A master bijection for planar maps and its applications

Éric Fusy (CNRS/LIX)

Joint work with Olivier Bernardi (MIT)

Planar graphs. Definition

A planar graph is a graph that can be drawn in \mathbb{R}^2 without edge-crossing

 K_4 is planar

 K_5 is not planar

Planar graphs. Definition

A planar graph is a graph that can be drawn in \mathbb{R}^2 without edge-crossing

 K_4 is planar

 K_5 is not planar

Rk: Can be drawn in $\mathbb{R}^2 \Leftrightarrow$ can be drawn in \mathbb{S}^2

Planar graphs. Definition

A planar graph is a graph that can be drawn in \mathbb{R}^2 without edge-crossing

 K_4 is planar

 K_5 is not planar

Rk: Can be drawn in $\mathbb{R}^2 \Leftrightarrow$ can be drawn in \mathbb{S}^2

• A planar map is a connected planar graph drawn in the sphere considered up to continuous deformation.

• A planar map is a connected planar graph drawn in the sphere considered up to continuous deformation.

- (i) A map has vertices and edges (like a graph), and also faces
- (ii) Encoded by cyclic order of neighbours around each vertex

• A planar map is a connected planar graph drawn in the sphere considered up to continuous deformation.

- (i) A map has vertices and edges (like a graph), and also faces
- (ii) Encoded by cyclic order of neighbours around each vertex
 - A plane map is a connected planar graph drawn in the plane considered up to continuous deformation.

• A planar map is a connected planar graph drawn in the sphere considered up to continuous deformation.

- (i) A map has vertices and edges (like a graph), and also faces
- (ii) Encoded by cyclic order of neighbours around each vertex

• A plane map is a connected planar graph drawn in the plane considered up to continuous deformation

Rk: Plane map = planar map with a marked face (the outer face)

The Euler relation

Let M = (V, E, F) be a planar map. Then

$$|V| - |E| + |F| = 2$$

The Euler relation

Let M = (V, E, F) be a planar map. Then

$$|V| - |E| + |F| = 2$$
 \longleftarrow $|E| = (|V| - 1) + (|F| - 1)$

The Euler relation

Let M = (V, E, F) be a planar map. Then

$$|V| - |E| + |F| = 2$$
 \longleftarrow $|E| = (|V| - 1) + (|F| - 1)$

 \Rightarrow simple planar graph G=(V,E) satisfies $|E| \leq 3|V|-6$ (hence K_5 has too many edges to be planar)

Planar maps. Motivations

Algorithmic applications: efficient encoding of meshed surfaces.

Probability and Physics: random lattices, random surfaces.

• Representation Theory: factorization problems.

Symmetry issues.

In order to identify vertices unambiguously (to avoid symmetry issues):

• Planar graphs: need to label the vertices

• Planar maps: only need to mark a corner

• Asymptotic number:

Labelled planar graphs n vertices:

$$\sim n! \ c \ n^{-7/2} \gamma^n$$
 [Giménez, Noy'05]

Rooted planar maps n edges

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

• Asymptotic number:

Labelled planar graphs n vertices:

$$\sim n! \ c \ n^{-7/2} \gamma^n$$
 [Giménez, Noy'05]

Rooted planar maps n edges

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

Rk: In both cases, number of rooted labelled objects is $\sim n!cn^{-5/2}\gamma^n$

Asymptotic number:

Labelled planar graphs n vertices:

Rooted planar maps
$$n$$
 edges

$$\sim n! \ c \ n^{-7/2} \gamma^n \ \left[\text{Giménez,Noy'05} \right]$$

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

Rk: In both cases, number of rooted labelled objects is $\sim n!cn^{-5/2}\gamma^n$

Random planar graph/map of size n (for n large):

Asymptotic number:

Labelled planar graphs n vertices:

Rooted planar maps n edges

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

Rk: In both cases, number of rooted labelled objects is $\sim n!cn^{-5/2}\gamma^n$

- Random planar graph/map of size n (for n large):
 - Local parameters: $\mu \cdot n + \sigma \sqrt{n} \cdot X$

gaussian fluctuations

• Asymptotic number:

Labelled planar graphs n vertices:

$$\sim n! \ c \ n^{-7/2} \gamma^n$$
 [Giménez, Noy'05]

Rooted planar maps n edges

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

Rk: In both cases, number of rooted labelled objects is $\sim n!cn^{-5/2}\gamma^n$

- Random planar graph/map of size n (for n large):
 - Local parameters: $\mu \cdot n + \sigma \sqrt{n} \cdot X$

gaussian fluctuations

- Maximum vertex-degree: scale is log(n) [Gao Wormald] [Mac Diarmid, Reed] [Drmota et al'2011]

Asymptotic number:

Labelled planar graphs n vertices:

$$\sim n! \ c \ n^{-7/2} \gamma^n$$
 [Giménez, Noy'05]

Rooted planar maps n edges

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

Rk: In both cases, number of rooted labelled objects is $\sim n!cn^{-5/2}\gamma^n$

- Random planar graph/map of size n (for n large):
 - Local parameters: $\mu \cdot n + \sigma \sqrt{n} \cdot X$

gaussian fluctuations

- Maximum vertex-degree: scale is log(n) [Gao Wormald] [Mac Diarmid, Reed] [Drmota et al'2011]
- Diameter: scale is $n^{1/4}$ [Chassaing, Schaeffer'04], [Le Gall'11], [Miermont'11] [Chapuy el al'10]

• Asymptotic number:

Labelled planar graphs n vertices:

$$\sim n! \ c \ n^{-7/2} \gamma^n$$
 [Giménez, Noy'05]

Rooted planar maps n edges

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

Rk: In both cases, number of rooted labelled objects is $\sim n!cn^{-5/2}\gamma^n$

- Random planar graph/map of size n (for n large):
 - Local parameters: $\mu \cdot n + \sigma \sqrt{n} \cdot X$

gaussian fluctuations

- Maximum vertex-degree: scale is log(n) [Gao Wormald] [Mac Diarmid, Reed] [Drmota et al'2011]
- Diameter: scale is $n^{1/4}$ [Chassaing, Schaeffer'04], [Le Gall'11], [Miermont'11] [Chapuy el al'10]
- Why do they have same behaviour?

Asymptotic number:

Labelled planar graphs n vertices:

Rooted planar maps
$$n$$
 edges

$$\sim n! \ c \ n^{-7/2} \gamma^n \ \left[\text{Giménez,Noy'05} \right]$$

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

Rk: In both cases, number of rooted labelled objects is $\sim n!cn^{-5/2}\gamma^n$

- Random planar graph/map of size n (for n large):
 - Local parameters: $\mu \cdot n + \sigma \sqrt{n} \cdot X$

gaussian fluctuations

- Maximum vertex-degree: scale is log(n)[Gao Wormald] [Mac Diarmid, Reed] [Drmota et al'2011]
- **Diameter**: scale is $n^{1/4}$ [Chassaing, Schaeffer'04], [Le Gall'11], [Miermont'11] [Chapuy el al'10]
- Why do they have same behaviour? [Giménez, Noy, Rué'10]

Random planar graph \sim random (3-connected) planar map of size $\Theta(n)$ + little pieces attached into it

Asymptotic number:

Labelled planar graphs n vertices:

Rooted planar maps n edges

$$\sim n! c n^{-7/2} \gamma^n$$
 [Giménez, Noy'05]

$$\sim c n^{-5/2} \gamma^n$$
 [Tutte'63]

Rk: In both cases, number of rooted labelled objects is $\sim n!cn^{-5/2}\gamma^n$

- Random planar graph/map of size n (for n large):
 - Local parameters: $\mu \cdot n + \sigma \sqrt{n} \cdot X$

gaussian fluctuations

- Maximum vertex-degree: scale is log(n)[Gao Wormald] [Mac Diarmid, Reed] [Drmota et al'2011]
- **Diameter**: scale is $n^{1/4}$ [Chassaing, Schaeffer'04], [Le Gall'11], [Miermont'11] [Chapuy el al'10]
- Why do they have same behaviour? [Giménez, Noy, Rué'10]

Random planar graph \sim random (3-connected) planar map of size $\Theta(n)$ + little pieces attached into it

- Planar maps:
 - simpler enumeration formulas
 - can control distance parameters
 - bijections!

The girth of a graph is the length of a shortest cycle within the graph

The girth of a graph is the length of a shortest cycle within the graph

The girth of a graph is the length of a shortest cycle within the graph

Rk: If girth = d then all faces have **degree at least** d

The girth of a graph is the length of a shortest cycle within the graph

Rk: If girth = d then all faces have **degree at least** d

 $\begin{array}{l} \mathsf{Loopless} \Leftrightarrow \mathsf{girth} \geq 2 \\ \mathsf{Simple} \Leftrightarrow \mathsf{girth} \geq 3 \\ \mathsf{Triangle-free} \Leftrightarrow \mathsf{girth} \geq 4 \end{array}$

The girth of a graph is the length of a shortest cycle within the graph

Rk: If girth = d then all faces have **degree at least** d

 $\begin{array}{l} \mathsf{Loopless} \Leftrightarrow \mathsf{girth} \geq 2 \\ \mathsf{Simple} \Leftrightarrow \mathsf{girth} \geq 3 \\ \mathsf{Triangle-free} \Leftrightarrow \mathsf{girth} \geq 4 \end{array}$

Many natural map families are specified by constraints on the **girth** and on the **face-degrees** (loopless triangulations, simple quadrangulations,...)

Planar maps. Exact counting results

• Triangulations (2n faces)

Loopless:
$$\frac{2^n}{(n+1)(2n+1)} {3n \choose n}$$

Simple:
$$\frac{1}{n(2n-1)} {4n-2 \choose n-1}$$

• Quadrangulations (n faces)

General:
$$\frac{2 \cdot 3^n}{(n+1)(n+2)} {2n \choose n}$$

Simple:
$$\frac{2}{n(n+1)} {3n \choose n-1}$$

• Bipartite maps (n_i faces of degree 2i)

$$\frac{2 \cdot (\sum i \, n_i)!}{(2 + \sum (i-1)n_i)!} \prod_i \frac{1}{n_i!} {2i-1 \choose i}^{n_i}$$

Planar maps. Counting methods

- Generating functions [Tutte 63]
 Recursive description of maps → recurrences.
- Matrix Integrals ['t Hooft 74, Brézin et al'78] Feynmann Diagram \approx maps.

Outline

1. Master bijection between a class of oriented maps and a class of bicolored decorated trees (which are called mobiles).

2. **Specializations** to classes of maps (via canonical orientations).

From oriented maps to mobiles

Label the vertices by the distance from pointed vertex

Construct the labelled mobile

Construct the labelled mobile

(i) put one black vertex in each face

Construct the labelled mobile

- (i) put one black vertex in each face
- (ii) each edge of the map gives one edge in the mobile

Let G = (V, E, F) be a pointed bipartite map

Let T be the associated mobile

Let G = (V, E, F) be a pointed bipartite map

Let T be the associated mobile

Proof that the mobile is a tree

Let G = (V, E, F) be a pointed bipartite map

Let T be the associated mobile

T has |E| edges, and has |V|+|F|-1=|E|+1 vertices (Euler relation)

Assume that T has a cycle C

Let G = (V, E, F) be a pointed bipartite map

Let T be the associated mobile

Let G = (V, E, F) be a pointed bipartite map

Let T be the associated mobile

Let G = (V, E, F) be a pointed bipartite map

Let T be the associated mobile

Let G = (V, E, F) be a pointed bipartite map

Let T be the associated mobile

T has |E| edges, and has |V|+|F|-1=|E|+1 vertices (Euler relation)

Assume that T has a cycle C

smallest label on C

Theorem: The mapping is a bijection. Each face of degree 2i of the bipartite map corresponds to a black vertex of degree i in the mobile

Theorem: The mapping is a bijection. Each face of degree 2i of the bipartite map corresponds to a black vertex of degree i in the mobile

rooted bipartite maps

rooted bipartite maps with
$$n_i$$
 faces of degree $2i$ is
$$\frac{2 \cdot (\sum i \, n_i)!}{(2 + \sum (i-1)n_i)!} \prod_i \frac{1}{n_i!} {2i-1 \choose i}^{n_i}$$

Reformulation with orientations. Distance labelling Geodesic orientation Local Local (rule rule $\delta = i - j$ $_{\rm buds}^{\delta+1}$

Reformulation with orientations.

Theorem: The mapping is a bijection. Each face of degree 2i of the bipartite map corresponds to a black vertex of degree 2i in the mobile

Reformulation with orientations. **Condition:** At each black vertex, Local as many buds as

Theorem: The mapping is a bijection. Each face of degree 2i of the bipartite map corresponds to a black vertex of degree 2i in the mobile

rule

white neighbours

Source-orientations

A source-orientation is an orientation of a pointed map such that

- The pointed vertex (called the source) has only outgoing edges
- Accessibility: Each vertex can be reached from the source

d-gonal source-orientations

We allow the source of the orientation to be a d-gon, with $d \geq 0$ Example for d=3

d-gonal source-orientations

We allow the source of the orientation to be a d-gon, with $d \geq 0$

Example for d=3

d-gonal source-orientations

We allow the source of the orientation to be a d-gon, with $d \ge 0$

Example for d=3

Let \mathcal{O}_d be the set of d-gonal source-orientations with no ccw circuit Let $\mathcal{O} = \cup_{d>0} \mathcal{O}_d$

Mobiles

A mobile is a plane tree with vertices properly colored in black and white, together with buds (half-edges) incident to black vertices.

The excess is the number of buds minus the number of edges.

Mobiles

A mobile is a plane tree with vertices properly colored in black and white, together with buds (half-edges) incident to black vertices.

The excess is the number of buds minus the number of edges.

Let \mathcal{M} be the set of mobiles of nonnegative excess

Theorem [Bernardi-F'10]: Φ is a **bijection** between \mathcal{O} and \mathcal{M} . Moreover,

degree of external face \longleftrightarrow excess degree of internal faces \longleftrightarrow degree of black vertices indegree of internal vertices \longleftrightarrow degree of white vertices

Theorem [Bernardi-F'10]: Φ is a **bijection** between \mathcal{O} and \mathcal{M} . Moreover,

degree of external face \longleftrightarrow excess degree of internal faces \longleftrightarrow degree of black vertices indegree of internal vertices \longleftrightarrow degree of white vertices

cf [Bernardi'07], [Bernardi-Chapuy'10]

Using the master bijection for map enumeration

Main new results

The Master bijection between \mathcal{O} (orientations) and \mathcal{M} (mobiles)

allows to count maps by girth & face-degrees (via canonical orientations).

Scheme for the strategy

- (1) Map family \mathcal{C} identifies with a **subfamily** $\mathcal{O}_{\mathcal{C}}$ of \mathcal{O} with conditions on:
- Face degrees
- Vertex indegrees

Scheme for the strategy

- (1) Map family $\mathcal C$ identifies with a **subfamily** $\mathcal O_{\mathcal C}$ of $\mathcal O$ with conditions on:
- Face degrees
- Vertex indegrees

Example: C = Family of simple triangulations

 $\mathcal{C} \simeq \mathsf{subfamily} \; \mathcal{O}_C \; \mathsf{of} \; \mathcal{O} \; \mathsf{with}$

- Face-degree = 3
- Vertex-indegree = 3

Scheme for the strategy

- (1) Map family $\mathcal C$ identifies with a **subfamily** $\mathcal O_{\mathcal C}$ of $\mathcal O$ with conditions on:
- Face degrees
- Vertex indegrees

Example: C = Family of simple triangulations

(2) **Specialize** the master bijection to the subfamily \mathcal{O}_C

degree of internal faces \longleftrightarrow degree of black vertices indegree of internal vertices \longleftrightarrow degree of white vertices

α -orientations

Let G=(V,E) be a graph Let α be a function from V to $\mathbb N$

α -orientations

Let G=(V,E) be a graph Let α be a function from V to $\mathbb N$

Def: An α -orientation is an orientation of G where for each $v \in V$ indegree $(v) = \alpha(v)$

α -orientations

Let G=(V,E) be a graph Let α be a function from V to $\mathbb N$

Def: An α -orientation is an orientation of G where for each $v \in V$ indegree $(v) = \alpha(v)$

• If an α -orientation exists, then

(i)
$$\sum_{v \in V} \alpha(v) = |E|$$

(ii) $\forall S \subseteq V, \ \sum_{v \in S} \alpha(v) \ge |E_S|$

(ii)
$$\forall S \subseteq V, \sum_{v \in S} \alpha(v) \ge |E_S|$$

• If an α -orientation exists, then

(i)
$$\sum_{v \in V} \alpha(v) = |E|$$

(i)
$$\sum_{v \in V} \alpha(v) = |E|$$

(ii) $\forall S \subseteq V, \ \sum_{v \in S} \alpha(v) \ge |E_S|$

• If the α -orientation is accessible from a vertex $u \in V$ then

(iii)
$$\sum_{v \in S} \alpha(v) > |E_S|$$
 whenever $u \notin S$ and $S \neq \emptyset$

• If an α -orientation exists, then

(i)
$$\sum_{v \in V} \alpha(v) = |E|$$

(i)
$$\sum_{v \in V} \alpha(v) = |E|$$

(ii) $\forall S \subseteq V, \ \sum_{v \in S} \alpha(v) \ge |E_S|$

• If the α -orientation is accessible from a vertex $u \in V$ then

(iii)
$$\sum_{v \in S} \alpha(v) > |E_S|$$
 whenever $u \notin S$ and $S \neq \emptyset$

Lemma (folklore): The conditions are necessary **and sufficient**

• If an α -orientation exists, then

(i)
$$\sum_{v \in V} \alpha(v) = |E|$$

(i)
$$\sum_{v \in V} \alpha(v) = |E|$$

(ii) $\forall S \subseteq V, \ \sum_{v \in S} \alpha(v) \ge |E_S|$

• If the α -orientation is accessible from a vertex $u \in V$ then

(iii)
$$\sum_{v \in S} \alpha(v) > |E_S|$$
 whenever $u \notin S$ and $S \neq \emptyset$

Lemma (folklore): The conditions are necessary and sufficient

 \Rightarrow accessibility from $u \in V$ just depends on lpha (not on which lpha-orientation)

Fundamental lemma: If a plane map admits an α -orientation, then it admits a unique α -orientation without ccw circuit, called minimal

Fundamental lemma: If a plane map admits an α -orientation, then it admits a unique α -orientation without ccw circuit, called minimal

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 disagree form an eulerian suborientation of $O_1 \Rightarrow$ contains a circuit (ccw in O_1 or O_2)

Fundamental lemma: If a plane map admits an α -orientation, then it admits a unique α -orientation without ccw circuit, called minimal

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 disagree form an eulerian suborientation of $O_1 \Rightarrow$ contains a circuit (ccw in O_1 or O_2)

Set of α -orientations = **distributive lattice** [Khueller et al'93], [Propp'93], [O. de Mendez'94], [Felsner'03]

Fundamental lemma: If a plane map admits an α -orientation, then it admits a unique α -orientation without ccw circuit, called minimal

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 disagree form an eulerian suborientation of $O_1 \Rightarrow$ contains a circuit (ccw in O_1 or O_2)

Set of α -orientations = **distributive lattice** [Khueller et al'93], [Propp'93], [O. de Mendez'94], [Felsner'03]

α -orientations for plane maps in our setting

- External polygon (the source) of the plane map is unoriented
- Indegrees are only on the internal vertices

α -orientations for plane maps in our setting

- External polygon (the source) of the plane map is unoriented
- Indegrees are only on the internal vertices

Partition V (vertex-set) as $V_i \cup V_e$ and E (edge-set) as $E_i \cup E_e$

• Existence:
$$| \text{(i) } \sum_{v \in V_i} \alpha(v) = |E_i|$$

$$| \text{(ii) } \forall S \subseteq V, \qquad \sum \alpha(v) \geq |E_S \cap E_i|$$

 $v \in S \cap V_i$

- Accessibility from outer face: (iii) $\forall S \subseteq V_i, \sum_{v \in S \cap V_i} \alpha(v) > |E_S \cap E_i|$
- **Distributive lattice** structure

Example: simple triangulations

Fact: A triangulation with n internal vertices has 3n internal edges.

Proof: The numbers v, e, f of vertices edges and faces satisfy:

- Incidence relation: 3f = 2e.
- Euler relation: v e + f = 2.

Fact: A triangulation with n internal vertices has 3n internal edges.

Natural candidate for indegree function:

 $\alpha: v \mapsto 3$ for each internal vertex v.

call 3-orientation such an α -orientation

Fact: A triangulation admitting a 3-orientation is simple

k internal vertices 3k+1 internal edges

Thm [Schnyder 89]: A simple triangulation admits a 3-orientation.

New (easier) proof: Any simple planar graph G=(V,E) satisfies |E|=3

$$\frac{|E| - 3}{|V| - 3} \ge 3 \qquad \text{(Euler relation)}$$

hence the existence/accessibility conditions are satisfied.

 \Rightarrow The class \mathcal{T} of simple triangulations is identified with the class of plane orientation $\mathcal{O}_{\mathcal{T}} \subset \mathcal{O}$ with faces of degree 3, and internal vertices of indegree 3.

Thm [recovering FuPoSc08]: By specializing the master bijection Φ to $\mathcal{O}_{\mathcal{T}}$ one obtains a bijection between simple triangulations and mobiles such that \bullet black vertices have degree 3

- white vertices have degree 3
- the excess is +3 (redundant).

Counting: The generating function of mobiles with vertices of degree 3 rooted on a white corner is $T(x) = U(x)^3$, where $U(x) = 1 + xU(x)^4$.

Consequently, the number of (rooted) simple triangulations with 2n faces is $\frac{1}{n(2n-1)} {4n-2 \choose n-1}$.

Triangulations: two constructions

mobiles

[FuPoSc'08], [Bernardi-F'10]

blossoming trees [PoSc'03], [AIPo'11]

More specializations d-angulations of girth d.

Fact: A d-angulation with (d-2)n internal vertices has dn internal edges.

Fact: A d-angulation with (d-2)n internal vertices has dn internal edges.

Natural candidate for indegree function:

$$\alpha: v \mapsto \frac{d}{d-2}$$
 for each internal vertex v ...

Fact: A d-angulation with (d-2)n internal vertices has dn internal edges.

Idea: We can look for an orientation of (d-2)G with indegree function $\alpha: v \mapsto d$ for each internal vertex v.

Fact: A d-angulation with (d-2)n internal vertices has dn internal edges.

Idea: We can look for an orientation of (d-2)G with indegree function $\alpha: v \mapsto d$ for each internal vertex v.

call d/(d-2)-orientation such an orientation

Thm [Bernardi-F'10]: Let G be a d-angulation. Then (d-2)G admits a d/(d-2)- orientation if and only if G has girth d.

Thm [Bernardi-F'10]: Let G be a d-angulation. Then (d-2)G admits a d/(d-2)- orientation if and only if G has girth d.

Proof: Similar to d=3. Uses the fact that a planar graph G = (V, E) of girth at least d satisfies $\frac{|E| - d}{|V| - d} \ge d$

d=5

Master bijection for weighted orientations

There are now white-white edges in the mobile, with two positive weights summing to d-2.

Master bijection for weighted orientations

Theorem [Bernardi-F'10]: The master bijection can be expressed in the weighted setting:

Moreover,

degree of internal faces \longleftrightarrow degree of black faces indegree of internal vertices \longleftrightarrow indegree of white vertices weights of internal edges \longleftrightarrow weights of edges degree of external face \longleftrightarrow excess

Thm [Bernardi-F'10]: A d-angulation G admits a d/(d-2)-orientation if and only if G has girth d.

 \Rightarrow The class \mathcal{T}_d of d-angulations of girth d can be identified with the class of weighted orientations in \mathcal{O} , with faces of degree d, edges of weight d-2, and internal vertices of indegree d.

Thm [Bernardi-F'10]: A d-angulation G admits a d/(d-2)-orientation if and only if G has girth d.

Thm [Bernardi-F'10]: By specializing the master bijection one obtains a bijection between d-angulations of girth d and mobiles (with white-white edges having weights summing to d-2) such that

- black vertices have degree d
- white vertices have indegree d
- \bullet the excess is d (redundant).

d-angulations of girth d: counting

Thm[Bernardi-F'10]: Let W_0,W_1,\ldots,W_{d-2} be the power series in x defined by: $W_{d-2}=x(1+W_0)^{d-1}$ and $\forall j< d-2, \quad W_j=\sum_r \sum_{i_1,\ldots,i_r>0} W_{i_1}\cdots W_{i_r}$.

The generating function F_d of rooted d-angulations of girth d satisfies

$$F'_d(x) = (1 + W_0)^d.$$

d-angulations of girth d: counting

Thm[Bernardi-F'10]: Let $W_0, W_1, \ldots, W_{d-2}$ be the power series in x defined by: $W_{d-2} = x(1+W_0)^{d-1}$ and $\forall j < d-2, \quad W_j = \sum_{\substack{i_1, \ldots, i_r > 0 \\ i_1 + \cdots + i_r = j+2}} W_{i_1} \cdots W_{i_r}$.

The generating function F_d of rooted d-angulations of girth d satisfies

$$F'_d(x) = (1 + W_0)^d.$$

Example d=5:

$$W_{3} = x(1 + W_{0})^{4}$$

$$W_{0} = W_{1}^{2} + W_{2}$$

$$W_{1} = W_{1}^{3} + 2W_{1}W_{2} + W_{3}$$

$$W_{2} = W_{1}^{4} + 3W_{1}^{2}W_{2} + 2W_{1}W_{3} + W_{2}^{2}$$

Simplification in the bipartite case

- ullet For d even, d=2b, we have $\dfrac{d}{d-2}=\dfrac{b}{b-1}$
- Can work with b/(b-1)-orientations:
 - edges have weight b-1
 - vertices have indegree \boldsymbol{b}

Example: b = 2, simple quadrangulations

recover a bijection of Schaeffer (1999)

More specializations Maps of girth d.

Case b = 2 (simple bipartite maps), with quadrangular outer face

Insert a star in each internal face

Case b = 2 (simple bipartite maps), with quadrangular outer face

Generalized 2-orientation

- Each internal white vertex has indegree 2
- ullet Each black vertex of degree 2i has outdegree i-2

Case b = 2 (simple bipartite maps), with quadrangular outer face

Generalized 2-orientation

- Each internal white vertex has indegree 2
- ullet Each black vertex of degree 2i has outdegree i-2

Case b = 2 (simple bipartite maps), with quadrangular outer face

Generalized 2-orientation

- Each internal white vertex has indegree 2
- ullet Each black vertex of degree 2i has outdegree i-2

Case b = 2 (simple bipartite maps), with quadrangular outer face

White vertices either have:

- indegree 2 (middle of red edge)
- indegree 1 (end of leg)

Each black vertex of degree 2i has i-2 legs

Closed formulas

Prop [Bernardi-F'11]: The number of rooted simple bipartite maps with n_i faces of degree 2i is

$$2\frac{(\sum(i+1) n_i - 3)!}{(\sum i n_i - 1)!} \prod_{i>2} \frac{1}{n_i!} {2i-1 \choose i+1}^{n_i}$$

This can be compared with the formula obtained by Tutte (62) (recovered bijectively by Schaeffer) for unconstrained rooted bipartite maps:

$$2\frac{(\sum i \, n_i)!}{(\sum (i-1)n_i + 2)!} \prod_{i>1} \frac{1}{n_i!} {2i-1 \choose i}^{n_i}$$

Shape of the mobile in higher (bipartite) girth

- Each black vertex of degree 2i has i-b legs
- There are connectors between the black vertices

a connector for b=4

Connectors, for b=1: •0 0 0 b=2: •0 10 b=3: binary trees

Thanks.

On the ArXiv:

- A bijection for triangulations, quadrangulations, pentagulations, etc.
- Bijective counting of maps by girth and degree.