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• A planar map is a connected planar graph drawn in the sphere
considered up to continuous deformation.

Planar maps and plane maps. Definition

= 6=

• A plane map is a connected planar graph drawn in the plane
considered up to continuous deformation.

= 6=

(i) A map has vertices and edges (like a graph), and also faces
(ii) Encoded by cyclic order of neighbours around each vertex

Rk: Plane map = planar map with a marked face (the outer face)
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The Euler relation

Let M = (V,E, F ) be a planar map. Then

|V | − |E|+ |F | = 2 |E| = (|V | − 1) + (|F | − 1)⇐

⇒ simple planar graph G = (V,E) satisfies |E| ≤ 3|V | − 6

(hence K5 has too many edges to be planar)



• Algorithmic applications: efficient encoding of meshed surfaces.

• Probability and Physics: random lattices, random surfaces.

Appears courtesy to Wikipedia

Appears courtesy to G. Chapuy

Planar maps. Motivations

• Representation Theory: factorization problems.



Symmetry issues.

In order to identify vertices unambiguously (to avoid symmetry issues):

• Planar graphs: need to label the vertices

• Planar maps: only need to mark a corner
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A labelled planar graph

A rooted planar map
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[Giménez,Noy’05] [Tutte’63]

Rk: In both cases, number of rooted labelled objects is ∼ n!cn−5/2γn

gaussian fluctuations

[Chassaing, Schaeffer’04], [Le Gall’11], [Miermont’11] [Chapuy el al’10]

[Mac Diarmid, Reed]



Asymptotic behaviour of planar maps/graphs
• Asymptotic number:

∼ n! c n−7/2γn
Labelled planar graphs n vertices: Rooted planar maps n edges

∼ c n−5/2γn

• Random planar graph/map of size n (for n large):
- Local parameters: µ · n+ σ

√
n ·X

- Maximum vertex-degree: scale is log(n)

- Diameter: scale is n1/4
[Gao Wormald] [Drmota et al’2011]
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Asymptotic behaviour of planar maps/graphs
• Asymptotic number:

∼ n! c n−7/2γn
Labelled planar graphs n vertices: Rooted planar maps n edges

∼ c n−5/2γn

• Random planar graph/map of size n (for n large):
- Local parameters: µ · n+ σ

√
n ·X

- Maximum vertex-degree: scale is log(n)

- Diameter: scale is n1/4

• Planar maps:
- simpler enumeration formulas
- can control distance parameters
- bijections!

[Gao Wormald] [Drmota et al’2011]
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The girth parameter

The girth of a graph is the length of a shortest cycle within the graph

Girth = 3

Rk: If girth = d then all faces have degree at least d

Loopless ⇔ girth ≥ 2
Simple ⇔ girth ≥ 3
Triangle-free ⇔ girth ≥ 4

Many natural map families are specified by constraints on the girth and
on the face-degrees (loopless triangulations, simple quadrangulations,...)



• Triangulations (2n faces)

• Quadrangulations (n faces)

• Bipartite maps (ni faces of degree 2i)

Loopless:
2n

(n+ 1)(2n+ 1)

(3n
n

)
Simple:

1

n(2n− 1)

(4n− 2

n− 1

)

General:
2 · 3n

(n+ 1)(n+ 2)

(2n
n

)
Simple:

2

n(n+ 1)

( 3n

n− 1

)

2 · (
∑

i ni)!

(2 +
∑

(i− 1)ni)!

∏
i

1

ni!

(2i− 1

i

)ni

Planar maps. Exact counting results



• Generating functions [Tutte 63]
Recursive description of maps  recurrences.

• Matrix Integrals [’t Hooft 74, Brézin et al’78]
Feynmann Diagram ≈ maps.

• Bijections [Cori-Vauquelin 81, Schaeffer 98]
Maps  decorated trees.

Planar maps. Counting methods



Outline

1. Master bijection between a class of oriented maps and a class
of bicolored decorated trees (which are called mobiles).

2. Specializations to classes of maps (via canonical orientations).

Degree of the faces

Girth

1

2

3

4

1 2 3 4 5 6

[FuPoSc08]

[Sc98]

[Sc98,BoDiGu04]

[PoSc02]

7 8



From oriented maps to mobiles
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Label the vertices
by the distance
from pointed vertex
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Construct the
labelled mobile

(i) put one black
vertex in each face
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Pointed bipartite map → labelled mobile. [Sc98] [BoDiGu04]

Construct the
labelled mobile

(i) put one black
vertex in each face

(ii) each edge of
the map gives one
edge in the mobile

i−1 i

2 3

3

3

4

4



Pointed bipartite map → labelled mobile. [Sc98] [BoDiGu04]

Proof that the mobile is a tree

Let G = (V,E, F ) be a pointed bipartite map
Let T be the associated mobile
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Local
rule
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Pointed bipartite map → labelled mobile. [Sc98] [BoDiGu04]

Proof that the mobile is a tree

Let G = (V,E, F ) be a pointed bipartite map
Let T be the associated mobile

0

Assume that T has
a cycle C

smallest
label on C

i
i−1

label < i
contradiction
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Local
rule

T has |E| edges, and has |V |+|F |−1= |E|+1 vertices (Euler relation)
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Local
rule
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⇒ ⇒

Local
rule

Conditions:
(i) ∃ vertex label 1

(ii)
i

j

j ≤ i+1
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⇒ ⇒

Local
rule

Conditions:
(i) ∃ vertex label 1

(ii)
i

j

j ≤ i+1

Theorem: The mapping is a bijection. Each face of degree 2i of the
bipartite map corresponds to a black vertex of degree i in the mobile
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⇒ ⇒

Local
rule

Conditions:
(i) ∃ vertex label 1

(ii)
i

j

j ≤ i+1

Theorem: The mapping is a bijection. Each face of degree 2i of the
bipartite map corresponds to a black vertex of degree i in the mobile

2 · (
∑
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)ni# rooted bipartite maps
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Reformulation with orientations.
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Distance labelling Geodesic orientation

i−1Local
rule

Local
rule
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j δ = i− j
δ+1
buds
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⇒ ⇒

Condition:

Theorem: The mapping is a bijection. Each face of degree 2i of the
bipartite map corresponds to a black vertex of degree 2i in the mobile

Reformulation with orientations.

Local
rule

At each black vertex,
as many buds as
white neighbours



⇒ ⇒

Condition:

Theorem: The mapping is a bijection. Each face of degree 2i of the
bipartite map corresponds to a black vertex of degree 2i in the mobile

Reformulation with orientations.

Local
rule

2 3

3

3

4

4
At each black vertex,
as many buds as
white neighbours



Source-orientations

A source-orientation is an orientation of a pointed map such that
• The pointed vertex (called the source) has only outgoing edges
• Accessibility: Each vertex can be reached from the source



Mobile construction for source-orientations

Local
rule
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Mobile construction for source-orientations

Cycle in mobile ⇒ ccw circuit in the source-orientation

Prisoner
cycle lemma

Local
rule



d-gonal source-orientations

Example for d = 3

We allow the source of the orientation to be a d-gon, with d ≥ 0



d-gonal source-orientations

a

b

c

a

bc

Example for d = 3

⇒

We allow the source of the orientation to be a d-gon, with d ≥ 0

If d > 0, can take
d-gonal source as
outer face



d-gonal source-orientations

a

b

c

a

bc

Example for d = 3

⇒

Let Od be the set of d-gonal source-orientations with no ccw circuit

Let O = ∪d≥0Od

We allow the source of the orientation to be a d-gon, with d ≥ 0

If d > 0, can take
d-gonal source as
outer face



A mobile is a plane tree with vertices properly colored in black and
white, together with buds (half-edges) incident to black vertices.

Mobiles

The excess is the number of buds minus the number of edges.



A mobile is a plane tree with vertices properly colored in black and
white, together with buds (half-edges) incident to black vertices.

Mobiles

The excess is the number of buds minus the number of edges.

Let M be the set of mobiles of nonnegative excess
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Master bijection Φ

⇒ ⇒

Local
rules

Theorem [Bernardi-F’10]: Φ is a bijection between O and M.
Moreover,

degree of external face ←→ excess
degree of internal faces ←→ degree of black vertices
indegree of internal vertices ←→ degree of white vertices

cf [Bernardi’07], [Bernardi-Chapuy’10]



Using the master bijection
for map enumeration



Main new results

The Master bijection between O (orientations) and M (mobiles)

allows to count maps by girth & face-degrees (via canonical orientations).

Girth

2

3

4

[FuPoSc08]

[Sc98]

[PoSc02]

Degree of the faces2 3 4 5 6 7 81
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Scheme for the strategy
(1) Map family C identifies with a subfamily OC of O with conditions on:
• Face degrees
• Vertex indegrees

Example: C = Family of simple triangulations

• Face-degree = 3
• Vertex-indegree = 3

C ' subfamily OC of O with

(2) Specialize the master bijection to the subfamily OC

degree of internal faces ←→ degree of black vertices
indegree of internal vertices ←→ degree of white vertices



α-orientations

Let G = (V,E) be a graph
Let α be a function from V to N

α :

a b

c

d

e

a → 2
b → 1
c → 2
d → 0
e → 2
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c
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Def: An α-orientation is an orientation of G where for each v ∈ V
indegree(v) = α(v)



α-orientations

Let G = (V,E) be a graph
Let α be a function from V to N

α :

a b

c

d

e

a → 2
b → 1
c → 2
d → 0
e → 2

Def: An α-orientation is an orientation of G where for each v ∈ V
indegree(v) = α(v)

a b

c

d

e



α-orientations: criteria for existence and accessibility

• If an α-orientation exists, then
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∑
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v∈V α(v) = |E|
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α-orientations: criteria for existence and accessibility

• If an α-orientation exists, then

(ii) ∀S ⊆ V,
∑

v∈S α(v) ≥ |ES |
(i)
∑

v∈V α(v) = |E|

SS
• If the α-orientation is accessible from a vertex u ∈ V then∑

v∈S
α(v) > |ES | whenever u /∈ S and S 6= ∅

u

Lemma (folklore): The conditions are necessary and sufficient

⇒ accessibility from u ∈ V just depends on α (not on which α-orientation)

(iii)
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α-orientations for plane maps in our setting
• External polygon (the source) of the plane map is unoriented

• Indegrees are only on the internal vertices

a b

c
d

a → 3
b → 2
c → 2
d → 3

α : a b

c

d
An α-orientation



α-orientations for plane maps in our setting
• External polygon (the source) of the plane map is unoriented

• Indegrees are only on the internal vertices

a b

c
d

a → 3
b → 2
c → 2
d → 3

α : a b

c

d

Partition V (vertex-set) as Vi ∪ Ve and E (edge-set) as Ei ∪ Ee

• Existence:

An α-orientation

(i)
∑

v∈Vi
α(v) = |Ei|

(ii) ∀S ⊆ V,
∑

v∈S∩Vi

α(v) ≥ |ES ∩ Ei|

• Accessibility from outer face: (iii) ∀S ⊆ Vi,
∑

v∈S∩Vi

α(v) > |ES ∩ Ei|
S 6= ∅

• Distributive lattice structure



Example: simple triangulations

Degree of faces

Girth

1

2

3

4

1 2 3 4 5 6 7



Proof: The numbers v, e, f of vertices edges and faces satisfy:
• Incidence relation: 3f = 2e.
• Euler relation: v − e+ f = 2. �

Fact: A triangulation with n internal vertices has 3n internal edges.

Triangulations



Natural candidate for indegree function:
α : v 7→ 3 for each internal vertex v.

Fact: A triangulation with n internal vertices has 3n internal edges.

3

3

3

3

call 3-orientation such an α-orientation

Triangulations



Fact: A triangulation admitting a 3-orientation is simple

⇒

k internal vertices
3k + 1 internal edges

Triangulations



New (easier) proof: Any simple planar graph G = (V,E) satisfies

Thm [Schnyder 89]: A simple triangulation admits a 3-orientation.

|E| − 3

|V | − 3
≥ 3

hence the existence/accessibility conditions are satisfied.�

(Euler relation)

Triangulations



⇒ The class T of simple triangulations is identified with the class of
plane orientation OT ⊂ O with faces of degree 3, and internal vertices
of indegree 3.

Thm [recovering FuPoSc08]: By specializing the master bijection
Φ to OT one obtains a bijection between simple triangulations and
mobiles such that • black vertices have degree 3

• white vertices have degree 3
• the excess is +3 (redundant).

Fact: A triangulation admitting a 3-orientation is simple

Triangulations



Counting: The generating function of mobiles with vertices of degree 3
rooted on a white corner is T (x) = U(x)3, where U(x) = 1 + xU(x)4.

Consequently, the number of (rooted) simple triangulations with 2n

faces is
1

n(2n− 1)

(
4n− 2

n− 1

)
.

Triangulations



Triangulations: two constructions
mobiles blossoming trees

[FuPoSc’08], [Bernardi-F’10] [PoSc’03], [AlPo’11]



More specializations
d-angulations of girth d.

Degree of faces

Girth

1

2

3

4

1 2 3 4 5 6 7



d-angulations of girth d

Fact: A d-angulation with (d−2)n internal vertices has dn internal
edges.



d-angulations of girth d

Fact: A d-angulation with (d−2)n internal vertices has dn internal
edges.

Natural candidate for indegree function:

α : v 7→ d

d− 2
for each internal vertex v...



d-angulations of girth d

Idea: We can look for an orientation of (d−2)G with indegree function
α : v 7→ d for each internal vertex v.

Fact: A d-angulation with (d−2)n internal vertices has dn internal
edges.

5

5

5

5

5

5



d-angulations of girth d

Idea: We can look for an orientation of (d−2)G with indegree function
α : v 7→ d for each internal vertex v.

Fact: A d-angulation with (d−2)n internal vertices has dn internal
edges.

5

5

5

5

5

5

call d/(d− 2)-orientation such an orientation



d-angulations of girth d

Thm [Bernardi-F’10]: Let G be a d-angulation. Then (d−2)G ad-
mits a d/(d− 2)- orientation if and only if G has girth d.

2
1

2 1

2

1

2
1

d = 5



d-angulations of girth d

Thm [Bernardi-F’10]: Let G be a d-angulation. Then (d−2)G ad-
mits a d/(d− 2)- orientation if and only if G has girth d.

2
1

2 1

2

1

2
1

d = 5

|E| − d
|V | − d

≥ d
Proof: Similar to d = 3. Uses the fact that a planar graph
G = (V,E) of girth at least d satisfies



There are now white-white edges in the mobile, with two positive
weights summing to d− 2.

Master bijection for weighted orientations

2
12

1

1 2

21

2
12

1

1 2

21

2
12

1

1 2

21



Master bijection for weighted orientations

Theorem [Bernardi-F’10]:The master bijection can be expressed in
the weighted setting:

Moreover,
degree of internal faces ←→ degree of black faces
indegree of internal vertices ←→ indegree of white vertices
weights of internal edges ←→ weights of edges
degree of external face ←→ excess

2
12

1

1 2

21

2
12

1

1 2

21

2
12

1

1 2

21



d-angulations of girth d

⇒ The class Td of d-angulations of girth d can be identified with the
class of weighted orientations in O, with faces of degree d, edges of
weight d− 2, and internal vertices of indegree d.

2
1

2 1

2

1

2
1

2

1

1

2

2
1

2

1

Thm [Bernardi-F’10]: A d-angulation G admits a d/(d− 2)-
orientation if and only if G has girth d.



d-angulations of girth d

• black vertices have degree d
• white vertices have indegree d
• the excess is d (redundant).

2
1

2 1

2

1

2
1

2

1

1

2

2
1

2

1

Thm [Bernardi-F’10]: By specializing the master bijection one
obtains a bijection between d-angulations of girth d and mobiles (with
white-white edges having weights summing to d− 2) such that

Thm [Bernardi-F’10]: A d-angulation G admits a d/(d− 2)-
orientation if and only if G has girth d.



d-angulations of girth d: counting

Thm[Bernardi-F’10]: Let W0,W1, . . . ,Wd−2 be the power series in
x defined by: Wd−2 = x(1 +W0)d−1

and ∀j < d− 2, Wj =
∑
r

∑
i1,...,ir>0

i1+···+ir=j+2

Wi1 · · ·Wir .

The generating function Fd of rooted d-angulations of girth d satisfies

F ′d(x) = (1 +W0)d.



d-angulations of girth d: counting

Thm[Bernardi-F’10]: Let W0,W1, . . . ,Wd−2 be the power series in
x defined by: Wd−2 = x(1 +W0)d−1

and ∀j < d− 2, Wj =
∑
r

∑
i1,...,ir>0

i1+···+ir=j+2

Wi1 · · ·Wir .

The generating function Fd of rooted d-angulations of girth d satisfies

F ′d(x) = (1 +W0)d.

Example d=5:
W3 = x(1 +W0)4

W0 = W 2
1 +W2

W1 = W 3
1 + 2W1W2 +W3

W2 = W 4
1 + 3W 2

1W2 + 2W1W3 +W 2
2



Simplification in the bipartite case

• For d even, d = 2b, we have
d

d− 2
=

b

b− 1

• Can work with b/(b− 1)-orientations:
- edges have weight b− 1
- vertices have indegree b

Example: b = 2, simple quadrangulations

recover a bijection of Schaeffer (1999)



More specializations
Maps of girth d.

Degree of faces

Girth

1

2

3

4

1 2 3 4 5 6 7



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face

Insert a star
in each internal face



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face

• Each internal white vertex
has indegree 2

• Each black vertex of degree 2i
has outdegree i− 2

Generalized 2-orientation



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face

• Each internal white vertex
has indegree 2

• Each black vertex of degree 2i
has outdegree i− 2

Generalized 2-orientation



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face

• Each internal white vertex
has indegree 2

• Each black vertex of degree 2i
has outdegree i− 2

Generalized 2-orientation

& still accessible after
deleting the stars

For the minimal one:

⇒



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face

White vertices either have:
- indegree 2 (middle of red edge)

- indegree 1 (end of leg)

Each black vertex of degree 2i has
i− 2 legs



Closed formulas

Prop [Bernardi-F’11]: The number of rooted simple bipartite
maps with ni faces of degree 2i is

2
(
∑

(i+ 1)ni − 3)!

(
∑
ini − 1)!

∏
i≥2

1

ni!

(
2i− 1

i+ 1

)ni

2
(
∑
i ni)!

(
∑

(i− 1)ni + 2)!

∏
i≥1

1

ni!

(
2i− 1

i

)ni

This can be compared with the formula obtained by Tutte (62) (recovered
bijectively by Schaeffer) for unconstrained rooted bipartite maps:



Shape of the mobile in higher (bipartite) girth

1 1
11

2

1

1
1

1

1

1 2

2

2

2
2

2

2

1 2 2

3

3

33

3

0

0 0

0

0

0 0

0 011
Connectors, for b = 1:

b = 2:
b = 3: binary trees

2

a connector for b = 4

• Each black vertex of degree 2i has i− b legs

• There are connectors between the black vertices



Thanks.

On the ArXiv:
• A bijection for triangulations, quadrangulations, pentagulations, etc.
• Bijective counting of maps by girth and degree.


