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Abstract. Based on a construction of the first author, we present a gebigection between certain decorated plane

trees and certain orientations of planar maps with no cocloiekwise circuit. Many natural classes of maps (e.g.

Eulerian maps, simple triangulations,...) are in bijattiwith a subset of these orientations, and our construction
restricts in a simple way on the subset. This gives a genéitive strategy for classes of maps. As a non-

trivial application of our method we give the first bijectipeoofs for counting (rooted) simple triangulations and

guadrangulations with a boundary of arbitrary size, redogeenumeration results found by Brown using Tutte’s

recursive method.

Résune. En nous appuyant sur une construction du premier auteus,dannons une bijection générale entre certains
arbres décorés et certaines orientations de cartesifgarsans cycle direct. De nombreuses classes de cartes (par
exemple les eulériennes, les triangulations) sont erctinje avec un sous-ensemble de ces orientations, et notre
construction se spécialise de maniére simple sur le ensesmble. Cela donne un cadre bijectif général pouetrizis
familles de cartes. Comme application non-triviale deaatéthode nous donnons les premieres preuves bijectives
pour I'énumération des triangulations et quadrangoiegisimples (enracinées) ayant un bord de taille artstrair
retrouvons ainsi des formules de comptage trouvées pavrBea utilisant la méthode récursive de Tutte.

Keywords: Triangulation, quadrangulation, maps with boundarieshites, bijection, counting

1 Introduction

The enumeration of planar maps (connected graphs embeddied sphere) has received a lot of attention
since the seminal work of Tutte in the 60’s (Tut63). Tuttesursive method consists in translating the
decomposition of a class of maps (typically obtained by tifedean edge) into a functional equation sat-
isfied by the corresponding generating function. The tegitsi usually requires an additional “catalytic”
variable, and the obtained functional equation is solveédguthe so-called “quadratic method” (GJ83,
sec.2.9) or its extensions (BMJ06). The final result is, fangnclasses of maps, a strikingly simple
counting formula. For instance, the number of (rooted) maitls » edges is% (2:) Tutte’s
method has the advantage of being systematic, but is quitaitsal in the way of solving the equation
and does not give a combinatorial understanding of the gifigquking enumerative formulas.
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As an alternative method, bijective constructions havenlseveloped to obtain more direct combina-
torial proofs of the counting formulas, with nice algoritttrapplications (random generation and asymp-
totically optimal encoding in linear time). The first bijemts appeared in (CV81) and later in (Sch98)
where direct bijections for several classes of maps areritbestc Typically bijections are from a class
of “decorated” plane trees to a class of maps and operatees by progressively closing facial cycles.
More general constructions have been given subsequerittyapplication to statistical physics models
(Ising, hard particles) on random lattices (BMS02; BFGOT)l ¢o the investigation of metric proper-
ties of random maps (CS04; BFGO04). Even if it has been suftdlsapplied to many classes, e.g.
in (PS06; PS03; FPS08; Fus09), the bijective method for risapp to now not as systematic as Tutte’s
recursive method, since for each class of maps one has tesgthe tree family to match with, and one
has to specify the construction from trees to maps.

This article contributes to fill this gap. Based on a congtomcof the first author (Ber07; BC), we
provide in Section 3 a general bijectidnbetween a seb of certain decorated plane trees which we call
mobild) and a se® of certain orientations on planar maps with no counterclsk circuit. As it turns
out, a map class is often in bijection with a subfan®lyf © on which our construction restricts nicely;
typically the orientations i are characterized by degree constraints which can be tthosagh our
construction and yields a degree characterization of thec@sted mobiles. The mobiles family is then
specifiable by a decomposition grammar and amenable to thehge inversion formula for counting.
To summarize, our method makes the bijective method motersydic, since it consists in specializing a
“master bijection”® to the class of maps under consideration. The problem of erating a class of map
M therefore reduces to guessing a family of “canonical” daéans (inO) for M instead of guessing a
family of trees to match witb\1 (the first task being often simpler than the second).

We focus here, in Section 4 and Section 5 respectively, orciagses that were not completely covered
before, namely simple triangulations and simple quadrkatigms with a polygonal boundary and a root-
corner incident to the boundary. We show bijectively thattiumbet,, ;, of rooted simple triangulations
with n + k vertices and boundary of lengkrand the numbey,, ;. of rooted simple quadrangulations with
n + 2k vertices and boundary of leng®t satisfy

(o _  22E=3)  (dn+ 2k —5)! ® __ 3Bk=2!  (3n+3k—4)!
mT G-Ik alBnr2k—3)1 T T k- 2)I(2k — 1) nl(2n + 3k — 2)I’

recovering results found by Brown respectively in (Bro6d)l §Bro65) using Tutte’s recursive method.
The case without boundariéls € 3 for triangulationsk = 2 for quadrangulations) have already received
bijective proofs in (PS06; Sch98) (for triangulations) gr&S08) (for triangulations) and in (Sch98)
respectively; our construction actually coincides witltl{$8) for triangulations and with (FPS08) for
guadrangulations. The case of triangulations with bourd#ras also received a partial bijective interpre-
tation, different from ours, in (PS06) (only one directigsrgiven, from trees to maps, which by injection
shows that,, ; is at leastthe number above, but does not suffice to prove equality).approach leads
to unified and reasonably short proofs for both triangufetiand quadrangulations with boundaries.

2 Maps and orientations

Maps. A (planar)mapis a connected planar graph embedded in the oriented spi@masidered up to
continuous deformation. A map sgmpleif it has no loop nor multiple edge. THacesare the connected

() The termmobileis borrowed from a famous bijection by Bouttier et al. (BF@@sich can be seen as a specializationbof
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components of the complementary of the graphpléne treeis a map with a unique face. Cutting an
edgee at its middle point gives two half-edges, each incident teadpoint ofe (they are both incident

to the same vertex i is a loop). We shall also consider some maps decorated withlidg half-edges
calledstemg(see e.g. Figure 2(a)). Borneris the angular section between two consecutive half-edges
around a vertex. The degree of a vertex or face is the numldecident corners. A map istaangulation
(resp.quadrangulationif every face has degree 3 (resp. 4).

A map is said to bevertex-rootedf a vertex is markedface-rootedif a face is marked, andorner-
rootedif a corner is marke®. The marked vertex, face or corner are calledrtw-vertex root-faceor
root-corner. For a corner-rooted map, the marked corner is indicated dgraling half-edge pointing
to that corner; see Figure 1. A corner-rooted map is saiddacethe vertex-rooted map (resp. face-
rooted map) obtained by keeping the root-vertex (resp -fad) as marked, but otherwise forgetting the
root-corner. Given a face-rooted (or corner-rooted) maptices and edges are said todageror inner
depending on whether they are incident to the root-face br no

Orientations. An orientationO of a map)M is the choice of a direction for each edge\df A circuitis a
directed cycle. Asourceis a vertex incident to no ingoing edge.f is face-rooted (resp. vertex-rooted,
corner-rooted), then the pait/, O) is called avertex-rooted orientatiofresp. face-rooted orientation
corner-rooted orientation A corner-rooted orientation naturaliyducesa face-rooted orientation and a
vertex-rooted orientation. For a vertexf M, the indegreén(v) is the number of edges going intpthe
outdegreeut(v) is the number of edges going outaf For a facef € M, the clockwise-degreew(f)
is the number of edges incident fahat havef on their right; the counterclockwise-degkesy( f) is the
number of edges that hayeon their left. For corner-rooted maps, the half-edge intitigethe root-corner
increases by the indegree of the root-vertex and the clockwise-degréeeofoot-face.

A vertex-rooted orientation is said to becessibléf every vertex is accessible from the root-vertex by
a directed path; it isource-accessibliéin addition the root-vertex is a source. A circuit of a fawmted
(or corner-rooted) orientation is saitbckwiseif the root-face is on its left. The orientation fisinimal
if every circuit is clockwise; it isclockwise-minimaif in addition the root-face is a (clockwise) circuit.
We extend the definition of accessibility to (face-rootddrkwise-minimal orientation® by calling O
accessibléf it is accessible from one of the vertices incident to thetfface. Observe thad is in fact
accessible from any vertex on the root-face in this casecgh@nis induced only by minimal accessible
corner-rooted orientations). Similarly, we call a souangessible orientatio® minimalif O is minimal
for one of the faces incident to the root-vertex. Observedhss in fact minimal for every face incident
to the root-vertex in this case (hen@ds induced only by minimal accessible corner-rooted o&gahs).

Let o be a positive integer. We denote 8y the set of source-accessible minimal orientations sudh tha
the root-vertex has degrée We denote by); the set of clockwise-minimal accessible orientations such
that the root-face has degrée We denote byS; the subset o5 such that every face incident to the
root-vertex has clockwise degree 1. We denoté@hythe subset o0 such that every vertex incident to
the root-face has indegree 1.

Given a mapM and a function with vertex-sétf and a functionr : V' — N, ana-orientationis an
orientation ofM such thain(v) = a(v) for eachv € V. The following result is classical (see (Fel04)).

Lemma 1 If a face-rooted mapg/ has ana-orientation, then\/ has a unique minimak-orientation.

() Corner-rooted map are usually simply calledted mapsn the literature. A face-rooted map can be thought pkaae mapa
connected graph embedded in the plane) by thinking of thiefeme as the infinite face.
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Fig. 1: The dual of an oriented map.

Duality. Thedual M* of a mapM is the map obtained by the following two step process; seereit).

1. In each facef of M, draw a vertex; of M*. For each edge of M separating faceg and f’
(which can be equal), draw tlimal edge=* of M* going fromv; to vy acrosse.

2. Flip the drawing of\/*, that is, inverse the orientation of the sphere.

The dual of a face-rooted map is a vertex-rooted map. Cowfesismap and of its dual are in natural
correspondence (they face each other); this gives the walefifing the root-corner of the dual of a
corner-rooted map; see Figure 1. Duality is involutive orpsiand rooted maps.

The dual of an orientation of\/ is the orientation of the dual mal* obtained by applying the fol-
lowing rule at step 1: the dual-edgé of an edge: € M is oriented from the left oé to the right ofe.
Observe that the duality is involutive for oriented mapgtisi the motivation for step 2 in the definition
of duality). The clockwise degree (resp. counterclockwiegree) of a fac¢ of M is equal to the inde-
gree (resp. outdegree) of the vertexof A * (this is true also with the special convention applying to
corner-rooted maps). The following result is classical.

Lemma 2 A face-rooted orientation is minimal (resp. clockwise-imial) if and only if the dual vertex-
rooted orientation is accessible (resp. source-acceskibl

Observe that duality maps the set of orientati651$resp.§5) to the seOs (resp.@;). Also, minimal
accessible orientations (of corner-rooted maps) are s@lf dVe mention that these orientations, which
play an important role below, are in bijection with spannireges (Ber07).

3 Bijections between mobiles and orientations

In this section, we first recall a bijectichoriginally due to the first author (Ber07).We then presentso
extensions ofp which will be convenient for our subsequent goals. Indeedhé next two sections we
will show how to use these extensions in order to count séfardlies of maps.

The bijectiond maps minimal accessible (corner-rooted) orientations wigdges and pairs of corner-
rooted plane trees3, T') with n+ 1 andn edges respectively. The trégis called the (rootedhobileand
its vertices ardicoloredin black and white (in such a way that edges always conne@cklaind a white
vertex). Informally, the bijectio® consists in folding the tre€ (oriented from the root to leaves) around
the mobile. More precisely, one glue the vertice§'adn the black corners of the mobile and then erase
the edges and white vertices Bf (leaving the edges df as edges of a minimal accessible orientation).
In what follows we adopt a slightly different presentationyhich the tree€l” only appears implicitly in
certaindecorationsadded to the mobilé.

We call decorated mobile bicolored (unrooted) plane tree witlutgoing stemgdangling outgoing
half-edges) possibly attached at each black corner; segd-Rfa). Theexcesof a decorated mobile is
the number of edges minus the number of (outgoing) stems. Bilenwith exces9 is called aj-mobile
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(a) (c)

Fig. 2: The rooted closure of a mobile of excess- 1.

A fully decoratedmobile is obtained from a decorated mobile by insertingragoing stem(dangling
ingoing half-edge) in each black corner following an edgehef mobile (and not a stem) in clockwise
order around the vertex; the fully decorated mobile is repnéed in solid lines in Figure 2(b). The
degreealeg(v) of a vertexv of a decorated mobile is the total number of incident hatfesiincluding the
outgoing stems). Moreover, for a black vertethe indegreén(b) and out-degreeut(b) are respectively
the number of incident ingoing and outgoing stems inciderdt in the fully-decorated mobile (so that
deg(b) = in(b) + out(b)).

3.1 Bijection between 1-mobiles and minimal accessible orientations

We now recall the bijection given in (Ber07) between 1-mebhnd minimal accessible orientations.
Closure. Let D be a decorated mobile with edges and outgoing stems (hence excess= p — q).
The corresponding fully decorated mobil¥ hasp ingoing andg outgoing stems. A clockwise walk
aroundD’ (with the face area on the left of the walker) sees a sucaesgioutgoing stems and ingoing
stems. Associating an opening parenthesis to outgoingssaeich a closing parenthesis to ingoing stems,
one obtains thus a cyclic binary word withopening and closing parentheses. This yields in turn a
matching of outgoing stems with ingoing stems, leavifjgtems unmatched, which are ingoing if> 0
and outgoing ifd < 0; see Figure 2. Theartial closureC of the decorated mobil® is obtained by
forming a directed edge out of each matched pair, see Figa)e(B). We conside€' as a planar map
with two types of edges (those of the mobile, which are urtii@, and the new formed edges, which
are directed) angh| stems. Note that, i§ > 0, there ared white corners incident to the root-face ©f
because initially the number of such corners is equal to tieber of edges, and then each matched pair
of stems decreases this numberlbyThese corners, which stay incident to the root-face thnougthe
partial closure, are callegkposed white corners

Therooted-closureof the decorated mobil® is obtained from the partial closu(e by erasing every
white vertex and edge of the mobile (this might result in Zoisected embedded graph in general).

Opening. Let M be an oriented map (rooted or not) with vertexisetnd face set’. Thepartial opening
of M is the mapC with two types of vertices (black vertices In and white vertices itV = {wy, f €
F'}) and two types of edges (directed and undirected) obtainéallaws.

¢ Insert a white vertex ¢ inside each fac¢ of M.

o Draw an undirected edge betweep and each corner incident fowhich precedes an ingoing half-
edge in clockwise order around its incident vertexMfis corner-rooted, then the stem indicating
the root-corner is interpreted as an ingoing half-edge @rekgise to an edge af.



6 Olivier Bernardi andEric Fusy

Rooted closure, duality:| 1-mobile min. acc. ori. min. acc. ori.
black vertex b ~—— vertexv «~—— face f
deg(b)=deg(v) deg(v)=deg(f)
in(b)=in(v) in(v)=cw(f)
out(b)=out(v) out(v)=ccew(f)
white vertex w =~ «—— face f ~— vertex v
deg(w)=cw(f) cw(f)=in(v)
d-closure + duality: d-mobile ori. in Oj
Case 6 >0 black vertex b ~——— inner face f
deg(b)=deg(f)
in(b)=cw(f)
out(b)=ccew(f)
white vertex w — vertex v
deg(w)=in(v)
d-mobile ori. in 55
Case § <0 black vertex b <+ inner face f
deg(b)=deg(f)
in(b)=cw(f)
out(b)=ccw(f)
white vertex w <—— inner vertex v

deg(w)=in(v)

Fig. 3: The closure-bijections, with the parameter corresponeenc

If M is a corner-rooted orientation, th@oted-openingf M is obtained from the partial openirig by
erasing all the ingoing half-edges 8f, thereby creating an undirected embedded bicolored gréthh w
some outgoing stems incident to black corners.

We recall the result from (Ber07) (see also (BC)) that welgieaieralize.

Theorem 3 The rooted closure is a bijection between decorated mobilexces$ = 1 and (corner-
rooted) minimal accessible orientations. The rooted opgrs the inverse mapping. Lastly, the parameter-
correspondence is shown in Figure 3, top-part.

3.2 Bijection for §-mobiles

o-closure. We now define thé-closure of a-mobile (the definition depends on the signjdfLet D be
ad-mobile and leC be the partial closure db. Thed-closureM of D is defined as follows.

e If 6 > 0, thenC hasé ingoing stems (incident to the root-face). The vertex-edairientationV/
is obtained fronC' by first creating a root-vertex of M in the root-face of” and connecting it to
each ingoing stem (stems thus become part of an edgé difected away fromv); second erasing
the edges and white vertices of the mobile.

e If § < 0, thenC hasd outgoing stems (incident to the root-face). The vertexedrientation\/
is obtained fromC by first creating a root-vertex of M in the root-face of” and connecting it
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to each outgoing stem and then reorienting these edgesy $term become part of an edge /df
directed away from); second erasing the edges and white vertices of the mobile.

e If 6 = 0, thenM is the face-rooted orientation obtained frarby erasing the edges and white
vertices of the mobile.

Actually, it is not obvious from our definitions that theclosures giveconnectecdrientations but we
prove this and more below.

Theorem 4 Letd be inZ.

e For § > 0, the §-closure is a bijection betweeftmobiles and the sefs of source-accessible
minimal orientation. By dualitys; is in bijection with the se©s of clockwise-minimal accessible
orientations. The parameter-correspondence (inheritethfthes-closure followed by duality) is
shown in Figure 3 bottom-part.

e Ford < 0, theod-closure is a bijection betweeirmobiles and the subsgt; of source-accessible
minimal orientation such that every face incident to thetroas clockwise degree 1. By duality
S5 is in bijection with the subs&?;s of clockwise-minimal accessible orientations. The par@me
correspondence is shown in Figure 3 bottom-part.

e For o = 0, thed-closure is a bijection betweenmobiles and minimal orientations.

The remaining of this section is devoted to the proof of Tkeod (the proof fop = 0 is omitted).
Cased > 0. We first prove that thé-closure of aj-mobile is inS;. Let D be ad-mobile, letC be its
partial closure and led! be itsd-closure. As observed above, the mohilehass > 0 exposed white
corners. LetD’ be the decorated mobile obtained frddrby creating a new black vertéxjoining b to an
exposed white corner, and addifigutgoing stems td. The excess oD’ is 1, hence by Theorem 3 the
rooted closure obD’ gives a minimal accessible orientatidff. Moreover, it is easily seen (Figure 4) that
the root-corner ofi/’ is incident to the new vertex(because the ingoing stem incidenbtis not matched
during the partial closure). Moreover (provided the ingpinot half-edge is not countedl)s a source of
the orientationV/’, and the vertex-rooted orientatidd is induced by the corner-rooted orientatibfl.
Thus, the orientatiod/ is in S. _

The following comment will be useful later (for the case: 0): the closureV/ of D isin S; if and only
if each of the exposed white cornersiofis incident to a (white) leaf ob). Indeed, a white vertex of
D has an exposed white corner if and only if it corresponds &xaf of M incident to the root-vertel
Moreover, the clockwise degree ffis (as always) the degree of;.

We now prove that thé-closure is a bijection by defining the inverse mapping. Letbe a vertex-
rooted orientation ir;. By applying the partial opening df/ and then erasing every ingoing half-edge
of M, one obtains an embedded graph with stétasThe embedded graph is in fact disconnected
since the root-vertel of M is incident to no edge ab (sinceb is a source of\f). Thed-openingD of
M is obtained fromD by erasing the vertel In order to prove thab is a decorated mobile (i.e. a tree
with stems), we consider a minimal accessible orientatirobtained from\/ by choosing a root-corner
for M among the corners incident to the root-verbexBy Theorem 3, the rooted opening df’ gives
a decorated mobil®’. Clearly, D is obtained fromD’ by erasing the black vertdx Moreoverp is a
leaf of D’ (sinced is incident to no ingoing half-edge except the stem indmgathe root-corner of O),
henceD is a mobile, and it has excegsLastly, since the rooted closure and rooted opening aer$ev
mappings, it is clear thatclosure and-opening are inverse mappings, hence bijections.
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(a) (b)

Fig. 4: Formulation of the-closure, for§ > 0, as a reduction to the rooted closure. Figure (a) shows gatigrthe
partial closure of @-mobile withé = 4, in (b) one creates a black vertexvith § outgoing stems, and connects it to
an exposed white corner, in (c) one performs the remainirtghivays of stems to complete tlieclosure.

Cased < 0. We denotal = —4§. Let D be aj-mobile. We associate t® a d-mobile ¢(D) obtained
from D by transforming each of itd unmatched outgoing stems into an edge)0b) connected to a
newly created white leaf. Observe that thelosure ofD and thed-closure ofp(D) coincide. Hence the
d-closure is the composition of the mappin@nd thed-closure. Moreover, the mappirgis a bijection
between the set @Fmobiles and the sé?,; of d-mobiles such that every exposed white corner belongs to
a leaf. Indeedg(D) belongs tdD,; since the unique incident corner for each of dheewly created white
leaves remains exposed during the partial closure; andhieese mapping ' is obtained by replacing
each edge incident to an exposed leaf by an outgoing stertly Llasthe observations above (case 0),
thed-closure induces a bijection between theBgiand the sef,. The inverse mapping to thieclosure,
called the’-opening, is obtained as the compositiomof' with thed-opening. This completes the proof
of Theorem 4 (in the casés# 0).

4 Bijective counting of triangulations with boundaries

In this section we obtain bijections for simple trianguat$ (a.k.a3-connected triangulationsnaximal
planar graph3 and for triangulations with boundaries. The bijectionsaltained by specializing the clo-
sures defined in the previous section to certain classesarftations characterizing simple triangulations.

Let T' be a face-rooted triangulation. 2-orientationof 7" is an orientation such that inner vertices
have indegre8 and outer vertices have indegree Schnyder proved in (Sch89) that any simple face-
rooted triangulation admits a 3-orientation, that any i&mation is accessible from the outer vertices and
that the root-face is always directed. Moreover, one eas$icks (using Euler’s relation) that loops and
double edges are obstructions to the existence of a 3-atient Thus, a planar triangulation admits a
3-orientation if and only if it is simple. In the following wa&mply call 3-orientationa 3-orientation of a
face-rooted triangulation. From Lemma 1 one obtains:

Lemma 5 Face-rooted simple triangulations are in bijection withrmmhal 3-orientations. Such orienta-
tions are clockwise-minimal and accessible.

Minimal 3-orientations are the orientations@g such that all inner vertices have indegfeand all
faces have degree Thus, we can use the case- —3 of Theorem 4 to conclude that face-rooted simple
triangulations are in bijection witli—3)-mobiles having every vertex of degré€recall that outgoing
stems count in the degree of a black vertex). In fact, thetcains that the excess is3 can be omitted,
since it is a consequence of all vertices having de@réss easily seen by induction on the number of
vertices). Caltrivalentthe decorated mobiles with all vertices of degBe&Ve obtain:
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Proposition 6 (Recovering (Sch98))Thes-closure, casé = —3 (together with duality) induces a bijec-
tion between face-rooted triangulations witht- 3 vertices and trivalent mobiles withwhite vertices.

Proposition 7 (Counting rooted simple triangulations) For n > 0, let ¢, be the number of corner-
rooted simple triangulations with + 3 vertices. The generating functidn(z) = ano(Qn + Ditpa™

satisfies
T(z) = u®, whereu =1+ zu*.

(4n +1)!
(n+1)!1(3n+2)!"

Consequently, the Lagrange inversion formula gives:= 2

Proof: Euler relation easily implies that a triangulation witht+ 3 vertices hag2n + 1 non-root faces.
Hence(2n+ 1)t,, is the cardinality of the sét,, of face-rooted triangulations withinner vertices having

an additional marked cornemot incident to the root-face (think of obtaining this mapflogt marking

a corner and then a face). Marking the cora& equivalent to marking a black corner of the associated
mobile (since the black vertices are in correspondenceddrtangular faces). In other word#(,, is

in bijection, via the(—3)-closure, with trivalent mobiles that hawewhite vertices and a marked black
corner, andl'(x) is the generating function of this class of mobiles. The oétte proof is omitted. O

We now proceed to count bijectively the triangulations viittundaries. In the following; is an integer
greater than 3. 4-gonal triangulationis a map having one face of degiee/hich issimple(incident tok
distinct vertices) and all other faces of degse&@hek-gonal face is calledoundary faceand the vertices
are calledboundaryor non-boundarydepending on whether they are incident to the boundary fAce.
pseudo 3-orientatioof a k-gonal triangulation is an orientation such that all nonHxdary vertices have
indegree3, and the boundary face is directed. A pseudo 3-orientafi@rnkegonal triangulation is shown
in Figure 5(d). By the Euler relation, an annukagonal triangulation witln non-boundary vertices has
3n + 2k — 3 edges. Hence, the sum of indegrees of the boundary versieés- 3.

Lemma 8 A k-gonal triangulation admits a pseudo 3-orientation if amdyoif it is simple. Moreover this
orientation is accessible from any boundary vertex.

Proof: It is easy to see (by a counting argument using Euler relptioat loops and multiple edges
are obstructions for pseudo 3-orientations. Now,Aebe a simplek-gonal triangulation. Fromd we
construct a simple triangulatidfi as follows. Place a triangleinside the boundary facg¢ of A and
add edges between verticestadnd vertices off so as to triangulate the interior ¢f Then taket as a
root-face ofT" and endowl” with a 3-orientatiorD. Deleting the triangle¢ and the incident edges, and
reorienting the boundary face to be directed, we obtain EmtationO’ of A such that all non-boundary
vertices have indegrek that is, a pseudo 3-orientation.

For the second assertion, remember thas accessible from the vertices of the triangleHence in
O’ each vertex in A must be accessible from some boundary vertex. But sincedhrdary face is
directedy is in fact accessible from any boundary vertex. O

Following the terminology in (PS06), we calhnular k-gonal triangulationa simple face-rooted-
gonal triangulation whose root-face is not the boundarg;faee Figure 5(d). Lef’ be an annulak-
gonal triangulatior?”, with root-facef and boundary fac¢’. A 3-cycleC of T is calledseparatingf C
is different from (the contour of) the root-face and lfasn one side and’ on the other side. The annular
triangulation?” is said to benon-separatedf it has no separating 3-cycle. We denotefyset of annular
k-gonal triangulations, and by, the subset of non-separated ones.
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(a) (b) (d)

Fig. 5: (&) A mobile inBy. (b) The 3-closure. (c) Duality. (d) The non-separated Redar triangulation (with its
minimal pseudo 3-orientation).

Proposition 9 Any annulark-gonal triangulationA admits a unique minimal pseudo 3-orientation. This
orientation is accessible from all outer vertices if andyoifilA is non-separated. Moreover, the root-face
is directed (in clockwise direction) in this case.

To summarize, the saf;, of non-separated annular-gonal triangulations is in bijection with the set
of clockwise-accessible minimal pseudo 3-orientations.

Proof (sketch): Let A be an annulak-gonal triangulation. We first prove the existence and ueiass

of the minimal pseudo 3-orientation. The rule that the b@amdiace has to be directed prevents us from
using Lemma 1 directly. Instead, we apply this lemma to thp Afaobtained fromA by contracting all the
edges of the boundary face; the boundary face is therebyaatetl into a vertek. Pseudo 3-orientations
of A such that the boundary face is oriented clockwise correspigeactively toa-orientations ofd’ with
a(b) = k — 3 anda(v) = 3 for v # b (recall thata is the indegree). The existence of arorientation

of A’ is granted by Lemma 8. Moreover, the bijection preservesmility in both directions. Henced
has a unique minimal pseudo 3-orientation by Lemma 1.

We now prove the statement concerning accessibility. A.be an annulak-gonal triangulation with
its minimal pseudo 3-orientation. Any simple cydeof A separates the sphere in two regions; we call
non-boundary the region not contains the boundary facemlsi counting argument shows thatithas
lengthk, it is incident to exactlys — 3 ingoing half-edge lying (strictly) inside the non-boungesgion.
This shows that a separating 3-cycle (incident to 0 ingoialfré&dge) is an obstruction for accessibility
from every outer vertices (since one of these vertices iglénthe non-boundary region). To prove the
converse implication, observe that non-accessibilityfiovertexy is equivalent to the fact thatcannot
reach one of the boundary vertex (because of Lemma 8). Mergdvis not hard to prove that non-
accessibility from a vertex implies the existence of a cycté containingv in its non-boundary region
but incident to no ingoing half-edge from that region. Hetide cycle has length 3; andifis an outer-
vertex thenC' is a separating cycle.

We now consider a minimal pseudo 3-orientatiOnsatisfying accessibility from every outer ver-
tices and proceed to prove that the root-face is directeckelizse. The boundary vertices are reachable
from any outer vertex (by a directed path) and any outer ¥asteeachable from boundary vertices (by
Lemma 8). Thus, any outer edgés part of a circuit, hence part of a simple circuit. The siengircuit is
clockwise (by minimality ofO), hencee has the root-face on its left-side. O

By definition, the clockwise-accessible minimal pseudaig+dations are the orientations @ such
that every vertex has indegree 3 and every face has d8greept for ondboundaryfaced which has
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degree: and is directed clockwise. Moreover, a counting argumesin(uEuler relation) shows that the
indegrees of the boundary vertices must add upite- 3. Let D be the 3-mobile giving an orientation
O € N (by the 3-closure followed by duality) and leg be the black vertex ob corresponding to the
boundary facé. Sinceb is counterclockwisey, has no outgoing stem and hiasvhite neighbors, which
clearly (by definition of closure) corresponds to the bouwdartices; see Figure 5. Hence, the degree of
these white vertices of the mobile must add ugko- 3. Lastly, as in the case of triangulations without
boundary, the condition of the excess being 3 is implied Bydbgree conditions on black and white
vertices, so can be omitted. To conclude, by specializatfahe 3-closure, Proposition 9 translates into:

Theorem 10 The family N}, of non-separated annuldt-gonal triangulations is in bijection with the
family Bj, of decorated mobiles having every vertex of degree 3 exaephe black vertek of degreek
carrying no outgoing stem and such that the degrees d@f (ishite) neighbors add up % — 3.

Theorem 11 (Counting rootedk-gonal triangulations) Letk > 3, n > 0, and lett;, , be the number
of simple corner-roote@-gonal triangulations withn + & vertices having the root-corner in thkegonal
face. The generating functidh.(z) = >, ~,(2n + k — 2) t; , 2™ satisfies

2k —4
Ty (z) = (k?)) w73 where u =1+ zu®.

202k —3)!  (4n+ 2k —5)!

Consequently,theLagrangeinversionformulagi\mg:(k 10k —3)1 nl(3n 1 2k —3)1"
— . — L nion — .

Proof: Let 7, be the set of annula-gonal triangulations with a marked corner in the boundanef
(equivalently, a marked boundary vertex). L¥ét be the subset of these annular triangulations that are
non-separated. Let alsb be the set of corner-rooted simple triangulations with akadrinner face.
The separating 3-cycles of an annular triangulation amsalily ordered by inclusion of their boundary
region (the region which contains the boundary face). Tthese is a unique decomposition of annular
triangulationsA € T, into a pair(N,T) € N, x 7. This decomposition is a bijection and translates
into the generating function equati@n(z) = Ny (z)T(z), whereTy(z), Ni(x), T (z) are respectively
the generating function of the maps’fm, N, T counted by number of non-boundary vertices. The
generating functioff, (z) is Y onso(2n+k—2)t, 2" because maps iy, with n non-boundary vertices
have2n + k — 2 non-boundary faces. Moreover, by Propositiorl Tz) = u*, whereu = 1 + xu®.

It remains to expresd/,(x) in terms ofu. By Theorem 10 (and the fact that marking a corner in the
boundary face accounts to marking a corner incident to theiapblack vertex in the associated mobile),
N (z) is the generating function of corner-rooted mobile (codritg number of white vertices) such
that the root-vertex is a black corner of degkeehose (white) neighbors have total degpée— 3. The
white vertices have a total éf — 3 hanging subtrees, which are trivalent trees whose gengratincion

isv = u? (easy proof omitted). In addition, there e(r2§:34) ways to distribute thé — 3 hanging trees on

thek white vertices. HenceYy (z) = (°F~, ) u?"=5. O

5 Bijective counting of quadrangulations with boundaries

In this section we reiterate the strategy used in previoctsseto the case of quadrangulations.
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We call 2-orientationa face-rooted orientation, in which faces have dedréener vertices have inde-
gree2, and outer vertices have indegreeDe Fraysseiet al. (dFOdMO01) have shown that any simple
face-rooted quadangulation admits a 2-orientation, thgt Zxorientation is accessible from the outer
vertices and that the root-face is always directed. Moreaw®e easily checks that a double edge is an
obstruction for 2-orientation. Hence minimal 2-oriergat are in bijection with simple face-rooted quad-
rangulations. By definition, minimal 2-orientations are thrientations in0, having faces of degreé
and inner vertices of indegre@e The (—4)-closure (followed by duality) gives a bijection betweemisu
orientations and (-4)-mobiles whise white vertices hawgrele2 and whose black vertices have degtee
Call these mobiletetravalent We obtain:

Proposition 12 (Counting rooted simple quadrangulations)For n > 0, letq,, be the number of rooted
simple quadrangulations with + 4 vertices. Then the generating functiQz) = > - (n + 1)g 2"
satisfies B

Q(z) = u*, whereu =1+ zu?.

(3n+3)!
(n+2)!(2n + 3)!

Call k-gonal quadrangulatiora map with faces of degree 4 except for one face of degree 4.
The strategy for counting simplegonal quadrangulations parallels the case of trianguiati One first
defines arannular k-gonal quadrangulatioto be a simple quadrangle-rooteeyonal quadrangulation.
One then proves that any such map admits a unique mirpseldo 2-orientatioforientation such that
the boundary face is clockwise and non-boundary verticese mlegree 2), and that this orientation is
clockwise-accessible if and only if the mapnisn-separatedno 4-cycle separates the root-face from the
boundary face). Any annulargonal quadrangulation decomposes uniquely into a pairenoda face-
rooted quadrangulation with an additional marked face andraseparated annulafgonal quadrangu-
lation. Moreover, the later maps are in bijection (via theldsure) with a family of pseudo-tetravalent
decorated mobiles which is easy to enumerate. We obtain:

Consequently, the Lagrange inversion formula gives, = 2

Theorem 13 (Counting rooted simple2k-gonal quadrangulations) Letk > 2, n > 0, and letgy, ,, be
the number of rooted simp-gonal quadrangulations with + 2k vertices and with the root-corner
incident to the2k-gonal face. The generating functioh,(z) = >_, 5 o(n + k — 1)gx,,2" satisfies

3k—3
Qr(z) = (k:Q) w72 where u =1+ zu®

33k —2)!  (3n+ 3k — 4)!
(k — 2)1(2k — 1)! nl(2n + 3k — 2)!”

Consequently, the Lagrange inversion formula giveg;, =
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