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Graphs: labelled/unlabelled
• Graphs are classically labelled at vertices

a graph on 4 vertices

• Unlabelled graphs = graphs up to isomorphisms

• Example: connected graphs on 3 vertices:



Families of graphs
• Planar graphs: can be embedded in the plane

• Series-parallel graphs: no minor K4

• Outerplanar graphs: there exists an outerplanar embedding

planar not planar



Recent asymptotic results
• Definition: a sequence cn is of subexponential order α if

 for some positive constants c, γ

• Subexp. orders:

Labelled: [Gimenez, Noy’05], [Bodirsky, Gimenez, Kang, Noy’05] 
Unlabelled: [Bodirsky, F, Kang, Vigerske’07] + work in progress

• Remark: subexp. order -7/2 is typical of (unrooted) maps
                    subexp. order -5/2 is typical of (unrooted) trees



Part I: Asymptotic enumeration
of labelled graph families



Trees
• (unrooted) tree = acyclic connected graph
• Rooted tree = tree pointed at a vertex: rn = n tn
• Decomposition at the root into subtrees:



General methodology
• Assume y=g(z) is solution of an equation of the form

    with F(z,y) nonlinear in y and F(0,y)=0
Example: for rooted trees, g(z)=z exp(g(z)), so F(z,y)=z exp(y)
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General methodology
• Assume y=g(z) is solution of an equation of the form
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• Transfer theorems
  + aperiodicity



Methodology applied to trees

• The series y=R(z) counting rooted trees is solution of

where F(z,y) = z exp(y)

• R(z) has positive radius of convergence and is aperiodic

• F(z,y) is analytic everywhere

Hence,



Connected from 2-connected graphs

Pointed connected graph = set of pointed 2-connected graphs where
each non-pointed vertex is substituted by a pointed connected graph



Methodology for graphs



Methodology for graphs



Methodology for graphs



Methodology for graphs



Applied to two graph families

Series-parallel:

Outerplanar:

Remark: other proof in [Bodirsky, Gimenez, Kang, Noy’05]
               less adaptable to the unlabelled case



Part II: Asymptotic enumeration
of unlabelled graph families



Unlabelled rooted trees (1)
• Rooted unlabelled tree = multiset of subtrees

(to be compared with in the labelled case)



Unlabelled rooted trees (2)



Unlabelled unrooted trees
• Problem: we do not have tn = n rn as in the labelled case
• Instead, use the dissymmetry theorem [Robinson, Leroux]
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Connected from 2-connected graphs
Pointed connected graph = Multiset of pointed 2-connected graphs where
each non-pointed vertex is substituted by a pointed connected graph
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Methodology for unlabelled graphs



Applied to two graph families

Unlabelled series-parallel graphs

Unlabelled outerplanar graphs

[Bodirsky, F, Kang, Vigerske’07]

work in progress with
Drmota, Kang, Kraus, Rue

Using the key lemma, we show for:



Conclusion
• We have a quite general criterion to prove that graph

families (labelled or not) have subexponential order -5/2
• These families are ``subcritical’’
• Is there a robust criterion to prove the subexponential

order of critical graph families (like planar graphs) ?


