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Planar maps
• Planar map = graph drawn in the plane without

edge-crossing, taken up to continuous deformation

• Rooted map = map + root edge

rooting

• Some classical families

Quadrangulation Triangulation 2−connected
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Counting rooted maps

• Simple counting formulas

(Planar rooted) maps with n edges:
2 · 3n

(n+2)(n+1)

(

2n

n

)

Triangulations with n+2 vertices:
1

2n(2n+1)

(

4n−2

n − 1

)

Quadrangulations with n+3 vertices:
2

(n+1)(2n+1)

(

3n

n

)

• Two methods:
• Recursive: Tutte 1963
• Bijective: Cori 1981, Schaeffer 1997
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Combinatorial structures on maps
• Many families of maps are characterised by a structure

Triangulations

3 spanning trees

Quadrangulations

2 spanning trees

2-connected

plane bipolar orientations

t

s

Schnyder woods Separating decompositions
acyclic with two poles

the root connects the poles

• Interests:
planarity conditions: Schnyder

Poulalhon, Schaeffer, Bernarditool for bijections:

graph drawing: Schnyder, Felsner,
de Fraysseix, Ossona de Mendez

• Definition: A structured map is a rooted map endowed
with a structure.
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Counting structured maps
Known results:

• The total number Sn of Schnyder woods with n + 3
vertices is

Sn =
6(2n)!(2n + 2)!

n!(n + 1)!(n + 2)!(n + 3)!
.

Bijective proofs by Bonichon’02, Bonichon-Bernardi’06

• The number Bij of plane bipolar orientations with i + 1
vertices and j + 1 faces is

Bij = 2
(i + j − 2)!(i + j − 1)!(i + j)!

(i − 1)!i!(i + 1)!(j − 1)!j!(j + 1)!
.

Recursive proofs by Baxter’01, Bousquet-Mélou’03
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New results
• Bijective proof of the formula

Bij = 2
(i + j − 2)!(i + j − 1)!(i + j)!

(i − 1)!i!(i + 1)!(j − 1)!j!(j + 1)!

for counting plane bipolar orientations.
(similar principles as Bonichon-Bernardi’06)

• We recover the formula

Sn =
6(2n)!(2n + 2)!

n!(n + 1)!(n + 2)!(n + 3)!
,

for counting Schnyder woods, as a special case of our
bijection.
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Principle of the bijection

t

s

i vertices, j faces

plane bipolar
orientation
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aa
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3 words

2 for the blue tree
1 for the red edges

orientation
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Encoding the blue tree

s

o o o

o
oo

o o

o

oo o o o

o

o
o

o

o

o

Wt = oooooooooooooooooooooo

o
o

o
discovers a vertex

leaves a vertex
o

Classical Dyck encoding (n vertices)

away from the root

toward the root

o

o

n − 1Dyck path
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Encoding the blue tree

Pa

Pb

a

a

b

b

Wa =aaaaaaaaaaa

Wb = bbbbbbbbbbbWb =

s

a a a

a
aa

a a

a

ab b b b

b

b
b

b

b

b

Wt = ababababababababababab

a

b
a

leaves black vertex

discovers black vertexb

a
discovers white vertex

leaves white vertexb

Bicolored Dyck encoding (i black, j white vertices)

toward the root

away from the root

away from the root

toward the root

i

j

non-crossing pair
of paths
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Encoding the red edges
• Encode the degrees in red of the white vertices:

degr := (d1, d2, . . . , dk)

is the sequence of degrees in red of white vertices
discovered in a cw traversal around the blue tree.

• The red word is

Wr := cd1−1ccd2−1c . . . cdk−1c
• Example:

1
3

1

3

3

deg
r
= (1,3,1,3,3)

Wr = ccccccccccc

Pcc

c

• Lemma: The red path shifted once top-left does not
cross the two blue paths.
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The bijection
t

s

i vertices, j faces ii

j

Theorem:

Rooted plane bipolar orientations with i vertices and j faces

triples of non crossing upright lattice paths with

bijection
P1 : (0,2) → (i−2, j)
P2 : (1,1) → (i−1, j−1)
P3 : (2,0) → (i, j−2)

Counting:

Using Gessel-Viennot’s formula, we recover

Bij = 2
(i + j − 2)!(i + j − 1)!(i + j)!

(i − 1)!i!(i + 1)!(j − 1)!j!(j + 1)!
.
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Counting Schnyder woods

white vertices have
degree 2 in red

s s

t t

We recover:

Schnyder woods with n + 3 vertices

pairs of non-crossing Dyck paths of size n

bijection

Counting:

The number of Schnyder woods with n + 3 vertices is

Sn = Cn+2Cn − C
2
n+1 =

6(2n)!(2n+2)!
n!(n+1)!(n+2)!(n+3)!

⇒ The path for red edges is a staircase

(Bonichon’02, Bonichon-Bernardi’06)
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