On Tamari intervals and planar maps

Éric Fusy (CNRS/LIX, École Polytechnique)

Rotation operations on binary trees

The Tamari lattice

The Tamari lattice \mathcal{L}_n is the partial order on binary trees with n nodes where the covering reation corresponds to right rotation

Rotation \Leftrightarrow flip on triangulated dissections

The covering relation for Dyck paths

Encoding by left-to-right postfix order (⇔ right-to-left prefix order)

The covering relation for Dyck paths

Encoding by left-to-right postfix order (⇔ right-to-left prefix order)

• Effect of a rotation on the associated Dyck path:

Tamari intervals

An interval in \mathcal{L}_n is a pair (t, t') such that $t \leq t'$

Tamari intervals

An interval in \mathcal{L}_n is a pair (t, t') such that $t \leq t'$

Theorem [Chapoton'06]: there are $\frac{2}{n(n+1)}\binom{4n+1}{n-1}$ intervals in \mathcal{L}_n

Tamari intervals

An interval in \mathcal{L}_n is a pair (t, t') such that $t \leq t'$

Theorem [Chapoton'06]: there are $\frac{2}{n(n+1)}\binom{4n+1}{n-1}$ intervals in \mathcal{L}_n

Very active research domain over last 10 years:

various_extensions with nice counting formulas

m-Tamari labelled m-Tamari v-Tamari [Bousquet-Mélou,F,Préville-Ratelle'11]

Bousquet-Mélou, Chapuy, Préville-Ratelle'12

[Préville-Ratelle, Viennot'14]

• connections to algebra [Bergeron, Préville-Ratelle'11]

- connections to geometry (associahedron and extensions)
- bijective links: planar maps [Bernardi,Bonichon'07] [Fang, Préville-Ratelle'16] interval posets [Chatel,Pons'13]

Rk: if $t \leq t'$ in \mathcal{T}_n , then t is below t'

Rk: if $t \le t'$ in \mathcal{T}_n , then t is below t' the converse is not true!

Rk: if $t \le t'$ in \mathcal{T}_n , then t is below t' the converse is not true!

Q: How to characterize pairs forming an interval in \mathcal{L}_n ?

Rk: if $t \le t'$ in \mathcal{T}_n , then t is below t' the converse is not true!

Q: How to characterize pairs

forming an interval in \mathcal{L}_n ?

Length-vector L_D of D:

Rk: if $t \le t'$ in \mathcal{T}_n , then t is below t' the converse is not true!

Q: How to characterize pairs

forming an interval in \mathcal{L}_n ?

Length-vector L_D of D:

Lem: $D \leq D'$ in \mathcal{L}_n iff $L_D \leq L_{D'}$

• Reduction of a Dyck path:

(removes 1st component in length-vector)

• Reduction of a Dyck path:

(removes 1st component in length-vector)

• Counting:

Let a_n be the number of Dyck paths of length 2n. Then $a_0 = 1$ and

$$a_n = \sum_{i+j=n-1} a_i \cdot a_j$$

• Reduction of a Dyck path:

(removes 1st component in length-vector)

Counting:

Let a_n be the number of Dyck paths of length 2n. Then $a_0 = 1$ and

$$a_n = \sum_{i+j=n-1} a_i \cdot a_j$$

• Let $A(t) = \sum_{n} a_n t^n$ be the associated generating function

Functional equation: $A(t) = 1 + tA(t)^2$

• Reduction of a Dyck path:

(removes 1st component in length-vector)

• Counting:

Let a_n be the number of Dyck paths of length 2n. Then $a_0=1$ and

$$a_n = \sum_{i+j=n-1} a_i \cdot a_j$$

• Let $A(t) = \sum_{n} a_n t^n$ be the associated generating function

Functional equation: $A(t) = 1 + tA(t)^2$

Solution:
$$A(t) = \frac{1 - \sqrt{1 - 4t}}{2t} \Rightarrow a_n = \frac{(2n)!}{n!(n+1)!}$$
 Catalan numbers

• Reduction of an interval in \mathcal{L}_n :

• Reduction of an interval in \mathcal{L}_n :

Let $a_{n,i} = \#(\text{ intervals in } \mathcal{L}_n \text{ with } i \text{ bottom contacts})$

Let
$$F(t,u) := \sum_{n,i} a_{n,i} t^n u^i$$

Then:
$$F(t,u) = u + t \cdot G(t,u) \cdot F(t,u)$$

• Reduction of an interval in \mathcal{L}_n :

Let $a_{n,i} = \#(\text{ intervals in } \mathcal{L}_n \text{ with } i \text{ bottom contacts})$

Let
$$F(t,u) := \sum_{n,i} a_{n,i} t^n u^i$$

Then:
$$F(t,u) = u + t \cdot G(t,u) \cdot F(t,u)$$

$$G(t,u)=\mathfrak{O}(F)(t,u)$$
 where $\mathfrak O$ is linear operator acting on monomials as

$$\mathfrak{O}(t^n u^i) = t^n \cdot (u + \dots + u^i)$$

• Reduction of an interval in \mathcal{L}_n :

Let $a_{n,i} = \#(\text{ intervals in } \mathcal{L}_n \text{ with } i \text{ bottom contacts})$

Let
$$F(t,u) := \sum_{n,i} a_{n,i} t^n u^i$$

Then:
$$F(t,u) = u + t \cdot G(t,u) \cdot F(t,u)$$

 $G(t,u)=\mathfrak{O}(F)(t,u)$ where $\mathfrak O$ is linear operator acting on monomials as

$$\mathfrak{O}(t^n u^i) = t^n \cdot (u + \dots + u^i) = t^n u \frac{u^i - 1}{u - 1} \implies G(t, u) = u \frac{F(t, u) - F(t, 1)}{u - 1}$$

• Reduction of an interval in \mathcal{L}_n :

Let $a_{n,i} = \#(\text{ intervals in } \mathcal{L}_n \text{ with } i \text{ bottom contacts})$

Let
$$F(t,u) := \sum_{n,i} a_{n,i} t^n u^i$$

Then:
$$F(t,u) = u + t \cdot G(t,u) \cdot F(t,u)$$

 $G(t,u)=\mathfrak{O}(F)(t,u)$ where $\mathfrak O$ is linear operator acting on monomials as

$$\mathfrak{O}(t^n u^i) = t^n \cdot (u + \dots + u^i) = t^n u \frac{u^i - 1}{u - 1} \implies G(t, u) = u \frac{F(t, u) - F(t, 1)}{u - 1}$$

Functional equation:
$$F(t,u) = u + tuF(t,u) \frac{F(t,u) - F(t,1)}{u-1}$$

Solving the equation

The number I_n of intervals in \mathcal{L}_n is $I_n = [t^n]F(t,1)$, with

$$F(t,u) = u + tuF(t,u) \frac{F(t,u) - F(t,1)}{u-1}$$

Solving the equation

The number I_n of intervals in \mathcal{L}_n is $I_n = [t^n]F(t,1)$, with

$$F(t, u) = u + tuF(t, u) \frac{F(t, u) - F(t, 1)}{u - 1}$$

 Equation with a catalytic variable, can be solved by quadratic method [Brown, Tutte, Bousquet-Mélou Jehanne'06]

or by guessing/checking the solution, yielding $\left|\ I_n = rac{2}{n(n+1)}inom{4n+1}{n-1}
ight|$

$$I_n = \frac{2}{n(n+1)} \binom{4n+1}{n-1}$$

Solving the equation

The number I_n of intervals in \mathcal{L}_n is $I_n = [t^n]F(t,1)$, with

$$F(t, u) = u + tuF(t, u) \frac{F(t, u) - F(t, 1)}{u - 1}$$

 Equation with a catalytic variable, can be solved by quadratic method [Brown, Tutte, Bousquet-Mélou Jehanne'06]

or by guessing/checking the solution, yielding $\left|\ I_n = rac{2}{n(n+1)}inom{4n+1}{n-1}
ight|$

$$I_n = \frac{2}{n(n+1)} \binom{4n+1}{n-1}$$

 We explain here how the equation can be "solved" bijectively using triangulations and Schnyder woods (cf L.-F. Préville-Ratelle)

Planar maps, triangulations

Def. Planar map = connected graph embedded in the plane up to isotopy

with the outer face on its left

Planar maps, triangulations

Def. Planar map = connected graph embedded in the plane up to isotopy

with the outer face on its left

• Triangulation = simple planar map with all faces of degree 3

n=4 internal vertices

[Tutte'62] #(triangulations on n internal vertices) $=rac{2}{n(n+1)}inom{4n+1}{n-1}$

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

• A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation has a unique minimal Schnyder wood (cf set of Schnyder woods on fixed triangulation is a distributive lattice) [Ossona de Mendez'94, Brehm'03, Felsner'03]

Bijective counting of triangulations

[F, Poulalhon, Schaeffer'08], [Bernardi, F'10], first bijection in [Poulalhon, Schaeffer'03]

[F, Poulalhon, Schaeffer'08], [Bernardi, F'10], first bijection in [Poulalhon, Schaeffer'03]

[F, Poulalhon, Schaeffer'08], [Bernardi, F'10], first bijection in [Poulalhon, Schaeffer'03]

[F, Poulalhon, Schaeffer'08], [Bernardi, F'10], first bijection in [Poulalhon, Schaeffer'03]

Counting formula
The bijection when there is a marked inner face:

Counting formula

The bijection when there is a marked inner face:

quaternary tree

Counting formula

The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

Let $t_n = \#\{\text{(rooted) triang. with } n+3 \text{ vertices}\}, F(x) = \sum_n t_n x^{2n+1}$

Then
$$F'(x) = (1+u)^3$$
 where $u = u(x)$ is specified by $\underbrace{u = x^2(1+u)^4}_{\text{quat. trees}}$

Counting formula

The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

Let $t_n = \#\{\text{(rooted) triang. with } n+3 \text{ vertices}\}, F(x) = \sum_n t_n x^{2n+1}$

Then $F'(x) = (1+u)^3$ where u = u(x) is specified by $u = x^2(1+u)^4$

$$\Rightarrow \text{(Lagrange)} t_n = \frac{2(4n+1)!}{(n+1)!(3n+2)!}$$

[Tutte'62]

quat. trees

The red-blue induced structure

There is no loss of information in deleting the green edges

The red-blue induced structure

There is no loss of information in deleting the green edges

no clockwise circuit (i.e., minimal)

 $\forall v$ interval vertex the red parent of the blue parent is a blue ancester

The red-blue induced structure

There is no loss of information in deleting the green edges

no clockwise circuit (i.e., minimal)

 $\forall v$ interval vertex the red parent of the blue parent is a blue ancester

Let
$$a_{n,i} = \#($$
 triangulations with $n+3$ vertices, $\deg(v_1) = i+1$)
Let $F(t,u) := \sum_{n,i} a_{n,i} t^n u^i$.

Then
$$F(t,u) = u + tuF(t,u)\frac{F(t,u) - F(t,1)}{u-1}$$

cf L.-F. Préville-Ratelle. Idea: apply v_1 to the blue tree v_1 v_2 v_3 v_4

Let
$$a_{n,i}=\#($$
 triangulations with $n+3$ vertices, $\deg(v_1)=i+1$) Let $F(t,u):=\sum_{n,i}a_{n,i}t^nu^i$.

Then
$$F(t,u) = u + tuF(t,u)\frac{F(t,u) - F(t,1)}{u-1}$$

same equation as for Tamari intervals (& recursive bijection)

cf L.-F. Préville-Ratelle. Idea: apply T_1 to the blue tree

Let
$$a_{n,i}=\#($$
 triangulations with $n+3$ vertices, $\deg(v_1)=i+1$) Let $F(t,u):=\sum_{n,i}a_{n,i}t^nu^i$.

Then
$$F(t,u) = u + tuF(t,u)\frac{F(t,u) - F(t,1)}{u-1}$$

same equation as for Tamari intervals (& recursive bijection) \Rightarrow coefficient $[t^n]F(t,1)$ is the same in both cases

$$I_n = T_n = \frac{2}{n(n+1)} {\binom{4n+1}{n-1}}$$

A symmetry consequence

In both cases, the trivariate series F(t;u,v) satisfies the equation n

$$F(t; u, v) = uv + tuvF(t; u, 1) \frac{F(t; u, v) - F(t; u, 1)}{u - 1}$$

A symmetry consequence

In both cases, the trivariate series F(t; u, v) satisfies the equation n

$$F(t; u, v) = uv + tuvF(t; u, 1) \frac{F(t; u, v) - F(t; u, 1)}{u - 1}$$

 \Rightarrow the variables (i, j) are symmetrically distributed over \mathcal{I}_n (other combinatorial proof in [Chapoton, Chatel, Pons'15] using interval posets)

The Bernardi-Bonichon bijection [Bernardi, Bonichon'07]

A direct (non-recursive) bijection between \mathcal{T}_n and \mathcal{I}_n

Schnyder woods on n+3 vertices

non-intersecting pairs of Dyck paths of lengths $2n\,$

(i, j, k) not symmetrically distributed over \mathcal{I}_n

(j = n implies k = n but not i = n)

(i, j, k) not symmetrically distributed over \mathcal{I}_n

(j = n implies k = n but not i = n)

But:

- (i, j) is symmetric (cf bijection of Préville-Ratelle)
- (i,k) is symmetric (cf bijection of Bernardi-Bonichon) & same distribution as (i,j)

(i, j, k) not symmetrically distributed over \mathcal{I}_n

(j = n implies k = n but not i = n)

But:

- (i, j) is symmetric (cf bijection of Préville-Ratelle)
- (i, k) is symmetric (cf bijection of Bernardi-Bonichon)

& same distribution as (i, j)

also follows from mirror-involution

(i, j, k) not symmetrically distributed over \mathcal{I}_n

(j = n implies k = n but not i = n)

But:

- (i, j) is symmetric (cf bijection of Préville-Ratelle)
- (i, k) is symmetric (cf bijection of Bernardi-Bonichon)

& same distribution as (i, j)

also follows from mirror-involution

- Strong symmetry in (j,k): easy (inductive) bijection doing mirror of upper path & preserving i

Extension to m-Tamari lattices

[Bergeron, Préville-Ratelle'11]

[Bousquet-Mélou, F, Préville-Ratelle'11]

[Bousquet-Mélou, Chapuy, Préville-Ratelle'12]

still symmetry in (i, j)

$$j=2$$
 { $i=3$ contacts

New Tamari intervals and bipartite maps

(discussions with Frédéric Chapoton)

[Chapoton'06]

Obtaining a composed interval out of 2 intervals:

operator \circ_ℓ

Binary trees:

[Chapoton'06]

Obtaining a composed interval out of 2 intervals:

operator \circ_{ℓ}

Binary trees:

Dissections:

[Chapoton'06]

Obtaining a composed interval out of 2 intervals:

operator \circ_ℓ

Binary trees:

Dissections:

Dyck paths:

[Chapoton'06]

Obtaining a composed interval out of 2 intervals:

operator \circ_ℓ

Binary trees:

Dissections:

Dyck paths:

A Tamari interval is called "new" if it can not be obtained this way

Characterization of new intervals

For binary trees: no common node when superimposed

For dissections, no common diagonal when superimposed (the two dissections do not belong to a same facet in the associahedron)

Ex: among the 13 intervals of size 3, 3 are such that both trees are not adjacent

Characterization of new intervals

For binary trees: no common node when superimposed

For dissections, no common diagonal when superimposed (the two dissections do not belong to a same facet in the associahedron)

Ex: among the 13 intervals of size 3, 3 are such that both trees are not adjacent

For Dyck paths, 2 conditions:

- ullet upper path has only two contacts with x-axis
- For each $1 \le r \le n$, if $r \leftarrow r$

The number of new intervals of size n+1 is $b_n=3\cdot 2^{n-1}\frac{(2n)!}{(n+2)!n!}$

which is also the number of bipartite planar maps with n edges

$$b_n = 1, 3, 12, 56, 88, \dots$$

$$n = 1$$

Let I(t) be the series of Tamari intervals N(t) the series of new Tamari intervals

The "new" core of a Tamari interval:

Let I(t) be the series of Tamari intervals N(t) the series of new Tamari intervals

 $\widetilde{I}(t) := t \cdot I(t)$ $\widetilde{N}(t) := t \cdot N(t)$

The "new" core of a Tamari interval:

- \in upper dissection
- ∈ both dissections

Decomposition implies:

$$\widetilde{I}(t) = \widetilde{N}(s)|_{s=t+\widetilde{I}(t)}$$

Let I(t) be the series of Tamari intervals N(t) the series of new Tamari intervals

$$\widetilde{I}(t) := t \cdot I(t)$$
 $\widetilde{N}(t) := t \cdot N(t)$

The "new" core of a Tamari interval:

 \in upper dissection

 \in both dissections

Decomposition implies:

$$\widetilde{I}(t) = \widetilde{N}(s) \Big|_{s=t+\widetilde{I}(t)}$$

$$I(t) = \frac{N(s)}{1 - N(s)} \Big|_{s=t+tI(t)}$$

Let L(t) be the series of loopless maps (by edges)

S(t) the series of simple maps (by edges)

The simple core of a loopless map:

Decomposition implies:

map equation

$$L(t) = S(s) \Big|_{s=t+tL(t)}$$

Let L(t) be the series of loopless maps (by edges)

S(t) the series of simple maps (by edges)

The simple core of a loopless map:

Decomposition implies:

map equation

$$L(t) = S(s) \Big|_{s=t+tL(t)}$$

Tamari equation

$$I(t) = \frac{N(s)}{1 - N(s)} \Big|_{s = t + tI(t)}$$

Let L(t) be the series of loopless maps (by edges)

S(t) the series of simple maps (by edges)

The simple core of a loopless map:

Decomposition implies:

map equation

$$L(t) = S(s) \Big|_{s=t+tL(t)}$$

Tamari equation

$$I(t) = \frac{N(s)}{1 - N(s)} \Big|_{s = t + tI(t)}$$

+ known bijections:

$$L(t) =$$
series counting triangulations $= I(t)$

[Wormald'80]

Let L(t) be the series of loopless maps (by edges)

S(t) the series of simple maps (by edges)

The simple core of a loopless map:

Decomposition implies:

map equation

$$L(t) = S(s)\Big|_{s=t+tL(t)}$$

Tamari equation

$$I(t) = \frac{N(s)}{1 - N(s)} \Big|_{s=t+tI(t)}$$

+ known bijections:

L(t) =series counting triangulations = I(t)

[Wormald'80]

$$S(s) = \frac{sB(s)}{1-sB(s)}$$
 with $B(s)$ the series for bipartite maps [Noy'13] [Bernardi, Collet, F'14]

Let L(t) be the series of loopless maps (by edges)

S(t) the series of simple maps (by edges)

The simple core of a loopless map:

Decomposition implies:

map equation

$$\left| L(t) = S(s) \right|_{s=t+tL(t)}$$

Tamari equation

$$I(t) = \frac{N(s)}{1 - N(s)} \Big|_{s=t+tI(t)}$$

+ known bijections:

L(t) =series counting triangulations = I(t)

[Wormald'80]

$$S(s) = \frac{sB(s)}{1-sB(s)}$$
 with $B(s)$ the series for bipartite maps [Noy'13] [Bernardi, Collet, F'14]

$$\Rightarrow N(s) = sB(s)$$

Let $b_{n,i} = \#($ new intervals of size n+1 with i+2 bottom contacts)

Let
$$G(t,u) := \sum_{n,i} b_{n,i} t^n u^i$$

Interval is new \Leftrightarrow for Dyck paths, 2 additional conditions:

- ullet upper path has only two contacts with x-axis
- For each $1 \le r \le n$, if $r \longleftarrow$ then $r \longleftarrow$

$$G(t,u) = 1 + t \cdot \frac{\text{subs}(u^{i} = u + \dots + u^{i+1}, G(t,u))}{1 - tuG(t,u)} \cdot \frac{1}{1 - tuG(t,u)}$$

$$= 1 + tu \frac{uG(t,u) - G(t,1)}{u - 1} \frac{1}{1 - tuG(t,u)}$$

Let $b_{n,i} = \#(\text{ new intervals of size } n+1 \text{ with } i+2 \text{ bottom contacts})$

Let
$$G(t,u) := \sum_{n,i} b_{n,i} t^n u^i$$

$$G(t,u) = 1 + t \cdot \operatorname{subs}(u^{i} = u + \dots + u^{i+1}, G(t,u)) \cdot \frac{1}{1 - tuG(t,u)}$$

$$= 1 + tu \frac{uG(t,u) - G(t,1)}{u - 1} \frac{1}{1 - tuG(t,u)}$$

$$\updownarrow$$

$$G(t, u) = 1 + tuG(t, u)^{2} + tu\frac{G(t, u) - G(t, 1)}{u - 1}$$

Same equation as for bipartite maps!

Let $b_{n,i} = \#($ bipartite maps with n edges and outer degree 2i)Let $G(t,u) := \sum_{n,i} b_{n,i} t^n u^i$

$$G(t,u) = 1 + tuG(t,u)^2 + t \operatorname{subs}(u^i = u + \dots + u^i, G(t,u))$$

$$G(t,u) = 1 + tuG(t,u)^{2} + tu\frac{G(t,u) - G(t,1)}{u-1}$$

• Canopy of a binary tree: word giving the types of the leaves read left to right effect of a right rotation on the canopy: nothing or switches a 0 to a 1 $B \neq leaf$

Canopy of a binary tree: word giving the types of the leaves read left to right effect of a right rotation on the canopy: nothing or switches a 0 to a 1 $B \neq leaf$ B = leaf

Hence, for $t \leq t'$, we have $Canopy(t) \leq Canopy(t')$

Canopy of a binary tree: word giving the types of the leaves read left to right effect of a right rotation on the canopy: nothing or switches a 0 to a 1 $B \neq leaf$ B = leaf

Hence, for $t \leq t'$, we have $Canopy(t) \leq Canopy(t')$

canopy-word =
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

weight $= x^{\#{[0]}} y^{\#{[1]}} z^{\#{[1]}}$

weight $=x^2y^3z^5$

Generating functions by canopy triples

• Let F(x,y,z):= series of Tamari intervals, with $x^{\#{0 \brack 0}}y^{\#{1 \brack 1}}z^{\#{1 \brack 1}}$

$$F(x,y,z) = 1 + (x + y + z) + (x^2 + y^2 + z^2 + 3xy + 3yz + 4xz)$$
$$x^3 + y^3 + z^3 + 6x^2y + 6xy^2 + 10x^2z + 10xz^2 + 6y^2z + 6yz^2 + 21xyz$$

only symmetry $x \leftrightarrow z$ (cf mirror-symmetry)

Generating functions by canopy triples

• Let F(x,y,z):= series of Tamari intervals, with $x^{\#{0 \brack 0}}y^{\#{1 \brack 1}}z^{\#{1 \brack 1}}$

$$F(x,y,z) = 1 + (x + y + z) + (x^2 + y^2 + z^2 + 3xy + 3yz + 4xz)$$

$$x^3 + y^3 + z^3 + 6x^2y + 6xy^2 + 10x^2z + 10xz^2 + 6y^2z + 6yz^2 + 21xyz$$
 only symmetry $x \leftrightarrow z$ (cf mirror-symmetry)

Rk: F(x,0,z) is the series for intervals where both canopies are equal, counts non-separable maps by vertices and faces [Fang, Préville-Ratelle'16]

Generating functions by canopy triples

• Let F(x,y,z):= series of Tamari intervals, with $x^{\#{0 \brack 0}}y^{\#{1 \brack 1}}z^{\#{1 \brack 1}}$

$$F(x,y,z) = 1 + (x + y + z) + (x^2 + y^2 + z^2 + 3xy + 3yz + 4xz)$$

$$x^3 + y^3 + z^3 + 6x^2y + 6xy^2 + 10x^2z + 10xz^2 + 6y^2z + 6yz^2 + 21xyz$$
 only symmetry $x \leftrightarrow z$ (cf mirror-symmetry)

Rk: F(x,0,z) is the series for intervals where both canopies are equal, counts non-separable maps by vertices and faces [Fang, Préville-Ratelle'16]

• Let G(x, y, z) := series restricted to new Tamari intervals

$$\frac{1}{y}G(x,y,z) = 1 + (x+y+z) + (x^2+y^2+z^2+3xy+3xz+3yz) + (x^3+y^3+z^3+6x^2y+6xy^2+6x^2z+6xz^2+6y^2z+6yz^2+17xyz) + \cdots$$

symmetry in the 3 variables!

Equidistributed triple for bipartite maps

Let M(x, y, z) be the series of bipartite maps

$$x^{\#ullet} y^{\# \circ} z^{\# \text{ faces}}$$

symmetric in x, y, z,

3-colored triangulation

Equidistributed triple for bipartite maps

Let M(x, y, z) be the series of bipartite maps $x^{\# \bullet} y^{\# \circ} z^{\# \text{ faces}}$

symmetric in x, y, z,

3-colored triangulation

$$\frac{1}{xyz}M(x,y,z) = 1 + (x+y+z) + (x^2+y^2+z^2+3xy+3xz+3yz) + (x^3+y^3+z^3+6x^2y+6xy^2+6x^2z+6xz^2+6y^2z+6y^2z+6yz^2+17xyz) + \cdots$$

coincides with the series for new intervals!

Equidistributed triple for bipartite maps

Let M(x, y, z) be the series of bipartite maps

$$x^{\# \bullet} y^{\# \circ} z^{\# \text{ faces}}$$

symmetric in x, y, z,

3-colored triangulation

$$\frac{1}{xyz}M(x,y,z) = 1 + (x+y+z) + (x^2+y^2+z^2+3xy+3xz+3yz) \\ + (x^3+y^3+z^3+6x^2y+6xy^2+6x^2z+6xz^2+6y^2z+6yz^2+17xyz) + \cdots$$
 coincides with the series for new intervals!

• Symmetric parametrized expression (from bijection with some trees)

$$M = U_1 U_2 U_3 (1 - U_1 - U_2 - U_3)$$
 with
$$\begin{cases} U_1 = x + U_1 U_3 + U_2 U_1 \\ U_2 = y + U_1 U_2 + U_2 U_3 \\ U_3 = z + U_2 U_3 + U_1 U_3 \end{cases}$$

[Bousquet-Mélou, Schaeffer'02] [Bouttier, Di Francesco, Guitter'02]

On Dyck paths,
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 \longrightarrow $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ \longrightarrow $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ \longrightarrow Interval is either or \longrightarrow reduction \longrightarrow reduction

Let
$$L \equiv L(x,y,z;u)$$
 the series, with $x^{\#}$ $y^{\#}$ $z^{\#}$ $u^{\# \text{contacts }-2}$ $L_1:=L$

$$L = x + yu\frac{L}{1 - uL} + zu\frac{L - L_1}{u - 1}\frac{1}{1 - uL}$$

Let $M \equiv M(x, y, z; u)$ be the series of bipartite maps,

with
$$x^{\# \bullet} y^{\# \circ} z^{\# \operatorname{faces} -1} u^{\frac{1}{2} \operatorname{outer-degree}}$$

$$M_1 := M \big|_{u=1}$$

$$M = x + y \frac{uM}{1 - uM} + zu \frac{M - M_1}{u - 1} \frac{1}{1 - uM}$$

Same equation as for L, hence L=M (recursive bijection)

and
$$zL_1 = zM_1 = zx + U_1U_2U_3(1 - U_1 - U_2 - U_3)$$

with
$$\begin{cases} U_1 = x + U_1U_3 + U_2U_1 \\ U_2 = y + U_1U_2 + U_2U_3 \\ U_3 = z + U_2U_3 + U_1U_3 \end{cases}$$