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• mn = Card(Mn) satisfies mn ∼ c γn n−5/2 for some constants c, γ

• scaling limit point of view:
for Mn a random map in Mn and v1, v2 two random vertices in Mn

let Xn = distance(v1, v2)

Then
Xn

n1/4
→ universal proba. dist. (Mn,

d
n1/4 )→ Brownian map&

• local limit point of view

let Y
(r)
n = #(vertices at distance ≤ r from root-vertex in Mn)

let B(r) := limn→∞ E(Y (r)
n ) Then B(r) ∼ κ · r4 as r →∞



Looking for other universality classes
Structured planar map = pair (M,X), with M a rooted map

and X a combinatorial structure on M

spanning tree

We can consider some natural families S = ∪nSn of structured maps

eulerian orientation

Schnyder wood bipolar orientation



Watabiki predictions
If a model of maps gives asymptotic behaviours of the form κ γn n−α

then the central charge of the model is c = − (3α− 5)(2α− 5)

α− 1

prediction: B(r) ∼ constant× rβ with β = 2
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[Watabiki’93]
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Plan for today
review of bijective links (and discuss some connections/applications)

structured maps lattice walks in quadrant
(or in a 2d cone)

explains asymptotic behaviour, cf [Denisov-Wachtel’2015]

S step-set
with covariance matrix = Id2

θ

K

an = # walks of length n
in K with fixed endpoints

Then an ∼ κ γn n−p−1, with p = π
θ

θ = π/2 for spanning trees, π/3 for bipolar orientations, π/4 for Schnyder woods



Tree-rooted maps
(map + spanning tree)
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Rk: red word is the contour word
for the dual spanning tree

tn = # tree-rooted maps with n edges satisfies

tn =
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(2n
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)
CatkCatn−k = CatnCatn+1 cf

(s+ t

n

)
=

n∑
k=0

(s
k

)( t

n− k

)
Hence tn ∼ 4

π
16nn−3 with n−3 ‘universal’ for tree-rooted maps (cf exercise)

[Mullin’67]
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Direct proof that tn = CatnCatn+1 [Bernardi’07]
• First step:

tree-rooted map oriented rooted map
(root-accessible & no ccw cycle)

• Second step:

(the bijection Φ used previously this week is closely related to 2nd step)

local
rule

local
rule

blue tree has n+ 1 edges
red tree has n edges



Schnyder woods



Schnyder woods on triangulations

at each inner vertex

at the outer vertices

yields a spanning
tree in each color

[Schnyder’89]

Schnyder wood = choice of a direction and color
(red, green, or blue) for each inner edge, such that:

Local conditions:



Schnyder wood 3-orientation

⇔

Equivalence with 3-orientations

can propagate the colors (uniquely) from any 3-orientation

conditions

outdegree 3 at inner vertices
outdegree 0 at outer vertices



Bijective encoding of Schnyder woods

Schnyder woods on n+ 3 vertices

non-intersecting pairs of Dyck paths of lengths 2n

0

1
0

3

0

1

0

3

[Bernardi, Bonichon’09]



Enumerative formula, asymptotics

sn = CatnCatn+2 − Catn+1Catn+1 =
6(2n)!(2n+ 2)!

n!(n+ 1)!(n+ 2)!(n+ 3)!

Let sn = total number of Schnyder woods over triangulations with n + 3 vertices

sn ∼ 24
π 16nn−5

• Exact formula:

• Asymptotic formula:

n−5 cf bijection non-crossing pair
Dyck paths lengths 2n

length 2n

steps

excursion in 1/8-plane
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≺

The Tamari lattice
The Tamari lattice Ln is the partial order on Dyck paths of length 2n
for the covering relation

(amounts to right rotation in corresponding binary trees)

the Tamari lattice for n = 4

Interval in Tn = pair (t, t′) such that t ≤ t′

Theorem [Chapoton’06]: there are 2
n(n+1)

(
4n+1
n−1

)
intervals in Ln

Rk: This is also the number of simple triangulations with n+ 3 vertices

it has 68 intervals
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≺

Rk: if t ≤ t′ in Ln, then t is below t′

the converse is not true !

Q: How to characterize pairs forming an interval in Ln ?

Length-vector LD of D:

1
2 3

4

`1=4
`2=1

`4=1
`3=2

LD = (4, 1, 2, 1)

Lem: D ≤ D′ in Ln iff LD ≤ LD′

Characterization of intervals by length-vectors



Specializing the bijection for Schnyder woods
[Bernardi, Bonichon’09]
Property: A triangulation has a unique Schnyder wood with no cw cycle
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the corresponding Schnyder wood has no cw cycle



Specializing the bijection for Schnyder woods
[Bernardi, Bonichon’09]
Property: A triangulation has a unique Schnyder wood with no cw cycle
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length-vectors

4 1 2 1

1 3 1 1

has a cw cycle

0

1

0

3

⇒ ⇒ 0

1
0

3

length-vectors

4 1 2 1

2 1 2 1

no cw cycle

Property: A non-crossing pair of Dyck paths is an interval in Ln iff
the corresponding Schnyder wood has no cw cycle

⇒ intervals in Ln are in bijection with simple triangulations with n + 3 vertices



Bipolar orientations



N

S

inner vertex inner face

Bipolar orientation of M = acyclic orientation of M
Let M be a planar map with two marked outer vertices S,N

with S the unique source
and N the unique sink

Definition

local conditions



Enumeration by edges
The number bn of bipolar orientations with n− 1 edges is
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We show a bijection by Kenyon, Miller, Sheffield and Wilson
with lattice walks in quadrant (+control on face degrees)

explains universality of n−4 for bipolar ori. + appli. to lattice walk enumeration



The Kenyon et al. bijection

level 1
level 2

level 3

SE
x

y
step set

tandem walks

Tandem walks in quadrant bipolar orientations inside bi-gon
(start & end at 0)

bijection

length n n+ 1 edges

step level r inner face of degree r + 2

SE step vertex /∈ {S,N}



The Kenyon et al. bijection

level 1
level 2

level 3

SE
x

ystep set

1

2
3

4 5

6

7

8

1 2 3 4

5 6 7 8

SE

invariant

y

x+1



Consequences of the bijection
• The linear mapping that sends to

π/2 π/3

turns the covariance matrix of step-set to I2

⇒ universality of the subexponential order n−4 for bipolar orientations



Consequences of the bijection
• The linear mapping that sends to

π/2 π/3

turns the covariance matrix of step-set to I2

⇒ universality of the subexponential order n−4 for bipolar orientations

• Let Q(t; z1, z2, . . .) be the GF of tandem walks in the quadrant
(starting at the origin, free endpoint)

with t for the length, zr for steps of level r

Then Q(t; z1, z2, . . .) also counts tandem walks in upper half-plane {y ≥ 0}
(starting at 0, ending at {y = 0})



Consequences of the bijection
• The linear mapping that sends to

π/2 π/3

turns the covariance matrix of step-set to I2

⇒ universality of the subexponential order n−4 for bipolar orientations

• Let Q(t; z1, z2, . . .) be the GF of tandem walks in the quadrant
(starting at the origin, free endpoint)

with t for the length, zr for steps of level r

Then Q(t; z1, z2, . . .) also counts tandem walks in upper half-plane {y ≥ 0}
(starting at 0, ending at {y = 0})

⇒ Y ≡ tQ(t) is given by Y = t · (1 + w0Y + w1Y
2 + w2Y

3 + · · · )
where wi = zi + zi+1 + zi+2 + · · ·



Consequences of the bijection
• The linear mapping that sends to

π/2 π/3

turns the covariance matrix of step-set to I2

⇒ universality of the subexponential order n−4 for bipolar orientations

• Let Q(t; z1, z2, . . .) be the GF of tandem walks in the quadrant
(starting at the origin, free endpoint)

with t for the length, zr for steps of level r

Then Q(t; z1, z2, . . .) also counts tandem walks in upper half-plane {y ≥ 0}
(starting at 0, ending at {y = 0})

⇒ Y ≡ tQ(t) is given by Y = t · (1 + w0Y + w1Y
2 + w2Y

3 + · · · )
where wi = zi + zi+1 + zi+2 + · · ·

proof using the extended version of the bijection
(also possible by kernel method for walks with large steps [Bostan, Bousquet-Mélou, Melczer’18])


