Bijections for Baxter families

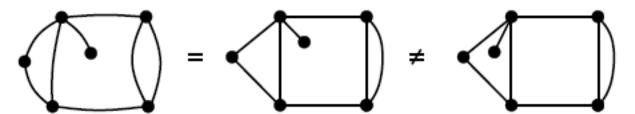
Eric Fusy (LIX, Ecole Polytechnique)

Joint work with D. Poulalhon, G. Schaeffer, N. Bonichon, M. Bousquet-Mélou, S. Felsner, M. Noy, D. Orden

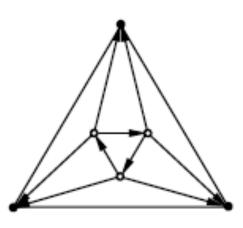
Part 1: decomposition of oriented maps

Oriented maps

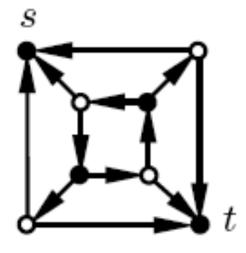
• Planar map = planar graph embedded in the plane



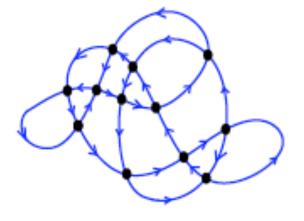
- Oriented map = planar map + orientation of the edges
- Families of oriented maps:



3-orientations



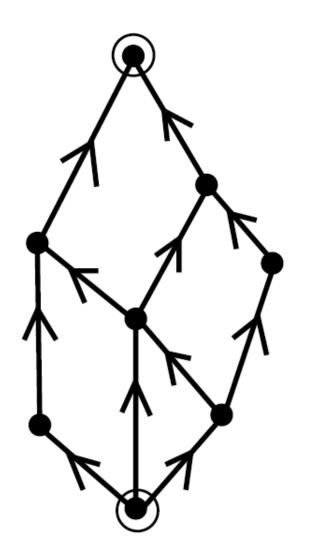
2-orientations



Eulerian orientations

Plane bipolar orientations

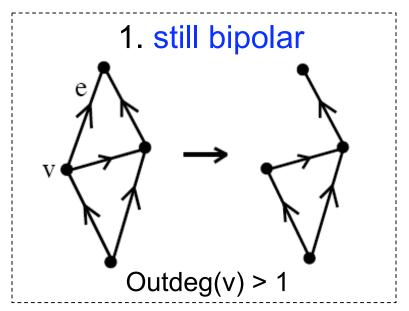
 Bipolar orientation = acyclic orientation with unique source and unique sink

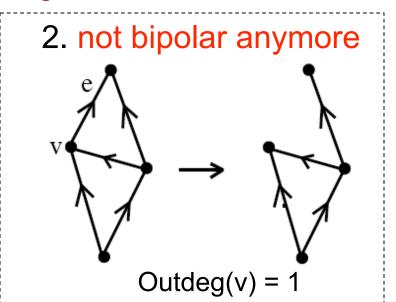


- Plane bipolar orientation :
 - bipolar orientation on a planar map
 - the source and the sink are incident to the outer face

Decomposing plane bipolar orientations Root-edge e = top-edge of left outer boundary

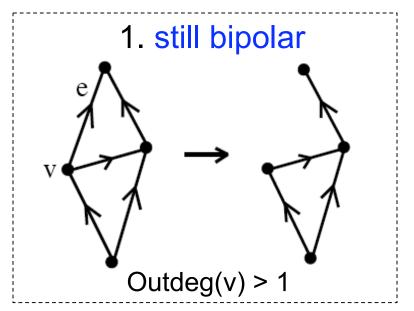
- Root-edge e = top-edge of left outer boundary root-vertex v = origin of root-edge
- Tutte's method, delete the root-edge. Then two cases:

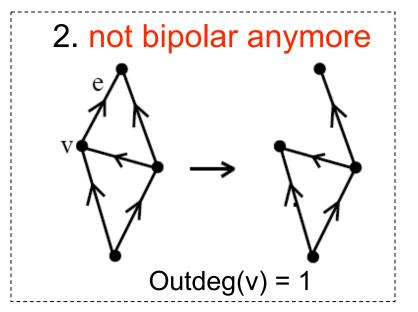




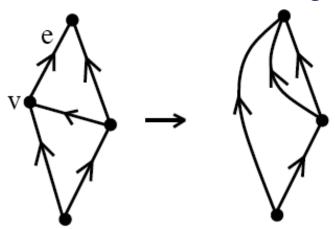
Decomposing plane bipolar orientations Root-edge e = top-edge of left outer boundary

- Root-edge e = top-edge of left outer boundary
 root-vertex v = origin of root-edge
- Tutte's method, delete the root-edge. Then two cases:



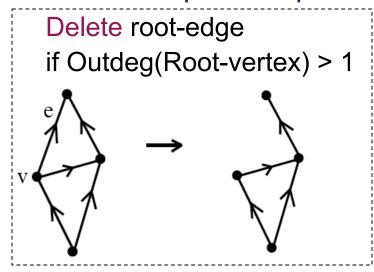


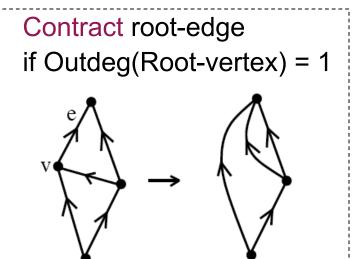
In case 2., rather contract the root-edge to remain bipolar



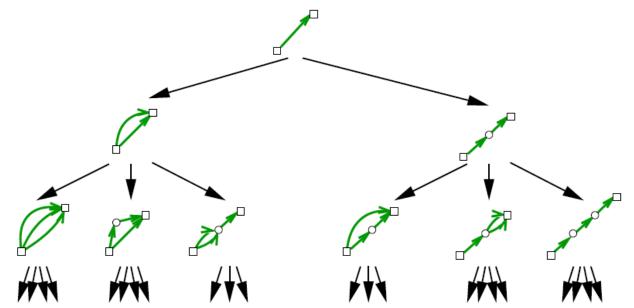
Generating tree

Parent of a plane bipolar orientation:





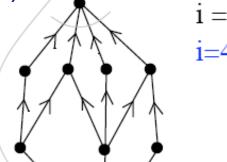
Yields a generating tree for plane bipolar orientations:



Characterizing the children

• Two types of children (whether parent is obtained by deletion or contraction)

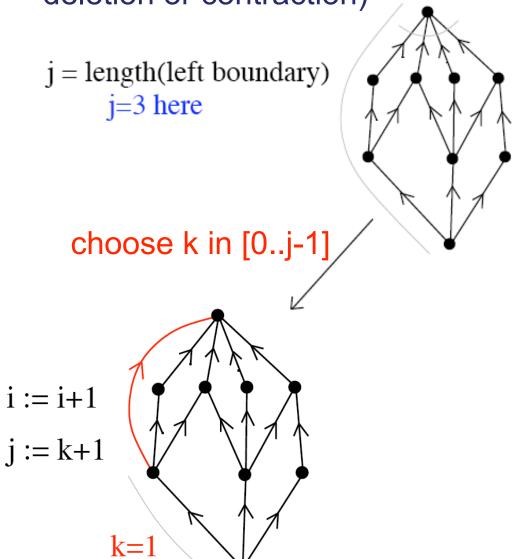
j = length(left boundary)j=3 here



i = indegree(sink)i=4 here

Characterizing the children

 Two types of children (whether parent is obtained by deletion or contraction)



i = indegree(sink)i=4 here

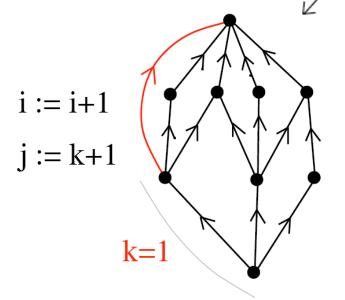
Characterizing the children

Two types of children (whether parent is obtained by deletion or contraction)

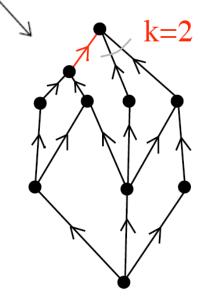
j = length(left boundary) j=3 here

i = indegree(sink)i=4 here

choose k in [0..j-1]



choose k in [0..i-1]

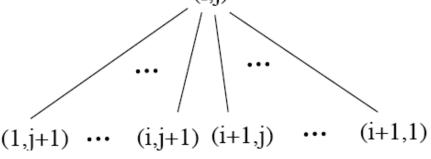


$$i := k+1$$

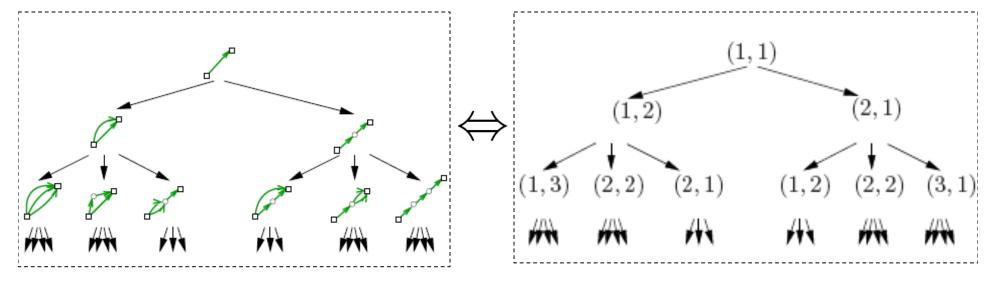
$$j := j+1$$

Summary

Theorem [reformulate Baxter'01]: The generating tree of plane bipolar orientations is isomorphic to the generating tree T with root (1,1) and children rule (i,j)

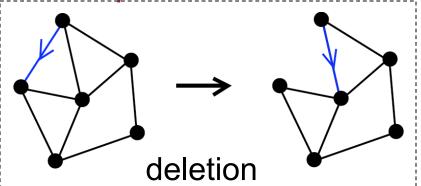


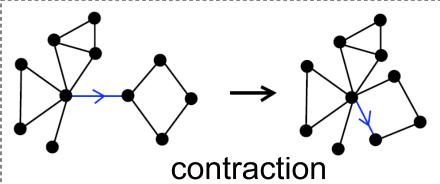
First levels:



Similar approach for unoriented maps?

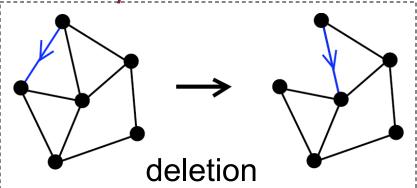
The parent of a rooted map, two cases:

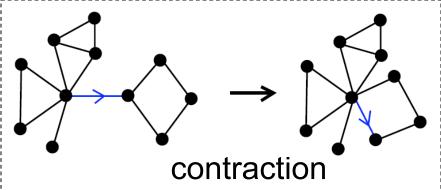




Similar approach for unoriented maps?

The parent of a rooted map, two cases:

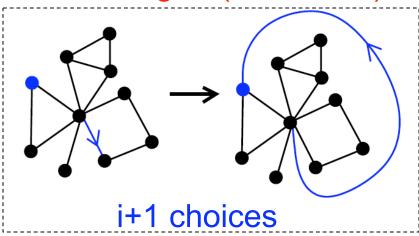


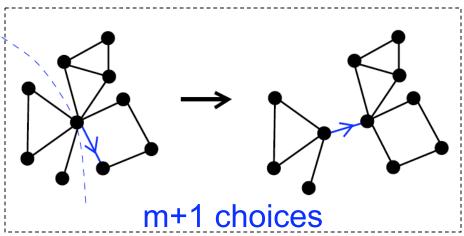


Number of children of a map? Needs two parameters

i = degree(outer face)

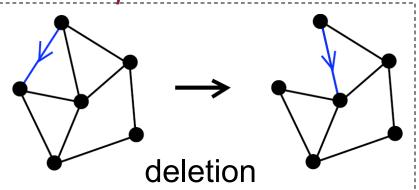
m = # blocks at root-vertex

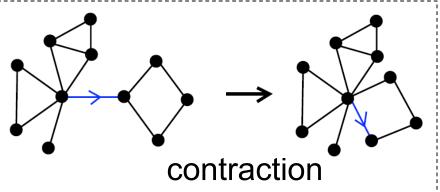




Similar approach for unoriented maps?

The parent of a rooted map, two cases:

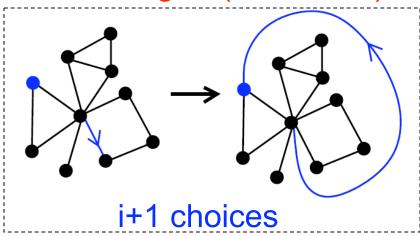


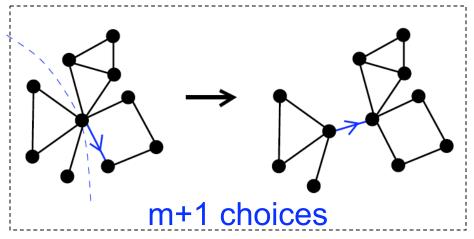


Number of children of a map? Needs two parameters

i = degree(outer face)

m = # blocks at root-vertex





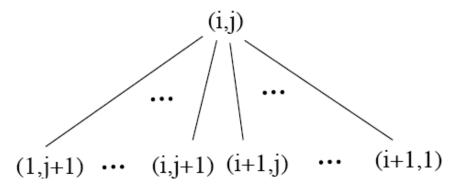
• Needs to maintain outer degrees $d_1, ..., d_m$ of the blocks incident to the root-vertex.

Unbounded number of catalytic parameters!

Part 2: Baxter families

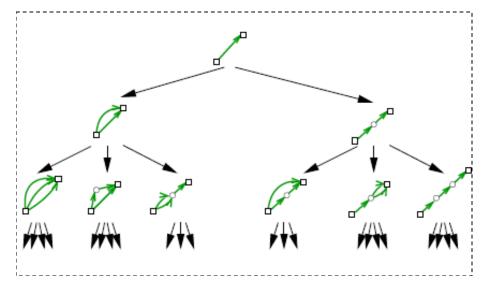
Definition of Baxter families

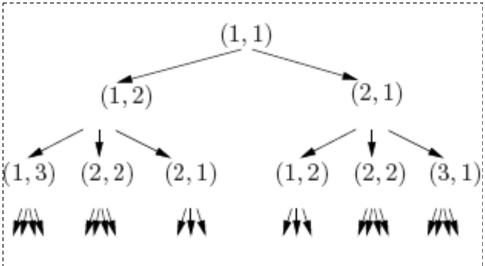
Def: Any combinatorial family with generating tree isomorphic to the generating tree T with root (1,1) and children rule



is called a Baxter family

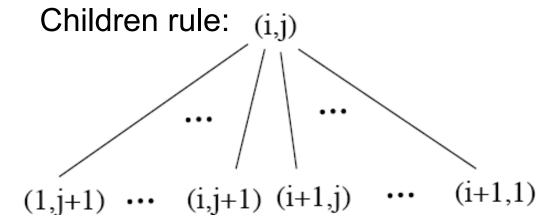
Example: plane bipolar orientations form a Baxter family





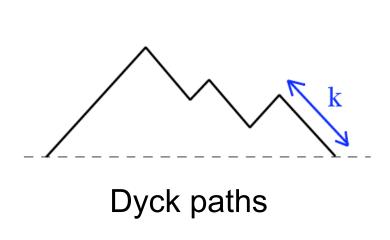
Parallel with Catalan families

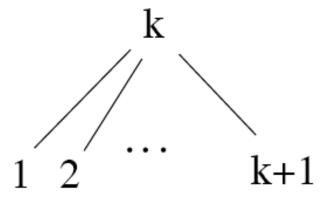
Baxter families: two catalytic parameters



Catalan families: one catalytic parameter

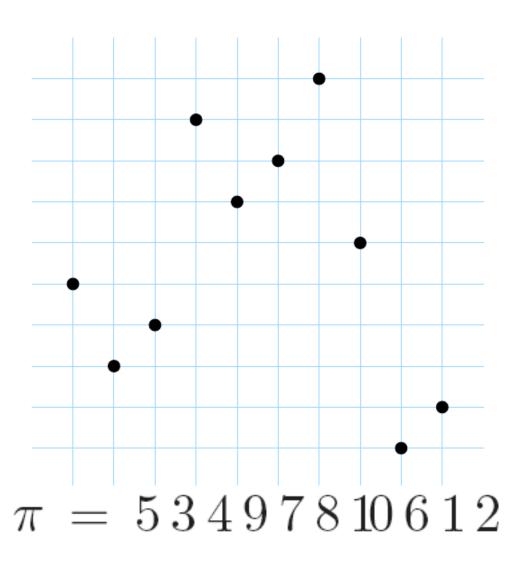
Children rule:





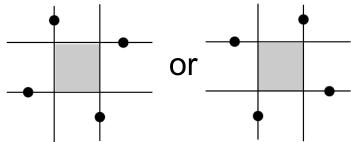
Other Baxter families: Baxter permutations

We adopt the diagram-representation of a permutation



Other Baxter families: Baxter permutations

• **Def:** Whenever there are 4 points in position

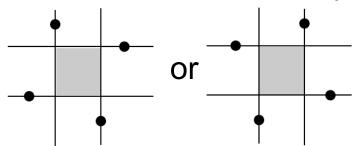


then the dashed square is not empty.

(i.e., no pattern $25\overline{3}14$ nor $41\overline{3}52$)

Other Baxter families: Baxter permutations

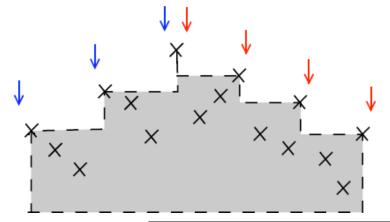
Def: Whenever there are 4 points in position



then the dashed square is not empty.

(i.e., no pattern $25\overline{3}14$ nor $41\overline{3}52$

- Inductive construction: at each step, insert n either
 - just before a left-to-right maximum (among i of them)
 - just after a right-to-left maximum (among j of them)

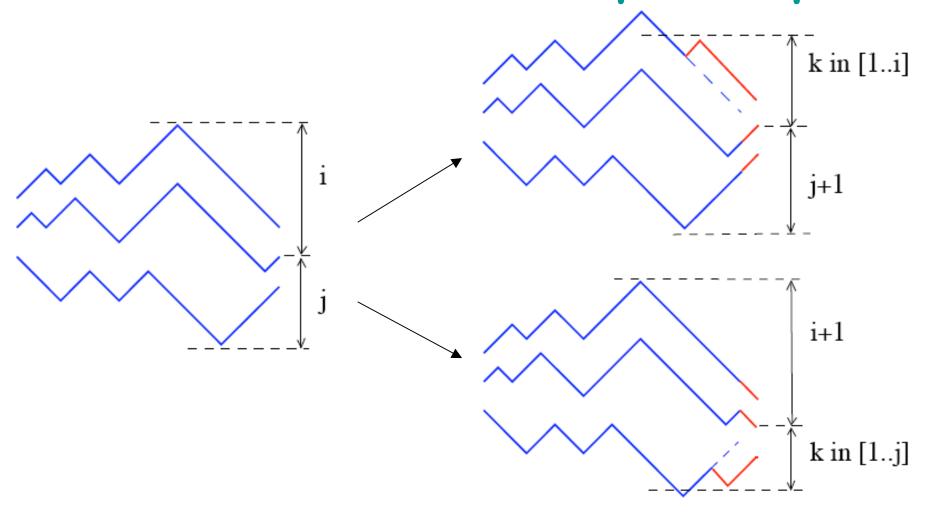


Blue insertion: i := k and j := j+1 for chosen k in [1..i]

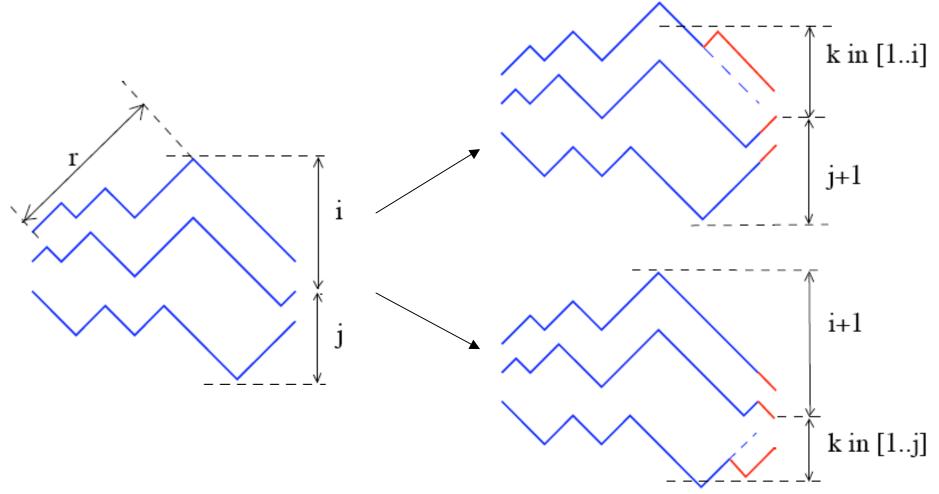
Red insertion: i := i+1 and j := k for chosen k in [1..j]

Baxter permutations form a Baxter family

Other Baxter families: triples of paths



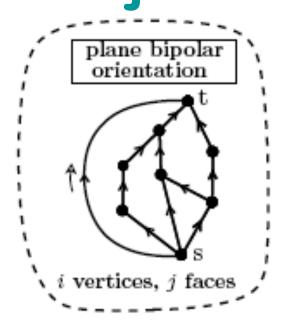
Other Baxter families: triples of paths



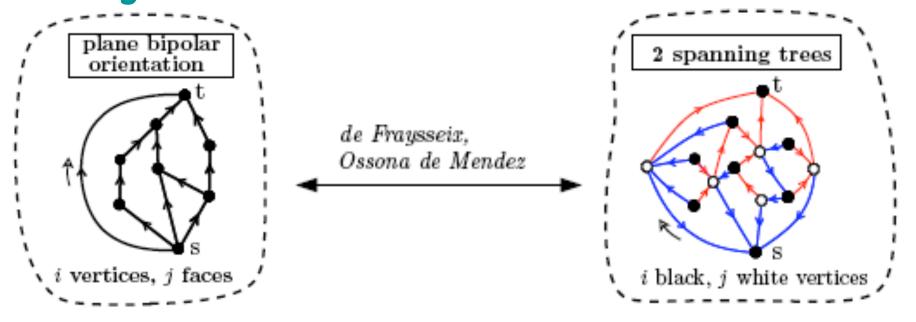
Counting (by Gessel-Viennot's lemma):

$$q_n = \frac{1}{\binom{n+1}{1}\binom{n+1}{2}} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$$

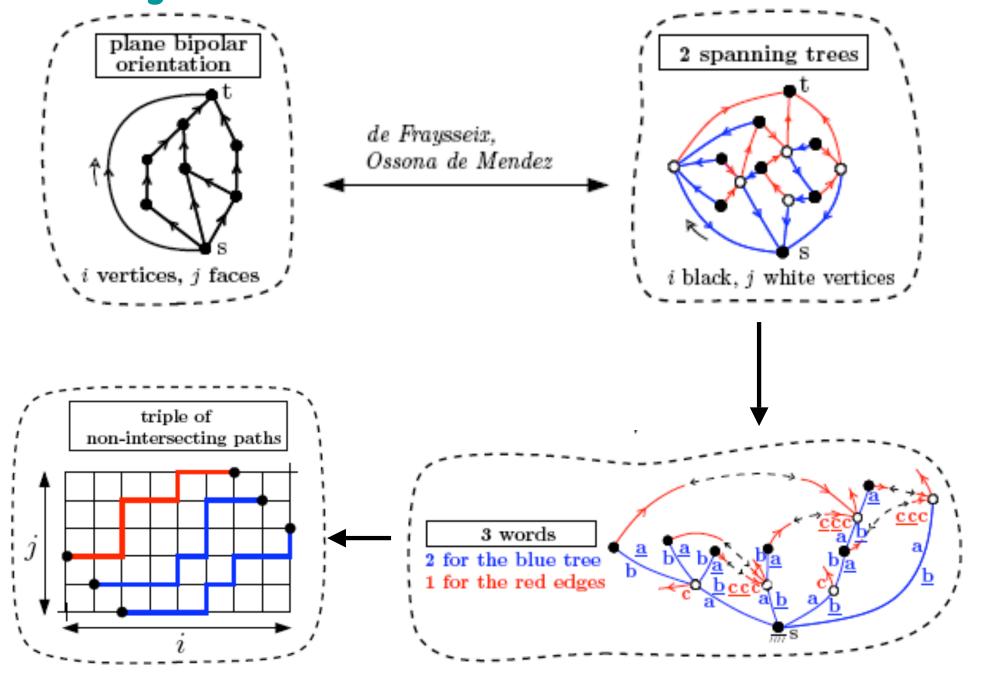
A bijective scheme [F, Poulalhon, Schaeffer'07]



A bijective scheme [F, Poulalhon, Schaeffer'07]

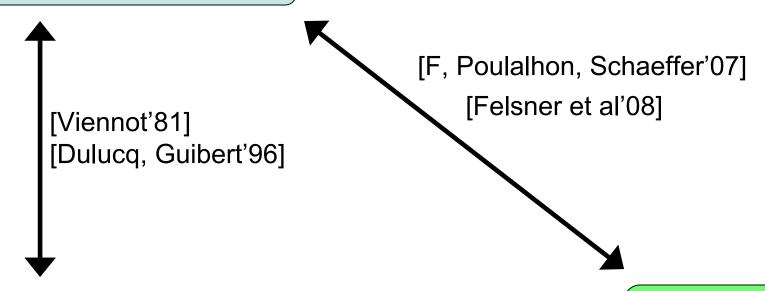


A bijective scheme [F, Poulalhon, Schaeffer'07]



Bijective links and bibliography

Triples of paths



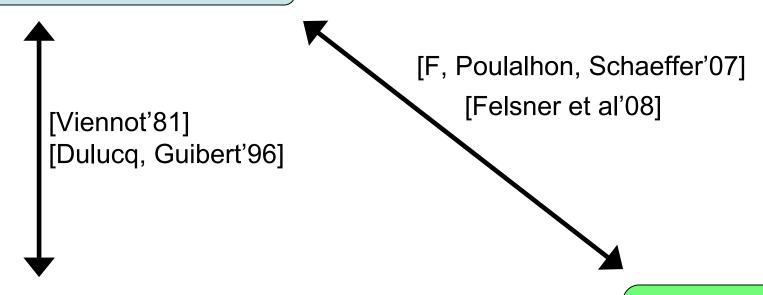
Baxter permutations

[Chung et al'78] [Mallows'79] [Ackerman et al'06] [Bonichon et al'08] Plane bipolar orientations

[R. Baxter'01]

Bijective links and bibliography

Triples of paths



Baxter permutations

[Chung et al'78] [Mallows'79] [Ackerman et al'06]

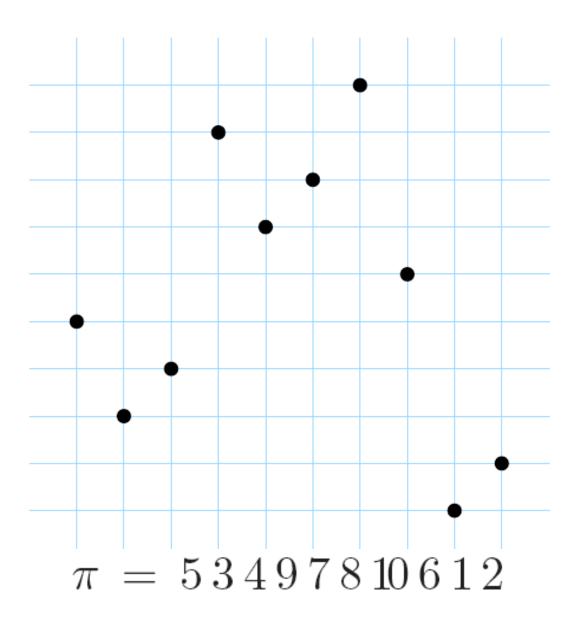
[Bonichon et al'08]

Plane bipolar orientations

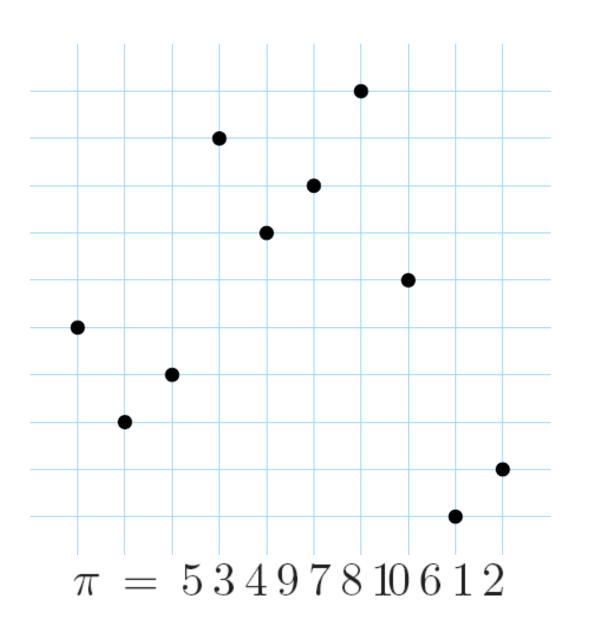
[R. Baxter'01]

Part 3: maps and permutations

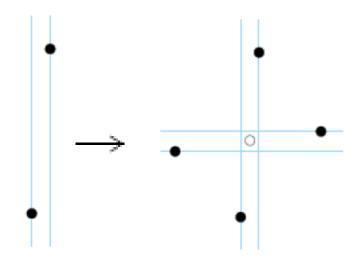
Baxter permutation -> plane bipolar orientation (hint: #ascents is distributed like #vertices)



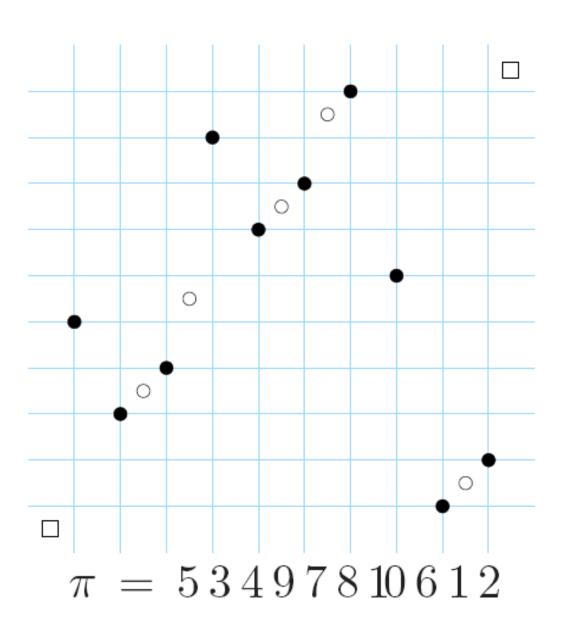
(hint: #ascents is distributed like #vertices)



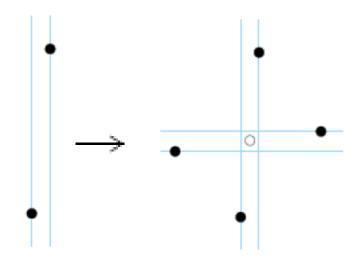
- Ascents of π are in 1-to-1 correspondence with ascents of π^{-1}
- Place a white vertex at the intersection

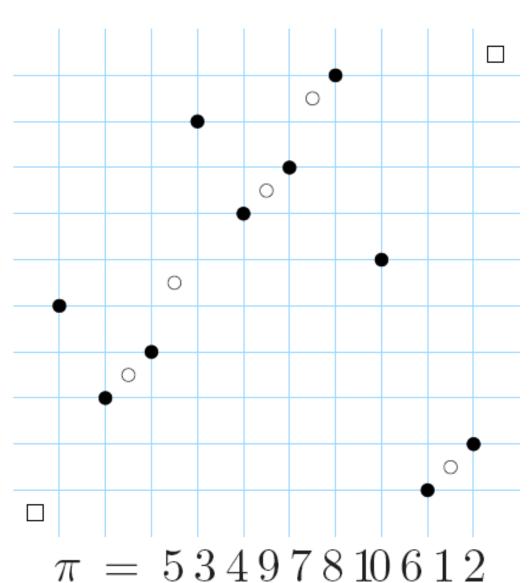


(hint: #ascents is distributed like #vertices)



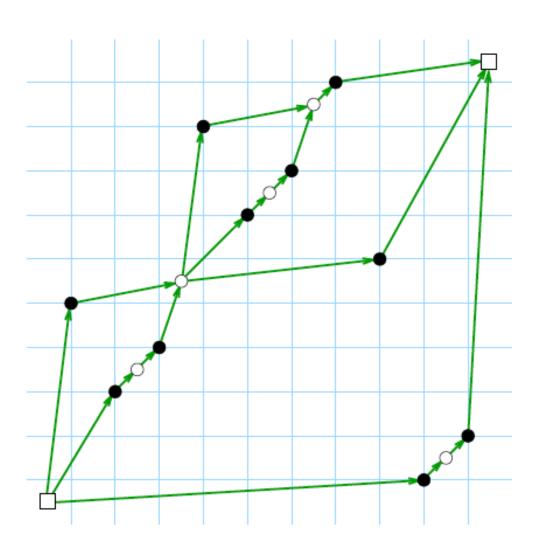
- Ascents of π are in 1-to-1 correspondence with ascents of π^{-1}
- Place a white vertex at the intersection





Dominance drawing:

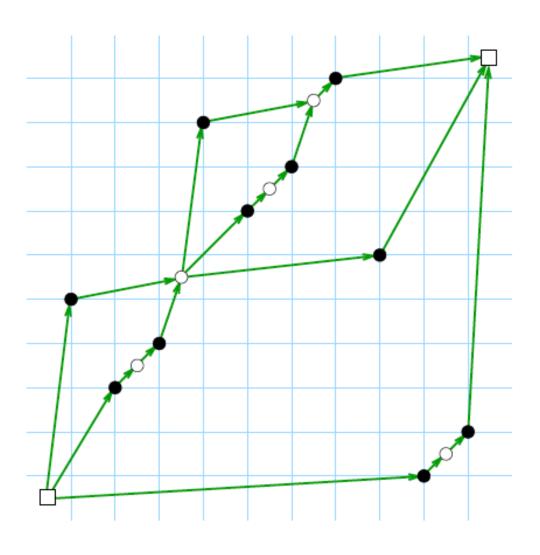
draw segment (x,y) -> (x',y') whenever x<x' and y<y'



Dominance drawing:

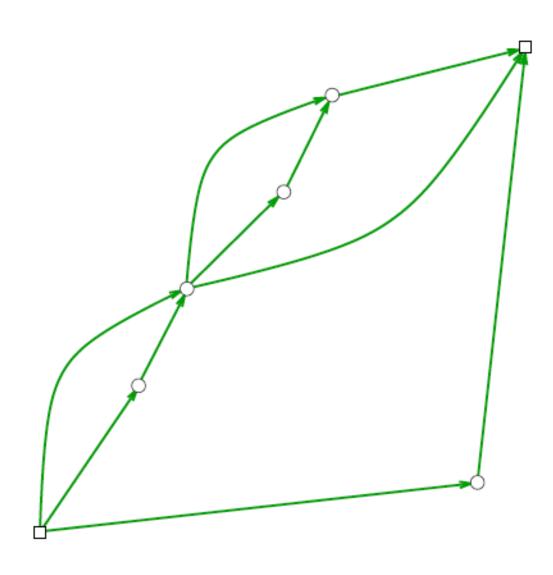
draw segment (x,y) -> (x',y') whenever x<x' and y<y'

$$\pi = 53497810612$$



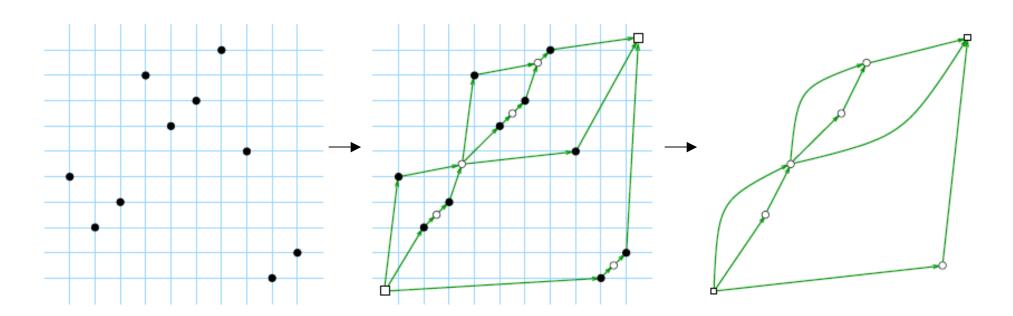
Erase the black vertices (all have degree 2)

$$\pi = 53497810612$$



Erase the black vertices (all have degree 2)

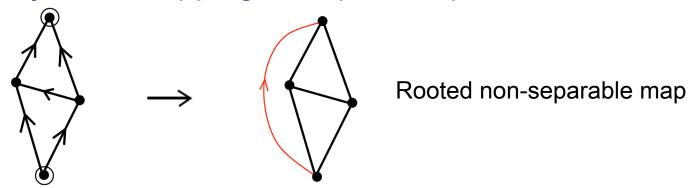
Theorem [Bonichon, Bousquet-Mélou, F'08]: The mapping is the canonical bijection (implements the

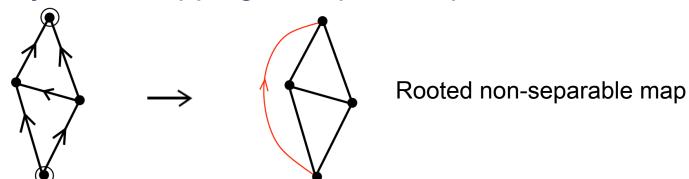


- The mapping respect many symmetries

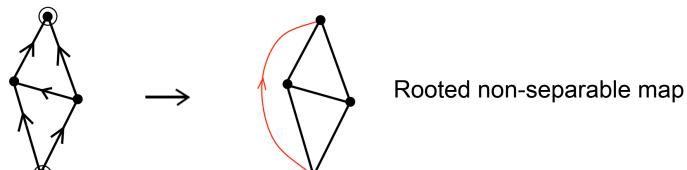
isomorphism between generating trees)

- Specializations to map families (non-separable, series-parallel maps)





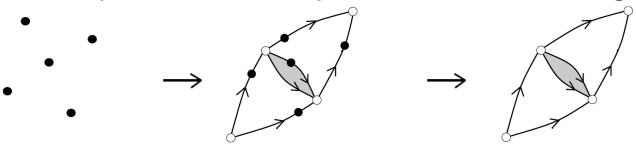
Bijective if bipolar orientation avoids the pattern

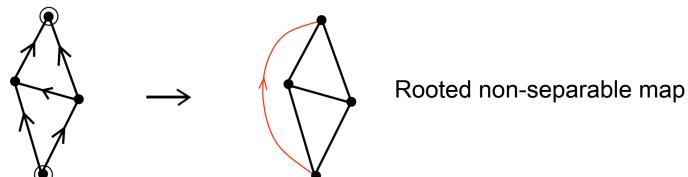


Bijective if bipolar orientation avoids the pattern

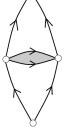


These correspond to Baxter permutations avoiding 2 4 1 3

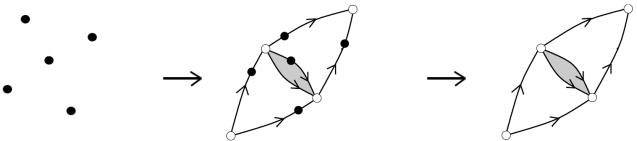




Bijective if bipolar orientation avoids the pattern



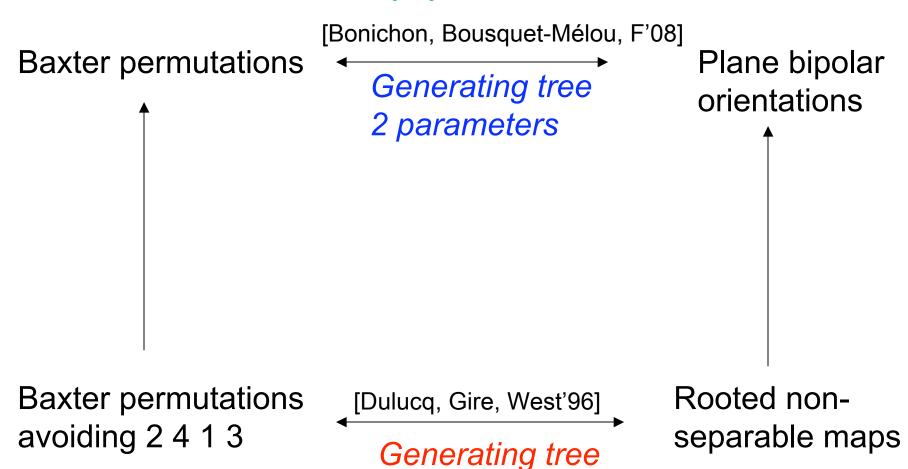
These correspond to Baxter permutations avoiding 2 4 1 3



Theorem: rooted non-separable maps with n+1 edges are in bijection with Baxter permutations of size *n* avoiding 2 4 1 3

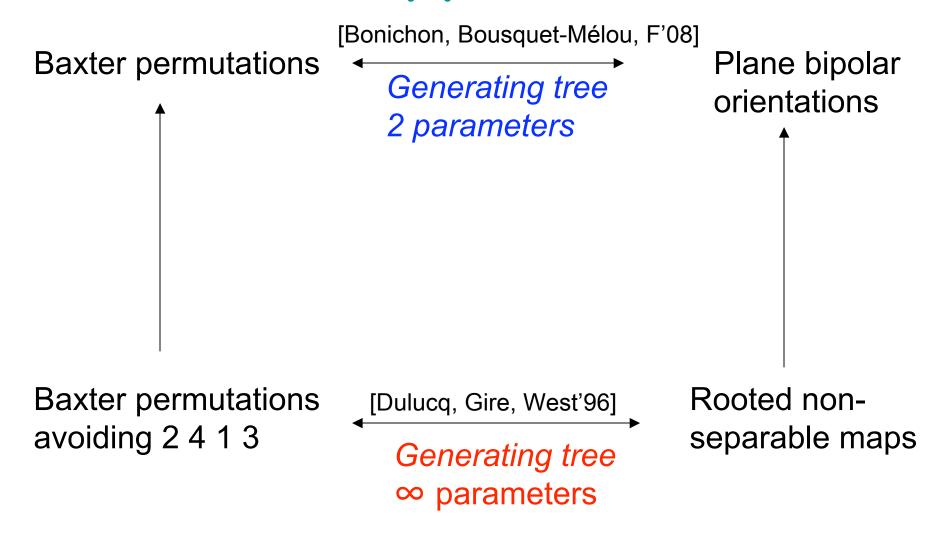
(Further specialization: series-parallel maps are in bijection with permutations avoiding 2 4 1 3 and 3 1 4 2)

Two approaches



∞ parameters

Two approaches



Open problem: top approach to show connected 1342-avoiding permutations to be in bijection with bicubic maps [Bona'97]