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For ‘any’ standard family M = U,, M,, of rooted maps
(p-angulations, loopless, 2-connected, 3-connected, etc.)

e m, = Card(M,,) satisfies m,, ~ cy™n~>/? for some constants c,

e scaling limit point of view:
for M,, a random map in M,, and vy, vy two random vertices in M,
let X,, = distance(vy,vs)
X, d

Then Wz universal proba. dist. & (M, —7z) — Brownian map
n

e |local limit point of view

et Y\ = # (vertices at distance < r from root-vertex in M,,)
let B(") .= lim,, . E(Yér)) Then BU") ~ k-r* asr — oo



Looking for other universality classes

Structured planar map = pair (M, X), with M a rooted map
and X a combinatorial structure on M

We can consider some natural families S = U,,§,, of structured maps
! \

spanning tree eulerian orientation

A @

Schnyder wood bipolar orientation




Watabiki predictions

If a model of maps gives asymptotic behaviours of the form ~ y" n™

then the central charge of the model is ¢ = —

prediction: B(") ~ constant x 7? with 8 = 2

[Watabiki’93]
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(3a — 5)(2a¢ — )

a— 1

V25 —c+ /49 — ¢

a | c B 1/5

no structure | 5/2 0 4 0.25
spanning tree 3 —2 3+§/ﬁ ~ (.28
Bipolar ori. 4 | -7 | 2VT | ~0.32
Schnyder wood 5 | —2 5+21/ﬂ ~ 0.35

upper/lower bounds for 8 (consistent with prediction)

V25 —c++V1—c



Plan for today

review of bijective links (and discuss some connections/applications)

structured maps - » lattice walks in quadrant
(or in a 2d cone)

explains asymptotic behaviour, cf [Denisov-Wachtel'2015]

A,

S step-set
with covariance matrix = Idy

a, = 7 walks of length n
in K with fixed endpoints

Then a,, ~ k" n P71, with p = 7

¢ = 7 /2 for spanning trees, 7 /3 for bipolar orientations, 7 /4 for Schnyder woods



Tree-rooted maps

(map 4+ spanning tree)



Contour encoding of a tree-rooted map [Mullin’67]
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—> excursion in quadrant, with steps a
<N
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Contour encoding of a tree-rooted map [Mullin’67]

\

/ d contour encoding of the tree T
Q aaaaaaaadad
a

Dyck word

enriched contour encoding:

abbaabbaaaabbbaaba
b shuffle of two Dyck words

Rk: red word is the contour word ..
for the dual spanning tree

t, = #* tree-rooted maps with n edges satisfies

tn = f: (2:) CatyCaty,_ = CatnCatpsr cf ' t) = f: (Z) (n i k)

k—0 n k—0

Hence t,, ~ %16”’%_3 with n=3 ‘universal’ for tree-rooted maps (cf exercise)
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Direct proof that ¢, = Cat, Cat,,. [Bernardi’07]

o First step:

tree-rooted map local
rule

e Second step:
local
rule

—

oriented rooted map
(root-accessible & no ccw cycle)

blue tree has n + 1 edges
red tree has n edges

(the bijection ® used previously this week is closely related to 2nd step)



Schnyder woods



Schnyder woods on triangulations [Schnyder'89]

Schnyder wood = choice of a direction and color
(red, green, or blue) for each inner edge, such that:

Local conditions:

at each inner vertex

at the outer vertices

yields a spanning
tree in each color




Equivalence with 3-orientations

can propagate the colors (uniquely) from any 3-orientation

Schnyder wood 3-orientation

NN

outdegree 3 at inner vertices
outdegree 0 at outer vertices

conditions

A




Bijective encoding of Schnyder woods

Schnyder woods on n + 3 vertices

!

non-intersecting pairs of Dyck paths of lengths 2n




Enumerative formula, asymptotics

T

Let s;,, = total number of Schnyder woods over triangulations with n + 3 vertices

e Exact formula:
6(2n)!(2n + 2)!

nl(n 4+ 1)l(n+ 2)!(n + 3)!

s, = Cat,Cat, o — Cat,1Cat,, 11 =
' . 241pen,—5
e Asymptotic formula: s, ~ =16"n
length 2n

n~° cf bijection non-crossing pair |
Dyck paths lengths 2n steps <—I—>

excursion in 1/8-plane



The Tamari lattice

The Tamari lattice £,, is the partial order on Dyck paths of length 2n
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The Tamari lattice

The Tamari lattice £,, is the partial order on Dyck paths of length 2n
for the covering relation

(amounts to right rotation in corresponding binary trees)

75

yﬁ& the Tamari lattice forn =4
/ b= I it has 68 intervals

Interval in 7, = pair (t,t’) such that t < ¢’

2 (4n—|—1
n(n+1) \ n—1

Rk: This is also the number of simple triangulations with n 4+ 3 vertices

Theorem [Chapoton’06]: there are ) intervals in £,
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Characterization of intervals by length-vectors

Rk: if t <t in L,, then t is below ¢’

the converse is not true !

Q: How to characterize pairs forming an interval in £,, 7

Length-vector Lp of D:

Lem: D < D’ in ﬁn Iff LD < LD/



Specializing the bijection for Schnyder woods

Property: A triangulation has a unique Schnyder wood with no cw cycle

Property: A non- crossm pair of Dyck paths is an interval in L,, iff
the correspon ing Schnyder wood has no cw cycle
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Specializing the bijection for Schnyder woods

Property: A triangulation has a unique Schnyder wood with no cw cycle

Property: A non- crossm pair of Dyck paths is an interval in L,, iff
the correspon ing Schnyder wood has no cw cycle

length-vectors

4121

1311

o
’
’
’ —t
’
’
(e} ’ ()
4 v
4 Vs
’ w ‘ w
.
’ P ’
’ , ’
’ P ’
4 v
4 Vs
4 v
4 Vs

length-vectors

1\ \\
1 0, "%
- R 4 1 21

2121

W 3
-

no cw cycle

= | intervals in Ly, are in bijection with simple triangulations with n + 3 vertices




Bipolar orientations



Definition
Let M be a planar map with two marked outer vertices S, N

Bipolar orientation of M = acyclic orientation of M
with S the unique source
and N the unique sink

local conditions

inner vertex inner face




Enumeration by edges
The number b,, of bipolar orientations with n — 1 edges is

— n+1\ /n+1\/n+1
bn, = n+1 Z .1 . r 1 Baxter numbers
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Enumeration by edges
The number b,, of bipolar orientations with n — 1 edges is

— n+1\ /n+1\/n+1
bn, = n+1 Z .1 . r 1 Baxter numbers

k:

n—2—

k + 2 vertices
n — k faces J

4+ Gessel-Viennot lemma

cf bijections

b, also counts many other classes (pattern-avoiding permutations, square tilings, etc.)

Asymptotics: b,, ~ :\;8” —4

We show a bijection by Kenyon, Miller, Sheffield and Wilson
with lattice walks in quadrant (+control on face degrees)

explains universality of n™* for bipolar ori. + appli. to lattice walk enumeration



The Kenyon et al. bijection

tandem walks

Y

step set A
P »— level 3

“|a— level 2
pa—

evel 1

, 4 ’
o« o & > T

- SE

: bijecti : : : . :
Tandem walks in quadrant <———— bipolar orientations inside bi-gon
(start & end at 0)

length 1 < » n+ 1 edges

step level r < » Inner face of degree r + 2
SE step = - vertex ¢ {S,N}




The Kenyon et al. bijection seese % .

. 1 a—level 2

o o js—level 1
»

e

= Ppebeb
HEE )

\ Invariant
O / 7+l
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Consequences of the bijection

e The linear mapping that sends lw/Q to iw/g

turns the covariance matrix of step-set to Io

= universality of the subexponential order n~% for bipolar orientations

o Let Q(t; 21, 22,...) be the GF of tandem walks in the quadrant
(starting at the origin, free endpoint)

with t for the length, z, for steps of level r

Then Q(t; 21, 22, . ..) also counts tandem walks in upper half-plane {y > 0}
(starting at 0, ending at {y = 0})

=Y =tQ(t)isgivenby Y =t-(1+weY +wY?+wyY?+--.)

Wherewizzi+zi_|_1_|_zi_|_2_|_...

proof using the extended version of the bijection
(also possible by kernel method for walks with large steps [Bostan, Bousquet-Mélou, Melczer'18])



