Pointing, asymptotics, and random generation in unlabelled classes

Éric Fusy

LIX, École Polytechnique (Paris)

Joint work with Manuel Bodirsky, Mihyun Kang and Stefan Vigerske

Motivations

Automatic methods for

- Enumeration (exact/asymptotic)
- Random generation (cf [Flajolet, F, Pivoteau'07])

in the unlabelled setting.

Motivations

Automatic methods for

- Enumeration (exact/asymptotic)
- Random generation (cf [Flajolet,F,Pivoteau'07])

in the unlabelled setting.

References:

- Short version in SODA'07
- Long version written in the framework of "Combinatorial species", cf [Bergeron, Labelle, Leroux'98]

Labelled/Unlabelled structures

• labelled class $\mathcal{C} = \cup_n \mathcal{C}_n$

Labeled graph of size 5

EGF:
$$C(x) = \sum_{n} \frac{1}{n!} c_n x^n$$
, with $c_n = |\mathcal{C}_n|$

• Unlabelled class $\widetilde{\mathfrak{C}} = \cup_n \widetilde{\mathfrak{C}}_n$

Unlabeled tree of size 7

OGF:
$$C(x) = \sum_{n} \widetilde{c}_n x^n$$
, with $\widetilde{c}_n = |\widetilde{\mathcal{C}}_n|$

- Decomposition strategy for labelled structures
 - Pointing + recursive decomp. + gen. functions
 - Examples: trees, planar graphs...

- Decomposition strategy for labelled structures
 - Pointing + recursive decomp. + gen. functions
 - Examples: trees, planar graphs...
- We adapt the method to the unlabelled setting
 - Difficulties due to symmetries
 - Solution: unbiased pointing + Pólya theory

- Decomposition strategy for labelled structures
 - Pointing + recursive decomp. + gen. functions
 - Examples: trees, planar graphs...
- We adapt the method to the unlabelled setting
 - Difficulties due to symmetries
 - Solution: unbiased pointing + Pólya theory
- Application to asymptotic enumeration

- Decomposition strategy for labelled structures
 - Pointing + recursive decomp. + gen. functions
 - Examples: trees, planar graphs...
- We adapt the method to the unlabelled setting
 - Difficulties due to symmetries
 - Solution: unbiased pointing + Pólya theory
- Application to asymptotic enumeration
- Application to random generation:
 - ⇒ Boltzmann samplers without rejection

Decomposition strategy for labelled structures

Dictionary for EGF

• labelled class $\mathcal{C} = \cup_n \mathcal{C}_n$

EGF:
$$C(x) = \sum_{n} \frac{1}{n!} c_n x^n$$
, with $c_n = |\mathcal{C}_n|$

Simple computation rule for each construction:

Disjoint union	C = A + B	C(x) = A(x) + B(x)
Cartesion product	$\mathcal{C} = \mathcal{A} \times \mathcal{B}$	$C(x) = A(x) \cdot B(x)$
Set	$\mathcal{C} = \operatorname{Set}(\mathcal{A})$	$C(x) = \exp(A(x))$
Substitution	$\mathcal{C} = \mathcal{A} \circ \mathcal{B}$	C(x) = A(B(x))

Dictionary for EGF

• labelled class $\mathcal{C} = \cup_n \mathcal{C}_n$

EGF:
$$C(x) = \sum_{n} \frac{1}{n!} c_n x^n$$
, with $c_n = |\mathcal{C}_n|$

Simple computation rule for each construction:

Disjoint union	C = A + B	C(x) = A(x) + B(x)
Cartesion product	$C = A \times B$	$C(x) = A(x) \cdot B(x)$
Set	$\mathcal{C} = \operatorname{Set}(\mathcal{A})$	$C(x) = \exp(A(x))$
Substitution	$\mathcal{C} = \mathcal{A} \circ \mathcal{B}$	C(x) = A(B(x))

• Remark. Substitution rule implies Set rule since the EGF of the class Set is $\exp(z)$ (same for cycle, set, unoriented sequence, etc...)

Decomposition strategy for trees

- Goal: find t_n the number of (unrooted) trees of size n
- Important tool: pointing: $A \mapsto A^{\bullet}$ Let r_n be the number of rooted trees of size n

⇒ Counting trees reduces to counting rooted trees.

Rooted trees are decomposable

• The class \Re of rooted trees satisfies the decomposition

$$\mathcal{R} = \mathcal{Z} \times \operatorname{Set}(\mathcal{R}) \Rightarrow R(x) = x \exp(R(x))$$

Rooted trees are decomposable

• The class \Re of rooted trees satisfies the decomposition

 Lagrange inversion formula inverse of R(x) is $R^{(-1)}(y) = y \exp(-y)$ \Rightarrow Rooted trees: $r_n = n^{n-1} \Rightarrow \boxed{\text{Trees: } c_n = n^{n-2}}$

Counting labelled trees: summary

Decomposition of rooted trees

$$R(x) = x \exp(R(x))$$

yields $r_n = n^{n-1}$ from Lagrange inversion formula

• Pointing relation: $t_n = r_n/n$:

$$R(x) = xT'(x)$$

yields
$$t_n = n^{n-2}$$

Same method applies for many classes (planar graphs)

Adaptation to the unlabelled setting

Unlabelled setting

• Unlabelled structures=labelled structures up to relabeling

Unlabelled setting

Unlabelled structures=labelled structures up to relabeling

Examples:

Unlabelled setting

Unlabelled structures=labelled structures up to relabeling

Examples:

3 labeled objects (instead of 3! = 6)

6 labeled objects (no symmetry)

• Unlabelled struct. size $n \to \operatorname{at\ most\ } n!$ labelled structures.

$$\Rightarrow \frac{1}{n!}a_n^{\text{label.}} \leq a_n^{\text{unlabel.}} \Rightarrow (\mathsf{EGF}) \ A(x) \leq \widetilde{A}(x) \ (\mathsf{OGF}).$$

Symmetries

Let A be a labelled class,

• A symmetry of size n on \mathcal{A} is a pair $(\sigma \in \mathfrak{S}_n, A \in \mathcal{A}_n)$ such that A is fixed by the action of σ .

Burnside's lemma

Given \mathcal{A} a labelled class (species of structures) let $\widetilde{\mathcal{A}} = \mathcal{A}/\mathrm{isomorphisms}$, $\mathrm{Sym}(\mathcal{A}) = \{\mathrm{Symmetries\ from}\ \mathcal{A}\}$

• Burnside's lemma $\Rightarrow \operatorname{Sym}(\mathcal{A})_n \simeq n! \times \widetilde{\mathcal{A}}_n$

Burnside's lemma

Given \mathcal{A} a labelled class (species of structures) let $\widetilde{\mathcal{A}} = \mathcal{A}/\mathrm{isomorphisms}$, $\mathrm{Sym}(\mathcal{A}) = \{\mathrm{Symmetries\ from}\ \mathcal{A}\}$

• Burnside's lemma $\Rightarrow \operatorname{Sym}(\mathcal{A})_n \simeq n! \times \widetilde{\mathcal{A}}_n$

• Hence $\overline{\mathrm{EGF}}$ of $\mathrm{Sym}(\mathcal{A}) = \widetilde{A}(x)$ (OGF)

Cycle index sum

Let \mathcal{A} be a labelled class, $Sym(\mathcal{A})$ the symmetry class.

• Refined weight for $(\sigma, A) \in \text{Sym}(A)$

$$W(\sigma, A) := \frac{1}{n!} s_1^{c_1(\sigma)} s_2^{c_2(\sigma)} \cdots s_n^{c_n(\sigma)}$$

where $c_i(\sigma) = \#\{\text{cycles length } i \text{ in } \sigma\}$

• Cycle index sum of A (cf Pólya) is the multivariate series

$$Z_{\mathcal{A}}(s_1, s_2, \dots) = \sum_{\sigma \cdot A = A} W_{(\sigma, A)}$$
$$= \sum_{n \ge 1} \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} s_1^{c_1} \dots s_n^{c_n} \#(\operatorname{Fix}_{\sigma})$$

• OGF of $\widetilde{\mathcal{A}} = \mathsf{EGF}$ of $\mathrm{Sym}(\mathcal{A}) = Z_{\mathcal{A}}(x, x^2, x^3, \ldots)$

Examples of cycle index sums

Examples of cycle index sums

Examples of cycle index sums

Dictionary for OGF

• Unlabelled class $\widetilde{\mathfrak{C}} = \bigcup_n \mathfrak{C}_n / \mathfrak{S}_n$ $\widetilde{c_n} = \operatorname{Card}(\widetilde{\mathfrak{C}_n})$

OGF:
$$\widetilde{C}(x) = \sum_{n>0} \widetilde{c_n} x^n$$

Dictionary (computation rules):

Disjoint union	$\mathcal{C} = \mathcal{A} + \mathcal{B}$	$\widetilde{C}(x) = \widetilde{A}(x) + \widetilde{B}(x)$
Product	$C = A \times B$	$\widetilde{C}(x) = \widetilde{A}(x)\widetilde{B}(x)$
Set	C = Set(A)	$\widetilde{C}(x) = \exp\left(\sum_{k\geq 1} \frac{1}{k} \widetilde{A}(x^k)\right)$
Substitution	$\mathcal{C} = \mathcal{A} \circ \mathcal{B}$	$\widetilde{C}(x) \neq \widetilde{A}(\widetilde{B}(x))$

Dictionary for OGF

• Unlabelled class $\widetilde{\mathfrak{C}} = \bigcup_n \mathfrak{C}_n / \mathfrak{S}_n$ $\widetilde{c_n} = \operatorname{Card}(\widetilde{\mathfrak{C}_n})$

OGF:
$$\widetilde{C}(x) = \sum_{n>0} \widetilde{c_n} x^n$$

Dictionary (computation rules):

Disjoint union	C = A + B	$\widetilde{C}(x) = \widetilde{A}(x) + \widetilde{B}(x)$
Product	$\mathcal{C} = \mathcal{A} \times \mathcal{B}$	$\widetilde{C}(x) = \widetilde{A}(x)\widetilde{B}(x)$
Set	C = Set(A)	$\widetilde{C}(x) = \exp\left(\sum_{k\geq 1} \frac{1}{k} \widetilde{A}(x^k)\right)$
Substitution	$\mathcal{C} = \mathcal{A} \circ \mathcal{B}$	$\widetilde{C}(x) = Z_{\mathcal{A}}(\widetilde{B}(x), \widetilde{B}(x^2), \ldots)$

Dictionary for OGF

• Unlabelled class $\widetilde{\mathfrak{C}} = \cup_n \mathfrak{C}_n / \mathfrak{S}_n$ $\widetilde{c_n} = \operatorname{Card}(\widetilde{\mathfrak{C}_n})$

OGF:
$$\widetilde{C}(x) = \sum_{n>0} \widetilde{c_n} x^n$$

Dictionary (computation rules):

Disjoint union		$\widetilde{C}(x) = \widetilde{A}(x) + \widetilde{B}(x)$
Product	$\mathcal{C} = \mathcal{A} \times \mathcal{B}$	$\widetilde{C}(x) = \widetilde{A}(x)\widetilde{B}(x)$
Set		$\widetilde{C}(x) = \exp\left(\sum_{k\geq 1} \frac{1}{k} \widetilde{A}(x^k)\right)$
Substitution	$C = A \circ B$	$\widetilde{C}(x) = Z_{\mathcal{A}}(\widetilde{B}(x), \widetilde{B}(x^2), \ldots)$

• Remark: Set(\mathcal{A}) = Set $\circ \mathcal{A}$, computation rule for \circ implies the one for Set using $Z_{\text{Set}} = \exp(\sum_{i>1} s_i/i)$

Example: rooted trees

Decomposition at the root:

 \Rightarrow recurrence formula for $[z^n]R(z)$

Count rooted \Rightarrow count unrooted

In general $n \cdot a_n^{\text{unrooted}} > a_n^{\text{rooted}}$ (symmetries)

Question: $n \cdot a_n^{\text{unrooted}} = ?$

Pointed symmetry = symmetry + marked atom

Pointed symmetry = symmetry + marked atom

In size n we have

$$\widetilde{\mathcal{A}} \xrightarrow{\times n!} \operatorname{Sym}(\mathcal{A})$$

$$\downarrow^{\times n}$$

$$(\operatorname{Sym}(\mathcal{A}))^{\bullet}$$

Pointed symmetry = symmetry + marked atom

In size n we have

$$\widetilde{\mathcal{A}} \xrightarrow{\times n!} \operatorname{Sym}(\mathcal{A})$$

$$\downarrow \times n$$

$$(\operatorname{Sym}(\mathcal{A}))^{\bullet}$$

Look for a class \mathcal{P} such that $\operatorname{Sym}(\mathcal{P}) \simeq (\operatorname{Sym}(\mathcal{A}))^{\bullet}$

Pointed symmetry = symmetry + marked atom

In size n we have

$$\widetilde{\mathcal{A}} \xrightarrow{\times n!} \operatorname{Sym}(\mathcal{A})$$

$$\downarrow \times n$$

$$(\operatorname{Sym}(\mathcal{A}))^{\bullet}$$

Look for a class \mathcal{P} such that $\operatorname{Sym}(\mathcal{P}) \simeq (\operatorname{Sym}(\mathcal{A}))^{\bullet}$ (rk: $\operatorname{Sym}(\mathcal{A}^{\bullet}) \subseteq (\operatorname{Sym}(\mathcal{A}))^{\bullet}$)

Cycle-pointed structures

Definition: Cycle-pointed structure=structure A + cycle c such that there exists (at least) one automorphism of A having c as one of its cycles.

Pointed symmetry

cycle-pointed structure

Cycle-pointed structures

Definition: Cycle-pointed structure=structure A + cycle c such that there exists (at least) one automorphism of A having c as one of its cycles.

Pointed symmetry

cycle-pointed structure

Let
$$\mathcal{A}^{\circ} = \{ \text{cycle - pointed structures from } \mathcal{A} \}$$
. Then $\operatorname{Sym}(\mathcal{A}^{\circ}) \simeq (\operatorname{Sym}(\mathcal{A}))^{\bullet}$

Cycle-pointing is unbiased

Theorem: An unlabelled structure of size n gives rise to n unlabelled cycle-pointed structures (cf Parker's lemma).

$$\widetilde{\mathcal{A}_n^\circ} \simeq n \times \widetilde{\mathcal{A}_n}$$

$$\longrightarrow$$

Pointing the classical constructions

- $(\mathcal{A} + \mathcal{B})^{\circ} = \mathcal{A}^{\circ} + \mathcal{B}^{\circ}$
- $(\mathcal{A} \times \mathcal{B})^{\circ} = \mathcal{A}^{\circ} \times \mathcal{B} + \mathcal{A} \times \mathcal{B}^{\circ}$
- $(\mathcal{A} \circ \mathcal{B})^{\circ} = \mathcal{A}^{\circ} \odot \mathcal{B}$

Application: counting trees (1)

Decomposition of cycle-pointed trees (3 lines)

• Dichotomy: pointed cycle has length 1 or ≥ 2 :

1)
$$T^{\circ} = \mathcal{R} + T^{\circledast}$$

• Rooted trees (\Re) are decomposed at the root

2)
$$\Re = \Im \times \operatorname{Set}(\Re)$$

• Symmetric cycle-pointed trees $(\mathfrak{T}^{\circledast})$ are decomposed at a centre of symmetry.

Application: counting trees (2)

$$\begin{cases}
\mathcal{T}^{\circ} &= \mathcal{R} + \mathcal{T}^{\circledast} \\
\mathcal{R} &= \mathcal{Z} \times \operatorname{Set}(\mathcal{R}) \\
\mathcal{T}^{\circledast} &= \mathcal{Z} \times \operatorname{Set}^{\circledast} \odot (\mathcal{R}) + \mathcal{L}^{\circledast} \odot (\mathcal{R})
\end{cases}$$

translate to equation system (dictionary rules+Pólya operators)

$$\begin{cases} R(x) = x \exp\left(\sum_{k \ge 1} \frac{1}{k} R(x^k)\right) \\ xt'(x) = R(x) + x^2 R'(x^2) + \sum_{i \ge 2} x^i R'(x^i) R(x) \end{cases}$$

extract coefficients

n	1	2	3	4	5	6	7	8	9
$\widetilde{a_n^{\circ}}$	1	2	3	8	15	36	77	184	423
$\widetilde{a_n}$	1	1	1	2	3	6	11	23	47

Application: counting trees (2)

$$\begin{cases} \mathcal{T}^{\circ} &= \mathcal{R} + \mathcal{T}^{\circledast} \\ \mathcal{R} &= \mathcal{Z} \times \operatorname{Set}(\mathcal{R}) \\ \mathcal{T}^{\circledast} &= \mathcal{Z} \times \operatorname{Set}^{\circledast} \otimes (\mathcal{R}) + \mathcal{L}^{\circledast} \otimes (\mathcal{R}) \end{cases}$$

translate to equation system (dictionary rules+Pólya operators)

$$\begin{cases} R(x) &= x \exp\left(\sum_{k\geq 1} \frac{1}{k} R(x^k)\right) \\ xt'(x) &= R(x) + x^2 R'(x^2) + \sum_{i\geq 2} x^i R'(x^i) R(x) \\ &= xR'(x)(1 - R(x)) + x^2 R'(x^2) \end{cases}$$

extract coefficients

n	1	2	3	4	5	6	7	8	9
$\widetilde{a_n^{\circ}}$	1	2	3	8	15	36	77	184	423
$\widetilde{a_n}$	1	1	1	2	3	6	11	23	47

Exact counting results

Theorem: [Bergeron, Labelle, Leroux],

For any class A decomposable in terms of

- basic classes $\{1, 2, Seq, Cyc, Set\}$,
- constructions $\{+, \times, \circ\}$

the counting coefficients $|\widetilde{\mathcal{A}_n}|$ can be computed automatically

Exact counting results

Theorem: [Bergeron, Labelle, Leroux], [Bodirsky et al'07,10]

For any class A decomposable in terms of

- basic classes $\{1, 2, Seq, Cyc, Set\}$,
- constructions $\{+, \times, \circ\}$ and \odot ,
- cycle-pointing operator $\mathcal{C} \mapsto \mathcal{C}^{\circ}$,

the counting coefficients $|\widetilde{\mathcal{A}_n}|$ can be computed automatically

Exact counting results

Theorem: [Bergeron, Labelle, Leroux], [Bodirsky et al'07,10] For any class \mathcal{A} decomposable in terms of

- basic classes $\{1, 2, Seq, Cyc, Set\}$,
- constructions $\{+, \times, \circ\}$ and \odot ,
- cycle-pointing operator $\mathcal{C} \mapsto \mathcal{C}^{\circ}$,

the counting coefficients $|\widetilde{\mathcal{A}_n}|$ can be computed automatically

(includes tree families, outerplanar graphs,...)

Another approach

- Dissimilarity characteristic formula (Otter)
- Dissymmetry theorem (Robinson, Leroux):

Another approach

- Dissimilarity characteristic formula (Otter)
- Dissymmetry theorem (Robinson, Leroux):

$$\mathcal{T}$$
 + \mathcal{T}^{\uparrow} \simeq \mathcal{T}^{\bullet} + \mathcal{T}^{\S}

$$\mathbf{t}(\mathbf{x}) = \mathbf{t}^{\bullet}(\mathbf{x}) + \mathbf{t}^{\S}(\mathbf{x}) - \mathbf{t}^{\uparrow}(\mathbf{x})$$

$$\Rightarrow t(x) = R(x) - (R(x)^2 - R(x^2)) \text{ with } R(x) = \exp(\sum_{i>1} \frac{1}{i} R(x^i))$$

Another approach

- Dissimilarity characteristic formula (Otter)
- Dissymmetry theorem (Robinson, Leroux):

$$\mathcal{T}$$
 + \mathcal{T}^{\uparrow} \simeq \mathcal{T}^{\bullet} + \mathcal{T}^{\S}

$$\mathbf{t}(\mathbf{x}) = \mathbf{t}^{\bullet}(\mathbf{x}) + \mathbf{t}^{\S}(\mathbf{x}) - \mathbf{t}^{\uparrow}(\mathbf{x})$$

$$\Rightarrow t(x) = R(x) - (R(x)^2 - R(x^2)) \text{ with } R(x) = \exp(\sum_{i \ge 1} \frac{1}{i} R(x^i))$$
 (agrees with $xt'(x) = xR'(x)(1 - R(x)) + x^2R'(x^2)$)

Application to asymptotic enumeration

Asymptotic scheme

Main result: "universality" of asymptotic behaviour

$$|\widetilde{\mathcal{A}_n}| \sim c \, \gamma^n n^{-5/2}$$

for "any" unrooted "tree-like" family ${\cal A}$

Asymptotic scheme

Main result: "universality" of asymptotic behaviour

$$|\widetilde{\mathcal{A}_n}| \sim c \, \gamma^n n^{-5/2}$$

for "any" unrooted "tree-like" family ${\cal A}$

Scheme:

- Decompose cycle-pointed class \mathcal{A}° \Rightarrow Equation for $\widetilde{A^{\circ}}(x)$
- Drmota-Lalley-Woods $\Rightarrow \widetilde{A}^{\circ}(x)$ has square-root sing.
- Transfer theorem [Flajolet-Odlyzko] $\Rightarrow |\widetilde{\mathcal{A}_n^{\circ}}| \sim c \, \gamma^n n^{-3/2}$
- Pointing relation: $|\widetilde{\mathcal{A}_n}| = \frac{1}{n} |\widetilde{\mathcal{A}_n^{\circ}}| \sim c \gamma^n n^{-5/2}$

• Rooted labelled trees: y = L(z) satisfies

$$y=z\exp(y)$$
 Inverse is $g(y)=y\exp(-y)$,
$$g'(y)=0 \Rightarrow y=1 \Rightarrow z=1/e \Rightarrow L(z)=1-c\sqrt{1-ze}+\cdots$$

• Rooted labelled trees: y = L(z) satisfies

$$y = z \exp(y)$$
 Inverse is $g(y) = y \exp(-y)$,
$$g'(y) = 0 \Rightarrow y = 1 \Rightarrow z = 1/e \Rightarrow L(z) = 1 - c\sqrt{1 - ze} + \cdots$$

• Rooted unlabelled trees: y = R(z) satisfies

$$y = z \exp(y + A(z)), \text{ where } A(z) = \sum_{i \ge 2} \frac{1}{i} R(z^i)$$

• Rooted labelled trees: y = L(z) satisfies

$$y=z\exp(y)$$
 Inverse is $g(y)=y\exp(-y)$,
$$g'(y)=0 \Rightarrow y=1 \Rightarrow z=1/e \Rightarrow L(z)=1-c\sqrt{1-ze}+\cdots$$

• Rooted unlabelled trees: y = R(z) satisfies

$$y=z\exp(y+A(z)), \quad \text{where } A(z)=\sum_{i\geq 2} \frac{1}{i}R(z^i)$$
 Hence $R(z)=L(A(z))=1-c'\sqrt{1-z/\rho}+\cdots$ where ρ satisfies $A(\rho)=1/e$

• Rooted labelled trees: y = L(z) satisfies

$$y=z\exp(y)$$
 Inverse is $g(y)=y\exp(-y)$,
$$g'(y)=0 \Rightarrow y=1 \Rightarrow z=1/e \Rightarrow L(z)=1-c\sqrt{1-ze}+\cdots$$

• Rooted unlabelled trees: y = R(z) satisfies

$$y=z\exp(y+A(z)), \quad \text{where } A(z)=\sum_{i\geq 2} \frac{1}{i}R(z^i)$$
 Hence $R(z)=L(A(z))=1-c'\sqrt{1-z/
ho}+\cdots$ where ρ satisfies $A(\rho)=1/e$

Cycle-pointed trees

$$zt'(z) = \underbrace{z^2 R'(z^2)}_{\text{analytic at } \rho} + \underbrace{(1 + \sum_{i \ge 2} z^i R'(z^i)) \cdot R(z)}_{i \ge 2}$$

• Rooted labelled trees: y = L(z) satisfies

$$y = z \exp(y)$$
 Inverse is $g(y) = y \exp(-y)$,
$$g'(y) = 0 \Rightarrow y = 1 \Rightarrow z = 1/e \Rightarrow L(z) = 1 - c\sqrt{1 - ze} + \cdots$$

• Rooted unlabelled trees: y = R(z) satisfies

$$y=z\exp(y+A(z)), \quad \text{where } A(z)=\sum_{i\geq 2} rac{1}{i}R(z^i)$$
 Hence $R(z)=L(A(z))=1-c'\sqrt{1-z/
ho}+\cdots$ where ρ satisfies $A(\rho)=1/e$

Cycle-pointed trees

$$zt'(z) = \underbrace{z^2 R'(z^2)}_{\text{analytic at } \rho} + \underbrace{(1 + \sum_{i \ge 2} z^i R'(z^i)) \cdot R(z)}_{i \ge 2}$$

(Rk: $\mathbb{E}_n(\# \text{dissimilar vertices in tree}) \sim n/G(\rho)$)

Asymptotic using dissym. theorem

$$t(z) = R(z) - \frac{1}{2}(R(z)^2 - R(z^2))$$

Square-root expansion: $R(z) = 1 - *\sqrt{1 - z/\rho} + \cdots$ \Rightarrow square-root terms cancel out, $t(z) \le "(1 - z/\rho)^{3/2}$

But
$$zt'(z) \ge R(z)$$
, so $t(z) \le "(1 - z/\rho)^{3/2}$

Hence (transfer theorem):

$$[z^n]t(z) \sim c \rho^{-n} n^{-5/2}$$

(Rk: Cancellation proof uneasy if "big" functional equation)

Application to random generation

General methods

Two sampling methods giving uniform distribution

Recursive method (Nijenhuis-Wilf'78):

$$\mathbb{P}(\gamma \in \mathcal{C}_n) = \frac{1}{c_n} \quad [\text{Fixed size}]$$

Based on coefficients:

$$\mathcal{C} = \mathcal{A} + \mathcal{B} \Rightarrow \mathbb{P}(\gamma \in \mathcal{A}_n) = \frac{a_n}{c_n}$$

 Boltzmann samplers (Duchon, Flajolet, Louchard, Schaeffer'02)

$$\mathbb{P}(\gamma \in \mathcal{C}) = \frac{x^{|\gamma|}}{C(x)} \quad [\text{Whole class}]$$

Based on gen. funct.

$$\mathcal{C} = \mathcal{A} + \mathcal{B} \Rightarrow \mathbb{P}(\gamma \in \mathcal{A}) = \frac{A(x)}{C(x)}$$

Boltzmann samplers: example

Generating function

$$C(x) = 1 + xC(x)^2$$

Results

Theorem: [Duchon et al'02], [Flajolet et al'07] For any class \mathcal{A} decomposable in terms of

- basic classes $\{1, 2\}$
- constructions $\{+, \times, \operatorname{Seq}, \operatorname{Cyc}, \operatorname{Set}\}$, there is a linear-time Boltzmann sampler $\Gamma \widetilde{\mathcal{A}}(x)$.

Theorem: [Bodirsky et al'07,10] For any class \mathcal{A} decomposable in terms of

- basic classes $\{1, 2, Seq, Cyc, Set\}\}$,
- constructions {+, ×, o}

there is a linear time Boltzmann sampler $\Gamma \widetilde{\mathcal{A}}(x)$

Results

Theorem: [Duchon et al'02], [Flajolet et al'07] For any class \mathcal{A} decomposable in terms of

- basic classes $\{1, 2\}$
- constructions $\{+, \times, \operatorname{Seq}, \operatorname{Cyc}, \operatorname{Set}\}$, there is a linear-time Boltzmann sampler $\Gamma \widetilde{\mathcal{A}}(x)$.

Theorem: [Bodirsky et al'07,10] For any class \mathcal{A} decomposable in terms of

- basic classes $\{1, 2, Seq, Cyc, Set\}\}$,
- constructions $\{+, \times, \circ\}$ and \odot ,
- cycle-pointing operator $\mathcal{C} \mapsto \mathcal{C}^{\circ}$, there is a linear time Boltzmann sampler $\Gamma \widetilde{\mathcal{A}}(x)$ (or $\Gamma \widetilde{\mathcal{A}^{\circ}}(x)$).

Ordinary Boltzmann samplers:

$$\widetilde{A}(x) = \sum_{\gamma \in \widetilde{\mathcal{A}}} x^{|\gamma|} \implies \mathbb{P}(\gamma) = \frac{x^{|\gamma|}}{\widetilde{A}(x)}$$

Ordinary Boltzmann samplers:

$$\widetilde{A}(x) = \sum_{\gamma \in \widetilde{A}} x^{|\gamma|} \implies \mathbb{P}(\gamma) = \frac{x^{|\gamma|}}{\widetilde{A}(x)}$$

• Pólya-Boltzmann samplers:

$$Z_{\mathcal{A}} = \sum_{\sigma:\gamma=\gamma} W_{(\sigma,\gamma)} \Rightarrow \mathbb{P}(\sigma,\gamma) = \frac{W_{(\sigma,\gamma)}}{Z_{\mathcal{A}}}$$

Ordinary Boltzmann samplers:

$$\widetilde{A}(x) = \sum_{\gamma \in \widetilde{A}} x^{|\gamma|} \implies \mathbb{P}(\gamma) = \frac{x^{|\gamma|}}{\widetilde{A}(x)}$$

• Pólya-Boltzmann samplers:

$$Z_{\mathcal{A}} = \sum_{\sigma \cdot \gamma = \gamma} W_{(\sigma, \gamma)} \Rightarrow \mathbb{P}(\sigma, \gamma) = \frac{W_{(\sigma, \gamma)}}{Z_{\mathcal{A}}}$$

• Sampling rules $\{+, \times, \circ\}$ // computation rules for Z_A :

$$\mathcal{C} = \mathcal{A} + \mathcal{B} \Rightarrow \begin{cases} Z_{\mathcal{C}} = Z_{\mathcal{A}} + Z_{\mathcal{B}} \\ \Gamma Z_{\mathcal{C}} : \operatorname{Bern}\left(\frac{Z_{\mathcal{A}}}{Z_{\mathcal{C}}}|\frac{Z_{\mathcal{B}}}{Z_{\mathcal{C}}}\right) \to \Gamma Z_{\mathcal{A}}|\Gamma Z_{\mathcal{B}} \end{cases}$$

Ordinary Boltzmann samplers:

$$\widetilde{A}(x) = \sum_{\gamma \in \widetilde{A}} x^{|\gamma|} \implies \mathbb{P}(\gamma) = \frac{x^{|\gamma|}}{\widetilde{A}(x)}$$

Pólya-Boltzmann samplers:

$$Z_{\mathcal{A}} = \sum_{\sigma \cdot \gamma = \gamma} W_{(\sigma, \gamma)} \Rightarrow \mathbb{P}(\sigma, \gamma) = \frac{W_{(\sigma, \gamma)}}{Z_{\mathcal{A}}}$$

• Sampling rules $\{+, \times, \circ\}$ // computation rules for Z_A :

$$\mathcal{C} = \mathcal{A} + \mathcal{B} \Rightarrow \begin{cases} Z_{\mathcal{C}} = Z_{\mathcal{A}} + Z_{\mathcal{B}} \\ \Gamma Z_{\mathcal{C}} : \operatorname{Bern}\left(\frac{Z_{\mathcal{A}}}{Z_{\mathcal{C}}}|\frac{Z_{\mathcal{B}}}{Z_{\mathcal{C}}}\right) \to \Gamma Z_{\mathcal{A}}|\Gamma Z_{\mathcal{B}} \end{cases}$$

Recover ordinary Boltzmann sampler using specialization

$$Z_{\mathcal{C}}(x, x^2, \ldots) = C(x) \Rightarrow \Gamma Z_{\mathcal{C}}(x, x^2, \ldots) = \Gamma \widetilde{C}(x)$$

Sampler for trees

Let t(x) be the OGF of (unrooted) trees.

1) Translate the equation

$$R(x) = \exp(\sum_{i>1} \frac{1}{i} R(x^i))$$

into a Boltzmann sampler for \Re cf [Flajolet et al'07] (superposition of Poisson laws)

2) Translate the equation

$$xt'(x) = \underbrace{R(x)}_{\text{rooted}} + \underbrace{x^2R'(x^2)}_{\text{centre symmetry}} + \underbrace{\sum_{i\geq 2} x^iR'(x^i)R(x)}_{\text{centre symmetry}}$$

$$\underbrace{\sum_{i\geq 2} x^iR'(x^i)R(x)}_{\text{centre symmetry}}$$

into a Boltzmann sampler for \mathfrak{T}° .

Sampler for trees

Let t(x) be the OGF of (unrooted) trees.

1) Translate the equation

$$R(x) = \exp(\sum_{i>1} \frac{1}{i} R(x^i))$$

into a Boltzmann sampler for \Re cf [Flajolet et al'07] (superposition of Poisson laws)

2) Translate the equation

$$xt'(x) = \underbrace{R(x)}_{\text{rooted}} + \underbrace{x^2R'(x^2)}_{\text{centre symmetry}} + \underbrace{\sum_{i\geq 2} x^iR'(x^i)R(x)}_{\text{centre symmetry}}$$

$$\underbrace{\sum_{i\geq 2} x^iR'(x^i)R(x)}_{\text{centre symmetry}}$$

into a Boltzmann sampler for $\widetilde{\mathfrak{T}}^{\circ}$.

(Also recursive sampler by Wilf using "centre of gravity")

Open problems

- Refined complexity analysis of Pólya-Boltzmann samplers, cf [Pivoteau, Salvy, Soria'08]
- Boltzmann sampling with catalytic variables
- For which recursive specification can we determine the growth rate automatically?
- Use Boltzmann samplers to study random unlabelled structures, cf [Panagiotou, Steger].