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Overview

- p.2/21



Estimation of large cardinalities
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Cardinality of a multiset

e Let M be a multiset,

e N is the number of elements called the size

* n the number of distinct elements called cardinality.
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* Problem: compute the cardinality n in one pass and

with small auxiliary memory.
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Surprisingly long list
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Traffic analysis

Very large multisets!
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Exact solution

* Maintain distincts elements already seen.

Multiset

[ Counter = 13 ]

Dictionary
N
3 12
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N0\

* One pass, but auxiliary memory of order n.

* Information theory: memory 2(n) necessary
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Probabilistic solution

Crucial idea: relax the constraint of exact value of the
cardinality. An estimate with good precision is sufficient for

the applications.

Several algorithms have been proposed

* Probabilistic Counting, Flajolet and Martin 1983.
Loglog Counting, Durand and Flajolet 2003.

* [inear Counting, Whang, Zanden and Taylor 1990.

* (Counting distinct elements in a data stream, Bar-Yossef
et al. 2002.
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Probabilistic solution
* Elements of M are hached to [0, 1].
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= |dea: use the minimum to estimate the cardinality

E(Min) =
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Probabilistic solution
* Elements of M are hached to [0, 1].

n éléments distincts

it i

— n v.a. uniformes sur [0, 1]
0

1
n+ 1

= |dea: use the minimum to estimate the cardinality

E(Min) =

* The minimum is computed in one pass with constant
memory
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The algorithm MinCount
Simulate m hashing functions
= m minima M1 .. M)
Estimate = «a,,, X geometric mean of the l/M(i)

Relative error ~ 1/y/m for a memory of m words
Accuracy of 4% with only 1kB of memory!

If some buckets are empty (no minimum) use the
number of empty buckets to estimate the cardinality
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Counting over a sliding window
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New context

Telecom context: stream of IP packets passing by a
router

Each packet belongs to a flow (connection), identified by
<source |P, destination IP>

Elements of the multiset = packets
Distinct elements of the multiset = flows

Typical request: "What is the number of active flows
over the last hour”
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Sliding window

* Model studied by [Datar, Gionis, Indyk, Motwani:
"Maintaining Stream Statistics over a Sliding Window”

e Problem: At each time ¢, we want to estimate the
number of flows over [t — w,|.
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Sliding window

* Model studied by [Datar, Gionis, Indyk, Motwani:
"Maintaining Stream Statistics over a Sliding Window”

e Problem: At each time ¢, we want to estimate the
number of flows over [t — w,|.
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* Our contribution (ANALCO'07):

* New algorithm Sliding MinCount extends the (static)
MinCount algorithm to the sliding window model

* Complete analysis of the auxiliary memory
* Validation on real traffic.
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The approach

e MinCount uses an estimate based on the minimum

e \We have to maintain the minima of hashed values over a
sliding window

* Difficulty: over a sliding window, outdated elements
are discarded

"How to remember if the discarded element has realized
the minimum or not?!”
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Maintain the minimum

* Solution: keep in memory the packets that may become
a minimum in the future

* Crucial remark If P, = (hy,t1) and P> = (heo,t3) are two
packets such that

t1 <tz and p1 > po,

then P; can not become a minimum in the future.
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The list of future possible minima

The future possible minima are the minimal records of hashed
values taken in reverse chronological order.
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The list of future possible minima
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Results

* Same accuracy as MinCount
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Application to traffic monitoring
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Aggregated traffic of 400 machines at INRIA during one day. Comparison
number of flows (Left) / number of packets (Right), for window of 1 hour
(Top) / 1 minute (Bottom). - p.17/21
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