Asymptotic enumeration in unlabelled subcritical graph families

Eric FUSY
LIX, Ecole Polytechnique, Paris

Graphs: labelled/unlabelled

Graphs are classically labelled at vertices

a graph on 4 vertices

- Unlabelled graphs = graphs up to isomorphisms
- Example: connected graphs on 3 vertices:

Families of graphs

Planar graphs: can be embedded in the plane

Series-parallel graphs: no minor K₄

Outerplanar graphs: there exists an outerplanar embedding

Recent asymptotic results

Definition: a sequence c_n is of subexponential order α if

$$c_n \sim c \gamma^n n^\alpha \text{ as } n \to \infty$$

for some positive constants c, γ

Subexp. orders:

	Labelled	$\operatorname*{Unlabelled}_{\sim}$
	$c_n = \mathcal{G}_n /n!$	$c_n = \mathcal{G}_n $
Planar	-7/2	?
Series-parallel	-5/2	-5/2
Outerplanar	-5/2	-5/2

Labelled: [Gimenez, Noy'05], [Bodirsky, Gimenez, Kang, Noy'05]

Unlabelled: [Bodirsky, F, Kang, Vigerske'07] + work in progress

 Remark: subexp. order -7/2 is typical of (unrooted) maps subexp. order -5/2 is typical of (unrooted) trees

Part I: Asymptotic enumeration of labelled graph families

Trees

- (unrooted) tree = acyclic connected graph
- Rooted tree = tree pointed at a vertex: r_n = n t_n
- Decomposition at the root into subtrees:

$$\mathcal{R} = \mathcal{Z} \star \operatorname{Set}\mathcal{R} \Rightarrow R(z) = z \exp(R(z))$$

• Assume y=g(z) is solution of an equation of the form y=F(z,y)

with F(z,y) nonlinear in y and F(0,y)=0

Example: for rooted trees, $g(z)=z \exp(g(z))$, so $F(z,y)=z \exp(y)$

• Assume y=g(z) is solution of an equation of the form y=F(z,y)

with F(z,y) nonlinear in y and F(0,y)=0

If g(z) has positive radius of convergence ρ,
 then y=g(z) converges to a constant τ as z tends to ρ

- Assume y=g(z) is solution of an equation of the form y=F(z,y)
 - with F(z,y) nonlinear in y and F(0,y)=0
- If g(z) has positive radius of convergence ρ,
 then y=g(z) converges to a constant τ as z tends to ρ
- If F(z,y) is analytic at (ρ , τ), then F_y(ρ , τ)=1 and $g(z) = \tau c\sqrt{1-z/\rho} + \mathop{O}_{z\to\rho}(1-z/\rho)$

- Assume y=g(z) is solution of an equation of the form y=F(z,y)
 - with F(z,y) nonlinear in y and F(0,y)=0
- If g(z) has positive radius of convergence ρ,
 then y=g(z) converges to a constant τ as z tends to ρ
- If F(z,y) is analytic at (p, τ), then F_y(p, τ)=1 and $g(z) = \tau c\sqrt{1-z/\rho} + \mathop{O}_{z\to\rho}(1-z/\rho)$
- Transfer theorems $\xrightarrow[+ \text{ aperiodicity}]{} [z^n]g(z) \underset{n \to \infty}{\sim} c' \, \rho^{-n} n^{-3/2}$

Methodology applied to trees

- The series y=R(z) counting rooted trees is solution of y=F(z,y) where F(z,y) = z exp(y)
- R(z) has positive radius of convergence and is aperiodic
- F(z,y) is analytic everywhere

Hence,

$$r_n \sim c \rho^{-n} n^{-3/2} \implies t_n = \frac{r_n}{n} \sim c \rho^{-n} n^{-5/2}$$

Connected from 2-connected graphs

Pointed connected graph = set of pointed 2-connected graphs where each non-pointed vertex is substituted by a pointed connected graph

$$\mathcal{C}^{\bullet} = \mathcal{Z} \star \operatorname{Set}(\mathcal{B}' \circ_v \mathcal{C}^{\bullet}) \quad \Rightarrow \quad C^{\bullet}(z) = z \exp(B'(C^{\bullet}(z)))$$

- $y = C^{\bullet}(z)$ is solution of y = F(z, y), with $F(z, y) := z \exp(B'(y))$
- $\rho := \mathbf{RadiusConv}(C^{\bullet}(z)), \ \tau := C^{\bullet}(\rho), \ R := \mathbf{RadiusConv}(B'(y))$

- $y = C^{\bullet}(z)$ is solution of y = F(z, y), with $F(z, y) := z \exp(B'(y))$
- $\rho := \mathbf{RadiusConv}(C^{\bullet}(z)), \ \tau := C^{\bullet}(\rho), \ R := \mathbf{RadiusConv}(B'(y))$
- Two possibilities: $\underbrace{\tau < R}_{\text{subcritical}}$ or $\underbrace{\tau = R}_{\text{critical}}$

- $y = C^{\bullet}(z)$ is solution of y = F(z, y), with $F(z, y) := z \exp(B'(y))$
- $\rho := \mathbf{RadiusConv}(C^{\bullet}(z)), \ \tau := C^{\bullet}(\rho), \ R := \mathbf{RadiusConv}(B'(y))$
- Two possibilities: $\underline{\tau < R}$ or $\underline{\tau = R}$ subcritical
- Key lemma: if $B'(y) = * *\sqrt{1 y/R} + \cdots$, then $\tau < R$ (otherwise $\exists x_0 < \rho$ such that $\frac{\partial F}{\partial y}(x_0, C^{\bullet}(x_0)) = 1$, a contradiction)

- $y = C^{\bullet}(z)$ is solution of y = F(z, y), with $F(z, y) := z \exp(B'(y))$
- $\rho := \mathbf{RadiusConv}(C^{\bullet}(z)), \ \tau := C^{\bullet}(\rho), \ R := \mathbf{RadiusConv}(B'(y))$
- Two possibilities: $\underbrace{\tau < R}_{\text{subcritical}}$ or $\underbrace{\tau = R}_{\text{critical}}$
- Key lemma: if $B'(y) = * *\sqrt{1 y/R} + \cdots$, then $\tau < R$ (otherwise $\exists x_0 < \rho$ such that $\frac{\partial F}{\partial y}(x_0, C^{\bullet}(x_0)) = 1$, a contradiction)
 - $\Rightarrow F(z,y)$ analytic at $(\rho,\tau) \Rightarrow C^{\bullet}(z) = * *\sqrt{1-z/\rho} + \cdots$

$$\underset{aperiodic}{\Longrightarrow}[z^n]C^{\bullet}(z) \sim c\rho^{-n}n^{-3/2} \Rightarrow \boxed{[z^n]C(z) = \frac{1}{n}[z^n]C^{\bullet}(z) \sim c\rho^{-n}n^{-5/2}}$$

Applied to two graph families

• Outerplanar: $\mathcal{B}' \simeq \mathbf{Rooted}$ dissections $\simeq \mathbf{Rooted}$ plane trees

Series-parallel:

$$\overrightarrow{\mathcal{B}} \supseteq \mathcal{B}' \supseteq \mathcal{Z}^3 \star \overrightarrow{\mathcal{B}}$$

and

 $\overrightarrow{\mathcal{B}} \simeq \mathbf{Rooted}$ tree family

Remark: other proof in [Bodirsky, Gimenez, Kang, Noy'05] less adaptable to the unlabelled case

Part II: Asymptotic enumeration of unlabelled graph families

Unlabelled rooted trees (1)

Rooted unlabelled tree = multiset of subtrees

$$\mathcal{R} = \mathcal{Z} \times \text{MultiSet}(\mathcal{R}) \Rightarrow R(z) = z \exp\left(\sum_{i \geq 1} \frac{1}{i} R(z^i)\right)$$

(to be compared with $R(z) = z \exp(R(z))$ in the labelled case)

Unlabelled rooted trees (2)

• y = R(z) is solution of the equation

$$y = z \exp(y) \exp\left(\sum_{i \ge 2} \frac{1}{i} R(z^i)\right)$$

- Call $\rho := \mathbf{RadiusConv}(C^{\bullet}(z)), \ \tau := C^{\bullet}(\rho)$
- $\rho < 1 \Rightarrow S(z)$ analytic at $\rho \Rightarrow F(z,y)$ analytic at (ρ, τ)

Hence
$$R(z) = \tau - c\sqrt{1 - z/\rho} + \cdots$$

 $\Rightarrow r_n \sim c'\rho^{-n}n^{-3/2}$

Unlabelled unrooted trees

- **Problem**: we do not have $t_n = n r_n$ as in the labelled case
- Instead, use the dissymmetry theorem [Robinson, Leroux]

Unlabelled unrooted trees

- **Problem**: we do not have $t_n = n r_n$ as in the labelled case
- Instead, use the dissymmetry theorem [Robinson, Leroux]

Unlabelled unrooted trees

- **Problem**: we do not have $t_n = n r_n$ as in the labelled case
- Instead, use the dissymmetry theorem [Robinson, Leroux]

$$T + T^{\dagger} \simeq T^{\bullet} + T^{\$}$$

$$\Rightarrow t(x) = R(x) + \frac{1}{2}R(x^2) - \frac{1}{2}R(x)^2$$

$$\Rightarrow t_n \sim c'\rho^{-n}n^{-5/2}$$

Connected from 2-connected graphs

Pointed connected graph = Multiset of pointed 2-connected graphs where each non-pointed vertex is substituted by a pointed connected graph

$$C^{\bullet} = \mathcal{Z} \star \text{MultiSet}(\mathcal{B}' \circ_{v} C^{\bullet})$$

$$\Rightarrow C^{\bullet}(z) = z \exp\left(\sum_{i \geq 1} \frac{1}{i} g(z^{i})\right)$$
with $g(z) = Z_{\mathcal{B}'}(C^{\bullet}(z), C^{\bullet}(z^{2}), C^{\bullet}(z^{3}), \ldots)$

 $(Z_A(s_1, s_2, ...)$ denotes the cycle index sum of a class A)

• $y = C^{\bullet}(z)$ is solution of y = F(z, y), where

$$F(z,y) = z \exp\left(\sum_{i \ge 2} \frac{1}{i} g(z^i)\right) \cdot \exp\left(Z_{\mathcal{B}'}(y, C^{\bullet}(z^2), C^{\bullet}(z^3), \dots\right)$$

• $y = C^{\bullet}(z)$ is solution of y = F(z, y), where

$$F(z,y) = z \exp\left(\sum_{i \ge 2} \frac{1}{i} g(z^i)\right) \cdot \exp\left(Z_{\mathcal{B}'}(y, C^{\bullet}(z^2), C^{\bullet}(z^3), \dots\right)$$

• Call $\rho := \text{RadiusConv}(C^{\bullet}(z))$. Assume $\rho < 1$. Call $\tau := C^{\bullet}(\rho)$

• $y = C^{\bullet}(z)$ is solution of y = F(z, y), where

$$F(z,y) = z \exp\left(\sum_{i \ge 2} \frac{1}{i} g(z^i)\right) \cdot \exp\left(Z_{\mathcal{B}'}(y, C^{\bullet}(z^2), C^{\bullet}(z^3), \dots\right)$$

• Call $\rho := \text{RadiusConv}(C^{\bullet}(z))$. Assume $\rho < 1$. Call $\tau := C^{\bullet}(\rho)$ Call R := RadiusConv(h(y)),

with
$$h(y) := Z_{\mathcal{B}'}(y, C^{\bullet}(\rho^2), C^{\bullet}(\rho^3), \dots)$$

• $y = C^{\bullet}(z)$ is solution of y = F(z, y), where

$$F(z,y) = z \exp\left(\sum_{i \ge 2} \frac{1}{i} g(z^i)\right) \cdot \exp\left(Z_{\mathcal{B}'}(y, C^{\bullet}(z^2), C^{\bullet}(z^3), \dots\right)$$

• Call $\rho := \text{RadiusConv}(C^{\bullet}(z))$. Assume $\rho < 1$. Call $\tau := C^{\bullet}(\rho)$ Call R := RadiusConv(h(y)),

with
$$h(y) := Z_{\mathcal{B}'}(y, C^{\bullet}(\rho^2), C^{\bullet}(\rho^3), \dots)$$

• Key lemma: if $h(y) = *-*\sqrt{1-y/R} + \cdots$, then $\tau < R$ $\Rightarrow \quad C^{\bullet}(z) = *-*\sqrt{1-z/\rho} + \cdots$

• $y = C^{\bullet}(z)$ is solution of y = F(z, y), where

$$F(z,y) = z \exp\left(\sum_{i \ge 2} \frac{1}{i} g(z^i)\right) \cdot \exp\left(Z_{\mathcal{B}'}(y, C^{\bullet}(z^2), C^{\bullet}(z^3), \dots\right)$$

• Call $\rho := \text{RadiusConv}(C^{\bullet}(z))$. Assume $\rho < 1$. Call $\tau := C^{\bullet}(\rho)$ Call R := RadiusConv(h(y)),

with
$$h(y) := Z_{\mathcal{B}'}(y, C^{\bullet}(\rho^2), C^{\bullet}(\rho^3), \dots)$$

• Key lemma: if $h(y) = * - *\sqrt{1 - y/R} + \cdots$, then $\tau < R$

$$\Rightarrow C^{\bullet}(z) = * - *\sqrt{1 - z/\rho} + \cdots$$

$$\Longrightarrow_{dissym.\ theo.} C(z) = c_0 + c_2(1 - z/\rho) + c_3(1 - z/\rho)^{3/2} + \cdots$$

• $y = C^{\bullet}(z)$ is solution of y = F(z, y), where

$$F(z,y) = z \exp\left(\sum_{i \ge 2} \frac{1}{i} g(z^i)\right) \cdot \exp\left(Z_{\mathcal{B}'}(y, C^{\bullet}(z^2), C^{\bullet}(z^3), \dots\right)$$

• Call $\rho := \text{RadiusConv}(C^{\bullet}(z))$. Assume $\rho < 1$. Call $\tau := C^{\bullet}(\rho)$ Call R := RadiusConv(h(y)),

with
$$h(y) := Z_{\mathcal{B}'}(y, C^{\bullet}(\rho^2), C^{\bullet}(\rho^3), \dots)$$

• **Key lemma:** if $h(y) = * - *\sqrt{1 - y/R} + \cdots$, then $\tau < R$

$$\Rightarrow C^{\bullet}(z) = * - *\sqrt{1 - z/\rho} + \cdots$$

$$\Longrightarrow_{dissym.\ theo.} C(z) = c_0 + c_2(1 - z/\rho) + c_3(1 - z/\rho)^{3/2} + \cdots$$

$$\Rightarrow [z^n]C(z) \sim c\rho^{-n}n^{-5/2}$$

Applied to two graph families

Using the key lemma, we show $[z^n]C(z) \sim c \rho^{-n} n^{-5/2}$ for:

Unlabelled outerplanar graphs

[Bodirsky, F, Kang, Vigerske'07]

Unlabelled series-parallel graphs

work in progress with Drmota, Kang, Kraus, Rue

Conclusion

- We have a quite general criterion to prove that graph families (labelled or not) have subexponential order -5/2
- These families are ``subcritical''
- Is there a robust criterion to prove the subexponential order of critical graph families (like planar graphs)?

	Labelled	Unlabelled
	$c_n = \mathcal{G}_n /n!$	$c_n = \widetilde{\mathcal{G}}_n $
Planar	-7/2	?
Series-parallel	-5/2	-5/2
Outerplanar	-5/2	-5/2