
FPSAC 2010, San Francisco, USA DMTCS proc.(subm.), by the authors, 1–14
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Abstract. Based on a construction of the first author, we present a general bijection between certain decorated plane
trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g.
Eulerian maps, simple triangulations,...) are in bijection with a subset of these orientations, and our construction
restricts in a simple way on the subset. This gives a general bijective strategy for classes of maps. As a non-
trivial application of our method we give the first bijectiveproofs for counting (rooted) simple triangulations and
quadrangulations with a boundary of arbitrary size, recovering enumeration results found by Brown using Tutte’s
recursive method.

Résuḿe.En nous appuyant sur une construction du premier auteur, nous donnons une bijection générale entre certains
arbres décorés et certaines orientations de cartes planaires sans cycle direct. De nombreuses classes de cartes (par
exemple les eulériennes, les triangulations) sont en bijection avec un sous-ensemble de ces orientations, et notre
construction se spécialise de manière simple sur le sous-ensemble. Cela donne un cadre bijectif général pour traiter les
familles de cartes. Comme application non-triviale de notre méthode nous donnons les premières preuves bijectives
pour l’énumération des triangulations et quadrangulations simples (enracinées) ayant un bord de taille arbitraire, et
retrouvons ainsi des formules de comptage trouvées par Brown en utilisant la méthode récursive de Tutte.
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1 Introduction
The enumeration of planar maps (connected graphs embedded on the sphere) has received a lot of attention
since the seminal work of Tutte in the 60’s (Tut63). Tutte’s recursive method consists in translating the
decomposition of a class of maps (typically obtained by deleting an edge) into a functional equation sat-
isfied by the corresponding generating function. The translation usually requires an additional “catalytic”
variable, and the obtained functional equation is solved using the so-called “quadratic method” (GJ83,
sec.2.9) or its extensions (BMJ06). The final result is, for many classes of maps, a strikingly simple
counting formula. For instance, the number of (rooted) mapswith n edges is 2·3n

(n+1)(n+2)

(
2n
n

)
. Tutte’s

method has the advantage of being systematic, but is quite technical in the way of solving the equation
and does not give a combinatorial understanding of the simple-looking enumerative formulas.
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As an alternative method, bijective constructions have been developed to obtain more direct combina-
torial proofs of the counting formulas, with nice algorithmic applications (random generation and asymp-
totically optimal encoding in linear time). The first bijections appeared in (CV81) and later in (Sch98)
where direct bijections for several classes of maps are described. Typically bijections are from a class
of “decorated” plane trees to a class of maps and operate on trees by progressively closing facial cycles.
More general constructions have been given subsequently, with application to statistical physics models
(Ising, hard particles) on random lattices (BMS02; BFG07) and to the investigation of metric proper-
ties of random maps (CS04; BFG04). Even if it has been successfully applied to many classes, e.g.
in (PS06; PS03; FPS08; Fus09), the bijective method for mapsis up to now not as systematic as Tutte’s
recursive method, since for each class of maps one has to “guess” the tree family to match with, and one
has to specify the construction from trees to maps.

This article contributes to fill this gap. Based on a construction of the first author (Ber07; BC), we
provide in Section 3 a general bijectionΦ between a setD of certain decorated plane trees which we call
mobile(i) and a setO of certain orientations on planar maps with no counterclockwise circuit. As it turns
out, a map class is often in bijection with a subfamilyS of O on which our construction restricts nicely;
typically the orientations inS are characterized by degree constraints which can be tracedthrough our
construction and yields a degree characterization of the associated mobiles. The mobiles family is then
specifiable by a decomposition grammar and amenable to the Lagrange inversion formula for counting.
To summarize, our method makes the bijective method more systematic, since it consists in specializing a
“master bijection”Φ to the class of maps under consideration. The problem of enumerating a class of map
M therefore reduces to guessing a family of “canonical” orientations (inO) for M instead of guessing a
family of trees to match withM (the first task being often simpler than the second).

We focus here, in Section 4 and Section 5 respectively, on twoclasses that were not completely covered
before, namely simple triangulations and simple quadrangulations with a polygonal boundary and a root-
corner incident to the boundary. We show bijectively that the numbertn,k of rooted simple triangulations
with n+k vertices and boundary of lengthk and the numberqn,k of rooted simple quadrangulations with
n + 2k vertices and boundary of length2k satisfy

t(k)
n =

2(2k − 3)!

(k − 1)!(k − 3)!

(4n + 2k − 5)!

n!(3n + 2k − 3)!
, q(k)

n =
3(3k − 2)!

(k − 2)!(2k − 1)!

(3n + 3k − 4)!

n!(2n + 3k − 2)!
,

recovering results found by Brown respectively in (Bro64) and (Bro65) using Tutte’s recursive method.
The case without boundaries (k = 3 for triangulations,k = 2 for quadrangulations) have already received
bijective proofs in (PS06; Sch98) (for triangulations) and(FPS08) (for triangulations) and in (Sch98)
respectively; our construction actually coincides with (Sch98) for triangulations and with (FPS08) for
quadrangulations. The case of triangulations with boundaries has also received a partial bijective interpre-
tation, different from ours, in (PS06) (only one direction is given, from trees to maps, which by injection
shows thattn,k is at leastthe number above, but does not suffice to prove equality). Ourapproach leads
to unified and reasonably short proofs for both triangulations and quadrangulations with boundaries.

2 Maps and orientations
Maps. A (planar)mapis a connected planar graph embedded in the oriented sphere and considered up to
continuous deformation. A map issimpleif it has no loop nor multiple edge. Thefacesare the connected

(i) The termmobileis borrowed from a famous bijection by Bouttier et al. (BFG04) which can be seen as a specialization ofΦ.
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components of the complementary of the graph. Aplane treeis a map with a unique face. Cutting an
edgee at its middle point gives two half-edges, each incident to anendpoint ofe (they are both incident
to the same vertex ife is a loop). We shall also consider some maps decorated with dangling half-edges
calledstems(see e.g. Figure 2(a)). Acorner is the angular section between two consecutive half-edges
around a vertex. The degree of a vertex or face is the number ofincident corners. A map is atriangulation
(resp.quadrangulation) if every face has degree 3 (resp. 4).

A map is said to bevertex-rootedif a vertex is marked,face-rootedif a face is marked, andcorner-
rooted if a corner is marked(ii) . The marked vertex, face or corner are called theroot-vertex, root-faceor
root-corner. For a corner-rooted map, the marked corner is indicated by adangling half-edge pointing
to that corner; see Figure 1. A corner-rooted map is said toinducethe vertex-rooted map (resp. face-
rooted map) obtained by keeping the root-vertex (resp. root-face) as marked, but otherwise forgetting the
root-corner. Given a face-rooted (or corner-rooted) map, vertices and edges are said to beouteror inner
depending on whether they are incident to the root-face or not.

Orientations. An orientationO of a mapM is the choice of a direction for each edge ofM . A circuit is a
directed cycle. Asourceis a vertex incident to no ingoing edge. IfM is face-rooted (resp. vertex-rooted,
corner-rooted), then the pair(M, O) is called avertex-rooted orientation(resp. face-rooted orientation,
corner-rooted orientation). A corner-rooted orientation naturallyinducesa face-rooted orientation and a
vertex-rooted orientation. For a vertexv of M , the indegreein(v) is the number of edges going intov; the
outdegreeout(v) is the number of edges going out ofv. For a facef ∈ M , the clockwise-degreecw(f)
is the number of edges incident tof that havef on their right; the counterclockwise-degreeccw(f) is the
number of edges that havef on their left. For corner-rooted maps, the half-edge indicating the root-corner
increases by1 the indegree of the root-vertex and the clockwise-degree ofthe root-face.

A vertex-rooted orientation is said to beaccessibleif every vertex is accessible from the root-vertex by
a directed path; it issource-accessibleif in addition the root-vertex is a source. A circuit of a face-rooted
(or corner-rooted) orientation is saidclockwiseif the root-face is on its left. The orientation isminimal
if every circuit is clockwise; it isclockwise-minimalif in addition the root-face is a (clockwise) circuit.
We extend the definition of accessibility to (face-rooted) clockwise-minimal orientationsO by callingO

accessibleif it is accessible from one of the vertices incident to the root-face. Observe thatO is in fact
accessible from any vertex on the root-face in this case (henceO is induced only by minimal accessible
corner-rooted orientations). Similarly, we call a source-accessible orientationO minimal if O is minimal
for one of the faces incident to the root-vertex. Observe that O is in fact minimal for every face incident
to the root-vertex in this case (henceO is induced only by minimal accessible corner-rooted orientations).

Let δ be a positive integer. We denote bySδ the set of source-accessible minimal orientations such that
the root-vertex has degreeδ. We denote byOδ the set of clockwise-minimal accessible orientations such
that the root-face has degreeδ. We denote byS̃δ the subset ofSδ such that every face incident to the
root-vertex has clockwise degree 1. We denote byÕδ the subset ofOδ such that every vertex incident to
the root-face has indegree 1.

Given a mapM and a function with vertex-setV and a functionα : V 7→ N, anα-orientation is an
orientation ofM such thatin(v) = α(v) for eachv ∈ V . The following result is classical (see (Fel04)).

Lemma 1 If a face-rooted mapM has anα-orientation, thenM has a unique minimalα-orientation.

(ii) Corner-rooted map are usually simply calledrooted mapsin the literature. A face-rooted map can be thought as aplane map(a
connected graph embedded in the plane) by thinking of the root-face as the infinite face.
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Fig. 1: The dual of an oriented map.

Duality. ThedualM∗ of a mapM is the map obtained by the following two step process; see Figure 1.
1. In each facef of M , draw a vertexvf of M∗. For each edgee of M separating facesf andf ′

(which can be equal), draw thedual edgee∗ of M∗ going fromvf to vf ′ acrosse.

2. Flip the drawing ofM∗, that is, inverse the orientation of the sphere.

The dual of a face-rooted map is a vertex-rooted map. Cornersof a map and of its dual are in natural
correspondence (they face each other); this gives the way ofdefining the root-corner of the dual of a
corner-rooted map; see Figure 1. Duality is involutive on maps and rooted maps.

Thedual of an orientation ofM is the orientation of the dual mapM∗ obtained by applying the fol-
lowing rule at step 1: the dual-edgee∗ of an edgee ∈ M is oriented from the left ofe to the right ofe.
Observe that the duality is involutive for oriented map (this is the motivation for step 2 in the definition
of duality). The clockwise degree (resp. counterclockwisedegree) of a facef of M is equal to the inde-
gree (resp. outdegree) of the vertexvf of M∗ (this is true also with the special convention applying to
corner-rooted maps). The following result is classical.

Lemma 2 A face-rooted orientation is minimal (resp. clockwise-minimal) if and only if the dual vertex-
rooted orientation is accessible (resp. source-accessible).

Observe that duality maps the set of orientationsSδ (resp.S̃δ) to the setOδ (resp.Õδ). Also, minimal
accessible orientations (of corner-rooted maps) are self dual. We mention that these orientations, which
play an important role below, are in bijection with spanningtrees (Ber07).

3 Bijections between mobiles and orientations
In this section, we first recall a bijectionΦ originally due to the first author (Ber07).We then present some
extensions ofΦ which will be convenient for our subsequent goals. Indeed, in the next two sections we
will show how to use these extensions in order to count several families of maps.

The bijectionΦ maps minimal accessible (corner-rooted) orientations with n edges and pairs of corner-
rooted plane trees(B, T ) with n+1 andn edges respectively. The treeB is called the (rooted)mobileand
its vertices arebicoloredin black and white (in such a way that edges always connect a black and a white
vertex). Informally, the bijectionΦ consists in folding the treeT (oriented from the root to leaves) around
the mobile. More precisely, one glue the vertices ofT on the black corners of the mobile and then erase
the edges and white vertices ofB (leaving the edges ofT as edges of a minimal accessible orientation).
In what follows we adopt a slightly different presentation,in which the treeT only appears implicitly in
certaindecorationsadded to the mobileB.

We call decorated mobilea bicolored (unrooted) plane tree withoutgoing stems(dangling outgoing
half-edges) possibly attached at each black corner; see Figure 2(a). Theexcessof a decorated mobile is
the number of edges minus the number of (outgoing) stems. A mobile with excessδ is called aδ-mobile.
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⇒ ⇒

(a) (b) (c)

Fig. 2: The rooted closure of a mobile of excessδ = 1.

A fully decoratedmobile is obtained from a decorated mobile by inserting aningoing stem(dangling
ingoing half-edge) in each black corner following an edge ofthe mobile (and not a stem) in clockwise
order around the vertex; the fully decorated mobile is represented in solid lines in Figure 2(b). The
degreedeg(v) of a vertexv of a decorated mobile is the total number of incident half-edges (including the
outgoing stems). Moreover, for a black vertexb the indegreein(b) and out-degreeout(b) are respectively
the number of incident ingoing and outgoing stems incident to b in the fully-decorated mobile (so that
deg(b) = in(b) + out(b)).

3.1 Bijection between 1-mobiles and minimal accessible orientations
We now recall the bijection given in (Ber07) between 1-mobiles and minimal accessible orientations.
Closure. Let D be a decorated mobile withp edges andq outgoing stems (hence excessδ = p − q).
The corresponding fully decorated mobileD′ hasp ingoing andq outgoing stems. A clockwise walk
aroundD′ (with the face area on the left of the walker) sees a succession of outgoing stems and ingoing
stems. Associating an opening parenthesis to outgoing stems and a closing parenthesis to ingoing stems,
one obtains thus a cyclic binary word withq opening andp closing parentheses. This yields in turn a
matching of outgoing stems with ingoing stems, leaving|δ| stems unmatched, which are ingoing ifδ > 0
and outgoing ifδ < 0; see Figure 2. Thepartial closureC of the decorated mobileD is obtained by
forming a directed edge out of each matched pair, see Figure 2(a)-(b). We considerC as a planar map
with two types of edges (those of the mobile, which are undirected, and the new formed edges, which
are directed) and|δ| stems. Note that, ifδ ≥ 0, there areδ white corners incident to the root-face ofC,
because initially the number of such corners is equal to the number of edges, and then each matched pair
of stems decreases this number by1. These corners, which stay incident to the root-face throughout the
partial closure, are calledexposed white corners.

Therooted-closureof the decorated mobileD is obtained from the partial closureC by erasing every
white vertex and edge of the mobile (this might result in a disconnected embedded graph in general).

Opening. Let M be an oriented map (rooted or not) with vertex setV and face setF . Thepartial opening
of M is the mapC with two types of vertices (black vertices inV and white vertices inW = {wf , f ∈
F}) and two types of edges (directed and undirected) obtained as follows.

• Insert a white vertexwf inside each facef of M .

• Draw an undirected edge betweenwf and each corner incident tof which precedes an ingoing half-
edge in clockwise order around its incident vertex. IfM is corner-rooted, then the stem indicating
the root-corner is interpreted as an ingoing half-edge and gives rise to an edge ofC.
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Rooted closure, duality: 1-mobile min. acc. ori. min. acc. ori.

black vertex b vertex v face f
deg(b)=deg(v)

out(b)=out(v)
in(b)=in(v)

deg(v)=deg(f)

out(v)=ccw(f)
in(v)=cw(f)

white vertex w face f vertex v
deg(w)=cw(f) cw(f)=in(v)

δ-closure + duality:

Case δ > 0

δ-mobile ori. in Oδ

black vertex b
deg(b)=deg(f)

out(b)=ccw(f)
in(b)=cw(f)

inner face f

white vertex w
deg(w)=in(v)

vertex v

Case δ < 0

δ-mobile ori. in ˜Oδ

black vertex b
deg(b)=deg(f)

out(b)=ccw(f)
in(b)=cw(f)

inner face f

white vertex w
deg(w)=in(v)

inner vertex v

Fig. 3: The closure-bijections, with the parameter correspondences.

If M is a corner-rooted orientation, therooted-openingof M is obtained from the partial openingC by
erasing all the ingoing half-edges ofM , thereby creating an undirected embedded bicolored graph with
some outgoing stems incident to black corners.

We recall the result from (Ber07) (see also (BC)) that we shall generalize.

Theorem 3 The rooted closure is a bijection between decorated mobilesof excessδ = 1 and (corner-
rooted) minimal accessible orientations. The rooted opening is the inverse mapping. Lastly, the parameter-
correspondence is shown in Figure 3, top-part.

3.2 Bijection for δ-mobiles
δ-closure.We now define theδ-closure of aδ-mobile (the definition depends on the sign ofδ). Let D be
a δ-mobile and letC be the partial closure ofD. Theδ-closureM of D is defined as follows.

• If δ > 0, thenC hasδ ingoing stems (incident to the root-face). The vertex-rooted orientationM
is obtained fromC by first creating a root-vertexv of M in the root-face ofC and connecting it to
each ingoing stem (stems thus become part of an edge ofM directed away fromv); second erasing
the edges and white vertices of the mobile.

• If δ < 0, thenC hasδ outgoing stems (incident to the root-face). The vertex-rooted orientationM
is obtained fromC by first creating a root-vertexv of M in the root-face ofC and connecting it



A unified bijective method for maps 7

to each outgoing stem and then reorienting these edges (stems thus become part of an edge ofM

directed away fromv); second erasing the edges and white vertices of the mobile.

• If δ = 0, thenM is the face-rooted orientation obtained fromC by erasing the edges and white
vertices of the mobile.

Actually, it is not obvious from our definitions that theδ-closures giveconnectedorientations but we
prove this and more below.

Theorem 4 Let δ be inZ.

• For δ > 0, the δ-closure is a bijection betweenδ-mobiles and the setSδ of source-accessible
minimal orientation. By dualitySδ is in bijection with the setOδ of clockwise-minimal accessible
orientations. The parameter-correspondence (inherited from theδ-closure followed by duality) is
shown in Figure 3 bottom-part.

• For δ < 0, theδ-closure is a bijection betweenδ-mobiles and the subset̃Sδ of source-accessible
minimal orientation such that every face incident to the root has clockwise degree 1. By duality
S̃δ is in bijection with the subset̃Oδ of clockwise-minimal accessible orientations. The parameter-
correspondence is shown in Figure 3 bottom-part.

• For δ = 0, theδ-closure is a bijection betweenδ-mobiles and minimal orientations.

The remaining of this section is devoted to the proof of Theorem 4 (the proof forδ = 0 is omitted).
Caseδ > 0. We first prove that theδ-closure of aδ-mobile is inSδ. Let D be aδ-mobile, letC be its
partial closure and letM be itsδ-closure. As observed above, the mobileD hasδ > 0 exposed white
corners. LetD′ be the decorated mobile obtained fromD by creating a new black vertexb, joiningb to an
exposed white corner, and addingδ outgoing stems tob. The excess ofD′ is 1, hence by Theorem 3 the
rooted closure ofD′ gives a minimal accessible orientationM ′. Moreover, it is easily seen (Figure 4) that
the root-corner ofM ′ is incident to the new vertexb (because the ingoing stem incident tob is not matched
during the partial closure). Moreover (provided the ingoing root half-edge is not counted)b is a source of
the orientationM ′, and the vertex-rooted orientationM is induced by the corner-rooted orientationM ′.
Thus, the orientationM is in Sd.

The following comment will be useful later (for the caseδ < 0): the closureM of D is in S̃δ if and only
if each of the exposed white corners ofD is incident to a (white) leaf ofD. Indeed, a white vertexwf of
D has an exposed white corner if and only if it corresponds to a facef of M incident to the root-vertexb.
Moreover, the clockwise degree off is (as always) the degree ofwf .

We now prove that theδ-closure is a bijection by defining the inverse mapping. LetM be a vertex-
rooted orientation inSδ. By applying the partial opening ofM and then erasing every ingoing half-edge
of M , one obtains an embedded graph with stemsD̂. The embedded grapĥD is in fact disconnected
since the root-vertexb of M is incident to no edge of̂D (sinceb is a source ofM ). Theδ-openingD of
M is obtained fromD by erasing the vertexb. In order to prove thatD is a decorated mobile (i.e. a tree
with stems), we consider a minimal accessible orientationM ′ obtained fromM by choosing a root-corner
for M among the corners incident to the root-vertexb. By Theorem 3, the rooted opening ofM ′ gives
a decorated mobileD′. Clearly,D is obtained fromD′ by erasing the black vertexb. Moreover,b is a
leaf of D′ (sinceb is incident to no ingoing half-edge except the stem indicating the root-corner of O),
henceD is a mobile, and it has excessδ. Lastly, since the rooted closure and rooted opening are inverse
mappings, it is clear thatδ-closure andδ-opening are inverse mappings, hence bijections.



8 Olivier Bernardi andÉric Fusy

(a) (b) (c)

Fig. 4: Formulation of theδ-closure, forδ > 0, as a reduction to the rooted closure. Figure (a) shows generically the
partial closure of aδ-mobile withδ = 4, in (b) one creates a black vertexb with δ outgoing stems, and connects it to
an exposed white corner, in (c) one performs the remaining matchings of stems to complete theδ-closure.

Caseδ < 0. We denoted = −δ. Let D be aδ-mobile. We associate toD a d-mobileφ(D) obtained
from D by transforming each of itsd unmatched outgoing stems into an edge ofφ(D) connected to a
newly created white leaf. Observe that theδ-closure ofD and thed-closure ofφ(D) coincide. Hence the
δ-closure is the composition of the mappingφ and thed-closure. Moreover, the mappingφ is a bijection
between the set ofδ-mobiles and the setDd of d-mobiles such that every exposed white corner belongs to
a leaf. Indeed,φ(D) belongs toDd since the unique incident corner for each of thed newly created white
leaves remains exposed during the partial closure; and the inverse mappingφ−1 is obtained by replacing
each edge incident to an exposed leaf by an outgoing stem. Lastly, by the observations above (caseδ > 0),
thed-closure induces a bijection between the setDd and the set̃Sd. The inverse mapping to theδ-closure,
called theδ-opening, is obtained as the composition ofφ−1 with thed-opening. This completes the proof
of Theorem 4 (in the casesδ 6= 0).

4 Bijective counting of triangulations with boundaries
In this section we obtain bijections for simple triangulations (a.k.a.3-connected triangulations, maximal
planar graphs) and for triangulations with boundaries. The bijections are obtained by specializing the clo-
sures defined in the previous section to certain classes of orientations characterizing simple triangulations.

Let T be a face-rooted triangulation. A3-orientationof T is an orientation such that inner vertices
have indegree3 and outer vertices have indegree1. Schnyder proved in (Sch89) that any simple face-
rooted triangulation admits a 3-orientation, that any 3-orientation is accessible from the outer vertices and
that the root-face is always directed. Moreover, one easilychecks (using Euler’s relation) that loops and
double edges are obstructions to the existence of a 3-orientation. Thus, a planar triangulation admits a
3-orientation if and only if it is simple. In the following wesimply call3-orientationa 3-orientation of a
face-rooted triangulation. From Lemma 1 one obtains:

Lemma 5 Face-rooted simple triangulations are in bijection with minimal 3-orientations. Such orienta-
tions are clockwise-minimal and accessible.

Minimal 3-orientations are the orientations iñO3 such that all inner vertices have indegree3 and all
faces have degree3. Thus, we can use the caseδ = −3 of Theorem 4 to conclude that face-rooted simple
triangulations are in bijection with(−3)-mobiles having every vertex of degree3 (recall that outgoing
stems count in the degree of a black vertex). In fact, the constraint that the excess is−3 can be omitted,
since it is a consequence of all vertices having degree3 (as easily seen by induction on the number of
vertices). Calltrivalent the decorated mobiles with all vertices of degree3. We obtain:
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Proposition 6 (Recovering (Sch98))Theδ-closure, caseδ = −3 (together with duality) induces a bijec-
tion between face-rooted triangulations withn + 3 vertices and trivalent mobiles withn white vertices.

Proposition 7 (Counting rooted simple triangulations) For n ≥ 0, let tn be the number of corner-
rooted simple triangulations withn + 3 vertices. The generating functionT (x) =

∑
n≥0(2n + 1)tnxn

satisfies
T (x) = u3, where u = 1 + xu4.

Consequently, the Lagrange inversion formula gives:tn = 2
(4n + 1)!

(n + 1)!(3n + 2)!
.

Proof: Euler relation easily implies that a triangulation withn + 3 vertices has2n + 1 non-root faces.
Hence(2n+1)tn is the cardinality of the setHn of face-rooted triangulations withn inner vertices having
an additional marked cornerc not incident to the root-face (think of obtaining this map byfirst marking
a corner and then a face). Marking the cornerc is equivalent to marking a black corner of the associated
mobile (since the black vertices are in correspondence to the triangular faces). In other words,Hn is
in bijection, via the(−3)-closure, with trivalent mobiles that haven white vertices and a marked black
corner, andT (x) is the generating function of this class of mobiles. The restof the proof is omitted. 2

We now proceed to count bijectively the triangulations withboundaries. In the following,k is an integer
greater than 3. Ak-gonal triangulationis a map having one face of degreek which issimple(incident tok

distinct vertices) and all other faces of degree3. Thek-gonal face is calledboundary face, and the vertices
are calledboundaryor non-boundarydepending on whether they are incident to the boundary face.A
pseudo 3-orientationof ak-gonal triangulation is an orientation such that all non-boundary vertices have
indegree3, and the boundary face is directed. A pseudo 3-orientation of a k-gonal triangulation is shown
in Figure 5(d). By the Euler relation, an annulark-gonal triangulation withn non-boundary vertices has
3n + 2k − 3 edges. Hence, the sum of indegrees of the boundary vertices is2k − 3.

Lemma 8 A k-gonal triangulation admits a pseudo 3-orientation if and only if it is simple. Moreover this
orientation is accessible from any boundary vertex.

Proof: It is easy to see (by a counting argument using Euler relation) that loops and multiple edges
are obstructions for pseudo 3-orientations. Now, letA be a simplek-gonal triangulation. FromA we
construct a simple triangulationT as follows. Place a trianglet inside the boundary facef of A and
add edges between vertices oft and vertices off so as to triangulate the interior off . Then taket as a
root-face ofT and endowT with a 3-orientationO. Deleting the trianglet and the incident edges, and
reorienting the boundary face to be directed, we obtain an orientationO′ of A such that all non-boundary
vertices have indegree3, that is, a pseudo 3-orientation.

For the second assertion, remember thatO is accessible from the vertices of the trianglet. Hence in
O′ each vertexv in A must be accessible from some boundary vertex. But since the boundary face is
directed,v is in fact accessible from any boundary vertex. 2

Following the terminology in (PS06), we callannulark-gonal triangulationa simple face-rootedk-
gonal triangulation whose root-face is not the boundary face; see Figure 5(d). LetT be an annulark-
gonal triangulationT , with root-facef and boundary facef ′. A 3-cycleC of T is calledseparatingif C

is different from (the contour of) the root-face and hasf on one side andf ′ on the other side. The annular
triangulationT is said to benon-separatedif it has no separating 3-cycle. We denote byTk set of annular
k-gonal triangulations, and byNk the subset of non-separated ones.
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(a) (b) (c) (d)

Fig. 5: (a) A mobile inBk. (b) The 3-closure. (c) Duality. (d) The non-separated k-annular triangulation (with its
minimal pseudo 3-orientation).

Proposition 9 Any annulark-gonal triangulationA admits a unique minimal pseudo 3-orientation. This
orientation is accessible from all outer vertices if and only if A is non-separated. Moreover, the root-face
is directed (in clockwise direction) in this case.

To summarize, the setNk of non-separated annulark-gonal triangulations is in bijection with the set
of clockwise-accessible minimal pseudo 3-orientations.

Proof (sketch): Let A be an annulark-gonal triangulation. We first prove the existence and uniqueness
of the minimal pseudo 3-orientation. The rule that the boundary face has to be directed prevents us from
using Lemma 1 directly. Instead, we apply this lemma to the mapA′ obtained fromA by contracting all the
edges of the boundary face; the boundary face is thereby contracted into a vertexb. Pseudo 3-orientations
of A such that the boundary face is oriented clockwise correspond bijectively toα-orientations ofA′ with
α(b) = k − 3 andα(v) = 3 for v 6= b (recall thatα is the indegree). The existence of anα-orientation
of A′ is granted by Lemma 8. Moreover, the bijection preserves minimality in both directions. Hence,A
has a unique minimal pseudo 3-orientation by Lemma 1.

We now prove the statement concerning accessibility. LetA be an annulark-gonal triangulation with
its minimal pseudo 3-orientation. Any simple cycleC of A separates the sphere in two regions; we call
non-boundary the region not contains the boundary face. A simple counting argument shows that ifC has
lengthk, it is incident to exactlyk − 3 ingoing half-edge lying (strictly) inside the non-boundary region.
This shows that a separating 3-cycle (incident to 0 ingoing half-edge) is an obstruction for accessibility
from every outer vertices (since one of these vertices is inside the non-boundary region). To prove the
converse implication, observe that non-accessibility from a vertexv is equivalent to the fact thatv cannot
reach one of the boundary vertex (because of Lemma 8). Moreover, it is not hard to prove that non-
accessibility from a vertexv implies the existence of a cycleC containingv in its non-boundary region
but incident to no ingoing half-edge from that region. Hencethis cycle has length 3; and ifv is an outer-
vertex thenC is a separating cycle.

We now consider a minimal pseudo 3-orientationO satisfying accessibility from every outer ver-
tices and proceed to prove that the root-face is directed clockwise. The boundary vertices are reachable
from any outer vertex (by a directed path) and any outer vertex is reachable from boundary vertices (by
Lemma 8). Thus, any outer edgee is part of a circuit, hence part of a simple circuit. The simple circuit is
clockwise (by minimality ofO), hencee has the root-face on its left-side. 2

By definition, the clockwise-accessible minimal pseudo 3-orientations are the orientations inO3 such
that every vertex has indegree 3 and every face has degree3 except for oneboundaryfaceb which has
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degreek and is directed clockwise. Moreover, a counting argument (using Euler relation) shows that the
indegrees of the boundary vertices must add up to2k − 3. Let D be the 3-mobile giving an orientation
O ∈ Nk (by the 3-closure followed by duality) and letvb be the black vertex ofD corresponding to the
boundary faceb. Sinceb is counterclockwise,vb has no outgoing stem and hask white neighbors, which
clearly (by definition of closure) corresponds to the boundary vertices; see Figure 5. Hence, the degree of
these white vertices of the mobile must add up to2k − 3. Lastly, as in the case of triangulations without
boundary, the condition of the excess being 3 is implied by the degree conditions on black and white
vertices, so can be omitted. To conclude, by specializationof the3-closure, Proposition 9 translates into:

Theorem 10 The familyNk of non-separated annulark-gonal triangulations is in bijection with the
familyBk of decorated mobiles having every vertex of degree 3 except for one black vertexb of degreek
carrying no outgoing stem and such that the degrees of itsk (white) neighbors add up to2k − 3.

Theorem 11 (Counting rootedk-gonal triangulations) Let k > 3, n ≥ 0, and lettk,n be the number
of simple corner-rootedk-gonal triangulations withn + k vertices having the root-corner in thek-gonal
face. The generating functionTk(x) =

∑
n≥0(2n + k − 2) tk,nxn satisfies

Tk(x) =

(
2k − 4

k − 3

)
u2k−3, where u = 1 + xu4.

Consequently, the Lagrange inversion formula gives:tk,n =
2(2k − 3)!

(k − 1)!(k − 3)!

(4n + 2k − 5)!

n!(3n + 2k − 3)!
.

Proof: Let ~Tk be the set of annulark-gonal triangulations with a marked corner in the boundary face
(equivalently, a marked boundary vertex). Let~Nk be the subset of these annular triangulations that are
non-separated. Let also~T be the set of corner-rooted simple triangulations with a marked inner face.
The separating 3-cycles of an annular triangulation are linearly ordered by inclusion of their boundary
region (the region which contains the boundary face). Thus,there is a unique decomposition of annular
triangulationsA ∈ ~Tk into a pair(N, T ) ∈ ~Nk × ~T . This decomposition is a bijection and translates
into the generating function equationTk(x) = Nk(x)T (x), whereTk(x), Nk(x), T (x) are respectively
the generating function of the maps in~Tk, ~Nk, ~T counted by number of non-boundary vertices. The
generating function~Tk(x) is

∑
n≥0(2n+k−2) tk,nxn because maps in~Tk with n non-boundary vertices

have2n + k − 2 non-boundary faces. Moreover, by Proposition 7,T (x) = u3, whereu = 1 + xu4.
It remains to expressNk(x) in terms ofu. By Theorem 10 (and the fact that marking a corner in the
boundary face accounts to marking a corner incident to the special black vertex in the associated mobile),
Nk(x) is the generating function of corner-rooted mobile (counted by number of white vertices) such
that the root-vertex is a black corner of degreek whose (white) neighbors have total degree2k − 3. The
white vertices have a total ofk − 3 hanging subtrees, which are trivalent trees whose generating funcion
is v = u2 (easy proof omitted). In addition, there are

(
2k−4
k−3

)
ways to distribute thek− 3 hanging trees on

thek white vertices. Hence,Nk(x) =
(
2k−4
k−3

)
u2k−6. 2

5 Bijective counting of quadrangulations with boundaries
In this section we reiterate the strategy used in previous section to the case of quadrangulations.
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We call2-orientationa face-rooted orientation, in which faces have degree4, inner vertices have inde-
gree2, and outer vertices have indegree1. De Fraysseixet al. (dFOdM01) have shown that any simple
face-rooted quadangulation admits a 2-orientation, that any 2-orientation is accessible from the outer
vertices and that the root-face is always directed. Moreover, one easily checks that a double edge is an
obstruction for 2-orientation. Hence minimal 2-orientations are in bijection with simple face-rooted quad-
rangulations. By definition, minimal 2-orientations are the orientations inÕ4 having faces of degree4
and inner vertices of indegree2. The(−4)-closure (followed by duality) gives a bijection between such
orientations and (-4)-mobiles whise white vertices have degree2 and whose black vertices have degree4.
Call these mobilestetravalent. We obtain:

Proposition 12 (Counting rooted simple quadrangulations)For n ≥ 0, let qn be the number of rooted
simple quadrangulations withn + 4 vertices. Then the generating functionQ(x) =

∑
n≥0(n + 1)qnxn

satisfies
Q(x) = u4, where u = 1 + xu3.

Consequently, the Lagrange inversion formula gives:qn = 2
(3n + 3)!

(n + 2)!(2n + 3)!
.

Call k-gonal quadrangulationa map with faces of degree 4 except for one face of degreek > 4.
The strategy for counting simplek-gonal quadrangulations parallels the case of triangulations. One first
defines anannulark-gonal quadrangulationto be a simple quadrangle-rootedk-gonal quadrangulation.
One then proves that any such map admits a unique minimalpseudo 2-orientation(orientation such that
the boundary face is clockwise and non-boundary vertices have indegree 2), and that this orientation is
clockwise-accessible if and only if the map isnon-separated(no 4-cycle separates the root-face from the
boundary face). Any annulark-gonal quadrangulation decomposes uniquely into a pair made of a face-
rooted quadrangulation with an additional marked face and anon-separated annulark-gonal quadrangu-
lation. Moreover, the later maps are in bijection (via the 4-closure) with a family of pseudo-tetravalent
decorated mobiles which is easy to enumerate. We obtain:

Theorem 13 (Counting rooted simple2k-gonal quadrangulations) Let k > 2, n ≥ 0, and letqk,n be
the number of rooted simple2k-gonal quadrangulations withn + 2k vertices and with the root-corner
incident to the2k-gonal face. The generating functionQk(x) =

∑
n≥0(n + k − 1)qk,nxn satisfies

Qk(x) =

(
3k − 3

k − 2

)
u3k−2, where u = 1 + xu3.

Consequently, the Lagrange inversion formula gives:qk,n =
3(3k − 2)!

(k − 2)!(2k − 1)!

(3n + 3k − 4)!

n!(2n + 3k − 2)!
.
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