
Estimating the number of active
flows in a data stream over a

sliding window

Éric Fusy and Frédéric Giroire

Algorithms Project, INRIA Rocquencourt

– p.1/21

Overview

– p.2/21

Estimation of large cardinalities

– p.3/21

Cardinality of a multiset
• Let M be a multiset,

• N is the number of elements called the size

• n the number of distinct elements called cardinality .

x

cvecvc

e
c

v
c

v

c

size N = 7

cardinality n = 4

elt. e v c x

mult. 1 2 3 1

x

M =

• Problem: compute the cardinality n in one pass and
with small auxiliary memory.

– p.4/21

Surprisingly long list of applications

Traffic analysis

Detection of attacks Analysis of the genome

Very large multisets!

Linguistic

– p.5/21

Exact solution

• Maintain distincts elements already seen.

7

123

Dictionary

Counter = 13

12 3 7 7 8

Multiset

• One pass, but auxiliary memory of order n.

• Information theory: memory Ω(n) necessary

– p.6/21

Probabilistic solution

Crucial idea: relax the constraint of exact value of the
cardinality. An estimate with good precision is sufficient for
the applications.

Several algorithms have been proposed

• Probabilistic Counting, Flajolet and Martin 1983.
LogLog Counting, Durand and Flajolet 2003.

• Linear Counting, Whang, Zanden and Taylor 1990.

• Counting distinct elements in a data stream, Bar-Yossef
et al. 2002.

– p.7/21

Probabilistic solution
• Elements of M are hached to [0, 1].

cvecvce

0 1

x

n v.a. uniformes sur [0, 1]

n éléments distincts

n v.a. uniformes sur [0, 1]

h

– p.8/21

Probabilistic solution
• Elements of M are hached to [0, 1].

cvecvce

0 1

x

n v.a. uniformes sur [0, 1]

n éléments distincts

n v.a. uniformes sur [0, 1]

h

E(Min) =
1

n + 1

⇒ Idea: use the minimum to estimate the cardinality

– p.8/21

Probabilistic solution
• Elements of M are hached to [0, 1].

cvecvce

0 1

x

n v.a. uniformes sur [0, 1]

n éléments distincts

n v.a. uniformes sur [0, 1]

h

E(Min) =
1

n + 1

⇒ Idea: use the minimum to estimate the cardinality

• The minimum is computed in one pass with constant
memory

– p.8/21

The algorithm MinCount
• Simulate m hashing functions

⇒ m minima M (1), . . . ,M (m)

• Estimate = αm × geometric mean of the 1/M (i)

• Relative error ≈ 1/
√

m for a memory of m words
Accuracy of 4% with only 1kB of memory!

• If some buckets are empty (no minimum) use the
number of empty buckets to estimate the cardinality

– p.9/21

Counting over a sliding window

– p.10/21

New context
• Telecom context: stream of IP packets passing by a

router

• Each packet belongs to a flow (connection), identified by
<source IP, destination IP>

• Elements of the multiset = packets
Distinct elements of the multiset = flows

• Typical request: ”What is the number of active flows
over the last hour”

– p.11/21

Sliding window
• Model studied by [Datar, Gionis, Indyk, Motwani]:

”Maintaining Stream Statistics over a Sliding Window”

• Problem: At each time t, we want to estimate the
number of flows over [t − w, t].

tt−w

dcbacbca

w

– p.12/21

Sliding window
• Model studied by [Datar, Gionis, Indyk, Motwani]:

”Maintaining Stream Statistics over a Sliding Window”

• Problem: At each time t, we want to estimate the
number of flows over [t − w, t].

tt−w

dcbacbca

w

• Our contribution (ANALCO’07):
• New algorithm Sliding MinCount extends the (static)

MinCount algorithm to the sliding window model
• Complete analysis of the auxiliary memory
• Validation on real traffic.

– p.12/21

Sliding window
• Model studied by [Datar, Gionis, Indyk, Motwani]:

”Maintaining Stream Statistics over a Sliding Window”

• Problem: At each time t, we want to estimate the
number of flows over [t − w, t].

tt−w

dcbacbca

w

• Our contribution (ANALCO’07):
• New algorithm Sliding MinCount extends the (static)

MinCount algorithm to the sliding window model
• Complete analysis of the auxiliary memory
• Validation on real traffic.

– p.12/21

The approach
• MinCount uses an estimate based on the minimum

• We have to maintain the minima of hashed values over a
sliding window

• Difficulty: over a sliding window, outdated elements
are discarded

”How to remember if the discarded element has realized
the minimum or not?!”

– p.13/21

Maintain the minimum
• Solution: keep in memory the packets that may become

a minimum in the future

• Crucial remark If P1 = (h1, t1) and P2 = (h2, t2) are two
packets such that

t1 < t2 and p1 ≥ p2,

then P1 can not become a minimum in the future.

P1

P2

0

1

– p.14/21

The list of future possible minima
The future possible minima are the minimal records of hashed
values taken in reverse chronological order.

1

0

TP

tt − W

– p.15/21

The list of future possible minima
The future possible minima are the minimal records of hashed
values taken in reverse chronological order.

1

0

t

TP

t1t − W t1 − W

– p.15/21

The list of future possible minima
The future possible minima are the minimal records of hashed
values taken in reverse chronological order.

1

0

TP

t1t1 − W

– p.15/21

The list of future possible minima
The future possible minima are the minimal records of hashed
values taken in reverse chronological order.

1

0

t1t1 − W

TP

– p.15/21

The list of future possible minima
The future possible minima are the minimal records of hashed
values taken in reverse chronological order.

1

0

t1 − W t1

TP

– p.15/21

Results
• Same accuracy as MinCount

– p.16/21

Application to traffic monitoring

•
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

N
um

be
r

of
 a

ct
iv

e
flo

w
s

Time (sec)

Number of active flows in a window of one minute

"c-3-60-trafic-est"

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

N
um

be
r

of
 p

ac
ke

ts

Time (sec)

Number of packets in a window of one minute

"p-c-3-60-trafic-est"

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

N
um

be
r

of
 a

ct
iv

e
flo

w
s

Time (sec)

Number of active flows in a window of one hour

"c-3-3600-trafic-est"

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

N
um

be
r

of
 p

ac
ke

ts

Time (sec)

Number of packets in a window of one hour

"p-c-3-3600-trafic-est"

Aggregated traffic of 400 machines at INRIA during one day. Comparison
number of flows (Left) / number of packets (Right), for window of 1 hour
(Top) / 1 minute (Bottom). – p.17/21

	Overview
	Estimation of large cardinalities
	Cardinality of a multiset
	Surprisingly long list of applications
	Exact solution
	Probabilistic solution
	Probabilistic solution
	The algorithm MinCount
	Counting over a sliding window
	New context
	Sliding window
	The approach
	Maintain the minimum
	The list of future possible minima
	Results
	Application to traffic monitoring

