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Rooted maps

A map is rooted by marking and orienting an edge

the face on the right

a rooted map of the root is taken

as the outer face

Rooted maps are combinatorially easier than maps
(no symmetry issue, root gives starting point for recursive decomposition)

The 2 rooted maps with one edge CO O—a-O

The 9 rooted maps QG @ C@ O
with two edges
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Let a,, be the number of rooted maps with n edges
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Not an isolated case:

e Triangulations (2n faces)
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Bijective aspects of planar maps



Motivations for bijections
e efficient manipulation of maps (random generation algo.)

e key ingredient to study distances (diameter,...) in random maps
- typical distances of order n'/% (# n'/2 in random trees)
- random map M with n edges = random discrete metric space (M, d)

Theo: [Le Gall, Miermont’13]

(M, #d) converges to a continuum random metric space
called the Brownian map

large tree " large map
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(analog for maps of the Continuous Random Tree)



Pointed quadrangulations, geodesic labelling
Pointed quadrangulation = quadrangulation with a marked vertex v

Geodesic labelling with respect to vg: £(v) = dist(vg, v)

Rk: two types of faces

&5




Well-labelled trees

Well-labelled tree = plane tree where
- each vertex v has a label {(v) € Z
- each edge e = {u, v} satisfies |{(u) —l(v)]| < 1

0
(L)

O



The SChaeffer bijection [Schaeffer’99], also [Cori-Vauquelin’81]

Pointed quadrangulation = well-labelled tree with min-label=1
n faces n edges




Proof that it gives a tree

n faces
n + 2 vertices
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Proof that it gives a tree

n faces n edges
n + 2 vertices n + 1 vertices

smallest

Assume that
T" has a cycle C

label < i C
contradiction



Rightmost geodesic paths
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Rightmost geodesic paths

R |

situation at a corner i+l
of the tree : : { /
i1

implies property
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The Schaeffer bijection [Schaeffer99], aiso [Cori-Vauquelin'81]
From a well-labelled tree to a pointed quadrangulation

-
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1) insert a “leg” at each corner

2) connect each leg of label ¢ > 2
to the next corner of label 1 —1

In ccw order around the tree

3) create a new vertex vy outside
and connect legs of label 1 to it

4) erase the tree-edges



The Schaeffer bijection [Schaeffer99], aiso [Cori-Vauquelin'81]
From a well-labelled tree to a pointed quadrangulation

-
- - o

/@:::' 1) insert a “leg” at each corner
@ )?\ 2) connect each leg of label ¢ > 2
\@\ '\ to the next corner of label 1 —1
/®\®_ @ In ccw order around the tree
3) create a new vertex vy outside
_____________ _GY- and connect legs of label 1 to it

@ ?5 4) erase the tree-edges




The effect of marking an edge




Bijective proof of counting formula
Let g, = #(rooted quadrangulations with n faces)
23" (Qn)zn

We want to show (bijectively) that —
(b} ) n (n+2)(n+1)\n

Rk: ¢n X (n 4+ 2) = # rooted quadrangulations with n faces
+ marked vertex

Hence if b,, := # quadrangulations with n faces
+ marked edge + marked vertex

n+ 2
2

then b, = Qn

Hence proving formula for ¢,, amounts to proving |b,, = 3" Cat,




Bijective proof of counting formula
Schaeffer’s bijection = b,, = #(rooted well-labelled trees with n edges)




Bijective proof of counting formula
Schaeffer’s bijection = b,, = #(rooted well-labelled trees with n edges)

2n)!

nl(n + 1)!



The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter’'04]




The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter’04]

Label vertices by distance
from the marked vertex
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The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter’04]

Construction of a
labeled mobile

(i) Add a black vertex
in each face

(ii)) Each map-edge
gives a mobile-edge
using the local rule




The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter’'04]

remove the map-edges and the
marked vertex (0)

D

Conditions:

2 (i) 3 vertex of label 1
i S

j<i+1

)



The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guter’04]
o,

labeled mobile

i~

Conditions:

2 i |
Local @ (|) 4 vertex of label 1
rule (ii)

Theorem: The mapping is a bijection.

face of degree 2i = » black vertex of degree ¢



Rewriting labelled mobiles as trees with arrows

<—
@ 0=1—]
02 -1 0+1
r < buds (.
Conditions: Condition:
(i) 3 vertex of Ia.bel.l each black vertex has as many
(ii) 0 0=1—j32>-1 buds as neighbors

|
O



Enumerative consequence

Tutte’s slicings formula (1962):

Let B{ni,no,...,ni| be the number of rooted bipartite maps
with n; faces of degree 2¢ for i € [1..k]. Then

k .
! I (20 —1\"
B[nl,...,nk]:2€— —(Z )

! Pl n;l\1—1

where e = #edges = > . in; and v = #vertices = e — k + 2

(‘contains’ formula for rooted quadrangulations, no = n, n; = 0 for ¢ # 2)



Reformulation of bijection using orientations
Distance-labeling Geodesic orientation

o

Local O—»
rule

B os



Definition of blossoming mabiles

e Blossoming mobile= bipartite tree (black/white vertices)
where each corner at a black vertex carries 2 > 0 buds

excess = number of edges - number of buds

a blossoming mobile of excess —2



Definition of blossoming mabiles

e Blossoming mobile= bipartite tree (black/white vertices)
where each corner at a black vertex carries 2 > 0 buds

excess = number of edges - number of buds

a blossoming mobile of excess —2

e A blossoming mobile is called balanced
Iff each black vertex has as many buds as
neighbors

Rk: implies that the excess is 0



Summary of the reformulation

= =
0 Condition:
Local O—» Each black vertex has as
rule many buds as neighbors

Theorem: The mapping is a bijection between pointed bipartite maps and
balanced blossoming mobiles

face of degree 2i < » black vertex of degree 27




Summary of the reformulation

= =
0 Condition:
Local O—» Each black vertex has as
rule many buds as neighbors

Theorem: The mapping is a bijection between pointed bipartite maps and
balanced blossoming mobiles

face of degree 2i < » black vertex of degree 27

(other bijection by Schaeffer'97 in the dual setting of eulerian maps)



Extension for pointed orientations with no ccw cycle

e More generally, we obtain a blossoming mobile (of excess 0)
If we start from a vertex-pointed orientation such that :

- the marked vertex vg is a “source” (no incoming edge)

- every vertex is accessible from vy by a directed path
- there is no ccw cycle (with vy € outer face)

80 &P 87

Local
rule 7




Extension for pointed orientations with no ccw cycle

e More generally, we obtain a blossoming mobile (of excess 0)
If we start from a vertex-pointed orientation such that :

- the marked vertex vg is a “source” (no incoming edge)

- every vertex is accessible from vy by a directed path
- there is no ccw cycle (with vy € outer face)

Uoi i UO; i ;
Local +
rule ?

Theorem : Let O be this family of orientations, then the correspondence
is a bijection with mobiles of excess 0
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Proof that it gives a tree .
Start from an oriented map M € Oy and apply the local rule 0—7)

Let G be the graph of red edges and their incident vertices
G has |Vys| — 1, white vertices, |F)| black vertices, et |Ej/| edges

Euler relation: |Fy;| = |Va| + |Far| — 2
= (G has one more vertices than edges

hence GG is a tree iff G is acyclic
Assume GG has a cycle :

-“‘
-----
ﬂﬂﬂﬂ
e®
.

()@ T prisoner ccw (.:ycle
= contradiction




Extension for mobiles of excess < 0
More generally the “source” can be a d-gon, for any d > 0

Example for d = 3

For d > 0, we take the d-gonal
source as the outer face
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Extension for mobiles of excess < 0
More generally the “source” can be a d-gon, for any d > 0

Example for d = 3
For d > 0, we take the d-gonal

source as the outer face
i ‘ : A
b

Let O be the family of these orientations, still with the conditions

- the d-gonal source has no ingoing edge
- accessibility of every vertex from the source

- no ccw cycle




Extension for mobiles of excess < (

PN

Local

rules 0_7 0"

Theorem [Bernardi-F’10]: @ is a bijection between @ and blossom-

ing mobiles of < 0 excess. Moreover,
degree of external face —» —excess

degree of internal faces +— degree of black vertices
indegree of internal vertices «<— degree of white vertices

cf [Bernardi'07], [Bernardi-Chapuy'10]




Extension for mobiles of excess < (

e Inverse mapping (tree — cactus — closure operations)
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e [Face degrees
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Scheme for a %_eneral bijective strateg
1) Map family C identities with a subfamily O~ of O wit

e [Face degrees
e Vertex indegrees

Yy ..
conditions on:

Example: C = Family of simple triangulations

C ~ subfamily O¢c of O with
— > e Face-degree = 3
e Vertex-indegree = 3

(2) Specialize the ‘meta bijection’ ® to the subfamily Oq

7

degree of internal faces +— degree of black vertices
indegree of internal vertices «+— degree of white vertices
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Let o be a function from V to N

d b

a: a— 2
b—1
e c— 2

c d—0
e — 2




a-orientations
Let G = (V, F) be a graph
Let o be a function from V to N

d b

a: a— 2
b—1
e c— 2

c d—0
e — 2

d

Def: An a-orientation is an orientation of G where for each v € V
indegree(v) = a(v)




a-orientations
Let G = (V, F) be a graph
Let o be a function from V to N

a b d <

a: a— 2
b—1
e c— 2 e

c d—0

e — 2
d d

Def: An a-orientation is an orientation of G where for each v € V
indegree(v) = a(v)
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Lemma (folklore): The conditions are necessary and sufficient



a-orientations: criteria for existence
e If an a-orientation exists, then

u

(i) 2_pey a(v) = |E]
(i) VS CV, )  csalv) > |Es|

e |f the a-orientation is accessible from a vertex u € V then
(iii) Zoz > |Fg| whenever u ¢ S and S # ()

vES

Lemma (folklore): The conditions are necessary and sufficient

= accessibility from u € V' just depends on a (not on which «a-orientation)
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it admits a unique a-orientation without ccw circuit, called minimal
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0!

y
Uniqueness proof: if O; # Oy, edges where O; and O, disagree form an

eulerian suborientation of O; = contains a circuit (ccw in Op or O3)

@
OFORHOR 0

Set of a-orientations = distributive lattice
[Khueller et al’93], [Propp'93], [O. de Mendez'94], [Felsner’03]
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Application to simple triangulations

Fact: A triangulation with n internal vertices has 3n internal edges.

Natural candidate for indegree function:
« : v +— 3 for each internal vertex v.

call 3-orientation such an a-orientation




Application to simple triangulations
Fact: A triangulation admitting a 3-orientation is simple

k internal vertices
3k + 1 internal edges




Application to simple triangulations

Thm [Schnyder 89]: A simple triangulation admits a 3-orientation.
(proof by shelling procedure)

Easier proof: Any simple planar graph G = (V, E) satisfies
|[E| <3|V|—6 (Euler relation)

hence the existence/accessibility conditions are satisfied.




Application to simple triangulations

e From the lattice property (taking the min) we have
family F of simple triangulations < subfamily O+ of O where:

- faces have degree 3
Zé g% - Inner vertices have indegree 3

e From the bijection ® specialized to O, we have
JF <+ mobiles where all vertices have degree 3

O

R

[Bernardi, F'10], other bijection in [Poulalhon, Schaeffer'03]




Counting formula for simple triangulations

Let T, = # rooted simple triangulations with n + 3 vertices

marked face (outer)
+ marked edge

cardinality =

(2n—+2)
2

= | T}, =

2(4n + 1)!

(n+ 1)!1(3n + 2)!

marked bud

pair of quaternary trees, n nodes



Application to simple quadrangulations
2-orientation = orientation where each internal vertex has indegree 2

[de Fraysseix, Ossona de Mendez’'01]:

A quadrangulation () admits a 2-orientation iff () is simple

Every 2-orientation is accessible from the outer contour
(proof by shelling algorithm)

Q o) R 0

O O © ©

Proof from existence criterion:

for every simple bipartite graph G = (V, E), one has |E| <2|V| -4



Application to simple quadrangulations

e Specializing the meta bijection ® we get

Q
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indegrees = 2

face-degrees = 4
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every O has degree 2
every @ has degree 4

(~ unrooted
ternary tree)



Application to simple quadrangulations

e Specializing the meta bijection ® we get

Q o

(e, O

indegrees = 2
face-degrees = 4

S

O

P

T
f)

O———0O
o’

e recover a bijection in [Schaeffer’99]

e bijection = there are

4(3n)!

n!(2n+2)!

rooted simple

quadrangulations with n faces

SV

every O has degree 2
every @ has degree 4

(~ unrooted
ternary tree)



Extension to any girth and face-degrees

girth=length shortest cycle

Rk: girth <minimal face-degree

Our approach works in any girth d, with control on the face-degrees

Girthe e o e |6 o e e
fo o o FeeeTs [Sc98]
3/ @ o e[ e o o o & [FuPoSc08)
2| e [® |ef @ o o o o [PoSc02]
lije o e fe] e o o o [Sc98,BoDiGu04]
1 2 3 4 5 6 7 & Degree of the faces

Other approach using slice decompositions [Bouttier,Guitter’15]



