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The Tamari lattice
The Tamari lattice Ln is the partial order on binary trees with n nodes
where the covering reation corresponds to right rotation

n=3 n=4



Rotation ⇔ flip on triangulated dissections

cf the associahedron
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The covering relation for Dyck paths
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• Encoding by left-to-right postfix order (⇔ right-to-left prefix order)



The covering relation for Dyck paths
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• Encoding by left-to-right postfix order (⇔ right-to-left prefix order)

• Effect of a rotation on the associated Dyck path:
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Tamari intervals
An interval in Ln is a pair (t, t′) such that t ≤ t′

68 intervals
n=4n=3

13 intervals

Theorem [Chapoton’06]: there are 2
n(n+1)

(
4n+1
n−1

)
intervals in Ln

Very active research domain over last 10 years:

• bijective links: planar maps

• various extensions with nice counting formulas

• connections to algebra

[Bernardi,Bonichon’07] [Fang, Préville-Ratelle’16]

[Chatel,Pons’13]interval posets

• connections to geometry (associahedron and extensions)

m-Tamari
labelled m-Tamari
v-Tamari

[Bousquet-Mélou,F,Préville-Ratelle’11]
[Bousquet-Mélou,Chapuy,Préville-Ratelle’12]
[Préville-Ratelle, Viennot’14]

[Bergeron, Préville-Ratelle’11]
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≺

Rk: if t ≤ t′ in Tn, then t is below t′

the converse is not true !

Q: How to characterize pairs forming an interval in Ln ?

Length-vector LD of D:

1
2 3

4

`1=4
`2=1

`4=1
`3=2

LD = (4, 1, 2, 1)

Lem: D ≤ D′ in Ln iff LD ≤ LD′

Characterization of intervals by length-vectors



Recursive decomposition of Dyck paths
• Reduction of a Dyck path:

⇔
size n size n−1

(removes 1st component in length-vector)

⇔ ,



Recursive decomposition of Dyck paths
• Reduction of a Dyck path:

⇔
size n size n−1

(removes 1st component in length-vector)

⇔ ,

• Counting:
Let an be the number of Dyck paths of length 2n.
Then a0 = 1 and

an =
∑

i+j=n−1
ai · aj



Recursive decomposition of Dyck paths
• Reduction of a Dyck path:

⇔
size n size n−1

(removes 1st component in length-vector)

⇔ ,

• Counting:
Let an be the number of Dyck paths of length 2n.
Then a0 = 1 and

an =
∑

i+j=n−1
ai · aj

• Let A(t) =
∑

n ant
n be the associated generating function

Functional equation: A(t) = 1 + tA(t)2



Recursive decomposition of Dyck paths
• Reduction of a Dyck path:

⇔
size n size n−1

(removes 1st component in length-vector)

⇔ ,

• Counting:
Let an be the number of Dyck paths of length 2n.
Then a0 = 1 and

an =
∑

i+j=n−1
ai · aj

• Let A(t) =
∑

n ant
n be the associated generating function

Functional equation: A(t) = 1 + tA(t)2

Solution: A(t) =
1−
√
1− 4t

2t
⇒ an =

(2n)!

n!(n+ 1)!
Catalan
numbers
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Recursive decomposition of Tamari intervals
• Reduction of an interval in Ln:

⇔ ⇔
,

Let an,i = #( intervals in Ln with i bottom contacts)

Let F (t, u) :=
∑

n,i an,it
nui

Then:

F (t, u) = u+ tuF (t, u)
F (t, u)− F (t, 1)

u− 1

size n size n−1

F (t, u) = u + t · G(t, u) · F (t, u)

Functional equation:
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The number In of intervals in Ln is In = [tn]F (t, 1), with

Solving the equation

F (t, u) = u+ tuF (t, u)
F (t, u)− F (t, 1)

u− 1

• Equation with a catalytic variable, can be solved by quadratic method
[Brown, Tutte, Bousquet-Mélou Jehanne’06]

or by guessing/checking the solution, yielding In = 2
n(n+1)

(
4n+1
n−1

)
• We explain here how the equation can be ”solved” bijectively

using triangulations and Schnyder woods (cf L.-F. Préville-Ratelle)



Planar maps, triangulations

= 6=

Def. Planar map = connected graph embedded in the plane up to isotopy

rooted map = map + marked directed edge

Def. Planar map = connected graph embedded in the plane up to isotopy

with the outer face on its left



Planar maps, triangulations

n = 4 internal vertices

[Tutte’62] #(triangulations on n internal vertices)= 2
n(n+1)

(
4n+1
n−1

)

• Triangulation = simple planar map with all faces of degree 3

= 6=

Def. Planar map = connected graph embedded in the plane up to isotopy

rooted map = map + marked directed edge

Def. Planar map = connected graph embedded in the plane up to isotopy

with the outer face on its left
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Schnyder woods Local conditions:

Theo: Any triangulation admits a Schnyder wood [Schnyder’89]

• A Schnyder wood with no cw circuit is called minimal

v0

v1v2

minimal

Theo: Any triangulation has a unique minimal Schnyder wood
(cf set of Schnyder woods on fixed triangulation is a distributive lattice)

[Ossona de Mendez’94, Brehm’03, Felsner’03]
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Counting formula
The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

Let tn = #{(rooted) triang. with n+ 3 vertices}, F (x) =
∑

n tnx
2n+1

Then F ′(x) = (1 + u)3 where u = u(x) is specified by u = x2(1 + u)4︸ ︷︷ ︸
quat. trees

⇒ tn =
2(4n+ 1)!

(n+ 1)!(3n+ 2)!(Lagrange)
[Tutte’62]

⇒ ⇒
quaternary tree
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Decomposing a minimal red-blue structure
cf L.-F. Préville-Ratelle. Idea: apply T T1

T2

to the blue tree

A
,⇒ ⇒

Let an,i = #( triangulations with n+ 3 vertices, deg(v1) = i+ 1 )

v1 v1

Let F (t, u) :=
∑

n,i an,it
nui.

F (t, u) = u+ tuF (t, u)
F (t, u)− F (t, 1)

u− 1
Then

same equation as for Tamari intervals (& recursive bijection)
⇒ coefficient [tn]F (t, 1) is the same in both cases

In = Tn = 2
n(n+1)

(4n+1
n−1

)



A symmetry consequence

j = 4 n = 7

i = 5

,

⇓

In both cases, the trivariate series F (t;u, v) satisfies the equation

n i j

F (t;u, v) = uv + tuvF (t;u, 1)
F (t;u, v)− F (t;u, 1)

u− 1
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A symmetry consequence

j = 4 n = 7

i = 5

,

⇓

In both cases, the trivariate series F (t;u, v) satisfies the equation

n i j

⇒ the variables (i, j) are symmetrically distributed over In

F (t;u, v) = uv + tuvF (t;u, 1)
F (t;u, v)− F (t;u, 1)

u− 1

(other combinatorial proof in [Chapoton,Chatel,Pons’15] using interval posets)

⇓

i=5

j=4

,

n = 7



The Bernardi-Bonichon bijection
A direct (non-recursive) bijection between Tn and In

[Bernardi, Bonichon’07]

Schnyder woods on n+ 3 vertices

non-intersecting pairs of Dyck paths of lengths 2n

minimal

in In

0

1 0

3

⇒ ⇒ 0

1
0

3

length-vectors

4 1 2 1

1 3 1 1

not minimal

0

1

0

3

⇒ ⇒ 0

1
0

3

length-vectors

4 1 2 1

2 1 2 1

minimal
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Remarks on symmetric distributions

j=4
n = 7

i = 5

k=3 (i, j, k) not symmetrically

(j = n implies k = n but not i = n)

But:
- (i, j) is symmetric (cf bijection of Préville-Ratelle)

- (i, k) is symmetric (cf bijection of Bernardi-Bonichon)
& same distribution as (i, j)

- Strong symmetry in (j, k):
easy (inductive) bijection doing mirror of upper path & preserving i

distributed over In

,also follows from
mirror-involution

,



Extension to m-Tamari lattices

≺m-Tamari lattice:

m-Dyck path: slope = 1/m
#(downsteps)= m · #(upsteps)

Theo: #(intervals in size n) =
m+ 1

n(mn+ 1)

(
(m+ 1)2n+m

n− 1

) n upsteps

still symmetry in (i, j)

(no bijective

j=2

[Bousquet-Mélou,F,Préville-Ratelle’11] [Bousquet-Mélou,Chapuy,Préville-Ratelle’12][Bergeron,Préville-Ratelle’11]

i=3 contacts

proof)



New Tamari intervals and bipartite maps
(discussions with Frédéric Chapoton)
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3
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2

3

4

,
3

, = ,

, , ,=3

0 1 2 3 4 0 1 2 3 4

[Chapoton’06]

Binary trees:

Dissections:

Dyck paths:

operator `

0

1

2

3

4

,
3

, = ,



New Tamari intervals
Obtaining a composed interval out of 2 intervals:

A Tamari interval is called “new” if it can not be obtained this way

0

1

2

3

4 0

1

2

3

4

,
3

, = ,

, , ,=3

0 1 2 3 4 0 1 2 3 4

[Chapoton’06]

Binary trees:

Dissections:

Dyck paths:

operator `

0

1

2

3

4

,
3

, = ,



Characterization of new intervals
For binary trees: no common node when superimposed

For dissections, no common diagonal when superimposed
(the two dissections do not belong to a same facet in the associahedron)

Ex: among the 13 intervals of size 3,
3 are such that both trees are not adjacent



Characterization of new intervals
For binary trees: no common node when superimposed

For dissections, no common diagonal when superimposed
(the two dissections do not belong to a same facet in the associahedron)

Ex: among the 13 intervals of size 3,
3 are such that both trees are not adjacent

For Dyck paths, 2 conditions:

• upper path has only two contacts with x-axis

• For each 1 ≤ r ≤ n, if r
L > 0

then r
<L



Enumeration of new intervals [Chapoton’06]

The number of new intervals of size n+ 1 is bn = 3 · 2n−1 (2n)!
(n+2)!n!

which is also the number of bipartite planar maps with n edges

bn = 1, 3, 12, 56, 88, . . .

n = 1 n = 2



Proof by parallel core-decompositions
Let I(t) be the series of Tamari intervals

N(t) the series of new Tamari intervals

The “new” core of a Tamari interval:

∈ lower dissection

∈ upper dissection

∈ both dissections

⇒
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Proof by parallel core-decompositions
Let I(t) be the series of Tamari intervals

N(t) the series of new Tamari intervals

Ĩ(t) := t · I(t)
Ñ(t) := t ·N(t)

The “new” core of a Tamari interval:

Decomposition implies: Ĩ(t) = Ñ(s)
s= t+Ĩ(t)

⇓

I(t) =
N(s)

1−N(s) s= t+tI(t)

∈ lower dissection

∈ upper dissection

∈ both dissections

⇒
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Proof by parallel core-decompositions
Let L(t) be the series of loopless maps (by edges)

S(t) the series of simple maps (by edges)

The simple core of a loopless map:

Decomposition implies:

L(t) = S(s)
s= t+tL(t)

I(t) =
N(s)

1−N(s) s= t+tI(t)

+ known bijections:
L(t) = series counting triangulations = I(t)

S(s) = sB(s)
1−sB(s) with B(s) the series for bipartite maps

map equation Tamari equation

N(s) = sB(s)⇒

[Wormald’80]

[Noy’13]
[Bernardi,Collet,F’14]

⇒



Proof by parallel reduction-decompositions

Interval is new ⇔ for Dyck paths, 2 additional conditions:

• upper path has only two contacts with x-axis

• For each 1 ≤ r ≤ n, if r
L > 0

then r
<L

Let bn,i = #( new intervals of size n+ 1 with i+ 2 bottom contacts)

Let G(t, u) :=
∑

n,i bn,it
nui

Interval is either

G(t, u) = 1 + t · subs(ui = u+ · · ·+ ui+1, G(t, u)) · 1

1− tuG(t, u)

or
⇒

reduction

L

= 1 + tu
uG(t, u)−G(t, 1)

u− 1

1

1− tuG(t, u)
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Let G(t, u) :=
∑

n,i bn,it
nui

Interval is either

G(t, u) = 1 + t · subs(ui = u+ · · ·+ ui+1, G(t, u)) · 1

1− tuG(t, u)

or
⇒

reduction

L

= 1 + tu
uG(t, u)−G(t, 1)

u− 1

1

1− tuG(t, u)

m

G(t, u) = 1 + tuG(t, u)2 + tu
G(t, u)−G(t, 1)

u− 1



Let bn,i = #( bipartite maps with n edges and outer degree 2i)

Let G(t, u) :=
∑

n,i bn,it
nui

Proof by parallel reduction-decompositions

= +

G(t, u) = 1 + tuG(t, u)2 + t subs(ui=u+· · ·+ ui, G(t, u))

+

G(t, u) = 1 + tuG(t, u)2 + tu
G(t, u)−G(t, 1)

u− 1

Same equation as for bipartite maps!

⇓ ⇓



Canopy triple of parameters for intervals
• Canopy of a binary tree: word giving the types of the leaves read left to right

1 1 1 1 10 0 0 0 0



Canopy triple of parameters for intervals
• Canopy of a binary tree: word giving the types of the leaves read left to right

1 1 1 1 10 0 0 0 0

effect of a right rotation on the canopy: nothing or switches a 0 to a 1

A B C

B 6=leaf B =leaf

1 1 1 1 10 0 0 0 0
A B C

1 1 1 1 10 0 0 0 0
A B C

1 1 1 1 10 1 0 0 0
A

B C



Canopy triple of parameters for intervals

Hence, for t ≤ t′, we have Canopy(t) ≤ Canopy(t′)
1 1 1 1 10 0 0 0 0 1 1 1 1 11 1 0 1 0

• Canopy of a binary tree: word giving the types of the leaves read left to right

,

1 1 1 1 10 0 0 0 0

effect of a right rotation on the canopy: nothing or switches a 0 to a 1

A B C

B 6=leaf B =leaf

1 1 1 1 10 0 0 0 0
A B C

1 1 1 1 10 0 0 0 0
A B C

1 1 1 1 10 1 0 0 0
A

B C



Canopy triple of parameters for intervals

Hence, for t ≤ t′, we have Canopy(t) ≤ Canopy(t′)
1 1 1 1 10 0 0 0 0 1 1 1 1 11 1 0 1 0

1 1 1 1 10 0 0 0 0
1 1 1 1 11 1 0 1 0canopy-word = weight = x#

• Canopy of a binary tree: word giving the types of the leaves read left to right

0
0

1
0

1
1y# z#

,

1 1 1 1 10 0 0 0 0

= x2y3z5

effect of a right rotation on the canopy: nothing or switches a 0 to a 1

A B C

B 6=leaf B =leaf

1 1 1 1 10 0 0 0 0
A B C

1 1 1 1 10 0 0 0 0
A B C

1 1 1 1 10 1 0 0 0
A

B C

weight



Generating functions by canopy triples
• Let F (x, y, z) := series of Tamari intervals, with

only symmetry x↔ z (cf mirror-symmetry)

x# 0
0

1
0

1
1y# z#

F (x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xy + 3yz + 4xz)

x3 + y3 + z3 + 6x2y + 6xy2 + 10x2z + 10xz2 + 6y2z + 6yz2 + 21xyz



Generating functions by canopy triples
• Let F (x, y, z) := series of Tamari intervals, with

Rk: F (x, 0, z) is the series for intervals where both canopies are equal,
counts non-separable maps by vertices and faces [Fang,Préville-Ratelle’16]

only symmetry x↔ z (cf mirror-symmetry)

x# 0
0

1
0

1
1y# z#

F (x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xy + 3yz + 4xz)

x3 + y3 + z3 + 6x2y + 6xy2 + 10x2z + 10xz2 + 6y2z + 6yz2 + 21xyz



Generating functions by canopy triples
• Let F (x, y, z) := series of Tamari intervals, with

• Let G(x, y, z) := series restricted to new Tamari intervals

Rk: F (x, 0, z) is the series for intervals where both canopies are equal,
counts non-separable maps by vertices and faces [Fang,Préville-Ratelle’16]

only symmetry x↔ z (cf mirror-symmetry)

x# 0
0

1
0

1
1y# z#

1
y
G(x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xy + 3xz + 3yz)

+(x3 + y3 + z3 + 6x2y + 6xy2 + 6x2z + 6xz2 + 6y2z + 6yz2 + 17xyz) + · · ·

symmetry in the 3 variables!

F (x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xy + 3yz + 4xz)

x3 + y3 + z3 + 6x2y + 6xy2 + 10x2z + 10xz2 + 6y2z + 6yz2 + 21xyz



Equidistributed triple for bipartite maps
Let M(x, y, z) be the series of bipartite maps x# y# z# faces

symmetric in x, y, z, cf

3-colored triangulation
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Let M(x, y, z) be the series of bipartite maps x# y# z# faces

symmetric in x, y, z, cf

3-colored triangulation

1
xyz

M(x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xy + 3xz + 3yz)

+(x3 + y3 + z3 + 6x2y + 6xy2 + 6x2z + 6xz2 + 6y2z + 6yz2 + 17xyz) + · · ·
coincides with the series for new intervals!



Equidistributed triple for bipartite maps

• Symmetric parametrized expression (from bijection with some trees)

Let M(x, y, z) be the series of bipartite maps x# y# z# faces

symmetric in x, y, z, cf

3-colored triangulation

1
xyz

M(x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xy + 3xz + 3yz)

+(x3 + y3 + z3 + 6x2y + 6xy2 + 6x2z + 6xz2 + 6y2z + 6yz2 + 17xyz) + · · ·
coincides with the series for new intervals!

M = U1U2U3(1− U1 − U2 − U3)

with
U1 = x+ U1U3 + U2U1

U2 = y + U1U2 + U2U3

U3 = z + U2U3 + U1U3

[Bouttier, Di Francesco, Guitter’02]
[Bousquet-Mélou, Schaeffer’02]



Proof by parallel reduction-decompositions

On Dyck paths, 0
0

1
0

1
1

Interval is either

or
⇒

reduction

or
⇒

reduction

L = x +yu
L

1− uL
+zu

L− L1

u− 1

1

1− uL

Let L ≡ L(x, y, z;u) the series, with x# y# z# u#contacts −2

L1 := L



Proof by parallel reduction-decompositions
Let M ≡M(x, y, z;u) be the series of bipartite maps,

with x# y# z# faces -1
u

1
2
outer−degree

M1 := M
u=1

M = x + y
uM

1− uM
zu

M −M1

u− 1

1

1− uM
+

Same equation as for L, hence L = M (recursive bijection)
= zx+ U1U2U3(1− U1 − U2 − U3)

with
U1 = x+ U1U3 + U2U1

U2 = y + U1U2 + U2U3

U3 = z + U2U3 + U1U3

and zL1 = zM1


