez, Kang, Noy’05]
Unlabelled: [Bodirsky, F, Kang, Vigerske'07] + work in progress

 Remark: subexp. order -7/2 is typical of (unrooted) maps
subexp. order -5/2 is typical of (unrooted) trees



Part |: Asymptotic enumeration
of labelled graph families



Trees

* (unrooted) tree = acyclic connected graph
« Rooted tree = tree pointed at a vertex: r, =nt,
« Decomposition at the root into subtrees:

117

R = Z*SetR = R(z) = zexp(R(z2))



General methodology
« Assume y=g(z) is solution of an equation of the form
y=F(zy)
with F(z,y) nonlinear in y and F(0,y)=0

Example: for rooted trees, g(z)=z exp(g(z)), so F(z,y)=z exp(y)



General methodology

« Assume y=g(z) is solution of an equation of the form
y=F(zy)
with F(z,y) nonlinear in y and F(0,y)=0

 If g(z) has positive radius of convergence p,
then y=g(z) converges to a constant 1 as ztends to p
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General methodology

Assume y=g(z) is solution of an equation of the form
y=F(zy)
with F(z,y) nonlinear in y and F(0,y)=0

If g(z) has positive radius of convergence p,
then y=g(z) converges to a constant 1 as ztends to p

If F(z,y) is analytic at (p, 1), then F (p, T)=1 and
g(z) =7 —e/1=2/p+ O (1-2/p)

Z—p
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Methodology applied to trees

* The series y=R(z) counting rooted trees is solution of

where F(z,y) = z exp(y)

* R(z) has positive radius of convergence and is aperiodic

* F(z)y) is analytic everywhere

Hence, .
3/2 =t = n cp_”n_5/2

_n —
rp~ cp'n
n



Connected from 2-connected graphs

Pointed connected graph = set of pointed 2-connected graphs where
each non-pointed vertex is substituted by a pointed connected graph

R

C* =ZxSet(B 0, C*%) = C*%2)=zexp(B'(C*(2)))



Methodology for graphs

o y = C"*(z) is solution of

Yy = F(z’y)? with F(z,y) r— zexp(B/(Z/))

e p:= RadiusConv(C*(z)), 7 := C*(p), R := RadiusConv(B’'(y))



Methodology for graphs

o y = C"*(z) is solution of

y=F(zy). with F(z,y) = zexp(B'(y))

e p:= RadiusConv(C*(z)), 7 := C*(p), R := RadiusConv(B’'(y))

e Two possibilities: 7 <R or7=R
S—— S——

subcritical critical



Methodology for graphs

o y = C"*(z) is solution of

y = F(z,y), with F(z,y) := zexp(B'(y))

e p:= RadiusConv(C*(z)), 7 := C*(p), R := RadiusConv(B’(y))

e Two possibilities: 7 <R or7=R
S—— S——

subcritical critical

* Key lemma: if B'(y) =% — /1 —y/R+---, then 7 < R

otherwise 3z, < p such that 2L ro,C*(xy)) = 1, a contradiction
P dy



Methodology for graphs

o y = C"*(z) is solution of

y = F(z,y), with F(z,y) := zexp(B'(y))

e p:= RadiusConv(C*(z)), 7 := C*(p), R := RadiusConv(B’'(y))

e Two possibilities: 7 <R or7=R
S—— S——

subcritical critical

* Key lemma: if B'(y) =% — /1 —y/R+---, then 7 < R

otherwise 3z, < p such that 2L ro,C*(xy)) = 1, a contradiction
P dy

= F(z,y) analytic at (p,7) = C*(2) =% —x\/1 —2z/p+---

ny e —n, _—: n 1 ny e —n__—>5
—  [2"]C%(2) ~ cp 0T =|[2"C(2) = 7—2[:: [C*(2) ~ cp~ /2

aperiodic




Applied to two graph families

» Outerplanar: B’ ~ Rooted dissections ~ Rooted plane trees

BOoB D234+ B

o Series-parallel:

S
T )

and = p P
SN
, TS S S
B ~ Rooted tree family L
AN

Remark: other proof in [Bodirsky, Gimenez, Kang, Noy’05]
less adaptable to the unlabelled case



Part |I: Asymptotic enumeration
of unlabelled graph families



Unlabelled rooted trees (1)

 Rooted unlabelled tree = multiset of subtrees

i>1

R = Z x MultiSet(R) = R(z) = zexp (Z lR(zz))
7

(to be compared with R(2) = 2 exp(R(z)) in the labelled case)



Unlabelled rooted trees (2)

» y = R(z) is solution of the equation

1 .
y=zexp(y)exp () —R(=))
i>2
| —
S(z)
» Call p:= RadiusConv(C*(z)), 7 := C*(p)

o p<1= 5(z2) analytic at p = F'(z,y) analytic at (p,7)

Hence R(z) =7 —c\/1—2/p+ -

) —n —
é Ir-nl ~ C /) " T 3/2



Unlabelled unrooted trees

* Problem: we do not have t, = nr,as in the labelled case
* Instead, use the dissymmetry theorem [Robinson, Leroux]

70+ T

e



Unlabelled unrooted trees

* Problem: we do not have t, = nr,as in the labelled case
* Instead, use the dissymmetry theorem [Robinson, Leroux]




Unlabelled unrooted trees

* Problem: we do not have t, = nr,as in the labelled case
* Instead, use the dissymmetry theorem [Robinson, Leroux]

= t(x) = co+ea(l = 2/p) + a1 —2/p) 2 4

= t, ~ c',o_'"“n_'r’/2



Connected from 2-connected graphs

Pointed connected graph = Multiset of pointed 2-connected graphs where
each non-pointed vertex is substituted by a pointed connected graph

%&Uz

C* =2« MultlSet(B Oy C
= C*%(2) = zexp Z —g(z

with g(z) = ZB'(?("()("( 2),0%(:), ..

(Z A(s1,82,...) denotes the cycle index sum of a class A)



Methodology for unlabelled graphs
. y = (C*(2) is solution of y = F(z,y), where

F(z,y) = zexp (Z %g(zz)) - exp (ZB/(y,C°(z2),C’(23), o)
222S( )



Methodology for unlabelled graphs
. y = (C*(2) is solution of y = F(z,y), where

| ,.
F(z,y) = zexp (Z ;g(z”)) cexp (Zp (y,C*(2%),C*(="),...)
i>
>2
S(2)

o Call p := RadiusConv(C*®(z)). Assume p < 1. Call 7 := C*(p)



Methodology for unlabelled graphs
. y = (C*(2) is solution of y = F(z,y), where

1 ) ° o/ .
F(z,y) = zexp (Z 79(2:’“)) cexp (Zp (y,C*(2%),C*(="),...)
i>2
| —
S(z)

o Call p := RadiusConv(C*®(z)). Assume p < 1. Call 7 := C*(p)
Call R := RadiusConv(h(y)),

with h(y) := Zg (y,C*(p?), C*(p?),...)



Methodology for unlabelled graphs
. y = (C*(2) is solution of y = F(z,y), where

Fzy) = zexp (32 0() ) exp (Zr (5, (%), C* (=), )

i>2
w
S(z)

o Call p := RadiusConv(C*®(z)). Assume p < 1. Call 7 := C*(p)
Call R := RadiusConv(h(y)),

with h(y) := Zg (y,C*(p?), C*(p?),...)

e Key lemma: if h(y) =% — /1 —y/R+---, then 7 < R
= C*z2)=*x—x/1—2z/p+---




Methodology for unlabelled graphs
. y = (C*(2) is solution of y = F(z,y), where

Fzy) = zexp (32 0() ) exp (Zr (5, (%), C* (=), )

i>2
w
S(z)

o Call p := RadiusConv(C*®(z)). Assume p < 1. Call 7 := C*(p)
Call R := RadiusConv(h(y)),

with h(y) := Zg (y,C*(p?), C*(p?),...)

e Key lemma: if h(y) =% — /1 —y/R+---, then 7 < R

= C(z)=co+ea(l—z/p)+es(l—2/p)*/" + -+

dissym. theo.




Methodology for unlabelled graphs
. y = C*(2) is solution of y = F(z,y), where

Fzy) = zexp (32 0() ) exp (Zr (5, (%), C* (=), )

i>2
w
S(z)

o Call p := RadiusConv(C*®(z)). Assume p < 1. Call 7 := C*(p)
Call R := RadiusConv(h(y)),

with h(y) := Zp (y,C*(p?), C*(p?),...)

e Key lemma: if h(y) =% — /1 —y/R+---, then 7 < R

= C(z)=co+ea(l—z/p)+ea(l—2/p)*? + -+

dissym. theo.

= [2"C(2) ~ cp"n"/?




Applied to two graph families
Using the key lemma, we show [2"|C'(z) ~ c/)_n-')'z._s/z for:
o Unlabelled outerplanar graphs

DR

[Bodirsky, F, Kang, Vigerske'07]

o Unlabelled series-parallel graphs DE{;ZE}F

work in progress with < )
Drmota, Kang, Kraus, Rue D{/ \P
N
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Conclusion

We have a quite general criterion to prove that graph
families (labelled or not) have subexponential order -5/2

These families are "subcritical”

Is there a robust criterion to prove the subexponential
order of critical graph families (like planar graphs) ?

Labelled Unlabelled
Cn = ’gn|/n' Cn = |gn|

Planar -7/2 ?

Series-parallel -5/2 -5/2

Outerplanar -5/2 -5/2




