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Overview
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Estimation of large cardinalities
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Cardinality of a multiset
• Let M be a multiset,

• N is the number of elements called the size

• n the number of distinct elements called cardinality .
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• Problem: compute the cardinality n in one pass and
with small auxiliary memory.
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Surprisingly long list of applications

Traffic analysis

Detection of attacks Analysis of the genome

Very large multisets!

Linguistic
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Exact solution

• Maintain distincts elements already seen.
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• One pass, but auxiliary memory of order n.

• Information theory: memory Ω(n) necessary
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Probabilistic solution

Crucial idea: relax the constraint of exact value of the
cardinality. An estimate with good precision is sufficient for
the applications.

Several algorithms have been proposed

• Probabilistic Counting, Flajolet and Martin 1983.
LogLog Counting, Durand and Flajolet 2003.

• Linear Counting, Whang, Zanden and Taylor 1990.

• Counting distinct elements in a data stream, Bar-Yossef
et al. 2002.
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Probabilistic solution
• Elements of M are hached to [0, 1].
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⇒ Idea: use the minimum to estimate the cardinality

• The minimum is computed in one pass with constant
memory

– p.8/21



The algorithm MinCount
• Simulate m hashing functions

⇒ m minima M (1), . . . ,M (m)

• Estimate = αm × geometric mean of the 1/M (i)

• Relative error ≈ 1/
√

m for a memory of m words
Accuracy of 4% with only 1kB of memory!

• If some buckets are empty (no minimum) use the
number of empty buckets to estimate the cardinality
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Counting over a sliding window
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New context
• Telecom context: stream of IP packets passing by a

router

• Each packet belongs to a flow (connection), identified by
<source IP, destination IP>

• Elements of the multiset = packets
Distinct elements of the multiset = flows

• Typical request: ”What is the number of active flows
over the last hour”
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Sliding window
• Model studied by [Datar, Gionis, Indyk, Motwani]:

”Maintaining Stream Statistics over a Sliding Window”

• Problem: At each time t, we want to estimate the
number of flows over [t − w, t].
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• Our contribution (ANALCO’07):
• New algorithm Sliding MinCount extends the (static)

MinCount algorithm to the sliding window model
• Complete analysis of the auxiliary memory
• Validation on real traffic.
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The approach
• MinCount uses an estimate based on the minimum

• We have to maintain the minima of hashed values over a
sliding window

• Difficulty: over a sliding window, outdated elements
are discarded

”How to remember if the discarded element has realized
the minimum or not?!”
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Maintain the minimum
• Solution: keep in memory the packets that may become

a minimum in the future

• Crucial remark If P1 = (h1, t1) and P2 = (h2, t2) are two
packets such that

t1 < t2 and p1 ≥ p2,

then P1 can not become a minimum in the future.
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The list of future possible minima
The future possible minima are the minimal records of hashed
values taken in reverse chronological order.
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The list of future possible minima
The future possible minima are the minimal records of hashed
values taken in reverse chronological order.
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Results
• Same accuracy as MinCount

– p.16/21



Application to traffic monitoring
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