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Planar maps and plane maps. Definition
e A planar map is a connected planar graph drawn in the sphere

considered up to continuous deformation.

(i) A map has vertices and edges (like a graph), and also faces
(ii) Encoded by cyclic order of neighbours around each vertex

e A plane map is a connected planar graph drawn in the plane
considered up to continuous deformation. :

A 4,7

Rk: Plane map = planar map with a marked face (the outer face)
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The Euler relation
Let M = (V, E, F) be a planar map. Then

VIi— B[+ |F =2 < |El=WVI-D+(F-1)

= simple planar graph G = (V, F) satisfies |E| < 3|V | —6
(hence K5 has too many edges to be planar)



Planar maps. Motivations

e Algorithmic applications: efficient encoding of meshed surfaces.

Appears courtesy to Wikipedia

e Probability and Physics: random lattices, random surfaces.

Appears courtesy to G. Chapuy

e Representation Theory: factorization problems.



Symmetry issues.
In order to identify vertices unambiguously (to avoid symmetry issues):

e Planar graphs: need to label the vertices

A labelled planar graph

e Planar maps: only need to mark a corner

y

A rooted planar map

40
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Asymptotic behaviour of planar maps/graphs

e Asymptotic number:
Labelled planar graphs n vertices:

~ nlen

—7/2777,

[Giménez,Noy'05]

Rooted planar maps n edges

~ CTn

—5/2,}/71,

[Tutte'63]

Rk: In both cases, number of rooted labelled objects is ~ n!cn_5/27”

¢ Random planar graph/map of size n (for n large):

- Local parameters: p-n+oy/n-X
R— gaussian fluctuations

- Maximum vertex-degree: scale is log(n)

|[Gao Wormald]
- Diameter: scaleis n

[Mac Diarmid, Reed]| [Drmota et al'2011]

1/4

[Chassaing, Schaeffer’'04], [Le Gall'll], [Miermont’11] [Chapuy el al’10]

e Why do they have same behaviour ? [Giménez,Noy,Rué'10]

Random planar graph ~ random (3-connected) planar map of size ©(n)
+ little pieces attached into it

e Planar maps:
- simpler enumeration formulas

- can control distance parameters

- bijections!
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The girth parameter
The girth of a graph is the length of a shortest cycle within the graph

Girth = 3

Rk: If girth = d then all faces have degree at least d

Loopless < girth > 2
Simple < girth > 3

Triangle-free & girth > 4

Many natural map families are specified by constraints on the girth and
on the face-degrees (loopless triangulations, simple quadrangulations,...)



Planar maps. Exact counting results

e Triangulations (2n faces)

Loop| 2™ (Sn) Simbpl 1 (471 — 2
ess: imple:
=oP (n+1)2n+1) \n P n(2n —1)\n—1

e Quadrangulations (n faces)

23" 2n 2 3n
G |: imple:
=nea (n+1)(n+2) ( n ) Simple n(n+ 1) (n — 1>

e Bipartite maps (n; faces of degree 2i)
2. (3 in;)! 1 20— 1\
(2+ 33 — Dny)! [] ( i )

L n;l
i 1



Planar maps. Counting methods

e Generating functions [Tutte 63]
Recursive description of maps ~~ recurrences.

e Matrix Integrals ['t Hooft 74, Brézin et al'78]
Feynmann Diagram ~ maps.

e Bijections [Cori-Vauquelin 81, Schaeffer 98]
Maps ~~ decorated trees.



Outline

1. Master bijection between a class of oriented maps and a class
of bicolored decorated trees (which are called mobiles).

<>

2. Specializations to classes of maps (via canonical orientations).

Girth
A
4

3
2
1

[Sc98]
[FuPoSc08]
[PoSc02]
[Sc98,BoDiGu04]

8> Degree of the faces



From oriented maps to mobiles



Pointed bipartite map — labelled mobile. [Sc98]| [BoDiGu04]




Pointed bipartite map — labelled mobile. [Sc98]| [BoDiGu04]

Label the vertices
by the distance
from pointed vertex
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vertex in each face



Pointed bipartite map — labelled mobile. [Sc98] [BoDiGu04]

Construct the
labelled mobile

(i) put one black
vertex in each face

(i) each edge of
the map gives one
edge in the mobile
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Pointed bipartite map — labelled mobile. [Sc98] [BoDiGu04]

Local
rule

Proof that the mobile is a tree
Let G = (V, E, I') be a pointed bipartite map
Let 1" be the associated mobile

T has |E| edges, and has |V |+|F|—1=|FE|+1 vertices (Euler relation)

Assume that 7' has
a cycle C

W~ smallest
label on C

contradiction
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iy S
)

7 <i+1

Theorem: The mapping is a bijection. Each face of degree 2: of the
bipartite map corresponds to a black vertex of degree 7 in the mobile




Pointed bipartite map — labelled mobile. [Sc98] [BoDiGu04]

Conditions:
(i) 3 vertex label 1

Theorem: The mapping is a bijection. Each face of degree 2: of the
bipartite map corresponds to a black vertex of degree 7 in the mobile




Reformulation with orientations.
Distance labelling Geodesic orientation




Reformulation with orientations.
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0 Condition:
At each black vertex,
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rule white neighbours
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Reformulation with orientations.

0 Condition:
At each black vertex,
Local O—> as many buds as
rule white neighbours

Theorem: The mapping is a bijection. Each face of degree 2: of the
bipartite map corresponds to a black vertex of degree 2: in the mobile



Source-orientations

A source-orientation is an orientation of a pointed map such that
e The pointed vertex (called the source) has only outgoing edges
e Accessibility: Each vertex can be reached from the source



Mobile construction for source-orientations

Local@—?D
rule




Mobile construction for source-orientations

Local
rule
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rule

Cycle in mabile = ccw circuit in the source-orientation

Prisoner
cycle lemma
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d-gonal source-orientations
We allow the source of the orientation to be a d-gon, with d > 0

Example for d = 3
b If d > 0, can take a
d-gonal source as

outer face

=

C

Let O, be the set of d-gonal source-orientations with no ccw circuit
Let O = UdZ()Od
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white, together with buds (half-edges) incident to black vertices.
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Mobiles

A mobile is a plane tree with vertices properly colored in black and
white, together with buds (half-edges) incident to black vertices.

The excess is the number of buds minus the number of edges.

Let M be the set of mobiles of nonnegative excess



Master bijection ¢

Local A Oo—=0O

rules 0_7 o’




Master bijection ¢

PV s

Local O—=0O

rules 0_7 o’

Theorem [Bernardi-F’10]: @ is a bijection between O and M.

Moreover,
degree of external face > excess
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indegree of internal vertices «<— degree of white vertices




Master bijection ¢

PV s

Local

rules 0_7 0"

Theorem [Bernardi-F’10]: @ is a bijection between O and M.

Moreover,
degree of external face > excess

degree of internal faces +— degree of black vertices
indegree of internal vertices «<— degree of white vertices

cf [Bernardi'07], [Bernardi-Chapuy'10]




Using the master bijection
for map enumeration



Main new results

The Master bijection between O (orientations) and M (mobiles)

.

allows to count maps by girth & face-degrees (via canonical orientations).

Githe e e e |06 o o o
4 o o o |6l @ o o o [Sc98]
3 © o (6| ¢ © o o o [FuPoSc08]
2 o |e || ©¢ o o o o [PoSc02]

1 2 3 4 5 6 7 8 Degree of the faces
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Scheme for the strategy

(1) Map family C identifies with a subfamily O+ of O with conditions on:
e [Face degrees

e Vertex indegrees

Example: C = Family of simple triangulations

C ~ subfamily O¢c of O with
— > e Face-degree = 3
e Vertex-indegree = 3

(2) Specialize the master bijection to the subfamily O¢

7 Zh

degree of internal faces +— degree of black vertices
indegree of internal vertices «+— degree of white vertices




a-orientations

Let G = (V, F) be a graph

Let o be a function from V to N

d

b

(87N

a— 2
b—1
c — 2
d—0
e — 2
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a: a— 2
b—1
e c— 2
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e — 2
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Def: An a-orientation is an orientation of G where for each v € V
indegree(v) = a(v)




a-orientations
Let G = (V, F) be a graph
Let o be a function from V to N

a b d <
a: a— 2

b— 1
e cC— 2 e
c d—0

e — 2
d d

Def: An a-orientation is an orientation of G where for each v € V
indegree(v) = a(v)
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a-orientations: criteria for existence and accessibility

e If an a-orientation exists, then

u

(i) 2_pey a(v) = |E]
(i) VS CV, )  csalv) > |Es|

e |f the a-orientation is accessible from a vertex u € V then
(iii) Zoz > |Fg| whenever u ¢ S and S # ()

vES

Lemma (folklore): The conditions are necessary and sufficient

= accessibility from u € V' just depends on a (not on which «a-orientation)
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a-orientations for plane maps in our setting
e External polygon (the source) of the plane map is unoriented

e Indegrees are only on the internal vertices

a: a— 3
b — 2
c — 2
d — 3

n «o-orientation

Partition V (vertex-set) as V; UV, and E (edge set) as F; U F,

e Existence:| (i) ZUEV a(v) = |E; ’

(i) VS CV, Z ) > |Es N E;|
veESNV;
e Accessibility from outer face:|(iii)) VS C V;, Z a(v) > |Es N E;
S0  vesnv,

e Distributive lattice structure




Example: simple triangulations

Girthe e e e e e e e

= NN W
o
L
L
L
L
L
L

» Degree of faces



Triangulations
Fact: A triangulation with n internal vertices has 3n internal edges.

Proof: The numbers v, e, f of vertices edges and faces satisfy:
e Incidence relation: 31 = 2e.
e Euler relation: v — e+ f = 2.




Triangulations

Fact: A triangulation with n internal vertices has 3n internal edges.

Natural candidate for indegree function:
« : v +— 3 for each internal vertex v.

call 3-orientation such an a-orientation



Triangulations
Fact: A triangulation admitting a 3-orientation is simple

k internal vertices
3k + 1 internal edges




Triangulations

Thm [Schnyder 89]: A simple triangulation admits a 3-orientation.

New (easier) proof: Any simple planar graph G = (V, E) satisfies

E| -3
:V; — >3 (Euler relation)

hence the existence/accessibility conditions are satisfied.




Triangulations

= The class 7 of simple triangulations is identified with the class of
plane orientation O+ C O with faces of degree 3, and internal vertices
of indegree 3.

Thm [recovering FuPoSc08]: By specializing the master bijection
® to O one obtains a bijection between simple triangulations and
mobiles such that e black vertices have degree 3

e white vertices have degree 3

e the excess is +3 (redundant).




Triangulations

Counting: The generating function of mobiles with vertices of degree 3
rooted on a white corner is T'(z) = U(x)?, where U(z) = 1 + 22U (x)*.

Consequently, the number of (rooted) simple triangulations with 2n

_ 1 4dn — 2
faces is .
n(2n—1)\ n—1




Triangulations: two constructions

mobiles blossoming trees
[FuPoSc'08], [Bernardi-F'10] [PoSc’03], [AlPo'11]

R

o
o



More specializations
d-angulations of girth d.

Girthcooc-ccc
..
o

= NN W
o
L

» Degree of faces



d-angulations of girth d

Fact: A d-angulation with (d—2)n internal vertices has dn internal
edges.




d-angulations of girth d

Fact: A d-angulation with (d—2)n internal vertices has dn internal
edges.

Natural candidate for indegree function:
d

o v for each internal vertex v...

d— 2




d-angulations of girth d

Fact: A d-angulation with (d—2)n internal vertices has dn internal
edges.

Idea: We can look for an orientation of (d—2)G with indegree function
a : v +— d for each internal vertex wv.




d-angulations of girth d

Fact: A d-angulation with (d—2)n internal vertices has dn internal
edges.

Idea: We can look for an orientation of (d—2)G with indegree function
a : v +— d for each internal vertex wv.

call d/(d — 2)-orientation such an orientation




d-angulations of girth d

Thm [Bernardi-F’10]: Let G be a d-angulation. Then (d—2)G ad-
mits a d/(d — 2)- orientation if and only if G has girth d.




d-angulations of girth d

Thm [Bernardi-F’10]: Let G be a d-angulation. Then (d—2)G ad-
mits a d/(d — 2)- orientation if and only if G has girth d.

Proof: Similar to d = 3. Uses the fact that a planar graph
G = (V, E) of girth at least d satisfies E|—d >

Vi—d ™




Master bijection for weighted orientations

There are now white-white edges in the mobile, with two positive
weights summing to d — 2.



Master bijection for weighted orientations

Theorem [Bernardi-F’10]:The master bijection can be expressed in
the weighted setting:

Moreover,
degree of internal faces +— degree of black faces
indegree of internal vertices <— indegree of white vertices
weights of internal edges  <— weights of edges
degree of external face > excess



d-angulations of girth d

Thm [Bernardi-F’'10]: A d-angulation G admits a d/(d — 2)-
orientation if and only if G has girth d.

= The class 7, of d-angulations of girth d can be identified with the
class of weighted orientations in O, with faces of degree d, edges of
weight d — 2, and internal vertices of indegree d.




d-angulations of girth d

Thm [Bernardi-F’'10]: A d-angulation G admits a d/(d — 2)-
orientation if and only if G has girth d.

Thm [Bernardi-F’'10]: By specializing the master bijection one
obtains a bijection between d-angulations of girth ¢ and mobiles (with
white-white edges having weights summing to d — 2) such that

e black vertices have degree d

e white vertices have indegree d
e the excess is d (redundant).




d-angulations of girth d: counting
Thm[Bernardi-F’10]: Let Wy, Wy, ..., W, 5 be the power series in
v defined by: W,_o = x(1 + Wy)*
ande<d—2, W]:Z Z WMW%

T 7/1 ..... 7],’,.>O
ip i =42

The generating function F; of rooted d-angulations of girth d satisfies
Fi(x) = (1+Wy)<.




d-angulations of girth d: counting
Thm[Bernardi-F’10]: Let Wy, Wy, ..., W, 5 be the power series in
v defined by: W,_o = x(1 + Wy)*
ande<d—2, W]:Z Z W'Ller

r i1een, ip>0
i1+ tip=j+2

The generating function F; of rooted d-angulations of girth d satisfies
Fi(x) = (1+Wy)<.

Example d=5:
Wg — $(1 + W0)4
Wo = Wi + W,

Wi = W? 4+ 2W1 Wa + W
Wy = Wi+ 3W2W5 + 2W W5 + W2



Simplification in the bipartite case
d b

d—2 b—1
e Can work with b/(b — 1)-orientations:

- edges have weight b — 1
- vertices have indegree b

e For d even, d = 2b, we have

Example: b = 2, simple quadrangulations

o o

o O o

recover a bijection of Schaeffer (1999)



More specializations
Maps of girth d.

Girthe e e

= NN W
o
o

> Degree of faces



We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face
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O

Insert a star
In each internal face




We show only the bipartite case (simpler)
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Generalized 2-orientation

e Each internal white vertex
has indegree 2

e Each black vertex of degree 2¢
has outdegree 7 — 2
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We show only the bipartite case (simpler)
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Generalized 2-orientation

e Each internal white vertex
has indegree 2

e Each black vertex of degree 2¢
has outdegree 7 — 2

For the minimal one:

7

& still accessible after
deleting the stars
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We show only the bipartite case (simpler)
Case b = 2 (simple bipartite maps), with quadrangular outer face

O

White vertices either have:
- indegree 2 (middle of red edge)

- indegree 1 (end of leg)

Each black vertex of degree 27 has
1 — 2 legs




Closed formulas

Prop [Bernardi-F'11]: The number of rooted simple bipartite
maps with n,; faces of degree 27 is

2(2(i+1)n¢ —3)! H%<22_ 1)”7;

(> in; —1)! omit\i+1

This can be compared with the formula obtained by Tutte (62) (recovered
bijectively by Schaeffer) for unconstrained rooted bipartite maps:

iz ()




Shape of the mobile in higher (bipartite) girth

e Each black vertex of degree 2¢ has © — b legs

e [ here are connectors between the black vertices

a connector for b = 4

Connectors, for b = 1: ¢L e

h — 9 01,104

b = 3: binary trees



Thanks.

On the ArXiv:
e A bijection for triangulations, quadrangulations, pentagulations, etc.
e Bijective counting of maps by girth and degree.



