Pointing, asymptotics, and
random generation in
unlabelled classes

Eric Fusy
LIX, Ecole Polytechnique (Paris)

Joint work with Manuel Bodirsky, Mihyun Kang
and Stefan Vigerske

. —p.1/37



Motivations

Automatic methods for

e Enumeration (exact/asymptotic)

* Random generation (cf [Flajolet,F,Pivoteau’07])
in the unlabelled setting.

. — p.2/37



Motivations

Automatic methods for

e Enumeration (exact/asymptotic)

* Random generation (cf [Flajolet,F,Pivoteau’07])
in the unlabelled setting.

References:
* Short version in SODA'Q7

* Long version written in the framework of “Combinatorial
species’, cf [Bergeron, Labelle, Leroux'98]

. — p.2/37



Labelled /Unlabelled structures

e |abelled class C = U,,C,,

Labeled graph of size 5

1
Z n!
n

e Unlabelled class @ = Unén

;O—%—@ Unlabeled tree of size 7

OGF: C(z) =Y ", with &, = |Gy

. — p.3/37



Plan

* Decomposition strategy for labelled structures
* Pointing 4 recursive decomp. + gen. functions
* Examples: trees, planar graphs...

. — p.4/37



Plan

* Decomposition strategy for labelled structures
* Pointing 4 recursive decomp. + gen. functions
* Examples: trees, planar graphs...

* We adapt the method to the unlabelled setting
* Difficulties due to symmetries
* Solution: unbiased pointing 4+ Pdlya theory

. — p.4/37



Plan

* Decomposition strategy for labelled structures
* Pointing 4 recursive decomp. + gen. functions
* Examples: trees, planar graphs...

* We adapt the method to the unlabelled setting
* Difficulties due to symmetries
* Solution: unbiased pointing 4+ Pdlya theory

* Application to

. — p.4/37



Plan

Decomposition strategy for labelled structures
* Pointing 4 recursive decomp. + gen. functions
* Examples: trees, planar graphs...

We adapt the method to the unlabelled setting
* Difficulties due to symmetries
* Solution: unbiased pointing 4+ Pdlya theory

Application to

Application to random generation:
= Boltzmann samplers without rejection

. — p.4/37



Decomposition strategy for
labelled structures



Dictionary for EGF

e |abelled class C = U,,C,,

1
EGF: C(x) = Z —|cnx", with ¢, = |G,
n!

e Simple computation rule for each construction:
Disjoint union C=A+3B | C(x)=A(x) + B(x)
Cartesion product | C=A x B | C(x)

Set C=Set(A) | C(x) = exp(A(x
Substitution C=AHoB | C(x)

. — p.6/37



Dictionary for EGF

e |abelled class C = U,,C,,

1
EGF: C(x) = Z —|cnx", with ¢, = |G,
n!

e Simple computation rule for each construction:

Disjoint union C=A+3B | C(x)=A(x) + B(x)
Cartesion product | C=A xB | C(x) = A(x) - B(z)
Set C = Set(A) | C(x) = exp(A(x))
Substitution C=AoB | C(x)=A(B(x))

e Remark. Substitution rule implies Set rule since the
EGF of the class Set is exp(z) (same for cycle, set,
unoriented sequence, etc...)

. — p.6/37



Decomposition strategy for trees

* Goal: find ¢,, the number of (unrooted) trees of size n

* Important tool: pointing: A — A®
Let ,, be the number of rooted trees of size n

177/

@ @D @ o
O (3) O O (3)
© D G ) 2D G 2D G

’rn:n°tn

= Counting trees reduces to counting rooted trees.

. — p.7/37



Rooted trees are decomposable

* The class R of rooted trees satisfies the decomposition

R =2 x Set(R) = R(x) = xexp(R(x))

. — p.8/37



Rooted trees are decomposable

* The class R of rooted trees satisfies the decomposition

R =2 x Set(R) = R(x) = xexp(R(x))

* Lagrange inversion formula

inverse of R(x) is R(_l)(y) = yexp(—y))

— Rooted trees: r, = n" ! =

Trees: ¢, = n"~

2

. — p.8/37



Counting labelled trees: summary

* Decomposition of rooted trees
R(z) = zexp(R(x))

yields 7, = n™~! from Lagrange inversion formula

* Pointing relation: t,, = r,,/n:

R(x) = 2T"(x)

yields |1, =n

Same method applies for many classes (planar graphs)

. — p.9/37



Adaptation to the unlabelled
setting



Unlabelled setting

* Unlabelled structures=labelled structures up to relabeling

. —p.11/37



Unlabelled setting

* Unlabelled structures=labelled structures up to relabeling

NMEEEER

6 labeled objects (no symmetry)

. — p.11/37



Unlabelled setting

* Unlabelled structures=labelled structures up to relabeling

3 labeled obJects (1nstead of 3 = 6)

NMEEEER

6 labeled objects (no symmetry)

e Unlabelled struct. size n — at most n! labelled structures.
s g'alabel < aunlabel (EGF) ( ) < ( ) (OGF)

. — p.11/37



Symmetries

Let A be a labelled class,

* A symmetry of size n on A is a pair (0 € &,,, A € A,)
such that A is fixed by the action of o.

o= (1658)(47309)(2)

(rotation by 7/2)

. — p.12/37



Burnside’s lemma

Given A a labelled class (species of structures) let

~

A = A/isomorphisms, Sym(A) = {Symmetries from A}

~

* Burnside's lemma = Sym(A), ~ n! x A,

O__ © @ @ @ @ 0o
oo T o0 T 00 7

. — p.13/37



Burnside’s lemma

Given A a labelled class (species of structures) let

~

A = A/isomorphisms, Sym(A) = {Symmetries from A}

~

* Burnside's lemma = Sym(A), ~ n! x A,

) D G)D @)D WOW2D
— DGO (1)D WD E)DWPD
D MO )D G)D @)DED

O __ 0o @ 0o @ o oo
efelosole=olonolozoloseloze

O _, O o OX
00 @@@L@ @@éf@@@@vﬁa

~

* Hence | EGF of Sym(A) = A(x) (OGF)

. — p.13/37




Cycle index sum

Let A be a labelled class, Sym(A) the symmetry class.
e Refined weight for (o, A) € Sym(A)

Wi(o, A) := i (J)SSQ(U) E 8701"(0)

n!

where ¢;(0) = #{cycles length ¢ in o}

* Cycle index sum of A (cf Pdlya) is the series
Za(s1,82,... Z Wi,
g-A=A

:Z% Z sit ... s #HFixe)

n>1 €6,

* OGF of A= EGF of Sym(A) = Z4(z,22,23,...)

. — p.14/37



Examples of cycle index sums

'
O 0O O
O 0O O
O 0O O
O 0O O
O O O
O 0O O

1 3,1 3,1 3,13
S?Jr% st 45 S1+g Sits Sitg S1

=

7/ = =

. — p.15/37



Examples of cycle index sums

D ()D (3)D @O WO WD
— 2O 6)D (LD WO DD
D (1)D (D (B)D @O R)D
7= Lsiabstohsiedshigsteg sl

00 gREDEYEDEYE

= 551+ 1 341 1 .3 4 1
L= GO tgsisatg st sistg st g Sis

_ 13 .1

— 58] t3 815

. — p.15/37



Examples of cycle index sums

D ()D (3)D WO WOWD
— 2O ()D (VD WO O Q@D
D (1)D D (B)D @O E)D
7= Lstabsihsiehsiegsteg sl
3
—_— Sl

O O O @ @0 O G2
0a0J0RO0I020]I0OR0)

O-O %)—%)@E@U O10=0J0 010
7 = %3? +%8182+%S?+%8182+%3?+%5132

_ 1 .3 1
= 581 +*8182

O _, O 0o O J O JO!
0O @@@L@ @@éf@@@@w@

1 1
4 = G 31 + 1 ¢ S1S2 + & 8182+ S1S9 + é S3 T G S3

. — p.15/37



Dictionary for OGF

e Unlabelled class € = U, @, /&, &, = Card(Cy,)

OGF: C(z)= Zé}bx"

n>0

* Dictionary (computation rules):

Disjoint union | €= A+ B | C(z) = A(z) + B(z)
Product C=AxB |C(z) = A(z)B(z)

Set C = Set(A) égpmm(szQ@@)
Substitution |C=Ao0B | C(x)# A(B(x))

. — p.16/37



Dictionary for OGF

e Unlabelled class € = U, @, /&, &, = Card(Cy,)

OGF: C(x) = Zé}bw”
n>0
* Dictionary (computation rules):
Disjoint union | €= A+ B | C(z) = A(z) + B(z)
Product C=AxB |C(z) = A(z)B(z)
Set € = Set(A) | C(z) = exp (Spoy %A’(xk))
Substitution | C=Ao0B | C(z)= Z4(B(z),B(z?),...)

. — p.16/37



Dictionary for OGF

e Unlabelled class € = U, @, /&, &, = Card(Cy,)

OGF: C(x) = Zé}bx’”
n>0
* Dictionary (computation rules):
Disjoint union | €= A+ B | C(z) = A(z) + B(z)
Product C=AxB |C(z) = A(z)B(z)
Set € = Set(A) | C(z) = exp (Spoy %A’(xk))
Substitution |C=Ao0B | C(z) = Z4(B(z),B(z?),...)

* Remark: Set(A) = Set o A, computation rule for o
implies the one for Set using Zget = exp()_;~1 5i/?)

. — p.16/37



Example: rooted trees

Decomposition at the root:

111/

= recurrence formula for [2"|R(z)

. — p.17/37



Count rooted = count unrooted

____————————___-
- -~
- - ~
-

/’ A

/ \

/ \

1 \
NS I — — \
— |3 ! - — 1
| |
| I
1 I
\\’:,, ::‘,l

tree size 4 2 rooted trees (instead of 4)

In general n - gmrooted . grooted (gymmetries)

Question: n - girrooted — 9

. — p.18/37



Pointing symmetries

Pointed symmetry = symmetry + marked atom

. — p.19/37



Pointing symmetries

Pointed symmetry = symmetry + marked atom

In size n we have

(Sym(A))*

. — p.19/37



Pointing symmetries

Pointed symmetry = symmetry + marked atom

In size n we have

(Sym(A))*

Look for a class P such that Sym(P) ~ (Sym(A))®

. — p.19/37



Pointing symmetries

Pointed symmetry = symmetry + marked atom

In size n we have

(Sym(A))*

Look for a class P such that Sym(P) ~ (Sym(A))®
(rk: Sym(A*®) C (Sym(A))®)

. — p.19/37



Cycle-pointed structures

Definition: Cycle-pointed structure=structure A + cycle ¢
such that there exists (at least) one automorphism of A
having ¢ as one of its cycles.

Pointed symmetry cycle-pointed structure

. — p.20/37



Cycle-pointed structures

Definition: Cycle-pointed structure=structure A + cycle ¢
such that there exists (at least) one automorphism of A
having ¢ as one of its cycles.

Pointed symmetry cycle-pointed structure

Let A° = {cycle — pointed structures from A}. Then
Sym(A”) = (Sym(A))*®

. — p.20/37



Cycle-pointing is unbiased

Theorem: An unlabelled structure of size n gives rise to n
unlabelled cycle-pointed structures (cf Parker's lemma).

A9 ~n x Ay

bR LKA
o PO
o S

. — p.21/37




Pointing the classical constructions
o« (A+B)° =A°+B°
°* AXxB)° =A°xB+A x B°
e (AoB)P =A°QB




Application: counting trees (1)

Decomposition of cycle-pointed trees (3 lines)

* Dichotomy: pointed cycle has length 1 or > 2:
1) T°=R+7T%

* Rooted trees (R) are decomposed at the root
2) R =2 x Set(R)

* Symmetric cycle-pointed trees (T%) are decomposed at
a centre of symmetry.

" _ ‘@\ ~ oo "@
>

A

3) T® =Z x Set? © R+ LPOR

. — p.23/37



Application: counting trees (2)

(T° = R+T®
{ R = ZxSet(R)
7@ ZxSet?® (R)+ L® ® (R)

translate to equation system
(dictionary rules+Pdlya operators)

{ R(z) = wxexp (Zkzl %R(wk))
ot'(x) = R(z)+ 2R (%) + D >0 'R (") R(x)

\ extract coefficients

n|1[23[4] 5] 6 7 8 9
ad |1 23| 8|15 |36 | 77 | 184 | 423
ap, | 1|1 |1]|2]| 3| 6|11 | 23| 47

. — p.24/37



Application: counting trees (2)

R+T®

Z x Set(R)
ZxSet?® (R)+ L® © (R)

translate to equation system
(dictionary rules+Pdlya operators)

L €XP (Zk21 %R(xk))
R(z) + a* R (2%) + X ;50 ' R (2 ) R(2)
= 2R (2)(1 — R(z)) + 2°R’' (2?)

\ extract coefficients

n|1[23[4] 5 6 7 8 9
ap |1 12|13 |8 |15 |36 | 77| 184 | 423
a, |1 |1 |1|2]| 3| 6|11 | 23| 47

. — p.24/37



Exact counting results

Theorem: [Bergeron,Labelle,Leroux],

For any class A decomposable in terms of
* basic classes {1, Z, Seq, Cyc, Set },

* constructions {+, x, 0}

the counting coefficients |J2lvn\ can be computed automatically

. — p.25/37



Exact counting results

Theorem: [Bergeron,Labelle,Leroux|, [Bodirsky et al’07,10]

For any class A decomposable in terms of
* basic classes {1, Z, Seq, Cyc, Set },
* constructions {4+, x, 0} and ®,
* cycle-pointing operator C — C°,

the counting coefficients |J2lvn\ can be computed automatically

. — p.25/37



Exact counting results

Theorem: [Bergeron,Labelle,Leroux|, [Bodirsky et al’07,10]

For any class A decomposable in terms of
* basic classes {1, Z, Seq, Cyc, Set },
* constructions {4+, x, 0} and ®,
* cycle-pointing operator C — C°,

the counting coefficients |;4vn\ can be computed automatically

(includes tree families, outerplanar graphs,...)

. — p.25/37



Another approach

e Dissimilarity characteristic formula (Otter)
e Dissymmetry theorem (Robinson, Leroux):

%ﬁ%

t(x) = t°(x)+ ti(x) —th(x

. — p.26/37



Another approach

e Dissimilarity characteristic formula (Otter)
e Dissymmetry theorem (Robinson, Leroux):

%ﬁ%

t(x) = t°(x)+ ti(x) —th(x

= t(x)=R(x)—(R(z)’—R(z*)) with R(z) = exp(}_,5, ; R(2"))

. — p.26/37



Another approach

e Dissimilarity characteristic formula (Otter)
e Dissymmetry theorem (Robinson, Leroux):

%ﬁ%

— _|_ ti _tT

= t(z)=R(z)—(R(x)*—R(2?)) with R(z) = exp(}_;5; ; R(z"))
(agrees with zt/(z) = 2 R'(2)(1 — R(z)) + 2° R/ (2?))



Application to asymptotic
enumeration



Asymptotic scheme

Main result: “universality” of asymptotic behaviour

An| ~ ey 5/

for “any” unrooted “tree-like” family A

. — p.28/37



Asymptotic scheme

Main result: “universality” of asymptotic behaviour

[ An| ~ cy"n =5/

for “any” unrooted “tree-like” family A

Scheme:

* Decompose cycle-pointed class A°
= Equation for A°(x)

* Drmota-Lalley-Woods = %(a:) has square-root sing.

e Transfer theorem [Flajolet-Odlyzko] = [A2| ~ c~"n~3/2

* Pointing relation: |A,| = %\fl:ﬂ ~ c~n 02

. — p.28/37



lllustration on trees

* Rooted labelled trees: y = L(z) satisfies

y = zexp(y)
Inverse is g(y) = yexp(—y),
J(y)=0=y=1=z=1/e = L(z)=1—cy/1—ze+ -

. — p.29/37



lllustration on trees

* Rooted labelled trees: y = L(z) satisfies

y = zexp(y)
Inverse is g(y) = yexp(—y),
Jy)=0=y=1= z=1/e = L(z)=1—cV/1—ze+---

* Rooted unlabelled trees: y = R(z) satisfies

y = zexp(y + A(z)), where A(z) = Z %R(zz)

1>2

. — p.29/37



lllustration on trees

* Rooted labelled trees: y = L(z) satisfies

y = zexp(y)
Inverse is g(y) = yexp(—y),
Jdy)=0=y=1= z=1/e = L(z)=1—cy/1—ze+---
* Rooted unlabelled trees: y = R(z) satisfies
1.
y = zexp(y + A(z)), where A(z) = Z ;R(zz)
i>2

Hence R(z) = L(A(2))=1—-d\/1—z/p+---
where p satisfies A(p) = 1/e

. — p.29/37



lllustration on trees

* Rooted labelled trees: y = L(z) satisfies

y = zexp(y)
Inverse is g(y) = yexp(—y),
Jdy)=0=y=1= z=1/e = L(z)=1—cy/1—ze+--

* Rooted unlabelled trees: y = R(z) satisfies
y = zexp(y + A(z)), where A(z Z “R(z

z>2
Hence R(z) = L(A(z)) =1 — c’\/l —z/p+---
where p satisfies A(p) = 1/e

* Cycle-pointed trees

2t'(2) = 2*R/(z 1—|—Z 2'R/(z
1>2
analytic at p .,

~

G(z) analytic at p

. — p.29/37



lllustration on trees

* Rooted labelled trees: y = L(z) satisfies

y = zexp(y)
Inverse is g(y) = yexp(—y),
J(y)=0=y=1= z=1/e = L(z)=1—cy/1—ze+---

* Rooted unlabelled trees: y = R(z) satisfies
y = zexp(y + A(z)), where A(z Z “R(z

z>2
Hence R(z) = L(A(z)) =1 — c’\/l —z/p+---
where p satisfies A(p) = 1/e

e Cycle-pointed trees

2t (2) = Z2R’ 1—|—Z ZR’ i
1>2
analytic at p .,

~

G(z) analytic at p

(Rk: [, (#dissimilar vertices in tree) ~ n/G(p)) .- vaossr



Asymptotic using dissym. theorem

() = R(2) — 5(R(2)* — R()

Square-root expansion: R(z) =1— /1 —2/p+---
= square-root terms cancel out, t(z)“ <7 (1 — z/p)3/?
But zt/(z) > R(2), so t(z)“ > " (1 — z/p)3/?

Hence (transfer theorem):

2"E(2) ~ cp /2

(Rk: Cancellation proof uneasy if “big” functional equation)

. — p.30/37



Application to random
generation



General methods

Two sampling methods giving uniform distribution
* Recursive method (Nijenhuis-Wilf'78):

1
P(y € €,) = — [Fixed size]

Cn

e Based on coefficients:
C=A+B=PHreA,) =%

Cn

* Boltzmann samplers (Duchon, Flajolet, Louchard,

Schaeffer'02)

il
C(x)

P(yeC) = [Whole class]

* Based on gen. funct.
C=A+B=PrecA) =

s

(z)
C(x)

. — p.32/37



Boltzmann samplers: example

e f 2
@ = )
e

Generating function

C(z) =1+ zC(x)?

Boltzmann sampler

Pr =

xC(z)?
C(x)

I'C(x)
0(132/ \Er —

return E return ;

. — p.33/37



Results

Theorem: [Duchon et al'02], [Flajolet et al'07]
For any class A decomposable in terms of

* basic classes {1,2}

* constructions {+, x, Seq, Cyc, Set },
there is a linear-time Boltzmann sampler ['A(z).

Theorem: [Bodirsky et al'07,10] For any class A
decomposable in terms of

* basic classes {1, Z, Seq, Cyc, Set}},

* constructions {4+, x, o}

there is a linear time Boltzmann sampler Fﬁ(x)

. — p.34/37



Results

Theorem: [Duchon et al'02], [Flajolet et al'07]
For any class A decomposable in terms of

* basic classes {1,2}

* constructions {+, x, Seq, Cyc, Set },
there is a linear-time Boltzmann sampler ['A(z).

Theorem: [Bodirsky et al'07,10] For any class A
decomposable in terms of

* basic classes {1, 2, Seq, Cyc, Set }},
* constructions {4+, x,o} and ©®,

* cycle-pointing operator € — C°, N -
there is a linear time Boltzmann sampler T'A(x) (or ['A°(x)).

. — p.34/37



Pdlya-Boltzmann samplers

* Ordinary Boltzmann samplers:
el

Alz) =) ahl = P(y) ==
A A(z)

. — p.35/37



Pdlya-Boltzmann samplers

* Ordinary Boltzmann samplers:
el

Alz) =) ahl = P(y) ==
e A(z)

* Podlya-Boltzmann samplers:

Zp = Z Wi = Plo,v) =
oy="

W(fm)
Za

. — p.35/37



Pdlya-Boltzmann samplers

* Ordinary Boltzmann samplers:
27l

Alw) = 3o = ) =

~eA

* Pdlya-Boltzmann samplers:

Wi
Za=Y Wiy = Plo,y) = )

o=y ZA
* Sampling rules {4, x,0} // computation rules for Z,:
e =4Lg+ 4y
(‘3 — A —|_ B = Z.A Z23
[Ze : Bern (42|42 ) — TZa|l Zs

. — p.35/37



Pdlya-Boltzmann samplers

Ordinary Boltzmann samplers:
27l

Alz) = 21 P(v) = =
(x) gﬁ = P(v) A2)

Pdélya-Boltzmann samplers:

W
Z4 = E W(J’,y) = IP)((T, ’y) — éﬁ)

Sampling rules {4, x,0} // computation rules for Z4:

e =4Lg+ 4y

(?A+i%:>{

[Ze : Bern (44|%2) — TZa[T Zs

Recover ordinary Boltzmann sampler using specialization

Zo(z,22,..) = C(z) = TZe(z,22,...) =TC(z)

. — p.35/37



Sampler for trees

Let ¢(x) be the OGF of (unrooted) trees.
1) Translate the equation

T) = exp(z %R(m

i>1
into a Boltzmann sampler for R cf [Flajolet et al'07]
(superposition of Poisson laws)

2) Translate the equation

ot'(z) = R(z) + 2°R'(2*) + Z 'R (x
N—— H/—/ =
rooted centre symmetry = P
is edge -
centre symmetry
1s vertex

into a Boltzmann sampler for J°.

. — p.36/37



Sampler for trees

Let ¢(x) be the OGF of (unrooted) trees.
1) Translate the equation

T) = exp(z %R(mz

i>1
into a Boltzmann sampler for R cf [Flajolet et al'07]

(superposition of Poisson laws)

2) Translate the equation

ot'(z) = R(z) + 2°R'(2*) + Z 'R (x
N—— H,_/ =
rooted centre symmetry = P
is edge -
centre symmetry
1s vertex

into a Boltzmann sampler for J°.

(Also recursive sampler by Wilf using “centre of gravity”)

. — p.36/37



Open problems

Refined complexity analysis of Pélya-Boltzmann
samplers, cf [Pivoteau, Salvy, Soria’08]

Boltzmann sampling with catalytic variables

For which recursive specification can we determine the
growth rate automatically 7

Use Boltzmann samplers to study random unlabelled
structures, cf [Panagiotou, Steger].

. — p.37/37



	
	Motivations
	Labelled/Unlabelled structures
	Plan
	Decomposition strategy for labelled structures
	Dictionary for EGF
	Decomposition strategy for trees
	Rooted trees are decomposable
	Counting labelled trees: summary
	Adaptation to the unlabelled setting
	Unlabelled setting
	Symmetries
	Burnside's lemma
	Cycle index sum
	Examples of cycle index sums
	Dictionary for OGF
	Example: rooted trees
	Count rooted $
Rightarrow $ count unrooted
	Pointing symmetries
	Cycle-pointed structures
	Cycle-pointing is unbiased
	Pointing the classical constructions
	Application: counting trees (1)
	Application: counting trees (2)
	Exact counting results
	Another approach
	Application to asymptotic enumeration
	Asymptotic scheme
	Illustration on trees
	Asymptotic using dissym. theorem
	Application to random generation
	General methods
	Boltzmann samplers: example
	Results
	P'olya-Boltzmann samplers
	Sampler for trees
	Open problems

