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The Tamari lattice
The Tamari lattice £,, is the partial order on binary trees with n nodes
where the covering reation corresponds to right rotation
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Rotation < flip on triangulated dissections




The covering relation for Dyck paths
e Encoding by left-to-right postfix order (< right-to-left prefix order)
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The covering relation for Dyck paths
e Encoding by left-to-right postfix order (< right-to-left prefix order)
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Tamari intervals
An interval in L, is a pair (t,t") such that t < ¢/
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Tamari intervals
An interval in £,, is a pair (t,t") such that ¢t < t’

L/ | ] o T
p n=3 ¥ [ P Q{ n=4
13 intervals o % & ‘% 68 intervals

Theorem [Chapoton'06]: there are m( ) intervals in £,

Very active research domain over last 10 years:
e various extensions with nice counting formulas

m- Tamari [Bousquet-Mélou,F,Préville-Ratelle'11]
labelled m-Tamari [Bousquet-Mélou,Chapuy,Préville-Ratelle’12]
V- lamari [Préville-Ratelle, Viennot'14]

e connections to algebra [Bergeron, Préville-Ratelle’11]

e connections to geometry (associahedron and extensions)

e bijective links: planar maps
interval posets
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Characterization of intervals by length-vectors

Rk: if t <t inT,, then t is below ¢’

the converse is not true !

Q: How to characterize pairs forming an interval in £,, 7

Length-vector Lp of D:

Lem: D < D’ in ﬁn Iff LD < LD/
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Recursive decomposition of Dyck paths
e Reduction of a Dyck path:

NN TN T NN,

size n A size n—1

(removes 1st component in length-vector)

e Counting:

Let a,, be the number of Dyck paths of length 2n.
Then ag = 1 and

Ay — E Qg - Ay

1+7=n—1

o Let A(t) =) ant™ be the associated generating function

Functional equation:  A(t) =1 + tA(t)?

. 1 —+1—4t (2n)! Catalan
Solution: A(t) — o = On = n!(n—l— 1)! numbers
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Recursive decomposition of Tamari intervals
e Reduction of an interval in L,,:

b A sizen-1 4

Let a,, ; = #( intervals in £,, with ¢ bottom contacts)
Let F(t,u) := > . ant"u’

Then: F(t,u) = u + t - G(t,u)- F(t,u)

G(t,u) = O(F)(t,u) where O is linear operator acting on monomials as

ut — 1 F(t,u)—F(t,1)

Q(t”ui) — . (u—l—--.—l—ui) = t"u = G(t,u) = u -




Recursive decomposition of Tamari intervals
e Reduction of an interval in L,,:

size n o **Slzen—l A S

Let a,, ; = #( intervals in £,, with ¢ bottom contacts)
Let F(t,u) := > . ant"u’

Then: F(t,u) = v + t - G(t,u)- F(t,u)

zOO\/Q\,

G(t,u) = O(F)(t,u) where O is linear operator acting on monomials as

u—1

. ' i _q .
D(t”uZ) — ", (u_|_ _|_u1) Ztnuu 1 N G(t,u) _ uF(t, Y—F(t,1)

F(t,u) — F(t,1)

Functional equation: | F'(t,u) = u + tuF'(t, u) 1
u PR




Solving the equation
The number I, of intervals in L,, is I,, = [t"]|F'(¢,1), with

F(t,u) — F(t, 1)
u— 1

F(t,u) =u+ tuF(t,u)
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e Equation with a catalytic variable, can be solved by quadratic method
[Brown, Tutte, Bousquet-Mélou Jehanne’06]

or by guessing/checking the solution, yielding I = n(n2+1) (4;7:#11)




Solving the equation
The number I, of intervals in L,, is I,, = [t"]|F'(¢,1), with

F(t,u) — F(t, 1)

F(t,u) =u+ tul'(t,u) 1
u_

e Equation with a catalytic variable, can be solved by quadratic method
[Brown, Tutte, Bousquet-Mélou Jehanne’06]

or by guessing/checking the solution, yielding I = n(n2+1) (4;111)

e \We explain here how the equation can be "solved” bijectively
using triangulations and Schnyder woods (cf L.-F. Préville-Ratelle)



Planar maps, triangulations
Def. Planar map = connected graph embedded in the plane up to isotopy
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rooted map = map + marked directed edge
with the outer face on its left



Planar maps, triangulations
Def. Planar map = connected graph embedded in the plane up to isotopy

7

rooted map = map + marked directed edge
with the outer face on its left

e Triangulation = simple planar map with all faces of degree 3

n = 4 internal vertices

25 ()

[Tutte’62]  #£(triangulations on n internal vertices)= == (")
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Schnyder woods Useal conditions.

U2 o V1 \f

Vo
Theo: Any triangulation admits a Schnyder wood [Schnyder’89]

e A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation has a unique minimal Schnyder wood

(cf set of Schnyder woods on fixed triangulation is a distributive lattice)
[Ossona de Mendez’94, Brehm’03, Felsner’03]
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Counting formula
The bijection when there is a marked inner face:

O

i/\\\\
fe

o o)

Each of the 3 parts (when non empty) is of the form

quaternary tree

Let t,, = #{(rooted) triang. with n + 3 vertices}, F(x) =) tp,z*"*!
Then |F'(x) = (1 4+ u)?|where u = u(z) is specified by u = 2*(1 + u)*

N

2(472, -+ 1)' T 60 quat. trees
(n 4+ 1)!(3n + 2)! [Tutte'62]

— tn =
(Lagrange)
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The red-blue induced structure

U2 e U1 U1

UO UO
There is no loss of information in deleting the green edges

v Yv interval vertex
the red parent of
the blue parent is
a blue ancester

no clockwise circuit I
(i.e., minimal)
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cf L.-F. Préville-Ratelle. Idea: apply W . o the blue tree
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Decomposing a minimal red-blue structure

cf L.-F. Préville-Ratelle. Idea: apply V . o the blue tree
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Decomposing a minimal red-blue structure

cf L.-F. Préville-Ratelle. Idea: apply v . o the blue tree

U1

Let a, ; = #( triangulations with n + 3 vertices, deg(vy) =i+ 1)
Let F'(t,u) := ), ; URTAL S

F(t,u) — F(t,1)
u— 1

Then | F(t,u) =u+tuF(t,u)

same equation as for Tamari intervals (& recursive bijection)
= coefficient [t"|F'(¢,1) is the same in both cases

I, =T, = ﬁ (4g_+11)




A symmetry consequence

j=4

gV

In both cases, the trivariate series F(sz, U, QTJ) satisfies the equation

|

F(t;u,v) — F(t;u, 1)
uw— 1

n

F(t;u,v) = uv 4+ tuvF(t;u, 1)




n

In both cases, the trivariate series F(sz, U, v) satisfies the equation
?

t
J
F(t;u,v) — F(t;u, 1)

F(t;u,v) = uv 4+ tuvF(t;u, 1) ;
u R

= the variables (7, 7) are symmetrically distributed over Z,
(other combinatorial proof in [Chapoton,Chatel,Pons’'15] using interval posets)



The Bernardi-Bonichon bijection [Bermardi, Bonichon'07]
A direct (non-recursive) bijection between 7, and Z,,

Schnyder woocgs on n + 3 vertices minimal
non-intersecting pairs of Dyck paths of lengths 2n inZ,

length-vectors

3\
0\ \\\\
1\ \\ .
0 AN AN
= //\//\ 4121
3
0

1311

O 0
length-vectors

1\ \\\\\ \\\
1 0\ . .
— R 4 1 21

2121

Wé
Wi |

minimal
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- (4, 4) is symmetric (cf bijection of Préville-Ratelle)

- (i, k) is symmetric (cf bijection of Bernardi-Bonichon)
& same distribution as (i, j)
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(1, 7, k) not symmetrically
distributed over Z,,

(7 = n implies Kk = n but not i = n)

1 =205

But:
- (4, 4) is symmetric (cf bijection of Préville-Ratelle)

- (4, k) is.symmetric (cf bijection of Bernardi-Bonichon)
& same distribution as (i, j)
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Remarks on symmetric distributions

(1, 7, k) not symmetrically
distributed over Z,,

(7 = n implies k = n but not i = n)

1 =205

But:
- (4, 4) is symmetric (cf bijection of Préville-Ratelle)

- (4, k) is.symmetric (cf bijection of Bernardi-Bonichon)
& same distribution as (i, j)

\* also follows from
mirror-involution W W \W V
- Strong symmetry in (7, k):
easy (inductive) bijection doing mirror of upper path & preserving i




Extension to m- Taman lattices

[Bergeron,Préville-Ratelle'11] [Bousquet-Mélou,F,Préville-Ratelle'11] [Bousquet-Mélou,Chapuy,Préville-Ratelle’12]

’O

‘4
L 4
'4
L d

m-Dyck path: slope = 1/m
#(downsteps)= m - #(upsteps)

’ﬂ
L 4
'ﬁ
L 4

’ﬂ
L 4
'ﬁ
L d

. n upsteps

m + 1 (m -+ 1)2n +m (no bijective
1) proof )

still symmetry in (i, j)

j:2{”’,/'*’ 1=3 contacts
~/



New Tamari intervals and bipartite maps

(discussions with Frédéric Chapoton)
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New Tamari intervals [Chapoton’06]

Obtaining a composed interval out of 2 intervals: | operator o,

Binary trees:
0 1 2 3 4 0 1 2 3 4

' SRS 4

Dlssectlons

SO0 @@

Dyck paths:

o R, N W N

A Tamari interval is called “new"” if it can not be obtained this way




Characterization of new intervals

For binary trees: no common node when superimposed

For dissections, no common diagonal when superimposed
(the two dissections do not belong to a same facet in the associahedron)
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Ex: among the 13 intervals of size 3, \
3 are such that both trees are not adjacent



Characterization of new intervals

For binary trees: no common node when superimposed

For dissections, no common diagonal when superimposed
(the two dissections do not belong to a same facet in the associahedron)

/4
Ex: among the 13 intervals of size 3, \
3 are such that both trees are not adjacent

For Dyck paths, 2 conditions:
e upper path has only two contacts with z-axis M/\

e Foreach 1 <r <n, if T/\T/Ol then 7“/\/\

<>
<L



Enumeration of new intervals [Chapoton’06]

(2n)!
(n+2)!In!

which is also the number of bipartite planar maps with n edges
b, =1,3,12,56,88, ...

The number of new intervals of sizen+1is b, =3 -2""1!

n=1 n =2
O AN AN AN

e L »/0/‘ o/\./o



Proof by parallel core-decompositions
Let /() be the series of Tamari intervals
N (t) the series of new Tamari intervals

The “new” core of a Tamari interval:

& lower dissection

€ upper dissection

€ both dissections
777 777



Proof by parallel core-decompositions
Let I(t) be the series of Tamari intervals I(t):=t-1(¢)

~

N (t) the series of new Tamari intervals N(t) =t - N(t)

The “new” core of a Tamari interval:

& lower dissection

€ upper dissection

€ both dissections
717 777

Decomposition implies: I(t) = N(s)




Proof by parallel core-decompositions
Let I(t) be the series of Tamari intervals I(t):=t-1(¢)

~

N (t) the series of new Tamari intervals N(t) =t - N(t)

The “new” core of a Tamari interval:

€ lower dissection
€ upper dissection
e both dissections /

Decomposition implies: =

s= t+[()

4
N(s)
1 — N(s)

I(t) =

s=t+tI(t)




Proof by parallel core-decompositions

Let L(t) be the series of loopless maps (by edges)
S(t) the series of simple maps (by edges)

The simple core of a loopless map: =

A

Decomposition implies:
map equation

L(t) = S(s)

s=t+tL(t)




Proof by parallel core-decompositions
Let L(t) be the series of loopless maps (by edges)

S(t) the series of simple maps (by edges)
The simple core of a loopless map:

Decomposition implies:

map equation

<>

A

Tamari equation

L(t) = S(s)

s=t+tL(t)

I(t)

__N(s)
1—N(s) s=t+tI(t)
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Proof by parallel core-decompositions

Let L(t) be the series of loopless maps (by edges)
S(t) the series of simple maps (by edges)

The simple core of a loopless map: =

A

Decomposition implies:
map equation Tamari equation
L(t)=S N(s)
(t) = 5(s) I(t) =

+ known bijections:

L(t) = series counting triangulations = I (t) [Wormald'80]
sB(s . . . i )
S(s) = 1_323()5) with B(s) the series for bipartite maps[Bemardi’C([)'l\:g%’,Flﬁl]ll]

= | N(s) = sB(s)




Proof by parallel reduction-decompositions

Let b, ; = #( new intervals of size n + 1 with ¢ + 2 bottom contacts)
Let G(t,u) ==, ; by it"™ U’

Interval is new < for Dyck paths, 2 additional conditions:

e upper path has only two contacts with z-axis /M

e Foreach 1 <r <mn, if %\7? then T1/V\,

<>
<L

Interval is either A\

—_—

reduction

- > *

L

1
1 — tuG(t,u)

Gt,u) =1+t -subs(u’' =u+ - +u"" Gt,u)) -
uG(t,u) — G(t, 1) 1
uw—1 1 — tuG(t. u)

=1+ tu



Proof by parallel reduction-decompositions

Let b, ; = #( new intervals of size n + 1 with ¢ + 2 bottom contacts)
Let G(t,u) = . by it"u’

n,t

Interval is either A\

=—
reduction
. | 1
G(t,u) =1+t -subs(u' =u+ - +u'" Gt,u))-
UG G 1 1 — tuG(t, u)
B u— 1 1 — tuG(t,u)
)

G(t,u) — G(t, 1)

G(t,u) =1+ tuG(t,u)* + tu .
2 —




Proof by parallel reduction-decompositions

Same equation as for bipartite maps!

Let by, ; = #( bipartite maps with n edges and outer degree 27)
Let G(t,u) = . by it"u’

® oo @
oo @

G(t,u) = 1 + tuG(t,u)? + tsubs(u’'=u+---+u", G(t,u))
G(t,u) — G(t,1)

u— 1

G(t,u) =1+ tuG(t,u)* + tu
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e Canopy of a binary tree: word giving the types of the leaves read left to right
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B #leaf B =leaf
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Canopy triple ofdparameters for intervals

e Canopy of a binary tree: word giving the types of the leaves read left to right
effect of a right rotation on the canopy: nothing or switches a 0 to a 1

B #leaf B =leaf
B B C

1001010110, 1001010110

\/‘\ ,Il,/l B ,
/"'\__C

1001010110,

—————

1011010110

Hence, for ¢t <t’, we have Canopy(t) < Canopy(t’)

1001010110 1111011110
0 1 1
_ ' B [ A
canopy-word = [%(1)5181(1)%%8} weight = 70l y HZ ]

weight = 2%y°2°



Generating functions by canopy triples

o Let F(x,vy, z) := series of Tamari intervals, with az#[g] y#[(l)] z#m

Fz,y,z) =14+ (x +y+2) + (&% + y? + 22 + 3zy + 3yz + 4x2)
3 4+ y> + 23 + 622y + 62y? + 10222 + 10222 + 6y?z + 6yz? + 21lxyz

only symmetry x <+ z (cf mirror-symmetry)



Generating functions by canopy triples

o Let F(x,vy, z) := series of Tamari intervals, with az#[g] y#[(l’] z#m

Fz,y,z) =14+ (x +y+2) + (&% + y? + 22 + 3zy + 3yz + 4x2)
3 4+ y> + 23 + 622y + 62y? + 10222 + 10222 + 6y?z + 6yz? + 21lxyz

only symmetry x <+ z (cf mirror-symmetry)

Rk: F(x,0, z) is the series for intervals where both canopies are equal,
counts non-separable maps by vertices and faces [Fang,Préville-Ratelle’16]



Generating functions by canopy triples

o Let F(x,vy, z) := series of Tamari intervals, with az#[g] y#[(l’] z#m

Fz,y,z) =14+ (x +y+2) + (&% + y? + 22 + 3zy + 3yz + 4x2)
3 4+ y> + 23 + 622y + 62y? + 10222 + 10222 + 6y?z + 6yz? + 21lxyz

only symmetry x <+ z (cf mirror-symmetry)

Rk: F(x,0, z) is the series for intervals where both canopies are equal,
counts non-separable maps by vertices and faces [Fang,Préville-Ratelle’16]

e Let G(x,y, z) := series restricted to new Tamari intervals
%G(az,y,z) =1+ (z+y+2)+ (2% +y? + 2% + 32y + 322 + 3yz)
+(x3 + y° + 23 + 622y + 62y? + 622 + 622% + 6y22 + 6yz? + 17xYyz) + - - -

symmetry in the 3 variables!



Equidistributed triple for bipartite maps

Let M(z,y, ) be the series of bipartite maps a7 ® y# © z# faces

symmetric in x, v, z, cf

3-colored triangulation
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Let M(z,y, ) be the series of bipartite maps a7 ® y# © z# faces

symmetric in x, v, z, cf

3-colored triangulation

xylgzM(aj’yVZ) =1+ (z+y+2)+ (z° +y? + 22 + 3oy + 3zz + 3yz2)

+(z3 + y3 + 23 + 622y + 6xy? + 6222 + 6222 + 6y°2 + 6yz? + 1Txyz) + - - -

coincides with the series for new intervals!




Equidistributed triple for bipartite maps

Let M(z,y, ) be the series of bipartite maps a7 ® y# © z# faces

symmetric in x, v, z, cf

3-colored triangulation

x;zM(%yaZ) =14+ (x+y+2)+ (22 +y? + 22 + 3zy + 3z2 + 3yz)

+(z3 + y3 + 23 + 622y + 6xy? + 6222 + 6222 + 6y°2 + 6yz? + 1Txyz) + - - -

coincides with the series for new intervals!

e Symmetric parametrized expression (from bijection with some trees)

M =U,UU3(1 — Uy — U — Us)
_ Ui =x+ U1Us + UxUs
with 3 Uy =y + U Uz + UaUs
Us = z+ UxU3 + U1U3



Proof by parallel reduction-decompositions

~ /s /

On Dyck paths, [f]+— , [i]+— A~ []=— /

Interval is either A\

—

reduction

—_—

reduction

~ 7, 7,
Let L = L(x,y, 2;u) the series, with RS y# N L /u#contacts —2
Ll = L

7 . L N L — 14 1
— U
. J 1 —ul Zuu—l 1 —ul




Proof by parallel reduction-decompositions
Let M = M (x,y, 2;u) be the series of bipartite maps,

1
with T ® ,y#o o 7 faces -1 uQOuter—degree

M1 :M‘

u=1

ulM M—M1 1
1—uM u—1 1 —uM

e %

M =

Same equation as for L, hence L = M (recursive bijection)
and zL{ = zM{ = zx + U1U2U3(1 —U; — Uy — Ug)
Ui =2+ U1Uz + U2Us
with 3 Up =y + U1Uz + U2U3
{UZS =z+ U2U3 4+ U1Us



