Bijective counting of plane bipolar orientations

Éric Fusy, Dominique Poulalhon, Gilles Schaeffer

LIX, École Polytechnique and LIAFA, Université Paris 7

Planar maps

• Planar map = graph drawn in the plane without edge-crossing, taken up to continuous deformation

Planar maps

• Planar map = graph drawn in the plane without edge-crossing, taken up to continuous deformation

Rooted map = map + root edge

Planar maps

 Planar map = graph drawn in the plane without edge-crossing, taken up to continuous deformation

Rooted map = map + root edge

Some classical families

Counting rooted maps

Simple counting formulas

(Planar rooted) maps with
$$n$$
 edges: $\frac{2 \cdot 3^n}{(n+2)(n+1)} \binom{2n}{n}$

Triangulations with n+2 vertices: $\frac{1}{2n(2n+1)}\binom{4n-2}{n-1}$

Quadrangulations with
$$n+3$$
 vertices: $\frac{2}{(n+1)(2n+1)} \binom{3n}{n}$

- Two methods:
 - Recursive: Tutte 1963
 - Bijective: Cori 1981, Schaeffer 1997

Combinatorial structures on maps

Many families of maps are characterised by a structure

Triangulations Quadrangulations

Separating decompositions 2 spanning trees

2-connected

plane bipolar orientations acyclic with two poles the root connects the poles

Combinatorial structures on maps

Many families of maps are characterised by a structure

Schnyder woods 3 spanning trees

Triangulations Quadrangulations

Separating decompositions 2 spanning trees

2-connected

plane bipolar orientations acyclic with two poles the root connects the poles

- Interests:
 - planarity conditions: Schnyder
 - tool for bijections: Poulalhon, Schaeffer, Bernardi
 - Schnyder, Felsner, • graph drawing:

de Fraysseix, Ossona de Mendez

Combinatorial structures on maps

Many families of maps are characterised by a structure

Triangulations Quadrangulations

Separating decompositions 2 spanning trees

2-connected

plane bipolar orientations acyclic with two poles the root connects the poles

- Interests:
 - planarity conditions: Schnyder
 - tool for bijections: Poulalhon, Schaeffer, Bernardi
 - Schnyder, Felsner, • graph drawing:
 - de Fraysseix, Ossona de Mendez
- Definition: A structured map is a rooted map endowed with a structure.

Counting structured maps

Known results:

• The total number S_n of Schnyder woods with n+3 vertices is

$$S_n = \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}.$$

Bijective proofs by Bonichon'02, Bonichon-Bernardi'06

• The number B_{ij} of plane bipolar orientations with i+1 vertices and j+1 faces is

$$B_{ij} = 2 \frac{(i+j-2)!(i+j-1)!(i+j)!}{(i-1)!i!(i+1)!(j-1)!j!(j+1)!}.$$

Recursive proofs by Baxter'01, Bousquet-Mélou'03

New results

Bijective proof of the formula

$$B_{ij} = 2 \frac{(i+j-2)!(i+j-1)!(i+j)!}{(i-1)!i!(i+1)!(j-1)!j!(j+1)!}$$

for counting plane bipolar orientations. (similar principles as Bonichon-Bernardi'06)

We recover the formula

$$S_n = \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!},$$

for counting Schnyder woods, as a special case of our bijection.

Encoding the blue tree

Encoding the blue tree

Encoding the red edges

• Encode the degrees in red of the white vertices:

$$\deg_{\mathbf{r}} := (d_1, d_2, \dots, d_k)$$

is the sequence of degrees in red of white vertices discovered in a cw traversal around the blue tree.

The red word is

$$W_{\mathbf{r}} := \underline{c}^{d_1-1} c \underline{c}^{d_2-1} c \dots \underline{c}^{d_k-1} c$$

Example:

• Lemma: The red path shifted once top-left does not cross the two blue paths.

The bijection

Theorem:

Rooted plane bipolar orientations with i vertices and j faces

 $\begin{tabular}{|c|c|c|c|c|} bijection \end{tabular}$

$$egin{aligned} \mathbf{P_1}: (\mathbf{0}, \mathbf{2}) &
ightarrow (\mathbf{i-2}, \mathbf{j}) \ \mathbf{P_2}: (\mathbf{1}, \mathbf{1}) &
ightarrow (\mathbf{i-1}, \mathbf{j-1}) \ \mathbf{P_3}: (\mathbf{2}, \mathbf{0}) &
ightarrow (\mathbf{i}, \mathbf{j-2}) \end{aligned}$$

Counting:

Using Gessel-Viennot's formula, we recover

$$B_{ij} = 2 \frac{(i+j-2)!(i+j-1)!(i+j)!}{(i-1)!i!(i+1)!(j-1)!j!(j+1)!}.$$

Counting Schnyder woods

- \Rightarrow The path for red edges is a staircase
- We recover: (Bonichon'02, Bonichon-Bernardi'06)

Schnyder woods with n + 3 vertices bijection

pairs of non-crossing Dyck paths of size n

• Counting:

The number of Schnyder woods with n+3 vertices is

$$S_n = C_{n+2}C_n - C_{n+1}^2 = \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}$$