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Abstract. We present a general bijective approach to planar hypermaps with two main re-

sults. First we obtain unified bijections for classes of maps or hypermaps defined by face-degree

constraints and girth constraints. To any such class we associate bijectively a class of plane
trees characterized by local constraints. This unifies and greatly generalizes several bijections

for maps and hypermaps. Second, we present yet another level of generalization of the bijective

approach by considering classes of maps with non-uniform girth constraints. More precisely, we
consider well-charged maps, which are maps with an assignment of charges (real numbers) to

vertices and faces, with the constraints that the length of any cycle of the map is at least equal
to the sum of the charges of the vertices and faces enclosed by the cycle. We obtain a bijection

between charged hypermaps and a class of plane trees characterized by local constraints.

1. Introduction

A planar map is an embedding of a connected planar graph in the sphere, considered up to
orientation-preserving homeomorphism. A rich literature has been devoted to the enumerative
combinatorics of planar maps by various approaches, such as Tutte’s method [38] based on gen-
erating function equations, the matrix integral method initiated by Brézin et al. in [15], and the
bijective approach initiated by Cori and Vauquelin [17] and popularized by Schaeffer [36].

Planar hypermaps are a natural generalization of planar maps. Precisely, a planar hypermap
is a planar map in which faces are colored in two colors, say that there are dark faces and light
faces, in such a way that every edge separates a light face from a dark face. The dark faces
of the hypermap play the role of embedded hyperedges, and as such, hypermaps can be seen
as embedded hypergraphs [16], and classical maps (embedded graphs) identify to hypermaps in
which every edge has been replaced by a dark face of degree 2; see Figure 1(a).

Hypermaps have played a prominent role to tackle various problems: for instance an exact
solution of the Ising model on random planar lattices has been obtained by a reduction to the
enumeration of planar hypermaps with control on the face-degrees [8, 6]; and in a similar spirit
different models of hard particles on random planar lattices have been exactly solved [8, 11].
Hypermaps also encompass the notion of constellations, which are a convenient visual encoding of
factorizations in the symmetric group [7, 25]. In particular, the famous Hurwitz numbers [25, 22,
31, 18] (which count factorizations into transpositions, or equivalently certain branched coverings
of the sphere) are naturally encoded by certain constellations. Bijective methods have played a
crucial role in all these enumerative problems related to hypermaps.

In this article, we present a unified bijective approach for planar hypermaps. Our results
generalize the bijective approach for maps presented in [4, 5] in two ways: first we deal with the
more general case of hypermaps, and second we consider more general cycle-length conditions
via the new concept of charged maps. This approach also unifies and greatly generalizes several
known bijections for hypermaps together with several known bijections for maps. We will discuss
in details the relation between our approach and previously known bijections below (see Figure 3)
and in Section 5. However, let us point out already that the bijections in [8, 10, 11] are recovered
as special cases of our framework. These have applications to solving several statistical mechanics
models on maps: Ising model, hard particle model, forest model, and blocked edge model. It is
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(a) (b)

Figure 1. (a) A map and the corresponding hypermap (obtained by replacing
every edge by a dark face of degree 2). (b) A general hypermap (with dark faces
of arbitrary degrees), of ingirth 4 (due to the cycle indicated by bold lines).
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Figure 2. Left: example of correspondence between a planar hypermap of in-
girth 4 and a (weighted) hypermobile. Right: example of correspondence between
a charged hypermap and a (weighted) hypermobile.

our hope that the toolbox we establish in the present article will find many more applications in
the realm of statistical mechanics.

Our strategy is similar to the one developed in [4]. Namely, we first establish a “master bijec-
tion” between a class of oriented hypermaps and a class of plane trees, that we call hypermobiles
(see Figure 2(a) for an example). Then we specialize this master bijection to obtain our bijective
results about classes of hypermaps defined in terms of face-degree conditions and girth conditions.
This requires to exhibit canonical orientations characterizing these classes of maps, and then iden-
tifying the hypermobiles associated through the master bijection. To be precise, our canonical
orientations and hypermobiles are actually weighted, that is, each edge carries a weight in R; see
Figure 2(a). In [4] we relied on the concept of minimal α-orientations, that is, orientations such
that the indegree at each vertex is fixed by a function α, and containing no counterclockwise
oriented cycle. We mention that Section 10.2 contains a generalizations of this framework to
hypermaps which could be of independent interest.

In the first part of this article (Sections 3-5) we establish the master bijection and we use
it to obtain bijections for classes of hypermaps defined by ingirth constraints. The ingirth for
hypermaps is a generalization of the notion of girth for maps: it is defined as the smallest length
of a cycle C such that all faces adjacent to C in the interior of C are light (with the “interior”
being defined with respect to a distinguished “outer face”). Similarly as in [5] (which deals with
maps), we exhibit canonical orientations for hypermaps characterizing the ingirth constraints.
Then, by applying the master bijection to canonically oriented (and weighted) hypermaps we
obtain bijections between any class of hypermaps defined by face-degree constraints and ingirth
constraints (with the sole restriction that the ingirth equals the degree of the outer face, which is
dark), and a class of weighted hypermobiles (characterized by local degree and weight conditions).
We show that the bijections for hypermaps in [7, 8, 10, 11] are special cases of our construction.
In terms of counting, we obtain for any d ≥ 1 an expression for the generating function of rooted
hypermaps of ingirth d and dark outer face of degree d, with control on the dark and light face
degrees.

In a second part of the article (Sections 6-8), we consider charged hypermaps, which are a
generalization of hypermaps well suited to study non-uniform cycle-length constraints. Roughly



UNIFIED BIJECTIONS FOR PLANAR HYPERMAPS 3

speaking, a fittingly charged hypermap is a hypermap together with an assignment of a real number,
called charge, to each vertex and face such that

• for any cycle C enclosing a set R of faces (possibly R contains the outer face) such that
C is only incident to light faces of R, the sum of the charges of the vertices and faces
enclosed by R is at most the length of C,

• the charges of vertices are positive, and the sum of all charges is 0.
See Figure 2(b) for an example of a fittingly charged hypermap, and Section 6 for more precise
definitions. We show (again using the master bijection together with canonical orientations) that
there is a bijection between the class of fittingly charged hypermaps and a class of weighted
hypermobiles. This bijection keeps track of the face-degrees and of all the charges. An example is
shown in the right-part of Figure 2. The bijections in the first part of the article are special cases
of the bijection for charged hypermaps. We also show in Section 7 that the machinery of charged
hypermaps can be used to get bijections for classes of annular hypermaps defined by face-degree
conditions and two types of ingirth conditions (and we count these hypermaps in Section 8).

Let us mention that our master bijection comes in three “flavors” Φ+,Φ− and Φ0 (see Theo-
rem 4). The flavor depends on the type of rooting of the hypermap: the hypermap has either a
marked light face, a marked dark face or a marked vertex. Accordingly, our results for charged
hypermaps come in three flavors (see Theorems 29, 30 and 31).

Charged hypermaps: a preview. The machinery of charged hypermaps proves well suited
to establish unified bijections for hypermaps. We hope that this machinery will be useful to
tackle new problems in the future, and in particular to prove isoperimetric inequalities for random
maps in the spirit of [29, 28]. In order to give a preview of the notion of charged hypermaps, and
illustrate its potential use, we now state a special case of our results about charged hypermaps. For
simplicity, we will also restrict to the case of charged maps. Given a map M with a distinguished
root-vertex v0, we call partial charge function a function σ from the vertex set V to R. We say
that σ fits M if the following conditions hold:

(a) for any subset R of faces of M defining a simply connected region of the sphere (after
adding the edges and vertices incident only to faces in R), the set of edges ∂R separating
a face in R and a face not in R satisfies |∂R| ≥ 2 +

∑
v inside R(σ(v) − 2), with strict

inequality if v0 is inside R (a vertex is said to be inside R if all the incident faces are in
R),

(b) σ(v0) = 0, σ(v) > 0 for all v 6= v0, and
∑
v∈V σ(v) = 2|V | − 4.

We call mobile a plane tree with two types of vertices – round and square – and with dangling
half-edges – called buds – incident to square vertices. The excess of a mobile is the number of
half-edges incident to round vertices minus the number of buds. We call suitably weighted a mobile
with no edge joining two round vertices, where each edge joining a square vertex to a round vertex
carries a positive weight, such that the sum of weights of edges incident to a square vertex v is
deg(v)− 2 (the weight is 0 for edges joining two square vertices).

Theorem 1 (Special case of Theorem 31). There is a bijection between the set of pairs (M,σ)
where M is a map with a distinguished root-vertex, and σ is a partial charge function fitting
M , and the set of suitably weighted mobiles of excess 0. Moreover, faces of degree k of the
map correspond bijectively to square vertices of degree k in the mobile, and vertices of charge w
correspond bijectively to round vertices of weight w (i.e., the incident edge weights sum to w).

We hope that this type of bijections can be used to study cycle lengths in large random maps,
and their scaling limit, the so-called Brownian map [26, 27, 30]. In particular, since typical dis-
tances in random maps with n edges scale like n1/4, it would be interesting to look at a partial
charge function σ such that σ(v) = 2± α

n1/4 for all v (for some constant α, and with the signs being
independent and uniformly random). In this case, Theorem 1 gives a way of counting maps such
that the boundary of any simply connected set of faces R satisfies |∂R| ≥ 2 +

∑
v inside R σ(v)− 2,

which is asymptotically Gaussian of amplitude α
√
βn1/4 if R contains βn vertices. This may give

a bijective method for proving isoperimetric inequalities in the spirit of [28].

Relation with other bijections for maps and hypermaps. As already said, the present
article generalizes our previous work on maps (again this relies on the fact that maps are merely
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hypermaps with all dark faces of degree 2). The diagram in Figure 3 summarizes the relations
between the bijections in the present article and previous ones. Precisely, the master bijection
for hypermaps given in Section 2 generalizes the master bijection for maps given in [4], and the
bijection for hypermaps of ingirth d, dark outer face of degree d ≥ 1 and control on the face-
degrees, generalizes the bijection for plane maps of outer degree d and girth d obtained in [5]. The
case d = 1 for hypermaps identifies to the bijection of Bousquet-Mélou and Schaeffer [8] (stated
in terms of bipartite maps in [8]) with applications to the Ising model and the hard particle
model. The case d ≥ 2 admits a natural specialization to d-constellations, which coincides with
the bijection of Bousquet-Mélou and Schaeffer [7]. And we also provide a special formulation
for the case d = 0, from which we recover the bijection by Bouttier, Di Francesco and Guitter
for vertex-rooted hypermaps [10] and for vertex-rooted hypermaps with blocked edges [11] (with
applications to hard particle models, the Ising model, and forested maps enumeration).

Moreover, since we generalize the results for maps in [5], we also recover the various known
bijections for maps obtained as specializations in [5]: in particular the case d = 1 in [5] identifies
to the bijection of Bouttier et al. in [9], the case d = 2 includes the bijections of [35] for bipartite
maps and of [32] for loopless triangulations, the case d = 3 includes the bijection of [21] for
simple triangulations, and the case d = 4 includes the bijection of [36, Sect. 2.3.3] for simple
quadrangulations. Similarly the bijection for annular hypermaps (two marked faces) in Section 7
generalizes the bijection for annular maps obtained in [5, Sect. 5].

In contrast, the results in the second part of the article (bijection between hypermobiles and
charged hypermaps, allowing to formulate non-uniform girth constraints) are totally new (the
subcase of charged maps is not covered in [5], and in fact dealing directly with the more general
case of charged hypermaps somehow simplifies the proofs).

Charged hypermaps: Section 6.
Prescribed: cycle lengths in terms of charges: for each light region R:

|∂R| ≥
∑

charges in R.

↓
Annular hypermaps: Section 7.
Prescribed: separating ingirth, non-separating ingirth, dark/light face degrees.

↙ ↘
Plane hypermaps: Section 3.
Prescribed: ingirth, dark/light face degrees.
Restriction: outer degree = ingirth.
Recovered bijections: d = 0 in [10, 11], d = 1
in [8], d ≥ 2 for constellations in [7].

Annular maps: [5, Section 5].
Prescribed: separating girth, non-separating
girth, face degrees.

↘ ↙
Plane maps: [5, Section 4].
Prescribed: girth d, face degrees. Restriction: outer degree = girth.
Recovered bijections: Case d = 1 in [9], d = 2 for bipartite maps in [35], the
case d = 2 for triangulations in [32], the case d = 3 for triangulations in [21,
Section 4], the case d = 4 for quadrangulation in [36, Section 2.3.3], and more
generally the case d ≥ 3 for d-angulation in [4].

Figure 3. Relation between the bijections in this article and previous ones;
arrows indicate specializations.

We would like to mention two other general combinatorial methods for counting maps. Recall
that our master bijection for hypermaps generalizes the master bijection for maps given in [4]. In
the recent article [1], Albenque and Poulalhon have presented another general bijective approach
to maps. The two approaches are closely related and use essentially the same canonical orienta-
tions (exhibited in [4]). The main difference between the approach in [4] and in [1] is that the
master bijections between oriented maps and trees are different (one tree is a spanning tree of
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the map, while the other is a spanning tree of the quadrangulation of the map). Both master
bijections are actually based on the two types of trees shown to be associated with “minimal
accessible orientations” in the article [2] (which has been reformulated and extended to higher
genus in [3]). The existence of these two “master bijections” explains why two different bijections
have been found for several classes of maps, one being generalized in [4] and the other in [1].
For instance, [4] and [1] respectively generalize the bijections originally found in [21] and [33] for
simple triangulations (i.e. triangulations of girth 3). It seems however that the master bijection
in [4] is better suited to deal with classes of maps where several face degrees are allowed.

Another unified combinatorial approach to maps was developed by Bouttier and Guitter in [13]
(building on [12]). They show that one of the desirable feature of trees, namely that they are easy
to enumerate thanks to their natural recursive structure, could be directly achieved at the level
of the maps themselves via so-called slice decomposition of maps. With this method, they obtain
the generating function of maps of pseudo girth d (maps in which cycles have length at least d,
except for the contours of faces, which can be of length d − 1) with control on the face-degrees,
thereby generalizing the counting results of [4] (in which faces of degree d− 1 were forbidden).

It is unclear if the methods used in [1, 13] can be generalized to hypermaps, and/or to charged
maps.

Outline. The outline of the paper is as follows. In Section 2, we define hypermaps and hyper-
mobiles, and we present the master bijection between a class of oriented hypermaps and a class
of hypermobiles. In Section 3, we consider for each d ≥ 1 the class Cd of hypermaps of ingirth d
with a dark outer face of degree d. By applying the master bijection to canonically oriented maps
in Cd we obtain a bijection between Cd and a class of hypermobiles. In Section 4, we obtain the
generating function of the class Cd of hypermaps counted according to the degree distribution of
their faces (by recursively decomposing the associated hypermobiles). In Section 5, we show that
the bijections described in [7, 8, 10, 11] are special cases of the bijections obtained in Section 3. In
Section 6, we obtain a general bijection for fittingly charged hypermaps. As before, this bijection
is obtained by first characterizing fittingly charged hypermaps by suitable canonical orientations
and then applying the master bijection. In Section 7, we use the framework of charged hyper-
maps to obtain bijections for classes of annular hypermaps characterized by separating and non
separating girth constraint. In Section 8 we obtain the generating function of those classes. In
Section 9, we gather some proofs about the master bijection. In Section 10, we gather our proofs
about canonical orientations.

2. Master bijection for hypermaps

2.1. Hypermaps and hyperorientations. A map is a connected graph embedded on the sphere,
considered up to continuous deformation. An Eulerian map is a map such that all vertices have
even degree. Such maps are also those whose faces can be bicolored – say there are dark faces and
light faces – in such a way that every edge separates a dark face from a light face. Note that this
bicoloration is unique up to the choice of the color of a given face. An hypermap is a face-bicolored
Eulerian map; dark faces are also called hyperedges. The underlying map is the (Eulerian) map
obtained from the hypermap by forgetting the face types. A corner of a map is the an angular
section between two consecutive half-edges around a vertex. The degree of a vertex or face a,
denoted by deg(a), is the number of incident corners.

A face-rooted hypermap is a hypermap with a marked face (either dark or light) called the
outer face. The other faces are called inner faces. The vertices and edges are called outer if they
are incident to the outer face and inner otherwise. The outer degree of a face-rooted hypermap
is the degree of the outer face. Observe that face-rooted hypermaps, can also be thought of as
hypermaps embedded in the plane (with the outer face being infinite), and for this reason they are
sometimes called plane hypermaps. A dark-rooted (resp. light-rooted) hypermap is a face-rooted
hypermap such that the outer face is dark (resp. light). A vertex-rooted hypermap is a hypermap
with a marked vertex called the root-vertex. A corner-rooted hypermap is a hypermap with a
marked corner called the root-corner.

A hyperorientation O of a hypermap H is a partial orientation (edges are either oriented or
unoriented) of the edges of H such that each oriented edge has a dark face on its right. Oriented
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Figure 4. Left: an Eulerian map M (all vertices of M have even degree). Right:
a hypermap (having M as underlying Eulerian map) endowed with a hyperorien-
tation.

edges are called 1-way, unoriented edges are called 0-way. Directed outer edges are called cw-outer
or ccw-outer respectively, depending on whether they have the outer face on their left or on their
right. A directed path from u to v is a sequence of 1-way edges e1, . . . , ek such that the origin of e1

is u, the end of ek is v, and for all i ∈ {1, . . . , k−1} the end of ei is the origin of ei+1. This directed
path is a circuit if u = v. A circuit is called simple if the origins of e1, . . . , ek are all distinct. If
H is an hyperoriented face-rooted hypermap, a simple circuit C is called clockwise if the outer
face is in the region delimited by C on the left of C, and counterclockwise otherwise. Similarly,
if H is a vertex-rooted hypermap, a simple circuit C is said to be clockwise if the root-vertex is
either on C or in the region delimited by C on the left of C; and C is said to be counterclockwise
if the root-vertex is either on C or in the region delimited by C on the right of C (note that
a circuit passing by the root-vertex is clockwise and counterclockwise at the same time). The
hyperorientation is called minimal if it has no counterclockwise circuit, and is called accessible
from a vertex v if every vertex u can be reached from v by a directed path. By a slight abuse of
terminology, we will often refer to a hyperoriented hypermap as a hyperorientation.

We now define three families of hyperorientions that will play a central role in the master bijec-
tions (see Figure 5). We call face-rooted hyperorientation a face-rooted hypermap endowed with
a hyperorientation. Light-rooted, dark-rooted and vertex-rooted hyperorientations are defined
similarly.

• We defineH+ as the family of light-rooted hyperorientations that are accessible from every
outer vertex, minimal, and such that every outer edge is 1-way (the outer face contour is
a clockwise circuit, not necessarily a simple circuit).

• We defineH− as the family of dark-rooted hyperorientations that are accessible from every
outer vertex, such that the outer face contour is a simple counterclockwise circuit, and it
is the unique counterclockwise circuit in the hyperorientation.

• We define H0 as the family of vertex-rooted hyperorientations that are accessible from the
root vertex v0, and minimal.

Figure 5. Left: a (light-rooted) hyperorientation in H+. Middle: a (dark-
rooted) hyperorientation in H−. Right: a (vertex-rooted) hyperorientation in
H0.

Remark 2. We point out that if a hyperorientation H is in H−, then there is no inner edge of H
incident to an outer-vertex and oriented 1-way toward that outer vertex. Indeed, if we suppose
by contradiction that such an inner edge e exists, then because H is accessible, there is a path
P of inner edges starting at an outer vertex and ending with the edge e. However, this path P
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together with the contour of the outer face creates a counterclockwise cycle; see Figure 6. This
gives a contradiction. Similarly, if a hyperorientation is in H0, then every incidence of an edge e
with the root-vertex v0 is such that e is 0-way or 1-way out of v0.

e

P

Figure 6. The directed path P of inner edges starting at an outer vertex and
ending with the edge e.

2.2. Master bijection Φ∗. We now define the classes of planes trees which are in bijection with
the classes of hyperorientations in H+, H− and H0. We consider plane trees with dangling half-
edges called buds. An hypermobile is a plane tree with buds having 3 types of vertices – round,
dark square, and light square – and such that

• buds are incident to light square vertices,
• every edge is incident to exactly one dark square vertex (hence the edge joins a dark square

vertex to either a light square vertex or a round vertex).
The degree of a vertex in the hypermobile is the number of incident half-edges (including buds,
for light square vertices). The excess of the hypermobile is the number of edges with a round
extremity, minus the number of buds. We denote respectively by T+, T−, and T0 the families of
hypermobiles of positive excess, negative excess, and zero excess.

We now describe the master bijection for hypermaps. Actually, there are 3 bijections denoted
by Φ+, Φ− and Φ0, and mapping the classes of hyperorientations H+, H−, H0 respectively to the
classes of hypermobiles having positive, negative, and zero excess.

Let X be an hyperorientation in H∗ with ∗ ∈ {+,−, 0}. The hypermobile Φ∗(X) is obtained
as follows:

• Place a dark (resp. light) square vertex of Φ∗(X) in each dark (resp. light) face of X; the
vertices of X will become the round vertices of Φ∗(X).

• Create the edges of Φ∗(X) by applying to each edge of X the local rule indicated in
Figure 7 (ignore the weights w for the time being). Then erase all the edges of X.

• To complete the construction in the case ∗ = + delete the light square vertex in the outer
face of X (together with the incident buds). To complete the construction in the case
∗ = −, delete the dark square vertex in the outer face of X, all the outer vertices of X
and the edges linking them. To complete the construction in the case ∗ = 0, simply delete
the root-vertex of X.

The mappings Φ∗, are illustrated in Figure 8.

0-way edge1-way edge

w w

w w

In the hypermap

In the hypermobile

Figure 7. Local rules applied in the bijections Φ+, Φ−, Φ0 to every edge of a
hyperorientation. The rule for the transfer of a weight w is also indicated (for the
edge-weighted version of the bijections).

Remark 3. For X ∈ H+, all the outer edges are oriented 1-way with the root-face on their left,
hence the local rules of Figure 7 do not create any edge incident to the light square vertex in
the outer face of X (only buds). Thus, the last step to complete Φ+(X) only deletes an isolated
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f

e

f e

Figure 8. The master bijection Φ∗ from hyperorientations to hypermobiles (up-
per part: left Φ+, middle Φ−, right Φ0) and its inverse Ψ∗ (lower part: left Ψ+,
middle Ψ−, right Ψ0). Hypermobile edges are blue or red whether they have a
round extremity or not.
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vertex. Similarly, for X ∈ H0, the last step to complete Φ0(X) only deletes an isolated vertex.
Lastly, for X ∈ H− the local rules of Figure 7 do not create any edge incident to the outer vertices
of X, except for the edges joining them to the dark square vertex in the outer face of X (because
by Remark 2 no inner edge is 1-way toward an outer vertex). Hence the last step to complete
Φ−(X) only deletes an isolated “star graph” made of these vertices and edges.

Theorem 4. For ∗ ∈ {+,−, 0} the mapping Φ∗ is a bijection between H∗ and T∗. For Φ+ the
outer degree of γ ∈ H+ is equal to the excess of τ = Φ+(γ), for Φ− the outer degree of γ ∈ H− is
equal to minus the excess of τ = Φ−(γ).

The proof of Theorem 4 is postponed to Section 9. We will now formulate a version of the
bijections Φ∗ for edge-weighted hyperorientations, and explain the parameter correspondences.

A hyperorientation is weighted by assigning a weight in R to each edge. In that case, the weight
of a vertex is the total weight of its incident ingoing edges, the weight of a light face is the total
weight of its incident 0-way edges, and the weight of a dark face is the total weight of its incident
edges. For hyperorientations is in H−, we take the convention that all outer edges (which are
1-way) have weight 1. Similarly a hypermobile is weighted by assigning a weight in R to each of
its (non-bud) edges. The weight of a vertex of a hypermobile M is the total weight of its incident
(non-bud) edges, and the degree of a vertex of M is the number of incident half-edges (including
buds, for light square vertices). The local rule of Figure 7 can directly be adapted so as to transfer
the weight of an edge of the hypermap to the corresponding edge in the associated hypermobile,
see Figure 7. Hence, Theorem 4 has the following corollary.

Corollary 5. The mapping Φ+ (resp. Φ−, Φ0) is a bijection between weighted hyperorientations
from H+ (resp. H−, H0) and weighted hypermobiles of positive excess (resp. negative excess, zero
excess).

We now formulate the parameter correspondences between hypermaps and hypermobiles. In
order to make a formulation valid simultaneously for Φ+, Φ− and Φ0, we first define the frozen
vertices, edges and faces of a hyperorientation H in H+, H− and H0. For H ∈ H+, only the outer
face is frozen. For H ∈ H0, only the root-vertex is frozen. For H ∈ H−, the outer face, all the
outer edges and all the outer vertices are frozen. With this terminology, for ∗ ∈ {+,−, 0}, for
H ∈ H∗ and T = Φ∗(X), we have

• each non-frozen light (resp. dark) face of H corresponds to a light (resp. dark) square
vertex of the same degree and same weight in T ;

• each non-frozen edge of H corresponds to a (non-bud) edge of the same weight in T ;
• each non-frozen vertex of H of weight w and indegree δ corresponds to a round vertex of
T of weight w and degree δ.

2.3. Inverse bijections Ψ∗. We will now describe the inverses Ψ+, Ψ−, and Ψ0 of the bijections

Φ+, Φ−, and Φ0. Let T be a hypermobile. We associate with T an outerplanar map T̂ (a plane
map such that every vertex is incident to the outer face) as follows:

• for each dark (resp. light) vertex of degree d in T we create a dark (resp. light) polygon
of degree d following the rules illustrated in Figure 9;

• for each edge e of T between a dark square and a light square vertex, we glue together
the two face sides of the corresponding polygons at e;

• for each round vertex v of T of degree d we merge the d neighboring polygon corners with
the vertex v.

See Figure 10 for an example. Note that the inner edges of the outerplanar map T̂ are 0-way and

the outer edges are 1-way: cw-outer edges of T̂ correspond to edges between a round and a dark

square vertex in T , ccw-outer edges of T̂ correspond to buds of T .
The mappings Ψ+, Ψ−, Ψ0 (which will be proved to be the inverse bijections of Φ+, Φ−,

Φ0 respectively) are defined as follows. Let T be a hypermobile, and let T̂ be the associated
outerplanar map. We will now define a canonical way of gluing together the cw-outer and ccw-

outer edges of T̂ ; see Figure 11.
A word w (i.e. sequence of letters) on the alphabet {a, ā} is a parenthesis word if w has as

many letters a as letters ā, and for any prefix of w the number of letters a is at least equal to the
number of letters ā. A cyclic word is a word considered up to cyclic shift of the letters. Given
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⇒ ⇒

Figure 9. Left: growing a dark polygon at a dark square vertex of a hypermobile.
Right: growing a light polygon at a light square vertex of a hypermobile.

(a) (b)

(c)

T

(d)

T̂

→

→→

Figure 10. From a hypermobile T to the associated outerplanar map T̂ . (a) The
hypermobile T . (b) Creating the polygons around square vertices. (c) Gluing
polygon-sides corresponding to each edge of T between a dark square and a light
square vertex, and merging polygon-corners neighboring each round vertex of T .

(d) The outerplanar map T̂ .

a cyclic word w on the alphabet {a, ā}, we say that a letter a and a letter ā are cw-matching, if
the subword of w starting after the letter a and ending before the letter ā is a (possibly empty)
parenthesis word. An example is given in Figure 11(a). It is easy to see that for any letter a there
is at most one cw-matching letter ā and vice-versa. Moreover if a cyclic word w has na letters and
nā letters ā with na ≥ nā (resp. na ≤ nā), then all the letters are cw-matching except for na−nā
letters a (resp. nā − na letters ā).

We are now ready to define a canonical way of gluing the cw-outer and ccw-outer edges of

T̂ . We associate a cyclic word wT with the sequence of outer edges appearing in clockwise order

around the outer face of T̂ by encoding the cw-outer and ccw-outer edges by the letters a and

ā respectively. We say that a cw-outer edge and a ccw-outer edge of T̂ are cw-matching if the
corresponding letters a and ā are cw-matching in wT . It is easy to see that all the pairs of cw-
matching edges can be glued together into 1-way edges (that is, there is no breach of planarity in
doing so for every pair of cw-matching edges). An example is given in Figure 11(b). If the excess

ε of T is positive, then T̂ has ε more cw-outer edges than ccw-outer edges. Thus the map obtained

after gluing the cw-matching edges of T̂ has an outer face of degree ε which is incident only to
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cw-outer edges. Hence coloring the outer face as light gives an oriented light-rooted hypermap,
that we denote by Ψ+(T ). Similarly, if the excess ε of T is negative, then the map obtained

after gluing the cw-matching edges of T̂ has an outer face of degree −ε which is incident only to
ccw-outer edges. Hence coloring the outer face as dark gives an oriented dark-rooted hypermap,

that we denote Ψ−(T ). Lastly, if the excess of T is 0, then all the outer edges of T̂ are glued.
Moreover, there is a unique vertex v0 of the glued map without incident ingoing edges. In this
case, taking v0 as the root-vertex gives an oriented vertex-rooted hypermap that we denote by
Ψ0(T ). Examples for Φ+, Φ−, Φ0 are given in Figure 8.

(a) (b)

a

a

a
a

a

a
aa

a

a

a

a

Figure 11. (a) The cyclic word aaaāāaaaāaāā (represented in clockwise order
around a polygon), and the cw-matching pairs of a’s and ā’s (indicated by the
arrows). (b) Gluing of the cw-matching pairs of edges of the outerplanar maps

T̂ .

Theorem 6. The mappings Ψ+, Ψ−, and Ψ0 are the inverses of the bijections Φ+, Φ−, and Φ0

respectively.

We shall prove Theorem 6 in Section 9.

2.4. Alternative formulation of the inverse bijections Ψ∗. For the sake of completeness,
we now give an alternative description of the mappings Ψ∗, which is closer to the description of
many known bijections (in particular, the bijections in [7, 8, 11] discussed in Section 5). Let T be
a hypermobile, where buds are interpreted as outgoing sprouts. Add ingoing sprouts as follows:
for each edge e = {u, v} ∈ T connecting a round vertex u to a dark square vertex v, insert an
ingoing sprout in the corner following e in counterclockwise order around v. See Figure 12 for
an example. We associate a cyclic word wT with the sequence of sprouts appearing in clockwise
order around the outer face of T (with the outer face on the left of the walker) by encoding the
ingoing and outgoing sprouts by the letters a and ā respectively. We join the cw-matching ingoing
and outgoing sprouts to form oriented edges, and then remove from T the round vertices and
their incident edges. The embedded partially oriented graph G thus obtained is called the partial
closure of T . If T has nonzero excess ε, then there remain |ε| unmatched sprouts in G (which
are ingoing if ε > 0, outgoing if ε < 0). The complete closure of T , denoted by G′ is defined as
follows: if ε = 0 then G′ = G, while if ε > 0 (resp. ε < 0) G′ is obtained from G by adding
a new light (resp. dark) square vertex v0 in the face containing all the sprouts and connecting
these sprouts to v0 by new edges directed away from v0 (resp. toward v0). Observe that G′ is
a bipartite map since every edge is incident to one dark square vertex. Finally, we call Ψ∗(T )
(for ∗ ∈ {+,−, 0} depending on whether the excess ε is positive, negative, or zero) the dual of G′

which is a hypermap (the dual of dark squares are taken to be dark faces). The edges of Ψ∗(T )
are oriented as follows: an edge e′ of Ψ∗(T ) which is dual to an oriented edge e of G′ (made by
connecting two sprouts) is oriented 1-way from the right-side of e to the left-side of e, while an
edge of Ψ∗(T ) which is dual to an original edge of T is left unoriented. Lastly, if the excess ε is
non-zero we take the dual of the vertex v0 of G′ to be the root-face of Ψ∗(T ), while if ε = 0 we
take the dual of the root-face of G′ to be the root-vertex of Ψ0(T ). See Figure 12 for an example.

It is easy to see that the formulation with sprouts given here is equivalent to the formulation with
outerplanar maps given above. Indeed, if we superimpose the hypermobile with the associated
outerplanar map, then each cw-matching operation in one formulation is equivalent to a cw-
matching operation in the other formulation.
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→

→ →

Figure 12. The closure mapping Ψ− performed by joining pairs of cw-matching
outgoing and ingoing sprouts, and then taking the dual.

2.5. Relation with the master bijection for maps defined in [5]. In a preceding article [4]
we gave master bijections for planar maps. More precisely, we considered bi-oriented planar maps.
A bi-orientation of a map is a choice of a direction for each half-edge of the map (thus there are
4 ways of bi-orienting any edge). Seeing maps as a special case of hypermaps, we can describe a
bi-orientation as a hyperorientation of the associated hypermap in the way indicated in Figure 13.

0-way edge1-way edge2-way edge
In the map

In the hypermap

In the hypermobile

Figure 13. Maps identify to hypermaps by blowing each edge e into a dark face
f of degree 2, the middle-line also shows how to naturally transfer the orientation
information so that indegrees are preserved. The bottom line shows that applying
the local rules of Figure 7 to (the two edges ε1, ε2 of) f is equivalent to applying
the local rules given in [4] to the underlying edge e.

The master bijection in [4] consists of 3 constructions denoted by Φ+, Φ−, Φ0 operating on 3
families O+, O−, O0 of bi-orientations. It is easy to check that, under the classical identification of
blowing each edge of a map into a dark face of degree 2, the families O+, O−, O0 of bi-orientations
considered in [4] identify respectively to the subfamilies of H+, H−, H0 where all inner dark faces
are of degree 2. Moreover the local rules to carry out the bijections are equivalent under this
identification, see Figure 13. Hence Theorems 4 and 6 extend the results given in [4] about the
master bijections for maps.

The proof of Theorems 4 and 6 could actually be obtained using a reduction to the results
about the master bijection for maps established in [4]1. These in turn, were obtained using results
established in [2]. Instead we chose to give a simplified – self-contained – proof in Section 9.

1In this reduction we would apply the master bijection of [4] to partially oriented maps, and observe that one

can characterize the mobiles which are the image of (hyperoriented) hypermaps (because bicolorability of the faces
can be detected on the associated mobiles).
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0 2

3 4 0

0

2-1

1
2

3 1
4

2

0

-1

0

Figure 14. The bijection of Theorem 10 on an example (case d = 4). Left: a
dark-rooted hypermap endowed with its unique 4-weighted hyperorientation in
H−. Right: the associated 4-weighted hypermobile.

3. Bijections for plane hypermaps according to the ingirth

We first define the ingirth of a plane hypermap H. A simple cycle C of H is called inward if
all the faces incident to C and inside C (on the side of C not containing the outer face) are light.
The ingirth of H is then defined as the minimal length of inward cycles. Note that the ingirth of
a plane hypermap whose dark faces have degree 2 is equal to the girth of the corresponding map.
In this section, we present bijections for dark-rooted hypermaps with control on the face-degrees
and on the ingirth.

For d ≥ 1 and H a dark-rooted hypermap of outer degree d, a d-weighted hyperorientation of
H is a weighted hyperorientation of H such that:

• The 1-way edges have positive weight, the 0-way edges have non-positive weight.
• Inner vertices have weight d.
• Each light face f has weight d− deg(f).
• Each dark inner face f has weight d · deg(f)− d− deg(f).
• Outer vertices and outer edges have weight 1.

Theorem 7. Let d be a positive integer. A dark-rooted hypermap of outer degree d can be endowed
with a d-weighted hyperorientation if and only if it has ingirth d. In this case, it has a unique
d-weighted hyperorientation in H−.

The proof of this theorem is postponed to Section 10. We now define the corresponding hyper-
mobiles. For d ≥ 1, a d-weighted hypermobile is a weighted hypermobile such that:

• Edges incident to a round vertex have positive weight, while edges incident to a light
square vertex have non-positive weight.

• Round vertices have weight d.
• Each light square vertex v has weight d− deg(v).
• Each dark square vertex v has weight d · deg(v)− d− deg(v).

Claim 8. Every d-weighted hypermobile has excess −d.

Proof. Let nR, nL, nD be respectively the numbers of round vertices, light square vertices, and
dark square vertices, let eR (resp. eL) be the number of edges with a round (resp. light square)
extremity, and denote by e = eR + eL the total number of edges (excluding buds), and by b the
number of buds (the excess is eR− b). The total weight at round vertices is dnR, the total weight
at light square vertices is dnL−eL−b, and the total weight at dark square vertices is de−dnD−e.
Hence we have de− dnD − e = dnR + (dnL − eL − b). Together with nR + nL + nD = e+ 1, this
gives e− eL − b = −d, hence eR − b = −d. �

Remark 9. The weights of edges in a d-weighted hypermobile are always integers. Indeed, since
every vertex has integer weight, no vertex can be incident to exactly 1 edge with a non-integer
weight. Hence there cannot exist a non-empty subset of edges with non-integer weights (because
any such subset has a vertex of degree 1). Note also that the same argument shows that if the
weights of the vertices of a hypermobile are all multiples of a number k, then the edge weights are
also multiples of k.
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Given Theorem 7 we can apply the master bijection Φ− for hypermaps. Given the parameter
correspondence for Φ− we obtain the following result; see Figure 14 for an example.

Theorem 10. Let d be a positive integer. Dark-rooted hypermaps of outer degree d and ingirth
d are in bijection with d-weighted mobiles. Each light (resp. dark) inner face in the hypermap
corresponds to a light (resp. dark) square vertex of the same degree in the associated hypermobile.

4. Counting plane hypermaps of ingirth d

In this section we determine the generating function Fd of corner-rooted hypermaps of ingirth d
with a dark outer face of degree d. Via the master bijection established in Section 3 and Lemma 11
below, this is reduced to counting rooted d-weighted hypermobiles (whereas counting dark-rooted
hypermaps of ingirth d amounts to counting unrooted d-weighted hypermobile which is harder).
Then using the classical recursive decomposition of trees at their root we determine Fd.

Recall that a corner-rooted hypermap is a hypermap with a marked corner. For a corner-rooted
hypermap, we define the root-face as the face containing the marked corner, and the ingirth is
defined with respect to this face. We now want to use the bijection of Theorem 10 about dark-
rooted hypermaps of ingirth d in order to count corner-rooted hypermaps of ingirth d. Note that
a given face-rooted hypermap with outer degree d can correspond to less than d corner-rooted
hypermaps if the face-rooted hypermap has some symmetries. However the master bijection Φ−
behaves nicely with respect to symmetries and we get the following lemma.

Lemma 11. Let H be a dark-rooted hyperorientation in H− and let T = Φ−(H) be the corre-
sponding hypermobile. Let a and b be respectively the number of distinct marked hypermobiles
obtained by marking a bud of T and by marking an edge of T having a round extremity. Then the
number of distinct corner-rooted maps obtained from H by choosing a root-corner in the root face
is c = a− b.
Proof. Let δ be the outer-degree of H. By Theorem 10, T has excess −δ, that is, its numbers α
and β of buds and edges with a round extremity are related by α−β = δ. Moreover it is clear from
the definition of Φ− that H has a symmetry of order k (which has to be a rotational symmetry
preserving the root face) if and only if T has a symmetry of order k. In other words, c = δ/k if
and only if a = α/k and b = β/k. Thus, c = δ/k = α/k − β/k = a− b. �

Let d ≥ 1, and let Fd be the family of corner-rooted hypermaps of ingirth d with a dark outer
face of degree d. Let Fd ≡ Fd(x1, y1;x2, y2; . . .) be the generating function of Fd where xk marks
the number of light faces of degree k, and yk marks the number of dark inner faces of degree k.
Let Ad ≡ Ad(x1, y1;x2, y2; . . .) (resp. Bd ≡ Bd(x1, y1;x2, y2; . . .)) be the generating function of
d-weighted hypermobiles with a marked bud (resp. with a marked edge having a round extremity),
where xk marks the number of light square vertices of degree k, and yk marks the number of dark
square vertices of degree k. The bijection of Theorem 10 and Lemma 11 ensure that

Fd = Ad −Bd.
We now calculate Ad and Bd, with the help of auxiliary generating functions. A planted d-
hypermobile is a tree T that can be obtained as one of the two components after cutting a d-
weighted hypermobile at the middle of an edge e. The extremity of e in the chosen component
is called the root-vertex of T , the half-edge of e in the chosen component is called the root-leg of
T , and the weight of e is called the root-weight of T . For i ∈ Z, we denote by Wi (resp. Li)
the family of planted d-hypermobiles with root-weight i with a root-vertex which is dark-square
(resp. not dark-square). Define Wi ≡ Wi(x1, y1;x2, y2; . . .) (resp. Li ≡ Li(x1, y1;x2, y2; . . .)) as
the generating function of Wi (resp. Li) where xk marks the number of light square vertices of
degree k, and yk marks the number of dark square vertices of degree k. Note that Wi = Li = 0 if
i > d. We also define

(1) W (u) = u+
∑

k≤0

Wku
k+1, L(u) = u−d+1

∑

k∈Z
Lku

k.

We now write equations specifying the series Wi and Li using the classical recursive decompo-
sition of trees at the root. As in [4, 5], we will need the following notation: for k ≥ 0 and s ≥ 0,
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define the multivariate polynomial hk(w1, . . . , ws) as

hk(w1, . . . , ws) = [tk]
1

1−∑s
m=1 t

mwm
.

In other words, hk is the generating function of the compositions of k with weight wi for each part
of size i.

For i ≥ 1 any mobile in Li has a root-vertex v which is round. Hence the children of v are dark
square, and the edges incident to v have positive weight. Moreover, the total weight at v is d,
with a contribution i from the root leg. Hence the total weight of the edges from v to its children
is d− i. This gives

(2) Li = hd−i(W1, . . . ,Wd−1) for i ≥ 1.

For i ≤ 0, a mobile in Li has a root-vertex v which is light square. Hence the children of v are
dark square, and the edges incident to v have non-positive weight. Moreover, the total weight at v
is d− deg(v), with a contribution i from the root-leg. If v has degree δ, the δ− 1 other half-edges
incident to v are either buds or are on an edge (with non-positive weight) leading to a dark square
vertex. This gives

Li =
∑

δ≥d−i
xδ[u

d−δ−i]
(

1 +
∑

k≤0

Wku
k
)δ−1

for i ≤ 0.

In other words,

(3) Li = [ud−i−1]
∑

δ≥d−i
xδW (u)δ−1 for i ≤ 0.

For i ∈ Z, a mobile in Wi has a root-vertex v that is dark square. If v has degree δ then the
weight of v is dδ − d− δ, with a contribution i from the root-leg. Hence

Wi =
∑

δ≥1

yδ[u
dδ−d−δ−i]

(∑

k∈Z
Lku

k
)δ−1

.

In other words,

(4) Wi = [u−i−1]
∑

δ≥1

yδ L(u)δ−1 for i ∈ Z.

Theorem 12. For d ≥ 1 the generating function Fd(x,y) of the class Fd of corner-rooted hyper-
maps of ingirth d having a dark root-face of degree d is given by

Fd = L0 −
d∑

i=1

LiWi,

where the series Li and Wi are specified by (3) and (4) (with L(u) and W (u) defined in (1)).
Moreover

∂Fd
∂xk

=
d

k
[ud]W (u)k,

∂Fd
∂yk

=
d

k
[u−d]L(u)k.

Proof. About the expression of Fd, we have seen that Fd = Ad−Bd. Note that Ad = L0 (because

the marked bud can be turned into a leg of weight 0) and Bd =
∑d
i=1 LiWi (because the marked

edge e can have any weight i ∈ {1..d}, and cutting e in its middle yields two planted d-hypermobiles
that are respectively in Li and in Wi). For expressing the partial derivatives of Fd, we note that

xk
k
d
∂Fd

∂xk
is the generating function of dark-rooted hypermaps with a dark root face of degree d,

and an additional marked corner in an inner light face of degree k. By the bijection Φ− this is also
the generating function of d-weighted hypermobiles with a marked corner at a light square vertex
of degree k, which is easily seen to be xk[ud]W (u)k. A similar argument gives the expression for
the partial derivative according to yk. �

Remark 13. The generating function Fd of hypermaps can be specialized into a generating function
of maps. More precisely, the class Gd of corner-rooted maps of girth d with a root-face of degree
d, identifies with the set of hypermaps in Fd such that every inner dark face has degree 2. Thus
the generating Gd of Gd is obtained from Fd by setting y2 = 1 and yδ = 0 for δ 6= 2. Theorem 12
then gives the expressions of Gd given in [5] (upon observing that (4) yields Wi = Ld−2−i, that
is, Li = Wd−2−i).
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For any sets ∆,∆′, the generating function Fd,∆,∆′ of corner-rooted hypermaps in Fd with
inner light face having degree in ∆ and inner dark face having degree in ∆′ is obtained by setting
xk = 0 for k /∈ ∆, yk = 0 for k /∈ ∆′. We point out that the generating function Fd,∆,∆′ is
algebraic as soon as ∆,∆′ are both finite (because only a finite number of auxiliary series Wi, Li
are involved). For instance, for d = 4, ∆ = {4} and ∆′ = {3}, we have

F4,{4},{3} = L0 − L1W1 − L2W2 − L3W3 − L4W4,

where the series {L0, L1, L2, L3, L4,W0,W1,W2,W3,W4} are specified by

L0 = x4(1 +W0)3, L1 = W 3
1 + 2W1W2 +W3, L2 = W 2

1 +W2, L3 = W1, L4 = 1,

W0 = 2y3L2L3, W1 = y3(2L1L3 + L2
2), W2 = 2y3L1L2, W3 = y3L

2
1, W4 = 2y3L1.

5. Recovering known bijections as specializations

In this section we show that the bijections described in [7, 8] can be recovered by specializing the
bijections of Theorem 10, and the bijections described in [10, 11] can be recovered by specializing
the master bijection Φ0 (in a way which can be thought of as the case d = 0 of Theorem 10).

5.1. The Bousquet-Mélou Schaeffer bijection for bipartite maps. Recall that a bipartite
map is a map whose vertices can be colored in black and white such that each edge connects a black
vertex to a white vertex. A 1-leg bipartite map is a bipartite map with a marked vertex of degree
1; this vertex is considered as black, hence it fixes the coloring of all vertices. Note that 1-leg
bipartite maps are dual to dark-rooted hypermaps of outer degree 1. In [8], Bousquet-Mélou and
Schaeffer have given a bijection between 1-leg bipartite maps and so-called well-charged blossom
trees. We show here that the bijection in [8] is equivalent (up to duality) to the case d = 1 of the
bijection of Theorem 10.

A blossom tree is a bipartite plane tree (with black and white vertices) with dangling half-edges.
The dangling half edges at black and white vertices are called outbuds and inbuds respectively
(the terminology in [8] is actually buds and leaves but this is confusing in the present context). A
planted subtree of a blossom tree T is a subtree that can be obtained as one of the two components
after cutting at the middle of an edge e of T (not at a bud). The extremity of e in the chosen
component is called the root-vertex of the planted subtree. The charge of a blossom tree or subtree
is its number of inbuds minus its number of outbuds2. A blossom tree is well charged if it has
charge 1 and every planted subtree has charge at most 1 when its root-vertex is black, and at least
0 when its root-vertex is white. A well-charged blossom tree is represented in Figure 15(b).

We first show that well-charged blossom trees identify to 1-weighted hypermobiles, see Fig-
ure 15(a)-(b). By definition the round vertices of 1-weighted hypermobiles have weight 1 hence
are leaves (i.e., vertices of degree 1). Thus, forgetting the weights, a 1-weighted hypermobile iden-
tifies to a blossom tree by interpreting dark and light square vertices as black and white vertices,
round vertices as outbuds, and buds as inbuds. Hence we define the charge of a 1-weighted hyper-
mobile or of a planted 1-hypermobile as its number of buds minus its number of round vertices.
An easy induction (using the same recursive decomposition as in Section 4) ensures that a planted
1-hypermobile of root-weight w such that the root-vertex is dark square (resp. light square) has
charge −w (resp. w + 1). Thus the fact that the edge weights of 1-hypermobiles are positive
for edges having a round endpoint and non-positive otherwise corresponds to the fact that the
associated blossom tree is well charged. Thus well-charged blossom trees identify to 1-weighted
hypermobiles (if one starts from a well-charged blossom tree, the weights on the corresponding
1-hypermobile are determined: each edge e gets a weight c−1, where c is the charge of the planted
subtree rooted on the dark square endpoint of e).

The bijection in [8] associates a 1-leg bipartite map to each well-charged blossom tree using
a closure operation; see Figure 15(b)-(d). More precisely, for a well-charged blossom tree T one
considers the cyclic word wT obtained by walking clockwise around T and encoding outbuds and
inbuds by letters a and ā respectively. Then, the cw-matching outbuds and inbuds of T are joined
into edges. Since the charge of T is 1, there remains 1 unmatched inbud. The result of the
closure operation is therefore a 1-leg bipartite map, if one interprets the unmatched inbud as the

2This notion of charge is taken from [8] and is not related to the notion of charge (which constraints the
cycle-lengths) to be introduced in Section 6.
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Figure 15. (a) A 1-weighted hypermobile T . (b) The corresponding well-charged
blossom tree T ′ (inbuds and outbuds are represented by ingoing and outgoing
arrows). (c)-(d) The closure of T ′, which is the same as the closure of T .

leg leading to a black vertex of degree 1. Moreover, it is clear that this closure operation of [8]
applied to a well-charged blossom tree is equivalent to the closure operation of Ψ+ (as formulated
in Section 2.4) applied to the corresponding 1-weighted hypermobile. To summarize we obtain:

Proposition 14. The blossom trees of [8] identify to 1-weighted hypermobiles. Under this iden-
tification the bijection of [8] is the same as the case d = 1 of the bijection of Theorem 10.

5.2. The Bousquet-Mélou Schaeffer bijection for constellations. For any fixed p ≥ 2, we
call p-constellation a (planar) hypermap where the degree of each dark face is p and the degree
of each light face is a multiple of p (these maps encode certain factorizations in the symmetric
group; see [25]). In [7], Bousquet-Mélou and Schaeffer have given a bijection between dark-rooted
p-constellations and so-called p-Eulerian trees. We show here that the bijection in [7] is equivalent
to the case d = p of the bijection of Theorem 10 applied to p-constellations. Before discussing the
equivalence, we show that p-constellations have ingirth p.

Lemma 15. A p-constellation has ingirth p.

Proof. Let K be a p-constellation, and let C be an inward cycle of K. Clearly the length of C
equals A − B, where A is the total degree of all light faces inside C and B is the total degree of
all dark faces inside C. Since all faces (dark or light) have degree a multiple of p, the length of C
is a multiple of p, hence is at least p. �

We now explicit the equivalence of the bijection in [7] with the the case d = p of Theorem 10
applied to p-constellations. A p-Eulerian tree is a bipartite plane tree (with black and white
vertices) satisfying:

• Each black inner node (non-leaf vertex) has degree p and has either n = 1 or n = 2
neighbors that are inner nodes. This black vertex is said to be of type n ∈ {1, 2}.

• Each white inner node has degree of the form p i with i ≥ 1, and it has i − 1 neighbors
that are black inner nodes of type 1.

We first show that p-Eulerian trees identify with the p-weighted hypermobiles corresponding to
p-constellations. A p-weighted hypermobile T corresponds to a p-constellation if all dark square
vertices have degree p and all light square vertices have degree multiple of p. In this case, by Re-
mark 9, all the edge weights of T are multiple of p, and we denote by T ′ the weighted-hypermobile
obtained by dividing every weight by p. In T ′ the weight of each round vertex is 1, the weight of
each dark square vertex is p− 2, and the weight of each light square vertex of degree p i is 1− i.
Since round vertices have weight 1 they are leaves. Since a dark square vertex has degree p and
weight p− 2, it has either p− 1 round neighbors and n = 1 light square neighbor (and the edge to
the light square neighbor has weight −1) or it has p − 2 round neighbors and n = 2 light square
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Figure 16. (a) A p-weighted hypermobile T associated with a dark-rooted p-
constellation, after all weights have been divided by p = 3. (b) The corresponding
p-Eulerian tree T ′. (c)-(d) The closure of T ′, which is the same as the closure of
T .

neighbors (and the edges to the light square neighbors have weight 0). This dark square vertex is
said to be of type n ∈ {1, 2}. Since a light square vertex of degree p i has weight 1− i, it has i− 1
dark square neighbors of type 1. Thus p-weighted hypermobiles corresponding to p-constellations
identify with p-Eulerian trees if one interprets buds as black leaves, round vertices as white leaves,
dark square vertices as black inner nodes, and light square vertices as white inner nodes. Indeed,
if one starts from a p-Eulerian tree, the corresponding hypermobile is obtained by giving a weight
w to each edge e = (u, v) connecting a black inner node u to a white inner node v, where w = −1
if u has type 1 and w = 0 if u has type 2.

The bijection in [7] associates a dark-rooted p-constellation with such a tree T using a closure
operation (see Figure 16(b)-(d)). More precisely, a counterclockwise walk around the outer face of
T sees a succession of black leaves and white leaves, and we consider the cw-matching when black
leaves are interpreted as letters a, and white leaves as letters ā. The pairs of cw-matching leaves
are joined by edges. It can be shown that a p-Eulerian tree has an excess of p black leaves over
white leaves. Hence after the cw-matching, there remain p unmatched black leaves (all in the outer
face) and these are merged into a black vertex of degree p taken as the root-vertex. This yields
a vertex-rooted bipartite map where black vertices have degree p and white vertices have degree
multiple of p. Hence the dual of the obtained bipartite map is a dark-rooted p-constellation.

It is clear that the closure mapping (as formulated in Section 2.4) applied to a p-weighted hyper-
mobile of a p-constellation is equivalent to the closing mapping of [7] applied to the corresponding
p-Eulerian tree. To summarize we obtain:

Proposition 16. For p ≥ 2, the p-Eulerian trees of [7] identify to p-weighted hypermobiles that
are associated with dark-rooted p-constellations. Under this identification the bijection of [7] is the
same as the case d = p of the bijection of Theorem 10 applied to p-constellations.

Remark 17. Since the two bijections are the same, the inverse mappings from constellations to
decorated trees also coincide. In both cases, the decorated tree is recovered as the complemented
dual of a forest: in our case the forest F is made of the directed edges of the canonical p-weighted
orientation, while in [7] the forest F ′ is the so-called rank-forest (see [7], in particular Section 5.2
and Proposition 6.2). Our rules to obtain the p-weighted hypermobile from F can be checked to
coincide with the rules given in [7] to obtain the p-eulerian tree from F ′. So F is the same as F ′.

5.3. The Bouttier Di Francesco Guitter bijections for Eulerian maps. In [10], Bouttier,
Di Francesco and Guitter have given a bijection for vertex-rooted hypermaps. In [11] this bijection
was generalized to vertex-rooted hypermaps with some “blocked edges”. We show here that these
bijections can be obtained as specializations of the master bijection Φ0 (and can be thought of as
“the case d = 0” of Theorem 10).

Let M be a vertex-rooted hypermap, and let v0 be its root-vertex. The hyperorientation Ω of
M such that each edge has a dark face on its right is called the dark-light hyperorientation of M ;



UNIFIED BIJECTIONS FOR PLANAR HYPERMAPS 19

(a) (b)

Figure 17. (a) A vertex-rooted hypermap endowed with its dark-light orienta-
tion. (b) The same hypermap with some blocked edges, endowed with its dark-
light hyperorientation (blocked edges are 0-way, other edges are 1-way).
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Figure 18. Local rules applied to the edges of a vertex-rooted hypermap, ac-
cording to the distance-labelling.
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Figure 19. Left: the bijection of [10] between vertex-rooted hypermaps and
well-labeled hypermobiles. Right: the bijection seen as a specialization of the
master bijection Φ0.

see Figure 17(a). We give to each vertex v of M the label `(v) equal to the length of a shortest
directed path of Ω from v0 to v. For each edge e = (u, v) (oriented from u to v in Ω), the labels
of u and v clearly satisfy `(v) ≤ `(u) + 1. We call e geodesic if `(v) = `(u) + 1 and non-geodesic
otherwise. One associates with M a hypermobile T without buds, but with labels, by applying
to each edge the rule indicated in Figure 18. More precisely, T has labels on the round vertices,
called vertex labels, and on each side of any edge incident to a light square vertex, called edge
labels. Moreover, it is easy to see that T satisfies the following properties:

• Vertex labels are positive and edge labels are non-negative.
• In clockwise order around a dark square vertex, any two consecutive labels `, `′ satisfy
`′ ≤ ` if `, `′ are edge-labels on the same edge, `′ = `+ 1 if `′ is a vertex-label, and `′ = `
in the other cases.

• In clockwise order around a light square vertex, any two consecutive edge-labels `, `′ satisfy
`′ ≥ ` if `, `′ are on the same edge, and `′ ≤ ` otherwise.

We call well-labeled mobile a labeled hypermobile satisfying these conditions; see Figure 19 for an
example.

Bouttier, Di Francesco and Guitter have shown in [10] that applying the local rules of Figure 18
gives a bijection between vertex-rooted hypermaps and well-labeled mobiles. Now we explain how
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to reformulate the distance-labelling and the well-labeled mobiles, and the connection with the
master bijection Φ0.

First, we show that the distance-labelling can be encoded as a weighted hyperorientation; see
Figure 19 right part. We call geodesic hyperorientation of M the weighted hyperorientation such
that each geodesic edge is 1-way with weight 0, and each non-geodesic edge e = (u, v) (with the
dark face on its right) is 0-way with weight `(v)− `(u)−1. The geodesic hyperorientation satisfies
the following conditions:

• The weight of an edge e is 0 if e is 1-way, and is negative if e is 0-way.
• The weight of a vertex is 0, and the weight of a face f (light or dark) is −deg(f).

We call 0-weighted a hyperorientation satisfying these conditions. Note that the geodesic hyper-
orientation has two additional properties: it is accessible from v0 and it is acyclic; hence it is
in H0.

Lemma 18. A vertex-rooted hypermap M has a unique 0-weighted hyperorientation in H0; it is
its geodesic hyperorientation.

Proof. Let M be a vertex-rooted hypermap, and let v0 be its the root-vertex. We call admissible
labelling of M a labelling L of its vertices (each vertex v has a label L(v) ∈ Z) such that L(v0) = 0
and for each edge e = (u, v) (with the dark face on its right) L(v) ≤ L(u) + 1. One can associate
to such a labelling a 0-weighted hyperorientation exactly in the same way as we have done for the
distance labelling. And this actually gives a bijection between admissible labellings and 0-weighted
hyperorientations of M . We have already seen that the 0-weighted hyperorientation associated
with the distance-labelling is in H0. Note that any admissible labelling L satisfies L(v) ≤ `(v) for
all vertices (because the labels increase by at most 1 along each edge of a geodesic path ending
at v). If L is not equal to `, consider a vertex v such that L(v) < `(v) (note that v 6= v0)
and L(v) is the smallest possible. Assume there is a neighbor v′ of v such that L(v′) < L(v),
that is, L(v′) = L(v) − 1. Since `(v′) ≥ `(v) − 1 we reach the contradiction that L(v′) < `(v′).
Hence v is not accessible from v0 in the 0-weighted hyperorientation associated with L, so the
hyperorientation is not in H0. �

Second, we show that the well-labeled mobiles can be encoded as weighted (unlabeled) hy-
permobiles; see Figure 19 bottom part. From a well-labeled mobile T we construct a weighted
hypermobile θ(T ) as follows. Give weight 0 to each edge incident to a round vertex, and give
weight ` − r − 1 to each edge e incident to a light square vertex u, where ` and r are the edge
labels on the left side and right side of e looking from u. In each corner c of T at a light square
vertex u between two consecutive edges e, e′ (in clockwise order), insert r − ` buds in the corner
c where r is the edge label on the right side of e (looking from u), and ` is the edge label on the
left side of e′. Then delete all the labels. The obtained hypermobile θ(T ) satisfies the following
conditions:

• Edges incident to a round vertex have weight 0 (hence round vertices have weight 0), while
edges incident to a light square vertex have negative weight.

• Each square vertex v (light or dark) has weight − deg(v).
We call 0-weighted a hypermobile satisfying these conditions. Clearly θ is a bijection between
well-labeled mobiles and 0-weighted hypermobiles. We can now show that the bijection of [11]
can be obtained as a specialization of Φ0; see Figure 19.

Proposition 19. The master bijection Φ0 yields a bijection between vertex-rooted hypermaps and
0-weighted hypermobiles. This bijection coincides with the Bouttier Di Francesco Guitter bijection,
up to the identification of well-labeled mobiles with 0-weighted hypermobiles.

Remark 20. The bijection [11], as reformulated in Proposition 19, can be thought of as the “case
d = 0” of Theorem 10. Indeed, one can think of a vertex-rooted hypermap as a dark-rooted
hypermap of degree 0. Then the definition of 0-weighted hyperorientation coincides with the case
d = 0 of d-weighted hyperorientations given in Section 3, except that the weight 0 are authorized
on 1-way edges instead of on 0-way edge. Also the definition of 0-weighted hypermobile coincides
with the case d = 0 of d-weighted hypermobile given in Section 3, except that the weight 0 is
authorized on edges incident to round vertices instead of on edges incident to light square vertices.

Proof. It is easy to prove that 0-weighted hypermobiles have excess 0. Hence the master bijec-
tion Φ0 clearly yields a bijection between 0-weighted hypermobiles and 0-weighted vertex-rooted
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Figure 20. Left: The bijection of [11] between vertex-rooted hypermaps with
blocked edges and generalized well-labeled mobiles. Right: the same bijection
seen as a specialization of Φ0.

hyperorientations in H0. By Lemma 18, the latter family identifies to the family of vertex-rooted
hypermaps.

Now one easily verifies from Figure 18 that, if M is a vertex-rooted hypermap and T is the asso-
ciated well-labeled mobile, then θ(T ) is obtained from the geodesic hyperorientation by applying
the local rules of Figure 7, that is, by applying Φ0. �

We now discuss the bijection given in [11], which is an extension of the bijection in [10] for vertex-
rooted hypermaps with blocked edges. LetM be a vertex-rooted hypermap, with v0 the root-vertex,
and let X be a subset of the edges of M called blocked edges. Let ΩX be the hyperorientation
of M where the edges in X are 0-way and the edges not in X are 1-way. The subset X is called
admissible if ΩX is accessible from v0. A pair (M,X), with M a vertex-rooted hypermap and
X an admissible subset of edges of M , is shortly called a (vertex-rooted) hypermap with blocked
edges.

The bijection of [11] proceeds similarly as the one above (which corresponds to the case X = ∅).
Namely, we give to each vertex v a label equal to the minimal length of the directed paths in ΩX
from v0 to v. We call e = (u, v) (with the dark face on the right of e) geodesic if it is not blocked
and `(v) = `(u) + 1, and non-geodesic otherwise. Then a labeled mobile is associated with (M,X)
by applying the rule of Figure 18, and marking as blocked the edges of the mobile corresponding
to blocked edges of M . The associated labeled mobiles, called generalized well-labelled mobiles
satisfy the same conditions as well-labelled mobiles, with the only difference that there can be
some blocked edges incident to light square vertices and that the difference between the edge-labels
on the two sides of a blocked edge is arbitrary.

As above we can encode the distance-labelling by a weighted hyperorientation. More precisely,
we define the geodesic hyperorientation as follows: each geodesic edge is oriented 1-way and given
weight 0, each non-geodesic edge e = (u, v) (with the dark face on the right of e) is oriented 0-way
and given weight `(v)− `(u)− 1. The geodesic hyperorientation satisfies:

• The weight of an edge e is 0 if e is directed, and is negative if e is non-blocked and 0-way.
• The weight of a vertex is 0, and the weight of a face f (light or dark) is −deg(f).

A hyperorientation satisfying these conditions is called a generalized 0-weighted hyperorientation.
The geodesic hyperorientation has two additional properties: it is accessible from v0 and it is
acyclic; hence it is in H0.

Lemma 21. A vertex-rooted hypermap with blocked edges (M,X) has a unique generalized 0-
weighted hyperorientation in H0; it is the geodesic hyperorientation.

Proof. The proof is similar to the proof of Lemma 18. Let (M,X) be a vertex-rooted hypermap
with blocked edges, and let v0 be its root-vertex. We call admissible labelling of M a labelling L
of its vertices such that L(v0) = 0 and for each non-blocked edge e = (u, v) (with the dark face on
the right of e) L(v) ≤ L(u)+1. As before there is a bijection between the admissible labellings and
the generalized 0-weighted hyperorientations of M . Moreover any admissible labelling L which is
not the distance-labelling ` is associated with a hyperorientation which is not accessible, hence
not in H0. �

We call generalized 0-weighted hypermobile a hypermobile with some marked edges incident to
light-square vertices, such that the following conditions hold:



22 O. BERNARDI AND É. FUSY

• Edges incident to a round vertex have weight 0 (hence each round vertex has weight 0),
and non-marked edges incident to a light square have negative weight.

• Each square vertex v (light or dark) has weight −deg(v).
Similarly as in the case without blocked edges, generalized well-labeled mobiles can be identified
to generalized 0-weighted hypermobiles. We now state how the bijection of [11] can be obtained
as a specialization of Φ0; see Figure 20.

Proposition 22. The master bijection Φ0 yields a bijection between vertex-rooted hypermaps
with blocked edges and generalized 0-weighted hypermobiles. This bijection coincides with the
bijection of [11], up to the identification of generalized well-labeled mobiles with generalized 0-
weighted hypermobiles.

Proof. The proof is very similar to the one of Proposition 19 and is left to the reader. �

6. Bijections for hypermaps with general cycle-length constraints

In this section we consider a far-reaching generalization of the girth constraints considered in
Section 3, and obtain bijections for hypermaps satisfying these constraints.

We call charge function σ of a hypermap H the assignment of a real number σ(a), called charge,
to each vertex and face a of H. The pair (H,σ) is called a charged hypermap. We call total charge,
and denote it by σtotal, the sum of all the charges of the hypermap. We will now define some
cycle-length constraints on charged hypermaps. A light region of H is a proper subset R of the
faces of H such that any face in R sharing an edge with a face not in R is light. We say that an
edge or a vertex is strictly inside a light region R if all its incident faces are in R. We denote

σ(R) =
∑

f face inside R

σ(f) +
∑

v vertex strictly inside R

σ(v).

The boundary of a light region R is the set of edges incident both to a face in R and to a face not
in R. We denote by ∂R the boundary of R and by |∂R| its cardinality.

Definition 23. Let H be a hypermap, and let σ be a charge function. If the hypermap H is dark-
rooted (resp. light-rooted, vertex-rooted), we say that H satisfies the σ-girth condition if every
light region R satisfies |∂R| ≥ σ(R) with strict inequality if all the outer vertices are strictly inside
R (resp. if one of the outer edges is strictly inside R, if the root-vertex is strictly inside R).

Various girth constraints can be realized as a σ-girth condition by choosing an appropriate
charge function σ; examples are given in Section 7.

We will now characterize the σ-girth condition by the existence of certain hyperorientations.

Definition 24. Let (H,σ) be a charged hypermap. If H is light-rooted or vertex-rooted, we call
σ-weighted hyperorientation of H a weighted hyperorientation such that:

(i) the weight of 1-way edges is positive, and the weight of 0-way edges is non-positive,
(ii) the weight of every light face f is σ(f)− deg(f),

(iii) the weight of every inner dark face f is −σ(f)− deg(f),
(iv) the weight of every vertex v is σ(v).

If H is dark-rooted, we call σ-weighted hyperorientation of H, a weighted hyperorientation satis-
fying (i), (ii), (iii) and

(iv’) the weight of every inner vertex v is σ(v), the weight of every outer vertex v is σ(v) + 1,
the weight of every outer edge is 1, and the weight of the dark outer face f0 is −σ(f0).

We now state the key result for dark-rooted hypermaps. We say that a charge function σ fits
a dark-rooted hypermap H if H satisfies the σ-girth condition, the charge of every inner vertex is
positive, the charge of every outer vertex is 0, the charge of the dark outer face f0 is − deg(f0),
and σtotal = 0.

Theorem 25. Let H be a dark-rooted hypermap, and let σ be a charge function. The hypermap
H admits a σ-weighted hyperorientation in H− if and only if σ fits H and the outer face of H is
simple. Moreover, in this case H admits a unique σ-weighted hyperorientation in H−.
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It will be shown in Section 7 that Theorem 7 is a special case of Theorem 25 corresponding
to a particular choice of charge function. We now state the analogous result for light-rooted and
vertex-rooted hypermaps. We say that a charge function σ fits a light-rooted hypermap H if H
satisfies the σ-girth condition, the charge of every vertex is positive, the charge of the light outer
face f0 is deg(f0), and σtotal = 0.

Theorem 26. Let H be a light-rooted hypermap, and let σ be a charge function. The hypermap
H admits a σ-weighted hyperorientation in H+ if and only if σ fits H. Moreover, in this case H
admits a unique σ-weighted hyperorientation in H+.

We say that a charge function σ fits a vertex-rooted hypermap if H satisfies the σ-girth con-
dition, the charge of every non-root vertex is positive, the charge of the root-vertex is 0, and
σtotal = 0.

Theorem 27. Let H be a vertex-rooted hypermap, and let σ be a charge function. The hypermap
H admits a σ-weighted hyperorientation in H0 if and only if σ fits H. Moreover, in this case H
admits a unique σ-weighted hyperorientation in H0.

The proof of Theorems 25, 26 and 27 are postponed to Section 10.
We will now obtain bijections for charged hypermaps using the master bijections Φ−, Φ+

and Φ0. We call fittingly charged hypermap a charged hypermap such that σ fits H. We call
consistently-weighted a hypermobile with weights in R such that the weights of edges incident to
round vertices are positive, while the weights of edges incident to light square vertices are non-
positive. We will now show that fittingly charged hypermaps are in bijection with consistently-
weighted hypermobiles.

We call charge of a vertex u of a hypermobile the quantity

• w(u) if u is a round vertex,
• w(u) + deg(u) if u is a light square vertex,
• −w(u)− deg(u) if u is a dark square vertex.

We now relate the excess of a hypermobile to the charges.

Lemma 28. The excess of a hypermobile of vertex-set V is −
∑

v∈V
σ(v), where σ(v) denotes the

charge of vertex v.

Proof. Let T be a hypermobile. Let R, D, and L be respectively the sets of round vertices, dark
square vertices, and light square vertices of T . Let b, eR, and eL be respectively the number of
buds, edges incident to a round vertex, and edges incident to a light square vertex. By definition,
the excess of T is eR − b. If we denote by w(u) and σ(u) the weight and charge of a vertex u, we
get

∑

u∈R
w(u) =

∑

u∈R
σ(u),

∑

u∈L
w(u) = −eL − b+

∑

u∈L
σ(u),

∑

u∈D
w(u) = −eR − eL −

∑

u∈D
σ(u).

Plugging these relations in
∑
u∈R w(u)+

∑
u∈L w(u) =

∑
u∈D w(u) gives eR−b = −∑v∈R∪L∪D σ(v),

as wanted. �

A hyperorientation is called consistently-weighted if the weight of every 1-way edge is a positive
real number, and the weight of every 0-way edge is a non-positive real number. By Theorem 25,
the set of fittingly charged dark-rooted hypermaps such that the outer face is simple identifies
with the set of consistently-weighted hyperorientations in H− such that the weight of every outer
edge is 1. Moreover,

• the charge of an inner vertex v of H is σ(v) = w(v),
• the charge of an inner light face f of H is σ(f) = w(f) + deg(f),
• the charge of an inner dark face f of H is σ(f) = −w(f)− deg(f).
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Hence by applying the master bijection Φ− and keeping track of the parameter-correspondences
we obtain:

Theorem 29. The mapping Φ− gives a bijection between the set of fittingly charged dark-rooted
hypermaps such that the outer face is simple, and the set of consistently-weighted hypermobiles
with negative excess. Moreover, each light (resp. dark) inner face of degree δ and charge x of
the hypermap corresponds to a light (resp. dark) square vertex of degree δ and charge x of the
associated charged hypermobile. Also each inner vertex of charge x in the hypermap corresponds
to a round vertex of charge x of the associated charged hypermobile. Lastly, the outer degree of
the hypermap corresponds to minus the excess of the associated hypermobile.

We will see below (see Lemma 37) that Theorem 10 corresponds to a special case of Theorem 29.
We now consider light-rooted hypermaps. Similarly as above, using Theorem 26 and applying the
master master bijection Φ+ we obtain:

Theorem 30. The mapping Φ+ gives a bijection between the set of fittingly charged light-rooted
hypermaps and the set of consistently-weighted hypermobiles with positive excess. Moreover, each
light (resp. dark) inner face of degree δ and charge x of the hypermap corresponds to a light (resp.
dark) square vertex of degree δ and charge x of the associated hypermobile. Also each vertex of
charge x in the hypermap corresponds to a round vertex of charge x of the associated hypermobile.
Lastly, the outer degree of the hypermap corresponds to the excess of the associated hypermobile.

Similarly, using Theorem 27 and applying the master master bijection Φ0 we obtain:

Theorem 31. The mapping Φ0 gives a bijection between the set of fittingly charged vertex-rooted
hypermaps and the set of consistently-weighted hypermobiles with excess zero. Moreover, each light
(resp. dark) face of degree δ and charge x of the hypermap corresponds to a light (resp. dark)
square vertex of degree δ and charge x of the associated hypermobile. Also each non-root vertex of
charge x in the hypermap corresponds to a round vertex of charge x of the associated hypermobile.

We will use Theorem 29 and 30 in the next section to count annular hypermaps. In the
remaining part of this section we give a general lemma about σ-girth conditions, and then explain
how to derive Theorem 1 stated in the introduction from Theorem 31.

A light region R is said to be connected (resp. simply connected) if the union of the faces in
R, and the edges and vertices strictly inside R is a connected (resp. simply connected) subset of
the sphere. For instance, the light region in Figure 21 is simply connected. When we consider the
simple connectedness of a light region containing the outer face, we think of the outer face simply
as a marked face of a hypermap on the sphere, so that this face is finite and simply connected.

Figure 21. A simply connected light region.

The following lemma shows that the σ-girth condition can be stated as a condition on simply
connected light regions whenever σtotal = 0 (hence in particular when σ is fitting).

Lemma 32. Let H be a dark-rooted, light-rooted or vertex-rooted hypermap, and let σ be a charge
function such that σtotal = 0. The hypermap satisfies the σ-girth condition if and only if the
inequalities and strict inequalities stated in Definition 23 hold for every simply connected light
region R.

Remark 33. We point out that, in general (even if σtotal = 0), the σ-girth condition might not be
satisfied even if the inequalities and strict inequalities stated in Definition 23 hold for every light
region R whose boundary is a simple cycle.
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Proof. We treat the case in which H is dark-rooted (the cases of light-rooted and vertex-rooted
hypermaps are proved similarly). We suppose that any simply connected light region R satisfies
|∂R| ≥ σ(R) with strict inequality if all of the outer vertices are strictly inside R. We want to
prove that the same property holds for any light region R. Suppose this does not hold, and take R0

a light region such that the property does not hold and |∂R0| is minimal. If R0 is not connected,
then R0 is the disjoint union of two light regions R1 and R2 (with |∂R1| ≥ 1 and ∂R2| ≥ 1). We
have |∂R0| = |∂R1|+ |∂R2| and σ(R0) = σ(R1)+σ(R2) which contradicts the minimality of |∂R0|
(note that if the outer vertices are strictly inside R0, then they are strictly inside either R1 or R2).
Now if R0 is connected but not simply connected, then R0 is the intersection of two light regions
R1 and R2 such that every face of H is inside R1 or R2 and every vertex of H is strictly inside
R1 or R2. Hence, σ(R0) = σ(R1) +σ(R2)−σtotal = σ(R1) +σ(R2). Moreover, ∂R0 is the disjoint
union of ∂R1 and ∂R2. Thus |∂R0| = |∂R1|+ |∂R2| and this again contradicts the minimality of
|∂R0| (note that if the outer vertices are strictly inside R0, then they are strictly inside both R1

and R2). Thus R0 must be simply connected, which is a contradiction. �

We now explain how to get Theorem 1 from Theorem 31. Recall that vertex-rooted maps
identify with vertex-rooted hypermaps such that every dark face has degree 2 (see Figure 1). We
can therefore translate the setting of 1 in terms of hypermaps. Let C be the set of pairs (H,σ)
such that H is a vertex-rooted hypermap where every dark face has degree 2, and σ is a fitting
charge function with σ(e) = −2 for every dark face e and σ(f) = 2 for every light face f . We need
to prove the two following claims:

Claim 34. The set C identifies to the set of partially charged maps considered in Theorem 1.

Claim 35. The weighted hypermobiles associated with the set C by the bijection of Theorem 31
identify with the suitably weighted mobiles considered in Theorem 1.

We first prove Claim 34. If M is a vertex-rooted map endowed with a partial charge function
σ, we let H be the vertex-rooted hypermap identified to M , keeping the same σ-values at vertices,
and setting σ(e) = −2 for every dark face e (of degree 2, corresponding to an edge of M) and
σ(f) = 2 for every light face f (corresponding to a face of M). Note that Condition (b) for a
partial charge function σ gives σtotal = 0 (by the Euler relation). Thus, proving Claim 34 amounts
to proving that Condition (a) holds for σ if and only if M satisfies the σ-girth condition. If R is a
set of faces of the map M , we consider the set E(R) of edges of M having both incident faces in
R. Thus R = R ∪ E(R) identifies to a light region of H, and it is easily seen that if R is simply
connected then the Euler relation gives

σ(R) = 2|R| − 2|E(R)|+
∑

v inside R

σ(v) = 2 +
∑

v inside R

(σ(v)− 2).

Therefore Condition (a) for a partial charge function σ can be reformulated as: “for any simply
connected light region of M of the form R = R ∪ E(R), |∂R| ≤ σ(R) with strict inequality if the

root-vertex v0 is inside R”. Moreover it is easy to check that if R
′

= R ∪ E′ with E′ ⊆ E(R),

then |∂R′| − σ(R
′
) ≤ |∂R| − σ(R). Thus Condition (a) is equivalent to |∂R| ≤ σ(R) (with strict

inequality if v0 inside R) for any light simply connected region R of M . This together with
Lemma 32 proves Claim 34.

It only remains to prove Claim 35. First note that the hypermobiles associated with maps have
all the dark square vertices of degree 2, hence (upon removing the dark square vertices) these
hypermobiles identify with the mobiles as defined in the introduction. Hence by Theorem 31 the
weighted hypermobiles associated with the set C are mobiles having excess 0, with weights on
half-edges such that

• every half-edge has a positive weight if it is incident to a round vertex and has a non-
positive weight otherwise,

• for every edge e, the weights of the two half-edges of e add up to 0,
• every light square vertex v has weight 2− deg(v).

These mobiles clearly identify with the suitably weighted mobiles considered in Theorem 1 upon
replacing the weights on half-edges (summing to 0) by non-negative weights on edges. This proves
Claim 35 and Theorem 1.
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7. Applications of the bijection for charged hypermaps to annular hypermaps

In this section we characterize the σ-girth condition for particular choices of the charge func-
tion σ, and derive from it bijections for annular hypermaps.

Given a real number d, we define the charge function σd by

• σd(v) = d for every vertex v,
• σd(f) = d for every light face f ,
• σd(f) = d− d · deg(f) for every dark face.

Lemma 36. For any simply-connected light region R, σd(R) = d. Moreover σdtotal = 2d.

Proof. Let V,E, F,K be respectively the set of vertices strictly inside R, edges strictly inside R,
light faces inside R, and dark faces inside R. By the Euler relation we get,

σd(R) = d (|V |+ |F |+ |K| − |E|) = d,

because R is simply connected. Similarly, the Euler relation gives σdtotal = 2d. �

We now define a charge function, which will make clear that Theorem 7 is a special case of
Theorem 25. Observe that an inward cycle (as defined in Section 3) is the boundary C = ∂R of
a simply connected light region R not containing the outer face, such that C is a simple cycle.

Lemma 37. Let d be a positive integer and let H be a dark-rooted hypermap of outer degree d.
Let σ be the charge function defined by

• σ(v) = d for every inner vertex v, and σ(v) = 0 for every outer vertex v,
• σ(f) = d for every light face f ,
• σ(f) = d−d ·deg(f) for every inner dark face, and σd(f0) = −d for the dark outer face f0.

The hypermap H satisfies the σ-girth condition if and only if H has ingirth d (i.e., every inward
cycle C of H has length at least d). Moreover in this case, the outer face is simple, and σtotal = 0.

Let σ be the charge function of Lemma 37. It is clear that the definition of d-weighted hy-
perorientations coincide with the definition of σ-weighted hyperorientations. Moreover Lemma 37
together with Theorem 25 implies that H admits a (unique) σ-weighted hyperorientation in H−
if and only if it has ingirth at least d. Thus Theorem 7 is a special case of Theorem 25.

Instead of proving Lemma 37, we will prove a slight extension which will be used for counting
hypermaps with given ingirth in Section 8. We define an annular hypermap as a face-rooted
hypermap with a marked inner face (hence H has two distinct marked faces). Let H be an
annular hypermap, let f0 be its outer face f0, and let f1 be its marked inner face. The separating
ingirth of H is the minimal length of the boundary of a light region containing f1 but not f0.
Observe that this minimal length is necessarily achieved for a boundary C which is a simple cycle,
that is, an inward cycle containing f1. We call separating outgirth of H the minimal length of the
boundary of a light region containing f0 but not f1. This minimal length is necessarily achieved
for a boundary C which is a simple cycle. We call separating outward cycle a simple cycle which
is the boundary of a light region containing f0 but not f1 (so that the separating outgirth is the
minimal length of separating outward cycles). We call non-separating ingirth of H the minimal
length of the boundary of a simply connected light region containing neither f0 nor f1. Observe
that this minimal length is not necessarily achieved for a boundary C which is simple (it could be
that C is the union of two simple cycles).

Lemma 38. Let d, e be positive integers. Let H be an annular hypermap with a dark outer face
f0 of degree e and a marked inner face f1. We consider the charge function σ defined by

• σ(v) = d for every inner vertex v, and σ(v) = 0 for every outer vertex v,
• σ(f) = d for every non-marked light face f ,
• σ(f) = d− d · deg(f) for every non-marked inner dark face, and σ(f0) = −e for the outer

face f0,
• σ(f1) = e if the marked inner face f1 is light, and σ(f1) = e− d · deg(f1) if f1 is dark.

The hypermap H satisfies the σ-girth condition if and only if H has non-separating ingirth at least
d, and separating ingirth e. In this case σtotal = 0 and the outer face is simple.

Observe that Lemma 37 corresponds to the special case e = d of Lemma 38 (up to forgetting
the marked face which plays no particular role).
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Proof. Let σ′ be the charge function defined by σ′(f0) = d e− d− e, σ′(f1) = −d+ e, σ′(v) = −d
if v is an outer vertex, and σ′(a) = 0 for any inner vertex and any non-marked non-root face a.
We have σ = σd + σ′. Hence by Lemma 36, we get σ(R) = d + σ′(R) for any simply connected
light region R. Note also that if H has separating ingirth e, then it implies that the outer face
is simple. In this case, there are e outer vertices hence σ′total = −2d, and since by Lemma 36
σdtotal = 2d we get σtotal = 0.

Now assume that H satisfies the σ-girth condition. For any separating inward cycle C, we
consider the corresponding light region R and get |C| ≥ σ(R) = d + σ′(R) = d + σ′(f1) = e.
Similarly and for any non-separating inward cycle C we get |C| ≥ σ(R) = d+ σ′(R) = d. Thus H
has non-separating ingirth at least d, and separating ingirth e.

Conversely assume that H has non-separating ingirth at least d, and separating ingirth e. We
want to prove that H satisfies the σ-girth condition. Since σtotal = 0, Lemma 32 implies that we
can focus on simply connected light regions of H. For a simply connected light region R, we know
σ(R) = d+ σ′(R), and need to prove |∂R| > σ(R). First suppose that R does not contain f0. We
get σ(R) = e if f1 ∈ R and σ(R) = d otherwise. Moreover ∂R contains an inward cycle C, thus
by hypothesis, |∂R| ≥ |C| ≥ σ(R). Suppose now that R contains f0. Let b be the number of outer
vertices incident to ∂R (the other outer vertices are all strictly inside R). We get σ(R) = bd− d
if f1 ∈ R and σ(R) = bd − e otherwise. If b = 0 then σ(R) < 0, hence |∂R| > σ(R) holds
trivially. Suppose now that b > 0. In this case the light region R′ = R \ {f0} is the disjoint union
of b simply connected light regions R1, . . . , Rb, and ∂R′ is the disjoint union of their boundaries
∂R1, . . . , ∂Rb. Each boundary ∂Ri contains an inward cycle, so |∂Ri| ≥ e if Ri contains f1 and

|∂Ri| ≥ d otherwise. Since |∂R| = |∂R′| − e =

b∑

i=1

|∂Ri| − e we get |∂R| ≥ bd − d = σ(R) if R

contains f1 and |∂R| ≥ bd − e = σ(R) otherwise. This completes the proof that H satisfies the
σ-girth condition. �

We now give a similar result for light-rooted hypermaps.

Lemma 39. Let d, e be positive integers. Let H be an annular hypermap with a light outer face
face f0 of degree e and a marked inner face f1. We consider the charge function σ defined by

• σ(v) = d for every vertex v,
• σ(f) = d for every non-marked inner light face f , and σ(f0) = e for the outer face f0,
• σ(f) = d− d · deg(f) for every non-marked inner dark face,
• σ(f1) = −e if the marked face f1 is light, and σ(f1) = −e− d · deg(f1) if f1 is dark.

Then σtotal = 0, and the hypermap H satisfies the σ-girth condition if and only if H has non-
separating ingirth at least d, and separating outgirth e and such that the only outward cycle of
length e is the contour of the outer face.

Proof. We have σ = σd+σ′, where σ′(f0) = −d+ e, σ′(f1) = −d− e, and σ′(a) = 0 for any vertex
and any non-marked non-root face a. Lemma 36 gives σtotal = σdtotal +σ′(f0) +σ′(f1) = 0. Using
Lemmas 32 and 36, we easily see that the σ-girth condition translates into the following condition
for any simply connected region R:

(i) |∂R| ≥ d if R contains neither f0 nor f1,
(ii) |∂R| ≥ e if R contains f0 but not f1, with strict inequality if R 6= {f0},
(iii) |∂R| ≥ −e if R contains f1 but not f0,
(iv) |∂R| > −d if R contains both f0 and f1,

The conditions (iii) and (iv) are void, while the conditions (i) and (ii) are clearly equivalent to the
fact that H has non-separating ingirth at least d, separating outgirth e, and the contour of the
outer face is the only separating outward cycle of length e. �

We will now use Lemmas 38 and 39 in conjunction with Theorems 29 and 30 to get bijections
with classes of hypermobiles. For any integers d, e (where e is allowed to be negative), we call
(d, e)-weighted hypermobile a consistently weighted hypermobile (that is, a weighted hypermobile
such that edges incident to a round vertex have positive weight, while edges incident to a light
square vertex have non-positive weight), with a marked square vertex, such that

• every round vertex has weight d.
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Figure 22. The bijection of Theorem 40 on an example (case d = 3, e = 4, with
a dark marked inner face f1).

• every unmarked light square vertex v has weight d− deg(v),
• every unmarked dark square vertex v has weight d · deg(v)− d− deg(v),
• the marked square vertex v has weight e− deg(v) if v is light and d · deg(v)− e− deg(v)

if v is dark.

By similar arguments as in Claim 8 one can check that a (d, e)-weighted hypermobile always has
excess −e.

Let B(d,e) be the family of annular hypermaps with a dark outer face of degree e, non-separating
ingirth at least d and separating ingirth e. Let B′(d,e) be the set of fittingly charged annular
hypermaps (H,σ) with a dark outer face of degree e, where the charge σ is defined as in Lemma 38.
By Lemma 38 we can identify the sets B(d,e) and B′(d,e). Moreover, by Theorem 29, the mapping
Φ− gives a bijection between B′(d,e) and the family of (d, e)-weighted hypermobiles. Thus we
obtain the following result (see Figure 22 for an example).

Theorem 40. For d and e positive integers, the family B(d,e) is in bijection with the family of
(d, e)-weighted hypermobiles. Each light (resp. dark) inner face in the hypermap corresponds to a
light (resp. dark) square vertex of the same degree in the associated hypermobile. Moreover, the
marked inner face corresponds to the marked square vertex.

Remark 41. Theorem 40 generalizes Theorem 7 which corresponds to the case e = d (by forgetting
the marked inner face). Indeed the ingirth of a hypermap with a marked inner face is the minimum
of its separating and non-separating ingirths. This theorem also generalize the bijection established
for so-called annular maps (planar maps with a root-face and an additional marked face) in [5].

Remark 42. It would be possible to extend Theorem 40 to the case where there is a marked inner
vertex v1 instead of a marked inner face f1. In that case the separating ingirth is the minimal
boundary-length of a light region not containing f0 but containing v1 in its strict interior. In
the associated hypermobiles, the marked vertex would be round instead of square, and its weight
would be e instead of d. It would also be possible to extend Theorem 40 to the case where there is
a root-vertex v0 instead of a root-face f0: this would correspond to the case e = 0 (no constraint
on the separating ingirth) and we would apply Φ0 instead of Φ−. These extensions can be obtained
from the charged-map setup in a way similar to the results proved in this section.

Similarly let C(d,e) be the set of annular hypermaps with a light outer face of degree e, non-
separating ingirth at least d, separating outgirth e, and such that the only outward cycle of length
e is the contour of the outer face. Let C′(d,e) be the set of fittingly charged annular hypermaps
(H,σ) with a light outer face of degree e, where the charge σ is defined as in Lemma 39. By
Lemma 39 we can identify the sets C(d,e) and C′(d,e), and by Theorem 30, the mapping Φ+ gives a
bijection between C′(d,e) and the family of (d,−e)-weighted hypermobiles. In conclusion we obtain
(see Figure 23 for an example):

Theorem 43. For d and e positive integers, the family C(d,e) is in bijection with the family of
(d,−e)-weighted hypermobiles. Each light (resp. dark) inner face in the hypermap corresponds to
a light (resp. dark) square vertex of the same degree in the associated hypermobile. Moreover, the
marked inner face corresponds to the marked square vertex.
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Figure 23. The bijection of Theorem 43 on an example (case d = 3, e = 4, with
a dark marked inner face f1).

8. Counting annular hypermaps according to girth parameters

In Section 4 we have counted plane hypermaps with control on the ingirth and the face degrees,
but with the restriction that the outer degree is equal to the ingirth. Here we will drop this
restriction. Our strategy (as in our previous article [5] dealing with maps) is to consider annular
hypermaps instead of plane hypermaps, and use a canonical decomposition of annular hypermaps
into two hypermaps that can be counted bijectively.

Recall that an annular hypermap is a hypermap with two marked faces: one called the outer
face and the other called the marked inner face. An annular hypermap is corner-rooted by marking

a corner in the outer face and a corner in the marked inner face. Let ~Ad,e be the family of corner-

rooted annular hypermaps of separating girth e and non-separating ingirth at least d. Let ~Bd,e
(resp. ~Cd,e) be the family of corner-rooted annular hypermaps such that the underlying (unrooted)
annular hypermap is in the family Bd,e (resp. Cd,e) defined in Section 7.

Lemma 44. There is an e-to-1 correspondence between ~Ad,e and the Cartesian product ~Cd,e× ~Bd,e.

Proof. We will first define the canonical cycle of an annular hypermap H ∈ ~Ad,e. For any cycles
C1, C2 that are contours of some light regions R1, R2 of a hypermap H, we denote by ∩(C1, C2)
(resp. ∪(C1, C2)) the contour of the light region R1 ∩R2 (resp. R1 ∪R2). It is easy to see that

| ∪ (C1, C2)|+ | ∩ (C1, C2)| = |C1|+ |C2|.
Thus, if C1 and C2 are separating inward cycles of length e, then ∪(C1, C2) and ∩(C1, C2) are both
separating inward cycles of length e (since H has separating girth e). Thus H has a separating
inward cycle C of length e which is the outermost (that is, its light region contains the light region
of any separating inward cycle of length e), and we call it the canonical cycle of H.

We now define the e-to-1 correspondence between ~Ad,e and ~Cd,e × ~Bd,e. Let ~A•d,e be the set of

pairs (H, v) where H ∈ ~Ad,e and v is a vertex on the canonical cycle. For (H, v) ∈ ~A•d,e, with

f0 the outer face and f1 the marked inner face of H, we denote by φ(H, v) the pair (I, J) of
corner-rooted annular hypermaps obtained by cutting along C: the marked inner face of I is f0

and the outer face of I is delimited by C, while the marked inner face of J is f1 and the outer face
of J is delimited by C (the marked corners in the faces delimited by C are at v). It is immediate

to check that I ∈ ~Cd,e, and J ∈ ~Bd,e. Hence φ is a mapping from ~A•d,e to ~Cd,e × ~Bd,e.
It remains to prove that φ is a bijection, which we do by exhibiting the inverse mapping.

For (I, J) ∈ ~Cd,e × ~Bd,e, we let ψ(I, J) be the pair (H, v), where H is the corner-rooted annular
hypermap obtained by patching the outer face of I with the outer face of J so that their marked
outer corners coincide, defining v as their common incident vertex after patching, and defining
the outer face of H as the marked inner face of I. It is clear that ψ ◦φ = Id and we need to prove

φ ◦ψ = Id. Hence, we need to prove that if (H, v) = ψ(I, J) then H ∈ ~Ad,e and the cycle C ′ of H
resulting from merging the outer face of I with the outer face of J is the canonical cycle C of H.
Note that |C ′| = e and |C| ≤ e. Moreover, since ∩(C,C ′) is a separating inward cycle of J , we
get | ∩ (C,C ′)| ≥ e. And since ∪(C,C ′) is a separating outward cycle of I, we get | ∪ (C,C ′)| ≥ e
with equality if and only if ∪(C,C ′) = C ′. Thus |C| + |C ′| = | ∪ (C,C ′)| + | ∪ (C,C ′)| ≥ 2e,
and finally |C| = |C ′| = e. This implies that the separating ingirth of H is e, and moreover
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∪(C,C ′) = C ′ which implies that C ′ = C (since C is the outermost separating inward cycle

of length e). It only remains to show that H has non-separating girth at least d. Let R̂ be a

light region of H not containing the inner marked face f1 and let Ĉ be the contour of R̂. If
∩(C, Ĉ) encloses no face, then Ĉ completely belongs to I, so that |Ĉ| ≥ d. Otherwise, ∩(C, Ĉ)
completely belongs to J and is the contour of a non-empty light region not containing f1, hence
| ∩ (C, Ĉ)| ≥ d. Moreover ∪(C, Ĉ) is a separating outward cycle of I, hence | ∪ (C, Ĉ)| ≥ e. Thus

|Ĉ| = |∪ (C, Ĉ)|+ |∩ (C, Ĉ)|− |C| ≥ d. Thus H has non-separating ingirth d and H ∈ ~Ad,e, which
completes the proof that φ is a bijection. �

For k, ` ≥ 1, we define ~A�k,♦`
d,e as the family of corner-rooted annular hypermaps of separating

ingirth e, non-separating ingirth at least d, where the outer face is dark of degree k and the marked

inner face is light of degree `. Let A�k,♦`
d,e ≡ A�k,♦`

d,e (x1, x2, . . . ; y1, y2, . . .) be the generating function

of ~A�k,♦`
d,e where xi and yi mark respectively the number of unmarked inner light and dark faces

of degree i. We define the families ~A�k,�`
d,e , ~A♦k,�`

d,e , ~A♦k,♦`
d,e (depending on the types, light or dark,

of the outer face and of the marked inner face) and their associated generating functions similarly.

Let ~B�kd,e (resp. ~C�kd,e) be the subfamily of ~Bd,e (resp. ~Cd,e) for which the marked inner face is dark

of degree k. Let B�k
d,e ≡ B�k

d,e(x1, x2, . . . ; y1, y2, . . .) (resp. C�k
d,e ≡ C�k

d,e(x1, x2, . . . ; y1, y2, . . .)) be

the generating function of ~B�kd,e (resp. ~C�kd,e) where xi and yi mark respectively the number of light

and dark unmarked inner faces of degree i. We define the families ~B♦kd,e, ~C♦kd,e and their generating
functions similarly. Lemma 44 gives

A∗k,?`d,e =
1

e
C∗kd,eB

?`
d,e.

for ∗ ∈ {�,♦} and ? ∈ {�,♦}.
We now use Theorems 40 and 43 to determine B?`d,e and C∗kd,e. Theorem 40 gives a bijection

between Bd,e and the family of (d, e)-weighted hypermobiles. It is easily seen that marking a
corner in the marked inner face of an annular hypermap in Bd,e corresponds to marking a corner
at the marked square vertex of the associated (d, e)-weighted hypermobile. Thus, there is an e-to-1

correspondence between ~Bd,e and the family Td,e of (d, e)-weighted hypermobiles with a marked
corner at the marked square vertex (the factor e correspond to choosing the marked corner in the
outer face of the annular hypermap). Moreover the degree and color of the marked inner face
of the hypermap corresponds to the degree and color of the marked vertex of the hypermobile.
Thus by decomposing hypermobiles in Td,e at their root-vertex (which yields a sequence of planted
d-hypermobiles) we get

B♦k
d,e = e[ue]W (u)k, B�k

d,e = e[u−e]L(u)k,

where W (u) and L(u) are defined by (1). Similarly, Theorem 43 leads to

C♦k
d,e = e[u−e]W (u)k, C�k

d,e = e[ue]L(u)k.

We therefore obtain the following result.

Theorem 45. For e, d, k, ` ≥ 1, the generating functions of corner-rooted annular maps have the
following expressions:

A�k,♦`
d,e = e[ue]L(u)k[ve]W (v)`, A♦k,�`

d,e = e[u−e]W (u)k[v−e]L(v)`,

A�k,�`
d,e = e[ue]L(u)k[v−e]L(v)`, A♦k,♦`

d,e = e[u−e]W (u)k[ve]W (v)`,

where L(u) and W (u) are specified by (1), (3) and (4).

Remark 46. Under the specialization y2 = 1, yi = 0 for i 6= 2, the generating function A♦k,♦`
d,e

counts corner-rooted annular maps with control on the separating girth, the non-separating girth,
and the face degrees. Hence Theorem 45 gives an extension to annular hypermaps of the counting
results obtained in [5] for annular maps.

Moreover, it is easy to see that the generating function Fd defined in Section 4 is related to

A�d,?`
d,d by `∂Fd

x`
= A�d,♦`

d,d and A�d,�`
d,d = `∂Fd

y`
. Hence the expressions for the derivatives of Fd given

in Theorem 12 are a special case of Theorem 45.
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Figure 24. If H has a counterclockwise circuit C (shown in bold line on the
leftmost picture), then Φ(H) has a cycle outside of C.

For any sets ∆,∆′, the generating function A∗k,?`d,e,∆,∆′ of hypermaps in ~A∗k,?`d,e,∆,∆′ with inner

light faces having degrees in ∆ and inner dark faces having degrees in ∆′ is obtained by setting
xi = 0 for i /∈ ∆, yi = 0 for i /∈ ∆′. This is an algebraic series as soon as ∆,∆′ are both finite.
For instance, for d = 4, e = 2, ∆ = {4}, ∆′ = {3}, we have

A�4,♦2
4,2 = 2(4L2 + 6L2

3)(1 +W0)2,

where the series {L0, L1, L2, L3, L4,W0,W1,W2,W3,W4} (already considered in the example of
Section 4) are specified by

L0 = x4(1 +W0)3, L1 = W 3
1 + 2W1W2 +W3, L2 = W 2

1 +W2, L3 = W1, L4 = 1,

W0 = 2y3L2L3, W1 = y3(2L1L3 + L2
2), W2 = 2y3L1L2, W3 = y3L

2
1, W4 = 2y3L1.

9. Proof of Theorems 4 and 6 about the master bijection

In this section we prove Theorems 4 and 6 about the three master bijections Φ+, Φ− and Φ0.
The proofs for the three bijections are similar. We give a detailed proof for Φ+ in Section 9.1 and
a more succinct proof for Φ− and Φ0 in Sections 9.2 and 9.3.

9.1. Proof for Φ+. Let J+ be the family of light-rooted hyperorientations such that all outer
edges are 1-way. Note that H+ is a subset of J+. We now extend the definition of the mapping
Φ+ to J+. For H ∈ J+, we define Φ+(H) as the map obtained from H by placing a dark (resp.
light) square vertex in each dark (resp. light) face, then applying the local rule of Figure 7 to
each edge of H, and then deleting the edges of H and the light square vertex corresponding to
the outer face (see Figures 24 and 25 for examples).

Lemma 47. Let H be an hyoeroriented hypermap in J+, and let T = Φ+(H). Then, T is a
hypermobile if and only if H ∈ H+.
Moreover, in this case the following property holds for each inner 1-way edge e of H:

(♠) Let u, v be the square vertices in the faces incident to e, and let C be the cycle contained
in T ∪ {e∗}, where e∗ is the edge joining u and v across e. Then e is oriented from the
outside of C to the inside of C (across e∗).

Proof. First observe that T is a hypermobile if and only if it is a tree (since the local conditions of
hypermobiles are satisfied by T ). Let Nv, Ne, Nf be the numbers of vertices, edges, and faces of H.
The map T has E = Ne edges (because each edge of H yields an edge in T ), and V = Nv +Nf −1
vertices (the −1 accounts for the deletion of the light square vertex in the outer face of H). The
Euler relation for H gives Nv −Ne +Nf = 2, hence E = V − 1. Thus T is a hypermobile if and
only if it is acyclic.

Now we prove that if H /∈ H+, then T has a cycle. For H /∈ H+, either H has a counterclockwise
circuit or H is not accessible from the outer vertices. Suppose first that H has a counterclockwise
circuit C (see Figure 24). Let nv and ne be the numbers of vertices and edges of H that are on
C or outside of C, and let nf be the number of faces of H that are outside of C. Note that the
Euler relation (applied to H where everything strictly inside C is erased) yields nv −ne +nf = 1.
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Figure 25. If H is not accessible from the outer boundary, there is a cycle C in
the dual of H such that all edges dual to edges on C are either 0-way or 1-way
from the inside to the outside of C; then Φ(H) has a cycle in the area exterior to
C (including C).

Let K be the submap of T made of all its vertices on C or outside of C and all its edges outside
of C. Since all edges on C are counterclockwise, the submap K has E = ne edges (because each
edge on C yields an edge of T outside of C), and V = nv + nf − 1 vertices (the −1 accounts for
the deletion of the light square vertex in the outer face). Hence, E = V , so that K has a cycle,
and T is not a tree. Suppose now that H is not accessible from the outer vertices (see Figure 25).
We consider the dual map H∗ which is obtained by placing a vertex f∗ of H∗ in each face f of
H, and drawing an edge e∗ of H∗ from f∗1 to f∗2 across each edge e of H separating the faces f1

and f2. An outward cocycle of H is a sequence D = e1, . . . , ek of edges such that the dual edges
D∗ = e∗1, . . . , e

∗
k form a simple cycle of H∗, and for all i ∈ {1, . . . , k} the edge ei is either 0-way

or 1-way toward the outside of D∗. It is not hard to prove that because H is not accessible it
has an outward cocycle D = e1, . . . , ek (to prove the existence of D start by considering the set
of vertices of H that are reachable from the outer vertices). Let n∗v, n

∗
e be the number of vertices

and edges of H∗ that are on D∗ or outside of D∗, and let n∗f be the number of faces of H∗ that

are outside of D∗. By the Euler relation applied to H∗ (where everything strictly inside D∗ is
erased), n∗v − n∗e + n∗f = 1. Let K be the submap of T made of all its vertices on D∗ or outside of
D∗ and all its edges on D∗ or outside of D∗. Since all edges in D are 0-way or are 1-way from the
inside to the outside of D∗, the submap K has E = n∗e edges (because each edge in D yields an
edge of T on D∗ or outside of D∗), and V = n∗v +n∗f −1 vertices (the −1 accounts for the deletion

of the light square vertex in the outer face of H). Hence E = V , so that K has a cycle, and T is
not a tree.

Next we prove that, if H ∈ H+, then T is a hypermobile. We suppose by contradiction that
H ∈ H+ and T has a cycle C. We first consider the case where all vertices on C are squares.
In this case, the edges dual to edges on C form a cocycle of 0-way edges, so the (non-empty) set
of vertices of H inside C is unreachable from the outer vertices of H, a contradiction. We now
suppose that there is a round vertex u0 on C. Let v0 be the (dark square) vertex following u0 in
clockwise order around C, and let e0 be the edge of H following the edge {u0, v0} clockwise around
u0; see Figure 26(a). By the local rule of Figure 7, e0 is 1-way toward u0, and by accessibility
of H, e0 is the ending edge of some directed path P0 starting from some outer vertex of H. Let

P̃0 be the last portion of P0 inside C, and let u1 ∈ C be the starting vertex of P̃0. Note that

u1 6= u0, otherwise P̃0 would form a counterclockwise circuit. By the same argument as for u0,
the next vertex v1 after u1 in clockwise order around C is a dark square, and denoting by e1 the

next edge after {u1, v1} in clockwise order around u1, there is a path P̃1 inside C that starts from
a vertex u2 ∈ C and ends at e1. Note that u2 is not on the portion of C going clockwise from u0

to u1 (otherwise it would yield a counterclockwise cycle in H). Continuing iteratively we reach a
contradiction, because at each step i, the vertex ui has to avoid a strictly growing portion of C;
see Figure 26(a).

Lastly, the proof of property (♠) follows the exact same line of argument as above. Assuming
by contradiction that H ∈ H+ but that (♠) does not hold for an edge e we consider two cases.
First if all vertices of C are square, then the dual of the edges of C are 0-way, so the inside of C
is unreachable from the outer vertices, giving a contradiction. Second, if there is a round vertex
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Figure 26. (a) If H is accessible, then the existence of a cycle in Φ(H) implies
the existence of a counterclockwise circuit in H. (b) Proof of the property (♠).

⇒

u v

e1 e2

Figure 27. A local closure glues a cw-outer edge, with a consecutive ccw-outer
edge. This identifies a floating vertex v with another vertex u.

u0 ∈ H on C, then one can construct a sequence u0, u1, u2, . . . of vertices on C such that ui has
to avoid a strictly growing portion of C, again giving a contradiction; see Figure 26(b). �

Next we prove that the mappings Φ+ and Ψ+ are inverse bijections.

Lemma 48. Let T be a hypermobile of positive excess, and let H = Ψ+(T ) be the closure of T .
Then T is a tree covering all the vertices of H and all the square vertices placed in the inner faces
of H.

Proof. To prove the lemma, it is convenient to see the closure mapping Φ+ as done “step by

step”. Let T̂ be the outerplanar map associated with T . Starting from T̂ , define a local closure
as the operation of gluing a cw-outer edge e1 with a ccw-outer edge e2 such that e1 and e2 are
consecutive edges in clockwise order around the outer face; see Figure 27. Then H is obtained as
the result of performing local closure operations greedily until there remains no pair to glue. At
each step of the closure, we call floating a vertex which is the origin of a ccw-outer edge. We now
claim that at each step of the closure, T is a tree covering all the vertices of the partially closed

map except all the floating vertices. Indeed this property is true for T̂ . Moreover, it remains true
through local closures because each local closure identifies a floating vertex with another vertex,
and the resulting vertex is floating if both vertices are floating; see Figure 27. �

Corollary 49. Let T ∈ T+, and let H = Ψ+(T ). Then H is in H+, and Φ+(H) = T . Moreover,
the excess of T equals the outer degree of H.

Proof. Since the excess ε of T is positive, after doing the closure of T̂ there remains ε cw-outer
edge. Thus H is in J+ and has outer degree ε. Moreover it is clear that, while superimposing T
and H, we have the local rules indicated in Figure 28 (since these rules are true for the outerplanar

map T̂ and are preserved by the closure). Since these rules are also those of Figure 7 (disregarding
the incidences with the outer face), we conclude that T = Φ+(H). Moreover, by Lemma 48, T is
a tree, hence a hypermobile. Thus by Lemma 47, H is in H+. �

Lemma 50. Let H ∈ H+, and let T = Φ+(H). Then T is in T+, and Ψ+(T ) = H.

Proof. We have proved in Lemma 47 that T is a hypermobile. It remains to show that Ψ+(T ) = H.
First of all, we claim that there exists a “planar matching” of the outer edges of the outerplanar
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Figure 28. The local rules for the configuration of T for each incidence of an
inner face with an edge of H.

map T̂ of T such that gluing the outer edges of T̂ according to this matching yields H. Indeed

to obtain the outerplanar map T̂ from H, one can apply the following operations illustrated on
Figure 29:

(i) Replace each 1-way inner edge of H by a pair of parallel 1-way edges, thereby creating a
new face of degree 2.

(ii) For each 1-way edge e with a new face on its right, detach from the origin v of e the sector
between e and the next 1-way edge e′ incident to v in counterclockwise order around v;
note that e′ has on its left either a new face or the outer face (see Figure 29).

(i) (ii)

(i) (ii)e
e

Figure 29. Going from an hyperoriented hypermap H (in H+) to the outerpla-

nar map T̂ of the hypermobile T = Φ+(H).

In order to prove that Ψ+(T ) = H it remains to prove that the “planar matching” of the

outer edges of T̂ giving H corresponds to the cw-matching of these edges. This is essentially what
property (♠) in Lemma 47 ensures. Indeed, consider a cw-outer edge e′ and a ccw-outer edge e′′ of

T̂ glued into an edge e of H, and the sequence e1, e2, . . . , en of outer edges of T̂ appearing between

e′ and e′′ in clockwise order around the outer face of T̂ . We need to prove that the sequence
e1, e2, . . . , en is a parenthesis word (when cw-edges are interpreted as a’s and ccw-outer edges are
interpreted as ā’s). By the property (♠) applied to e, all the outer edges e1, e2, e3, . . . , en are glued
into edges of H which are inside the cycle C contained in T ∪ {e∗}, hence they are all matched.
Moreover, if ei and ej are matched into an edge ẽ of H, the property (♠) applied to ẽ ensures that

i < j (since the cycle C̃ contained in T ∪ {ẽ∗} lies inside C). Thus the sequence e1, e2, . . . , en is a

parenthesis word. Therefore the “planar matching” of the outer edges of T̂ giving H corresponds
to the cw-matching of these edges, that is, H = Ψ+(T ). �

Corollary 49 and Lemma 50 conclude the proof of Theorems 4 and 6 for Φ+.

9.2. Proof for Φ−. The proof for Φ− follows very similar lines. We highlight here the main
differences. Let J− be the set of dark-rooted hyperorientations such that the root face contour
is simple and every outer edge is ccw-outer, and each incidence of an inner edge e with an outer
vertex v is such that e is either 0-way or 1-way out of v. Note that H− is a subset of J−. We
now extend the definition of the mapping Φ− to J−. For H ∈ J−, we define Φ−(H) as the map
obtained from H by placing a dark (resp. light) square vertex in each dark (resp. light) face, then
applying the local rule of Figure 7 to each edge of H, and finally deleting the edges of H, the dark
square vertex v0 corresponding to the outer face, the outer vertices of H and the edges between
these vertices and v0.
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Lemma 51. Let H be an hyperoriented hypermap in J−, and let T = Φ−(H). Then, T is a
hypermobile if and only if H ∈ H−. Moreover, in this case the property (♠) holds for each inner
1-way edge e of H.

Proof. The proof is very similar to the proof of Lemma 47. As in Lemma 47, the Euler relation
implies that Φ−(H) is a hypermobile if and only if it is acyclic and the outer face is simple. Next
one shows that if H /∈ H− then Φ−(H) has a cycle. The proof is as for Φ+: consider either a
counterclockwise cycle or outward cocycle C of H, and can prove using the Euler relation that
there is a cycle of T in the region of H outside of C. The only difference is that when applying the
Euler relation, one needs to consider the subgraph K of T made of all its inner vertices outside
of C and all its edges outside of C. Lastly one shows that if H ∈ H− then Φ−(H) is acyclic, and
property (♠) holds exactly as for Φ+. �

Next we prove that Φ− and Ψ− are inverse of each other.

Lemma 52. Let T be a hypermobile of negative excess, and let H = Ψ−(T ) be the closure of T .
Then T is a tree covering all the inner vertices of H (but none of the outer vertices) and all the
square vertices placed in the inner faces of H.

Proof. The proof of Lemma 52 is the same as the proof of Lemma 48. �

Corollary 53. Let T ∈ T−, and let H = Ψ−(T ). Then H is in H−, and Φ−(H) = T . Moreover,
the excess of T equals minus the outer degree of H.

Proof. Since the excess ε of T is negative, after doing the closure operations on T there remain
−ε ccw-outer edge. Moreover since T covers none of the outer vertices of H, each incidence of
an inner edge e of H with an outer vertex v is such that e is either 0-way or 1-way out of v.
Thus H is in J− and has outer degree −ε. Moreover it is clear that superimposing T and H we

have the local rules indicated in Figure 28 (since these rules are true for the outerplanar map T̂
and are preserved by the closure), hence T = Φ−(H). Lastly, by Lemma 48, T is a tree, hence a
hypermobile. Thus by Lemma 51, H is in H−. �

Lemma 54. Let H ∈ H−, and let T = Φ−(H). Then T is in T−, and Ψ−(T ) = H.

Proof. The proof of Lemma 54 is the same as the proof of Lemma 50. �

Corollary 53 and Lemma 54 conclude the proof of Theorems 4 and 6 for Φ−.

9.3. Proof for Φ0. The proof for Φ0 is again very similar. We define J0 as the family of vertex-
rooted hyperorientations such that for each incidence of an edge e with the root-vertex v0, e is
either 0-way or 1-way out of v0. We extend the definition of the mapping Φ0 to J0: for H ∈ J0,
we define Φ0(H) as the map obtained from H by placing a dark (resp. light) square vertex in
each dark (resp. light) face, then applying the local rule of Figure 7 to each edge of H, and finally
deleting the edges of H, and the root vertex v0. In a similar way as for Φ−, one proves:

Lemma 55. Let H be an hyperoriented hypermap in J0, and let T = Φ0(H). Then, T is a
hypermobile if and only if H ∈ H0. Moreover, in this case the following property holds for each
inner 1-way edge e of H:

(♣) Let u, v be the square vertices in the faces incident to e, and let C be the (unique) cycle
contained in T ∪ {e∗}, where e∗ is the edge joining u and v across e. Then e is oriented
from the region delimited by C containing the root-vertex, to the other region delimited by
C (across e∗).

Then the proof that Φ0 and Ψ0 are inverse mappings is similar to the case Φ−. It implies
Theorems 4 and 6 for Φ0.

10. Proofs of Theorems 7, 25, 26, and 27 about canonical orientations

Theorems 25, 26, and 27 state that a hypermap H admits a (unique) σ-weighted orientation
in H−, H+, or H0 if and only if the charge function σ fits H. Recall that Theorem 25 actu-
ally generalizes Theorem 7 about plane hypermaps (see Lemma 37). In this section, we prove
Theorems 25, 26, and 27. The proof is organized as follows.
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• In Section 10.1, we prove the necessity of the fitting condition in Theorems 25, 26, and 27.
• In Section 10.2, we develop some tools useful for proving the existence of constrained

hyperorientations.
• In Section 10.3, we prove Theorem 26 in the case where every light face has charge equal

to its degree.
• In Section 10.4, we complete the proof of Theorem 26 by reduction to the case treated in

Section 10.3.
• In Section 10.5, we complete the proof of Theorems 25 and 27 by reduction to Theorem 26.

10.1. Necessity of the fitting condition in Theorems 25, 26, and 27. In this subsection
we prove the following lemma.

Lemma 56. If a dark-rooted (resp. light-rooted, vertex-rooted) hypermap H admits a σ-weighted
orientation in H− (resp. H+, H0), then σ fits H. Moreover if H is dark-rooted, then the contour
of the outer face is simple.

Proof. Let H be a dark-rooted, light-rooted, or vertex-rooted hypermap, and let σ be a charge
function such that H admits a σ-weighted hyperorientation Ω in H−, H+, or H0. We denote by
w(a) the weight of a vertex, edge, or face a of H in Ω.

We first suppose that H is dark-rooted and prove that the contour of the outer face f0 of H
is simple, the charge of every inner vertex is positive, the charge of every outer vertex is 0, the
charge of the dark outer face f0 is − deg(f0), and σtotal = 0. By definition of H− the contour of
f0 is a simple cycle, and since the weight of each outer edge is 1 in Ω, the weight of the outer face
is w(f0) = deg(f0). Since, by definition, w(f0) = −σ(f0), we get σ(f0) = −deg(f0). Moreover, by
definition, the weight of any outer vertex v is w(v) = 1 = σ(v) + 1, hence σ(v) = 0. Consider now
an inner vertex v. Since the orientation Ω ∈ H− is accessible from the outer vertices there is a
1-way edge e directed toward v, hence w(v) ≥ w(e) > 0. It only remains to prove that σtotal = 0.
Let V , F , and K be respectively the set of vertices, light faces, and dark faces of H. By definition,

∑

v∈V
w(v) +

∑

f∈F
w(f) =

∑

k∈K
w(k),

and since Ω is σ-weighted we get
(∑

v∈V
σ(v)

)
+ deg(f0) +

(∑

f∈F
σ(f)− deg(f)

)
=

(∑

k∈K
−σ(k)− deg(k)

)
+ deg(f0).

Hence, σtotal =
∑

v∈V
σ(v) +

∑

f∈F
σ(f) +

∑

k∈K
σ(k) = 0.

With similar arguments, one proves that if H is light-rooted then the charge of every vertex
is positive, the charge of the light outer face f0 is deg(f0), and σtotal = 0, and if H is vertex-
rooted then the charge of every non-root vertex is positive, the charge of the root-vertex is 0, and
σtotal = 0.

It only remains to prove that H satisfies the σ-girth condition. We first suppose that H is
dark-rooted. Let R be a light region. Let V , E, F and K be respectively the set of vertices
strictly inside R, edges strictly inside R, light faces inside R, and dark faces inside R. We want
to prove

(5) |∂R| ≥ σ(R) :=
∑

v∈V
σ(v) +

∑

f∈F
σ(f) +

∑

k∈K
σ(k),

with strict inequality if every outer vertex is strictly in R.
Because Ω is σ-weighted we get

∑

v∈V
σ(v) = −b+

∑

v∈V
w(v),

∑

f∈F
σ(f) = |E|+ |∂R|+

∑

f∈F
w(f),

∑

k∈K
σ(k) = −|E|+ 1f0∈R · deg(f0)−

∑

k∈K
w(k),
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where b is the number of outer vertices in V , and f0 is the dark outer face. Hence

σ(R) = |∂R| − b+ 1f0∈R · deg(f0) +
∑

v∈V
w(v) +

∑

f∈F
w(f)−

∑

k∈K
w(k),

and the requirement (5) becomes

(6)
∑

k∈K
w(k)−

∑

v∈V
w(v)−

∑

f∈F
w(f) ≥ 1f0∈R · deg(f0)− b,

Moreover we have ∑

k∈K
w(k)−

∑

v∈V
w(v)−

∑

f∈F
w(f) = x− y ≥ x,

where x is the sum of the (positive) weights of the 1-way edges in E oriented toward vertices
incident to edges in ∂R, and y is the sum of the (non-positive) weights of the 0-way edges in ∂R.
If f0 /∈ R, then b = 0 and the inequality (6) holds because x ≥ 0. If f0 ∈ R and b = deg(f0)
(i.e. every outer vertex is strictly inside R), then inequality (6) is strict because x > 0 (indeed,
since Ω is accessible from the outer vertices of H, there exists a 1-way edge in E oriented toward
vertices of ∂R). Lastly suppose that f0 ∈ R and b < deg(f0). Because f0 is a dark face, all the
edges incident to f0 are in E, and because Ω ∈ H− these edges are 1-way and have weight 1.
Thus for each outer vertex v on ∂R there is an edge in E of weight 1 oriented toward v. Hence
x ≥ deg(f0)− b which is the number of outer vertices on ∂R. This proves (6) and completes that
proof that H satisfies the σ-girth condition when H is dark-rooted.

The case where H is light-rooted (resp. vertex-rooted) is similar. Indeed, by the same argu-
ments, we see that the σ-girth condition a light region R becomes the following requirement:

∑

k∈K
w(k)−

∑

v∈V
w(v)−

∑

f∈F
w(f) ≥ 0,

with strict inequality if one of the outer edges is strictly inside R (resp. if the root vertex is
strictly inside R). This is easily seen to hold with arguments similar to the ones above. The only
point that requires a special argument is that the equality is strict if H is light-rooted and one of
the outer edges is strictly inside R. For this particular case, we need to prove that the sum x of
weights of the 1-way edges in E oriented toward vertices incident to edges of ∂R is positive. This
holds, because if one of the outer vertices v is strictly inside R then x > 0 because the vertices on
∂R are accessible from v, while if none of the outer vertices is strictly in R, then the outer edge e
strictly inside R is a 1-way edge in E oriented toward a vertex of ∂R (indeed, e is 1-way because
Ω ∈ H+). �

10.2. A preliminary result about α-hyperflows. In this subsection we prove a result akin to
the mincut-maxflow theorem for the hyperflows of bipartite graphs. This result will then be used
in Section 10.3.

Throughout this subsection, we fix a (finite, undirected) bipartite graph G = (X t Y,E) where
every edge e ∈ E joins a vertex in X to a vertex in Y . We call hyperflow of G, a function ϕ from
the edge set E to the set R+ of non-negative real numbers. Let P be a directed path, or cycle, of
G and let PX be the subset of edges of P oriented toward a vertex in X. Given a hyperflow ϕ of G,
we say that P is ϕ-positive if ϕ(e) > 0 for every edge e ∈ PX . A ϕ-positive path is represented in
Figure 30(a). For a vertex x0 ∈ X, we say that a hyperflow ϕ is accessible from x0 if for all x ∈ X
there is a ϕ-positive path from x0 to x. For instance, The hyperflow represented in Figure 30(a)
is accessible from x0.

Let ϕ be a hyperflow of G = (X t Y,E). We call ϕ-flow at a vertex v ∈ X t Y the sum

φ(v) :=
∑

e∈E incident to v

ϕ(e).

Given a function α from X t Y to R+, we say that ϕ is an α-hyperflow if the ϕ-flow at every
vertex v ∈ X t Y is equal to α(v). We now establish a criterion for the existence of an accessible
α-hyperflow:
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Figure 30. (a): A bipartite graph endowed with a hyperflow ϕ, and a ϕ-positive
directed path from x0 to x. The vertices in X and Y are represented in light and
dark respectively and the value of ϕ is indicated on each edge. (b),(c): The cycles
C and D in the proof of Lemma 59.

Lemma 57. Let α be a function from X t Y to R+. For a subset A ⊆ X, let us denote

α(A) :=
∑

x∈X
α(x)−

∑

y∈YA

α(y),

where YA denotes the set of vertices in Y having all their neighbors in A. Then there exists an
α-hyperflow of G if and only if

∀A ⊆ X, α(A) ≥ 0,

with equality for A = X. Moreover for any vertex x0 ∈ X and any α-hyperflow ϕ, the hyperflow
ϕ is accessible from x0 if and only if α(A) > 0 for all non-empty subset A ⊂ X not containing x0.

Proof. First suppose that there exists an α-hyperflow ϕ of G. In this case, for all A ⊆ X,
∑

x∈A
α(x) =

∑

e incident to A

ϕ(e) ≥
∑

y∈YA

α(y),

with equality if A = X. Hence α(A) ≥ 0, with equality for A = X.

We will now prove that an α-hyperflow exists whenever α(A) ≥ 0 for all A ⊆ X, with equality
for A = X. We make an induction on |X ∪ Y ∪E|. The property is trivial when E = ∅, hence for
the induction step we can assume E 6= ∅. We consider an edge e0 ∈ E with endpoints x0 ∈ X and
y0 ∈ Y . For ε ≥ 0 we denote by αε the function from X tY to R+ defined by: αε(x0) = α(x0)− ε,
αε(y0) = α(y0)− ε and αε(z) = α(z) for all z 6= x0, y0. Observe that if ϕ is an αε-hyperflow of G,
then ϕ′ defined by ϕ′(e0) = ϕ(e0)+ε and ϕ′(e) = ϕ(e) for all e 6= e0 is an α-hyperflow of G. Hence
it suffices to prove that there exists an αε-hyperflow of G for some ε ≥ 0. We choose ε maximal
such that αε(x0) ≥ 0, αε(y0) ≥ 0, and αε(A) ≥ 0 for all A ⊆ X. Clearly, αε(X) = α(X) = 0,
and αε(A) ≥ 0 for all A ⊆ X. Moreover, we have either αε(x0) = 0, or αε(y0) = 0 or αε(A) = 0
for some A 6= ∅, X. Suppose first αε(x0) = 0. In this case we consider the subgraph G′ obtained
from G by deleting x0 and the incident edges, and we denote by α′ the restriction of αε to G′.
Clearly α′(A) ≥ 0 for all A ⊆ X \ {x0}, with equality for A = X \ {x0}. Hence by the induction
hypothesis, there exists an α′-hyperflow of G′ and this gives an αε-hyperflow of G (by setting the
flow on edges incident to x0 to be 0), and hence an α-hyperflow of G. The case αε(y0) = 0 is
similar. Suppose lastly that αε(A) = 0 for some subset A 6= ∅, X. Let A = X \A and YA = Y \YA.
Let G1 (resp. G2) be the graph with vertex set A ∪ YA (resp. A ∪ YA) and edge set E1 (resp.
E2) made of all the edges with both endpoints in A ∪ YA (resp. A ∪ YA). Observe that the graph
G1∪G2 is simply obtained from G by deleting the set E0 of edges having both endpoints in A∪YA;
see Figure 31. We denote by α′ and α′′ respectively the restriction of αε to G1 and G2. Observe
that for all B ⊆ A, the set of vertices of G1 with all their neighbors in B is YB∪A ∩ YA = YB .
Thus

α′(B) =
∑

x∈B
αε(x)−

∑

y∈YB

αε(y) = αε(B).

Hence α′(B) ≥ 0 for all B ⊆ A, with equality for B = A. Hence, by the induction hypothesis,
there exists a α′-hyperflow ϕ1 of G1. Now for B ⊆ A, the set of vertices of G2 with all their
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neighbors in B is YA∪B ∩ YA. Hence

α′′(B) =
∑

x∈B
αε(x)−

∑

YB∪A∩YA

αε(y)

=

( ∑

x∈A∪B
αε(x)−

∑

x∈A
αε(x)

)
−


 ∑

y∈YA∪B

αε(y)−
∑

y∈YA

αε(y)


 = αε(A ∪B).

Hence α′′(B) ≥ 0 for all B ⊆ A, with equality for B = A. Hence, by the induction hypothesis,
there exists an α′′-hyperflow ϕ2 of G2. We now consider the hyperflow ϕ of G defined by ϕ(e) = 0
if e ∈ E0, ϕ(e) = ϕ1(E) if E in E1, and ϕ(e) = ϕ2(e) if e ∈ E2. It is clear that ϕ is an αε-hyperflow.
This completes the proof by induction.

A

A

YA

YA

E1

E2

E0

G1

G2

Figure 31. The bipartite graph G = (X tY,E), and the subgraphs G1 and G2.
We have X = A ∪A, Y = YA ∪ YA and E = E0 ∪ E1 ∪ E2.

It remains to prove that an α-hyperflow ϕ is accessible from a vertex x0 ∈ X if and only if
α(A) > 0 for all non-empty subset A ⊂ X not containing x0. Suppose first that ϕ is accessible
from x0 and let A ⊂ X be a non-empty subset not containing x0. Let P be a ϕ-positive path from
x0 to a vertex x ∈ A. Let e0 be the first edge of P incident to a vertex in A. This edge of P is
directed from its endpoint y ∈ Y to its endpoint a ∈ A, hence ϕ(e0) > 0. Moreover y /∈ YA, hence

∑

x∈A
α(x) =

∑

e incident to A

ϕ(e) ≥ ϕ(e0) +
∑

y∈YA

α(y).

Thus α(A) ≥ ϕ(e0) > 0, as wanted. Suppose now that ϕ is not accessible from x0. Consider the
set A of vertices x ∈ X such that there exists no ϕ-positive path from x0 to x. This definition
implies that every edge e incident to a vertex x ∈ A and a vertex y ∈ Y \ YA satisfies ϕ(e) = 0.
Thus ∑

x∈A
α(x) =

∑

e incident to A

ϕ(e) =
∑

e incident to YA

ϕ(e) =
∑

y∈YA

α(y).

Hence α(A) = 0 for a non-empty set A ⊂ X not containing x0. �

Remark 58. In the literature, α-hyperflows are also known as b-matchings [37, Chap. 21]. Our
existence criterion in Lemma 57 can be checked to be equivalent to Corollary 21.1b from [37]
(we have provided our own proof and terminology for completeness and convenience). About
efficiently computing an α-hyperflow of G = (V,E), when α only has integer values the problem
can easily be reduced to that of finding a perfect matching in a bipartite graph G′ = (V ′, E′)
associated to G (each vertex v ∈ G is turned into α(v) copies in G′, and for each edge (u, v) ∈ G,
there is an edge in G′ between every copy of u and every copy of v). The algorithm of Hopcroft

and Karp [23] yields a perfect matching of G′ in time O(
√
|V ′||E′|), which is O(c

√
|V ||E|), with

c = (
∑
v∈V α(v))1/2

∑
(u,v)∈E α(u)α(v). A detailed survey on complexity results (for the general

case of flow values in R+) is given in [37, Chap. 21].

Suppose that a bipartite graph G = (XtY,E) is embedded (i.e., drawn without edge crossings)
in the plane. In this case, a directed cycle C of G is called counterclockwise if the outer face of G lies
to the right of C. A hyperflow ϕ of G is called minimal if there is no ϕ-positive counterclockwise
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directed cycle of G. The hyperflow ϕ represented in Figure 30(a) is not minimal because there is
a ϕ-positive counterclockwise directed cycle of length 4.

Lemma 59. Let G = (X t Y,E) be a bipartite graph embedded in the plane. If α is a function
from X t Y to R+ such that there exists an α-hyperflow of G, then there exists a unique minimal
α-hyperflow of G.

Proof. We first prove the existence of a minimal α-hyperflow. We first define the operation of
pushing a cycle. Let ϕ be an α-hyperflow, and let C be a ϕ-positive counterclockwise directed
cycle. Let CX (resp. CY ) be the subset of edges of the directed cycle C oriented toward a vertex in
X (resp. Y ). Let m = min{ϕ(e), e ∈ CX} and let ψ be the hyperflow defined by ψ(e) = ϕ(e)−m
if e ∈ CX , ψ(e) = ϕ(e) + m if e ∈ CY , and ψ(e) = ϕ(e) if e is not in C. Observe that ψ is
an α-hyperflow. We say that ψ is the α-hyperflow obtained from ϕ by pushing the cycle C. We
will now prove that the minimal α-hyperflow can be obtained from any α-hyperflow by repeatedly
pushing counterclockwise directed cycles. For an α-hyperflow ϕ we consider the total number N(ϕ)
of faces which are enclosed in (i.e., separated from the outer face by) a ϕ-positive counterclockwise
directed cycle. By definition, an α-hyperflow ϕ is minimal if and only if N(ϕ) = 0. Hence it is
sufficient to show that for any non-minimal α-hyperflow ϕ there is an α-hyperflow ψ obtained
from ϕ by pushing a ϕ-positive counterclockwise directed cycle such that N(ψ) < N(ϕ). Let ϕ be
a non minimal α-hyperflow, and let C be a ϕ-positive counterclockwise directed cycle C enclosing
a maximal number of faces. We consider the α-hyperflow ψ obtained from ϕ by pushing the cycle
C. Now consider a face f not enclosed by a ϕ-positive counterclockwise directed cycle. If f is
enclosed by a ψ-positive counterclockwise directed cycle D, then D must have an edge in CY .
But this would imply the existence of a ϕ-positive counterclockwise directed cycle D′ ⊂ C ∪ D
enclosing f and all the faces inside C: see Figure 30(b). This is impossible by the choice of the
cycle C. Consider now a face f inside C and incident to an edge of C. This face cannot be inside
a ψ-positive counterclockwise directed cycle D, otherwise D would cross C, and there would be
again a ϕ-positive counterclockwise directed cycle D′ ⊂ C ∪D enclosing more faces than C: see
Figure 30(c). This is impossible by the choice of the cycle C. Thus N(ψ) < N(ϕ) as wanted.
This proves the existence to a minimal α-hyperflow.

We now prove the uniqueness of the minimal α-hyperflow. Suppose that ϕ and ψ are distinct
α-hyperflows. We want to show that they are not both minimal. Let e1 be an edge such that
ϕ(e1) < ψ(e1). Let x1 ∈ X and y1 ∈ Y be the endpoints of e. Since

∑

e incident to y1

ϕ(e) = α(y1) =
∑

e incident to y1

ψ(e),

there exists an edge e′1 6= e1 incident to y1 such that ϕ(e′1) > ψ(e′1). Continuing in this way, one find
a directed path made of edges e1, e

′
1, e2, e

′
2, e3, e

′
3, . . . such that ϕ(ei) < ψ(ei) and ϕ(e′i) > ψ(e′i).

This path will eventually intersect itself, so we get a directed simple cycle C of G such that C
is ψ-positive and the directed cycle C ′ obtained by reversing C is ϕ-positive. Either C or C ′ is
counterclockwise, hence ϕ and ψ are not both minimal. �

Remark 60. When α has only integer values and G has at least one α-hyperflow, more can be
said on the structure of the set K of α-hyperflows of G such that all flow-values are integers. By
a result of Felsner and Knauer [20, Sec.4.2] (extending an earlier result by Khuller et al. [24]), the
set K carries the structure of a distributive lattice (their result is formulated on flows of directed
graphs with prescribed flow-excess at each vertex, which are equivalent to our formulation of α-
hyperflows upon orienting all the edges from black to white vertices); and naturally the minimum
element in the lattice is the minimal α-hyperflow. This is an extension of a well-known result of
Propp [34] and Felsner [19] on α-orientations of planar maps (an α-orientation is an orientation
where every vertex v has outdegree α(v)): Propp and Felsner have shown that, if non-empty,
the set of α-orientations of a map embedded in the plane is a distributive lattice, the minimum
element of which is the unique α-orientation with no clockwise cycle.

About algorithmic aspects, it should be doable to compute the minimal α-hyperflow in linear
time once an α-hyperflow is computed (which has superlinear complexity as we have seen in
Remark 58), by extending the approach described in [14] for α-orientations.

Lastly we prove an additional technical lemma about the minimal hyperflow.



UNIFIED BIJECTIONS FOR PLANAR HYPERMAPS 41

Lemma 61. Let G = (XtY,E) and α be as in Lemma 59, and let ϕ0 be the minimal α-hyperflow
of G. Let x ∈ X, y ∈ Y , and let a = (x, y) be an edge of G such that the face on the right of a
(when oriented from x to y) is the outer face. If there is an α-hyperflow ϕ such that ϕ(a) > 0,
then ϕ0(a) > 0.

Proof. Let ϕ be a α-hyperflow such that ϕ(a) > 0. It was shown in the proof of Lemma 59, that the
minimal α-hyperflow ϕ0 can be obtained from ϕ by repeatedly pushing counterclockwise directed
cycles. Moreover, because the face on the right of a is the outer face, for any counterclockwise
directed cycle C, the edge a belongs to the subset CY of edges of C oriented toward a vertex in Y .
Thus pushing cycles will only increase the value of the hyperflow on a, so ϕ0(a) ≥ ϕ(a) > 0. �

10.3. Proof of Theorem 26 when the charge of every light face is equal to its degree.
This subsection is devoted to the proof of the following result.

Proposition 62. Let H be a light-rooted hypermap. Let σ be a charge function which fits H
and such that every light face has charge equal to its degree. Then H admits a unique σ-weighted
hyperorientation in H+.

Throughout this subsection (H,σ) is a charged hypermap satisfying the hypotheses of Proposi-
tion 62. We say that a weighted hyperorientation of H is R+-weighted if 0-way edges have weight
0, and 1-way edges have positive real weights. In fact, the σ-weighted hyperorientations of H are
precisely the R+-weighted hyperorientations such that

• every vertex has weight σ(v),
• every inner dark face f has weight −σ(f)− deg(f).

We will prove Proposition 62 in two steps. First we will establish the existence of a certain α-
hyperflow in a related graph GH using Lemma 57, and then we will use this α-hyperflow to define
a σ-weighted hyperorientation of H.

We call star graph of H the bipartite graph GH (embedded in the plane) obtained as follows:
for each dark face h of H, place a vertex y of GH inside h and draw an edge e of GH going from y
to each corner of h. The construction is illustrated in Figure 32. We denote by X the vertex set
of H, and by Y the remaining set of vertices of GH (which are placed inside the dark faces of H).

H GH

4
3
3

3
2

2
1

20
4

0

1

4

1

1 3
4

2

4 3

3

3

2

21

2
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4

0
1

4

11 3
4

2

Figure 32. A hypermap H and the associated star graph GH . The bipartite
map GH is endowed with a hyperflow ϕ, while H is endowed with the R+-weighted
hyperorientation Γ(ϕ).

Given a hyperflow ϕ of GH , we define an R+-weighted hyperorientations Γ(ϕ) of H as follows:
• for every edge e of GH , we give weight ϕ(e) to the edge e′ of H preceding e clockwise

around the endpoint of e in X
• we orient e′ 1-way if ϕ(e) > 0 and 0-way otherwise.

The mapping Γ is illustrated in Figure 32. It is clear that Γ is a bijection between the hyperflows
of GH and the R+-weighted hyperorientations of H. Moreover, the ϕ-flow at a vertex v of GH is
equal to the weight of the corresponding vertex or dark face of H in the hyperorientation Γ(ϕ).
This proves the following result.

Lemma 63. The mapping Γ is a bijection between the σ-weighted hyperorientations of H and the
α-hyperflows of GH , where α is the function defined on X t Y by

• for every vertex x ∈ X, α(x) = σ(x),
• for every vertex y ∈ Y , α(y) = −σ(fy)− deg(fy), where fy is the dark face of H contain-

ing y.

We will now prove the existence of a minimal α-hyperflow for GH by using Lemmas 57 and 59.
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Lemma 64. Let α be the function defined in Lemma 63. Then GH admits a unique minimal
α-hyperflow ϕ. Moreover this hyperflow is accessible from every outer vertex of H.

Proof. For A ⊆ X, we denote by YA the set of vertices of GH placed in the inner dark faces of H
having all of their incident vertices in A and we let

α(A) :=
∑

x∈A
α(x)−

∑

y∈YA

α(y).

By Lemmas 57 and 59, the existence and uniqueness of ϕ are granted provided α(A) ≥ 0 for
all A ⊆ X with equality for A = X. We denote by GA = (A ∪ YA, EA) the subgraph of GH
induced by A∪ YA (that is, EA is the set of edges of GH with both endpoints in A∪ YA). See for
instance Figure 33(a). Since α(X) is linear over the connected components of the subgraph GA,
it is sufficient to prove α(A) ≥ 0 when GA is connected (with equality for A = X).

(a) (b)

GA

HA

Figure 33. (a) A subgraph GA = (A∪YA, EA) of the star graph GH : the vertices
in A ∪ YA are represented by big discs and the edges in EA are represented in
bold lines. (b) The hypermap HA.

Let A ⊆ X be such that A 6= ∅ and GA is connected. Observe that GA is the star graph of
a hypermap HA with a light outer face: the set of vertices of HA is A and the set of dark faces
of HA is the set of inner dark faces of H having all their incident vertices in A. See for instance
Figure 33(b). Let DA and LA be the set of dark and light faces of HA. By definition of α, we get

α(A) =
∑

x∈A
σ(x) +

∑

f∈DA

(σ(f) + deg(f)) =
∑

x∈A
σ(x) +

∑

f∈DA

σ(f) +
∑

`∈LA

deg(`).

Now every face ` ∈ LA corresponds to a light region of H, thus the σ-girth condition gives

deg(`) ≥
∑

x vertex of H strictly inside `

σ(x) +
∑

f face of H inside `

σ(f),

with strict inequality for the outer face `0 of HA if `0 is not equal to the outer face of H. Thus,
∑

`∈LA

deg(`) ≥
∑

x vertex of H not in A

σ(x) +
∑

f face of H not in DA

σ(f),

with strict inequality if the outer face of HA is not equal to the outer face of H. This gives

α(A) ≥ σtotal = 0.

Moreover, if one of the outer vertices is not in A, then one of the dark faces incident to the
outer edges is not in DA, hence the inequality is strict: α(A) > σtotal = 0. Thus, by Lemmas 57
and 59, the graph GH admits a unique minimal α-hyperflow ϕ, and ϕ is accessible from every
outer vertex. �

Next we use lemma 64 to prove the following.

Lemma 65. The hypermap H admits a unique σ-weighted hyperorientation Ω which is both min-
imal and accessible from the outer vertices.

Proof. Existence. By Lemma 64, the bipartite graph GH admits a unique minimal α-hyperflow
ϕ. By Lemma 63, we know that Ω = Γ(ϕ) is a σ-weighted hyperorientation of H. We now want
to prove that Ω is both minimal and accessible from the outer vertices.

We first prove that Ω is minimal. Suppose, by contradiction, that there is a simple counter-
clockwise directed cycle C of Ω distinct from the outer face. We will show that in this case, there
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is a ϕ-positive counterclockwise directed cycle D of GH ; see Figure 34. Let e1, . . . , ek be the
oriented edges of C. Let fi be the dark face of H incident to ei (which is on the right of ei). Let
xi, x

′
i ∈ X be the origin and end of ei, and let yi ∈ Y ′ be the vertex of GH in the dark face fi. Let

ai, a
′
i be the oriented edges (xi, yi) and (yi, x

′
i); see Figure 34. The edges a1, a

′
1, . . . , ak, a

′
k form a

counterclockwise directed cycle D of G′H = (X t Y ′, E′), hence it contains a simple counterclock-
wise directed cycle D′. By definition, the hyperflow ϕ′(a′i) is equal to the weight of ei which is
positive. Hence the counterclockwise directed cycle D′ is ϕ-positive. This is a contraction since
the hyperflow ϕ is minimal.

C

D′

ai

a′i

yi

xi

x′i

ei

Figure 34. A counterclockwise directed cycle C of H (thick lines) and the cor-
responding ϕ-positive counterclockwise directed simple cycle D′ of GH (thick
dashed lines).

We now want to prove that Ω is accessible from every outer vertex of H. Let u0 be an outer
vertex of H, and let v be an inner vertex. We want to exhibit a directed path of H from u0 to
v. We know (by Lemma 64) that the hyperflow ϕ of GH is accessible from u0, hence for every
vertex u of H there exists a ϕ-positive path of GH from u0 to u. For a vertex u 6= u0 of H, we
consider the set Au of all the edges of GH incident to u which are part of a ϕ-positive simple
directed path of GH from u0 to u. For a 1-way edge e of H having origin u 6= u0, we denote by
θ(e) the edge of Au preceding e in clockwise direction around u, and we denote by π(e) the edge
of H following θ(e) around u; see Figure 35(a). By definition, ϕ(θ(e)) > 0 hence π(e) is a 1-way
edge of H directed toward u in Ω. Moreover, there exists no ϕ-positive (simple) directed path of
GH from u0 to u ending between e and π(e) in clockwise direction around u. We now construct
a directed path of H ending at v as follows3. First we choose an edge a ∈ Av and denote by e0

the edge of H following a clockwise around v. The edge e0 is a 1-way edge oriented toward v.
Then we define some edges e1, e2, . . . as follows: for all i ≥ 0, if the origin of the 1-way edge ei is
distinct from u0 we define ei+1 = π(ei). We will now prove that there exists i such that the origin
of ei is u0 (so that ei, ei−1, . . . , e0 is a directed path from u0 to v). Suppose the contrary. In this
case, there must exist integers i < j such that the origin of ej is the end of ei, and we consider
the least such j. The edges ei, ei + 1, . . . , ej form a simple directed cycle C of H, which is not the
outer face of H. And since Ω has no counterclockwise directed cycle, except for the outer faces of
H, the cycle C is directed clockwise. The situation is represented in Figure 35(b). Let u be the
end of ei (also the origin of ej). By definition of ei, the edge of GH preceding ei around u is part
of a ϕ-positive directed path P of GH from u0 to u. Hence, the path P must intersect the cycle
C. We denote by w the first vertex of C on the path P from u0 to u, and by ek the edge of C
with origin w (with i ≤ k < j). Note that the directed path P arrives at w between ek+1 = π(ek)
and ek in clockwise direction around w. This is impossible by definition of π. This completes the
proof that there is a directed path from u0 to v in Ω. Hence the hyperorientation Ω is accessible
from every outer vertex of H.

Uniqueness. Suppose that Ω̃ is a σ-weighted hyperorientation of H which is minimal and acces-

sible from every outer vertex of H. We want to prove that Ω̃ = Ω. It suffices to prove that the

hyperflow ϕ̃ := Γ−1(Ω̃) of GH is equal to ϕ. By Lemma 63, we know that ϕ̃ is an α-hyperflow of
GH . Hence by Lemma 59, it suffices to prove that ϕ̃ is minimal. Suppose, by contradiction that
ϕ̃ is not minimal, and consider a simple ϕ̃-positive counterclockwise cycle D of G′H . We will now

3Our construction corresponds to the so-called leftmost path which has proved useful for other bijective results
on maps.
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u

u0

e
π(e)

(a) (b)

θ(e)

u0 w

v
ei

ej

ekP

C
u

Figure 35. (a) Definition of the edge π(e), for a 1-way edge e of H with origin
u 6= u0. The ϕ-positive paths of GH are represented in dashed lines. (b) The
cycle C = {ei, ei+1, . . . , ej} of H, and the ϕ-positive path P of GH (represented
in dashed line).

exhibit a counterclockwise directed cycle C of Ω̃. For a vertex x of H on the cycle D we consider
the edge ax of D oriented toward x, and the edge ex of H following ax clockwise around x; see

Figure 36(a). Since ϕ(ax) > 0, the edge ex is 1-way oriented toward x in Ω̃ = Γ(ϕ̃). The origin x′

of ex is either on the cycle D or strictly inside D. If x′ is strictly inside D, we consider a directed

path of Ω̃ going from an outer vertex of H to x′ (we know that such a path exists since Ω̃ ∈ H+).

We extract from this path a directed path of Ω̃ starting at a vertex on the cycle D, staying strictly
inside D and ending at x′. We denote by Qx the directed path of Ω made of Px followed by the
edge ex, with the convention that Px is empty if the origin x′ of ex is on D. With this convention,

for all x of H on the cycle D, the directed path Qx of Ω̃ starts at a vertex of D, stays strictly
inside D and ends at x. We now consider a vertex x0 of H on D, and for all i ≥ 0 we denote by
xi+1 the origin of Qxi . The infinite path ∪∞i=0Qxi stays inside D and must intersect itself. Let n
be the largest integer such that the path Q = ∪n−1

i=0 Qxi
from xn to x0 is simple. Since Q is simple,

it cuts the interior of the cycle D into two regions. Moreover, the edge exn
is easily seen to be

in the region on the left of Q. Therefore the path ∪ni=0Qxi
contains a counterclockwise cycle; see

Figure 36(b). This implies that Ω̃ is not minimal, a contradiction. �

ex

D
x

x0

D

x1

D

x2x3

ex3

Qx0

Qx1

Qx2

ax
Qx3

(a) (b)

x′

Figure 36. (a) The counterclockwise cycle D of GH (dashed lines), a vertex x
of H on D and the 1-way edge ex of H. (b) The directed paths Qx0

, Qx1
, . . . of

H inside the cycle D of GH and a counterclockwise cycle C of H contained in
∪3
i=0Qxi .

Proof of Proposition 62. We now complete the proof of Proposition 62. By Lemma 65 there
is a unique σ-weighted hyperorientation Ω which is both minimal and accessible from the outer
vertices. In order to complete the proof of Proposition 62 we need to prove that Ω is in H+, that
is, we need to prove that the outer face of H is a clockwise directed cycle. Hence it suffices to
prove that every outer edge of H has positive weight (hence is 1-way).

Let e0 be an outer edge of H. We denote by w(a) the weight of a vertex, edge or face a in Ω.
We want to prove w(e0) > 0. Let us first treat the case where e0 is a loop. Let f0 be the light
outer face and let f be the dark inner face incident to e0. The light region R = {f0, f} satisfies
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|∂R| = deg(f0)− 1 and σ(R) = σ(f0) + σ(f) = deg(f0) + σ(f). Thus the σ-girth condition gives
−1 > σ(f). Hence w(e0) = w(f) = −1− σ(f) > 0 as wanted.

We now suppose that e0 is not a loop and want to prove w(e0) > 0. We consider the hypermap
H ′ obtained from H by adding two edges e′, e′′ with the same endpoints as e0 in the outer light
face of H as indicated in Figure 37(a). In H ′, the edges e0 and e′ enclose an inner light face f ′ of
degree 2, while the edges e′ and e′′ enclose an inner dark face f ′′ of degree 2. Let

ε =
1

2
min
R

(|∂R| − σ(R)) .

where R ranges over all light regions containing strictly at least one of the outer edges. Since
H satisfies the σ-girth condition, we have ε > 0. Let f be the dark face incident to e0 and let
σ′ be the charge function of H ′ defined by σ′(f) = σ(f) + ε, σ′(f ′) = 2, σ′(f ′′) = −2 − ε, and
σ′(a) = σ(a) for any vertex or face a /∈ {f, f ′, f ′′} of H ′.

f

f ′e′
f ′′e′′

e0

H ′

f0

σ′(f)=σ(f)+ε

σ′(f ′)=2

σ′(f ′′)=−2−ε

f

f0
e0

H

e′
e′′

e0

H ′

u1 u2

(a) (b)

P

Figure 37. (a) (a) The hypermap H ′ obtained from H by adding two edges e′, e′′

with the same endpoints as e0 (and conveniently assigning charges for the new
faces and the dark face incident to e0). (b) If e′ was 1-way, by the accessibility
properties of H+, it would yield a P forming with e′ a counterclockwise cycle
(shown in red), a contradiction. .

Claim 66. The charge function σ′ fits H ′.

Proof. It is easy to see that the charge σ′(v) = σ(v) of every vertex is positive, the charge
σ′(f0) = σ(f0) of the light outer face f0 is deg(f0), and σ′total = σtotal = 0. It remains to
prove that H ′ satisfies the σ′-girth condition. Let R′ be a light region of H ′. We need to prove
|∂R′| ≥ σ′(R′), with strict inequality if R′ strictly contains an outer edge.

First suppose that f ′′ ∈ R′. In this case f0, f
′ ∈ R′ (because R′ is a light region). Let R be

the light region of H obtained from R′ by removing f ′, f ′′. If f ∈ R, then R strictly contains the
outer edge e0 so that

|∂R′| = |∂R| ≥ σ(R) + 2ε = σ′(R′) + 2ε,

while if f /∈ R, then
|∂R′| = |∂R| ≥ σ(R) = σ′(R′) + ε.

Next suppose that f ′′ /∈ R′ and f /∈ R′. If f ′ /∈ R′ then R′ is a light region of H and we get

|∂R′| ≥ σ(R′) = σ′(R′),

with strict inequality if R′ strictly contains an outer edge. If f ′ ∈ R′ then we consider the light
region R of H obtained from R′ by removing f ′. We get

|∂R′| = |∂R|+ 2 ≥ σ(R′) + 2 = σ′(R),

with strict inequality if R′ (hence R) strictly contains an outer edge.
Lastly suppose that f ′′ /∈ R′ and f ∈ R′. In this case f ′ ∈ R′. If f0 ∈ R, we consider the light

region R of H obtained from R′ by removing f ′. Since R strictly contains the outer edge e0 we
get

|∂R′| = |∂R|+ 2 ≥ σ(R) + 2ε+ 2 = σ′(R′) + ε
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If f0 /∈ R, then we consider the light region R of H obtained from R′ by removing f ′ and adding
f0. Since R strictly contains the outer edge e0 we get

|∂R′| = |∂R|+ 2− deg(f0) ≥ σ(R) + 2ε+ 2− deg(f0) = σ′(R′) + ε.

�

Since H ′ satisfies the σ′-girth condition, Lemma 65 implies that H ′ admits a σ′-weighted
hyperorientation Ω′ which is minimal and accessible from every outer vertex. Let e1 be the edge

preceding e0 in clockwise order around f . We define a weighted hyperorientation Ω̃ of H by setting
w̃(e0) = w′(e0) + w′(e′′), w̃(e1) = w′(e1) + w′(e′), and w̃(e) = w′(e) for all edge e 6= e0, e1 of H

(as usual the edge in Ω̃ are 1-way if they have positive weight and 0-way otherwise). We denote

by w′(a) and w̃(a) respectively the weight of a vertex, edge or face a in Ω′ and Ω̃. Recall that all

the weights w′(a) are non-negative, hence the weights Ω̃(a) are non-negative.

Claim 67. The hyperorientation Ω̃ is σ-weighted. Moreover w̃(e0) > 0.

Proof. It is easily seen that the weight of every vertex is the same in Ω′ and Ω̃ (also for the

endpoints of e0). Moreover the weight of every face of H is the same in Ω′ and Ω̃ except for the
dark face f . For the dark face f we have

w̃(f) = w′(f)+w′(e′)+w′(e′′) = w′(f)+w′(f ′′) = −σ′(f)−deg(f)−σ′(f ′′)−2 = −σ(f)−deg(f),

as wanted. Since Ω′ is σ′-weighted, this shows that Ω̃ is σ-weighted.
It remains to show that w̃(e0) > 0. It suffices to show w′(e′′) > 0. Suppose by contradiction

that w′(e′′) = 0. In this case w′(e′) = w′(f ′′) = ε > 0, so that e′ is 1-way and e′′ is 0-way in
the hyperorientation Ω′. Let u2 and u1 be the origin and end of e′ as indicated in Figure 37(b).
Since Ω′ is accessible from the outer vertex u1, there is a directed path P from u1 to u2. This
path does not use the outer edge e′′ which is 0-way, hence the path P together with e′ form a
counterclockwise directed cycle; see Figure 37(b). This is a contradiction since Ω′ is minimal. �

We know w(ẽ0) > 0 and want to prove w(e0) > 0. For this we use Lemma 61. Since the

hyperorientation Ω̃ of H is σ-weighted, we know by Lemma 63 that the hyperflow ϕ̃ = Γ−1
(

Ω̃
)

is

an α-hyperflow of GH . Let a0 be the edge of GH preceding e0 clockwise around the outer vertex
u2 of H. By definition of Γ, ϕ̃(a0) = w̃(e0) > 0. Hence by Lemma 61, the minimal α-hyperflow
of GH satisfies ϕ(a0) > 0. Moreover the hyperorientation Ω is equal to Γ(ϕ) (see the proof of
Lemma 65). Thus w(e0) = ϕ(a0) > 0. This completes the proof of Proposition 62.

10.4. Proof of Theorem 26. In this section we complete the proof of Theorem 26. We consider
a light-rooted hypermap H, and a charge function σ fitting H. We want to prove that H admits
a unique σ-weighted hyperorientation in H+. Our strategy is as follows. First, we will construct a
related hypermap H(k) and a fitting charge function σ(k) satisfying the condition of Proposition 62.
This grants the existence of a unique σ(k)-weighted hyperorientation Ω(k) in H+ for H(k). We will
then construct from Ω(k) a hyperorientation Ω of H, and prove that it is the unique σ-weighted
hyperorientation of H in H+.

Let k be an integer greater than

1 + |E0|+
∑

a∈A
|σ(a)|,

where E0 is the set of edges of H, and A is the set of all vertices and faces of H. Let Hk be the
hypermap obtained from H by subdividing every edge into a path of length k. Hence, every face
of degree δ of H corresponds to a face of degree kδ of Hk. We now consider a hypermap H(k)

obtained by adding a dark face of degree k(k − 1)δ, called a sea-star, inside each inner light face
of degree kδ of Hk; see Figure 38. More precisely, H(k) is obtained by adding the sea-stars inside
the inner light faces of Hk in such a way that every inner light faces of H(k) has degree k and
is incident to one edge of Hk and k − 1 edges of a sea-star. We call sea-edges the edges of H(k)

incident to sea-stars. For an edge e = (u, v) of Hk, we call sea-arc associated with e the path of
H(k) made of the k − 1 sea-edges around the face of H(k) incident to e. For an edge e = (u, v) of
H, we call sea-path associated with e the path of H(k) from u to v (of length k(k − 1)) made of
the k sea-arcs associated with the edges of Hk subdividing e.
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We define a charge function σ(k) of H(k) as follows:

• σ(k)(v) = kσ(v′) if v is a vertex of H(k) corresponding to a vertex v′ of H and σ(k)(v) = k
otherwise,

• σ(k)(f) = deg(f) if f is a light face (hence σ(k)(f) = k for every inner light face f),
• σ(k)(f) = kσ(f ′) − k2δ + kδ if f is a dark face of H(k) of degree kδ corresponding to a

dark face f ′ of H (of degree δ),
• σ(k)(f) = kσ(f ′)−k2(k−1)δ if f is a sea-star of degree k(k−1)δ corresponding to a light

face f ′ of H (of degree δ).

sea-star

sea-edge

Figure 38. Left: A face f of H. Right: the face f after subdividing each edge
into a path of length k = 4, and adding the sea-star of H(k) inside f .

Claim 68. The charge function σ(k) fits H(k).

Proof. First observe that the charge σ(k)(v) = kσ(v) is positive for every vertex v, and the charge

of the outer face is equal to its degree. We now show that σ
(k)
total = 0. Let V0, E0, F0, S0, and K0

be respectively the set of vertices, edges, light faces, sea-stars, and non-sea-star dark faces of H(k).
Let E1 and E2 be respectively the set of edges of H(k) incident to sea-stars, and to non-sea-star
dark faces of H(k). We have

σ
(k)
total =

∑

v∈V0

σ(k)(v) +
∑

f∈F0

σ(k)(f) +
∑

f∈S0

σ(k)(f) +
∑

f∈K0

σ(k)(f)

= k

(
|V0| − |V ′0 |+

∑

v′∈V ′
0

σ(v′)

)
+ k

(
|F0|+ deg(f ′0)− 1

)

+k

(
− |E1|+

∑

f ′∈S′
0

σ(f ′)

)
+ k

(
|E′0| − |E2|+

∑

f ′∈K′
0

σ(f ′)

)

= k

(
|V0|+ |F0| − |E0| − |V ′0 |+ |E′0| − 1 + σtotal

)

where f ′0 is the outer face of H, and V ′0 , E′0, S′0, K ′0 are respectively the set of vertices, edges, inner
light faces, and dark faces of H (the last identity uses |E0| = |E1| + |E2| and σ(f ′0) = deg(f ′0)).
The Euler relation gives

|V0|+ |F0| − |E0| = −|S0| − |K0|+ 2 = −|S′0| − |K ′0|+ 2 = |V ′0 | − |E′0|+ 1,

because |S0| = |S′0| and |K0| = |K ′0|. Moreover σtotal = 0, hence σ
(k)
total = 0.

It remains to prove that H(k) satisfies the σ(k)-girth condition. Let R be a light region of
H(k). We want to prove |∂R| ≥ σ(k)(R) with strict inequality if one of the outer edges is strictly
contained in R. By Lemma 32 we can assume that the light region R is simply connected. Let V ,
E, F , S, and K be respectively the set of vertices strictly inside R, edges strictly inside R, light
faces inside R, sea-stars inside R, and non-sea-star dark faces inside R. Similarly as in the above
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computation of σ
(k)
total, we have

σ(k)(R) =
∑

v∈V
σ(k)(v) +

∑

f∈F
σ(k)(f) +

∑

f∈K
σ(k)(f) +

∑

f∈S
σ(k)(f)

= k

(
|V |+ |F | − |E| − |V ′|+ |E′|+ 1f0∈R · (deg(f ′0)− 1) +

∑

a∈V ′∪S′∪K′

σ(a)

)
,

where f0 is the outer face of H(k), V ′ is the set of vertices of H corresponding to vertices of H(k)

in V , S′ is the set of inner light faces of H corresponding to sea-stars in S, K ′ is the set of dark
faces of H corresponding to dark faces in K, and E′ is the set of edges of H incident to faces in
K ′. Since R is simply connected, the Euler relation gives |V |+ |F | − |E| = −|S′| − |K ′|+ 1, hence

σ(k)(R) = k

(
|E′| − |V ′| − |S′| − |K ′|+ 1 + 1f0∈R(deg(f ′0)− 1) +

∑

a∈V ′∪S′∪K′

σ(a)

)
.

(In particular, by the choice of k, σ(k)(R) < k(k − 1).)
We now prove |∂R| ≥ σ(k)(R) with strict inequality if one of the outer edges is strictly contained

in R. Suppose first that R contains an inner light face f but contains none of the two dark faces
incident to f . Since R is connected, we have R = {f} and |∂R| = k = σ(R). Next, suppose
that R contains an inner light face and the incident non-sea-star dark face f , but not the incident
sea-star s. Since f ∈ R all the incident light faces are in R (because R is a light region) hence C
contains an entire sea path. Thus |∂R| ≥ k(k − 1) > σ(k)(R) by the choice of k. Lastly suppose
that for every light face f in R, the sea-star incident to f is also in R. In this case, we consider
the light region R′ of H defined by R′ = K ′ ∪ S′ if f0 /∈ R and R′ = K ′ ∪ S′ ∪ {f ′0} if f0 ∈ R.
We have |∂R| = k|∂R′|. Moreover V ′, E′, S′, and K ′ are respectively the sets of vertices strictly
inside R′, edges strictly inside R′, inner light faces inside R′, and dark faces inside R′, so that the
Euler relation gives

|E′| − |V ′| − |S′| − |K ′|+ 1− 1f0∈R′ = 0.

Hence, using deg(f ′0) = σ(f ′0) we get

σ(k)(R) = k

(
1f0∈R′σ(f ′0) +

∑

a∈V ′∪S′∪K′

σ(a)

)
= k σ(R′).

Thus |∂R| = k|∂R′| ≥ k σ(R′) = σ(k)(R) with strict inequality if one of the outer edges is strictly
contained in R. �

By Claim 68 and Proposition 62, the hypermap H(k) admits a unique σ(k)-weighted hyperori-
entation Ω(k) in H+. We now establish a few properties of Ω(k). We denote by w(a) the weight of
an edge or face a of H(k) in the hyperorientation Ω(k). Note that all the weights are non-negative
because every light face of H(k) has degree equal to its charge. Let a be an inner edge of Hk and
let P be the associated sea-arc. The k − 2 first edges of P are forced to have weight k, and we
denote by w′(a) the weight of the last edge of P ; see Figure 39. Let f be an inner light face of H
of degree δ, let fk be the corresponding light face of Hk and let s be the corresponding sea-star
of H(k). For the edges e1, . . . , ekδ incident to fk we get

w′(e1) + . . .+ w′(ekδ) = w(s)− k2(k − 2)δ = −σ(k)(s)− deg(s)− k2(k − 2)δ

= −kσ(f) + k2(k − 1)δ − k(k − 1)δ − k2(k − 2)δ

= −kσ(f) + kδ.(7)

Claim 69. Let e be an inner edge of H. Let e1, . . . , ek be the edges of Hk subdividing e in clockwise
order around the incident dark face. There exists j ∈ {1, . . . , k} such that w(ei) = k for all i < j,
w(ei) = 0 for all i > j. Moreover w′(e1) = 0, and w′(ei+1) = k − w(ei) for all i ∈ {1, . . . , k − 1}.

The situation described by Claim 69 is represented in Figure 40 (first line).

Proof. We let ei = (ui−1, ui), with u0 = u, and uk = v. Since for all i ∈ {1, . . . , k − 1} the weight
of the vertex ui is k, we get w′(ei+1) = k−w(ei). Since Ω is minimal, the weights w(ei) and w′(ei)
cannot both be positive (otherwise the incident light face would be oriented counterclockwise).
Thus if w(ei) 6= k for i < k, then w′(ei+1) 6= 0, hence w(ei+1) = 0. This proves the existence of



UNIFIED BIJECTIONS FOR PLANAR HYPERMAPS 49

u=u0

w(e3)

u1
uk=vu2 u3 eke3e2e1

w(e)=kw(v)=k

w(u2)=k

w′(e3)

Figure 39. The sea-path associated with an inner edge e = (u, v) of H for k = 4.
The edges with weights w(ei) and w′(ei) are indicated for i = 3.

j ∈ {1, . . . , k} such that w(ei) = k for all i < j, and w(ei) = 0 for all i > j. Lastly, suppose by
contradiction that w′(e1) > 0. In this case w(e1) = 0, and w′(ei) = k for all i ∈ {2, . . . , k}. Thus

w′(e1) + . . .+ w′(ek) = w′(e1) + k(k − 1) > k(k − 1).

By our choice of k this contradicts (7). �

We now associate with the weighted hyperorientation Ω(k) of H(k) a weighted hyperorientation
Ω of H; see Figure 40 (note that, by these rules, an edge e ∈ Ω is 1-way iff the associated j defined
in Claim 69 is equal to k). Let e be an edge of H and let e1, . . . , ek be the edges of Hk subdividing
e in clockwise order around the incident dark face. We define the weight w(e) of e in Ω to be

w(e) =

∑k
i=1 w(ei)

k
− (k − 1)

and we orient e 1-way if the weight is positive and 0-way otherwise. Note that for any outer edge
e, the edges e1, . . . , ek−1 are all 1-way of weight k and ek is also 1-way (because Ω(k) ∈ H+), so
that

w(e) = w(ek)/k > 0,

hence e is 1-way.

kk w(ej)
0 0 0 k

0 0
u v

w(e) = w(ej)/k + j − k ≤ 0
u v

kk
0 0 0u v

w(e) = w(ek)/k > 0
u v

0 0
w(ek)>0k k

Figure 40. Top part: the possible configurations of weights along a sea-path in
the hyperorientation Ω(k) of H(k), as described by Claim 69. Bottom part: the
corresponding weight in the hyperorientation Ω of H. In the case j < k (left) one

gets w(e) =
(
∑k

i=1 w(ei))
k − (k−1) = w(ej)/k− (j−1) ≤ 0, while in the case j = k

one gets w(e) = w(ek)/k > 0.

We will now complete the proof of Theorem 26 by proving the following claim.

Claim 70. The hyperorientation Ω is the unique σ-weighted hyperorientation of H in H+.

Proof. We denote by w(a) (resp. w(a)) the weight of a vertex, edge or face a in the hyperorientation
Ω(k) of H(k) (resp. Ω of H). If e is an inner edge of H, adopting the notation of Claim 69 gives

w(e) =
1

k

(
w(ek)−

( k∑

i=1

w′(ei)
))
.
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Moreover, since w(ek) > 0 if and only if
∑k
i=1 w

′(ei) = 0, we get

(8) max(w(e), 0) =
w(ek)

k
,

and

(9) min(w(e), 0) = −
∑k
i=1 w

′(ei)

k
.

Now if e is an outer edge e, then the edges e1, . . . , ek−1 are all 1-way of weight k and ek is also
1-way (because Ω(k) ∈ H+), so that

max(w(e), 0) = w(e) = w(ek)/k,

and e is oriented 1-way in Ω(k).
We will now prove that Ω is σ-weighted. Let u be a vertex of H. We observe that Claim 69

(more precisely, the statement w′(e1) = 0 in this claim) implies that no sea-edge is oriented 1-way
toward u. Thus, the weight w(u) is equal to the sum of the weights of the edges of Hk oriented
toward u. Hence (8) gives

w(u) =
∑

e oriented toward u in H

max(w(e), 0) =
∑

e′ oriented toward u in Hk

w(e′)
k

=
w(u)

k
=
σ(k)(u)

k
= σ(u),

as wanted. Now let f be a light inner face of H of degree δ, and let f ′ be the corresponding face
in Hk. By (9), the weight of f in Ω is

w(f) =
∑

e incident to f in H

min(w(e), 0) = −
∑

ei incident to f ′ in Hk

w′(ei)
k

.

Hence, (7) gives w(f) = σ(f) − δ as wanted. Now, let f be a dark inner face of H of degree δ,
and let f ′ be the corresponding face of H(k). The weight of f in Ω is

w(f) =
∑

e incident to f

w(e) =


 ∑

e′ incident to f ′

w(e′)
k


− (k − 1)δ =

w(f ′)
k
− (k − 1)δ

=
−σ(k)(f ′)− deg(f ′)

k
− (k − 1)δ = −σ(f)− δ,

as wanted. Thus Ω is σ-weighted.
Next we prove that Ω is in H+. As noted above, the outer edges of H are 1-way in Ω (hence

they form a clockwise directed cycle), hence it remains to prove that Ω is minimal and accessible
from outer vertices. For an edge e = (u, v) of H we consider the subgraph Ge of H(k) made
of the path subdividing e together with the sea-path associated with e. In the hyperorientation
Ω(k) of Ge the sea-path cannot be used to go from u to v nor from v to u because of Claim 69
(more precisely, the statement w′(e1) = 0 in this claim). Moreover, the path subdividing e is
oriented from u to v in Ω(k) if and only if e is oriented 1-way from u to v in the hyperorientation
Ω; see Figure 40. Thus for any vertices v1, v2 of H, there is a directed path from v1 to v2 in
the hyperorientation Ω(k) of H(k) if and only if there is a directed path from v1 to v2 in the
hyperorientation Ω of H. Since Ω(k) is in H+, we conclude that in the hyperorientation Ω of
H every vertex is accessible from every outer vertex. Moreover any simple directed cycle in the
hyperorientation Ω of H corresponds to a directed simple cycle in the hyperorientation Ω(k) of
H(k). Hence the minimality of the hyperorientation Ω(k) implies the minimality of Ω. Thus Ω is
in H+.

Lastly we prove that there does not exist a σ-weighted hyperorientation Ω
′ ∈ H+ of H distinct

from Ω. Suppose the contrary. By inverting the construction represented in Figure 40 (using

the fact that w(e) ≥ −k + 1 by our choice of k), one can associate with Ω
′

a hyperorientation
Ω′ 6= Ω(k) of H(k) satisfying the properties described in Claim 69. It is then easy to see using the
same relations as above that Ω′ is σ(k)-weighted. Moreover, by the properties highlighted in the
previous paragraph, it is easily seen that Ω′ is minimal and accessible from every outer vertex.
Thus we obtain a σ(k)-weighted hyperorientation Ω′ 6= Ω(k) in H+. This is impossible because
this contradicts the uniqueness property of Proposition 62. �
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Claim 70 proves that if a charge function σ fits a light-rooted hypermap H, then H admits a
unique σ-weighted hyperorientation in H+. This, together with Lemma 56, completes the proof
of Theorem 26.

10.5. Proof of Theorems 25 and 27. In this section we prove Theorems 25 and 27 by a
reduction to Theorem 26.

We start with Theorem 25. Let H be a dark-rooted hypermap with a simple outer face, and
let σ be a charge function fitting H. We want to prove that H admits a unique σ-weighted
hyperorientation in H−. Let H ′ be the light-rooted hypermap obtained from H by adding a dark
face of degree 2 along each of the outer edges of H, and changing the outer face color into light,
as indicated in Figure 41. Observe that the outer faces f0 of H and f ′0 of H ′ have the same
degree. We call outer digons of H ′ the added dark faces. We define a charge function σ′ of H ′ by
setting σ′(f ′0) = deg(f ′0), σ′(f) = −3 if f is an outer digon, σ′(v) = 1 if v is an outer vertex, and
σ′(a) = σ(a) if a is any inner vertex or inner face of H.

R′

R3

R1

R2

σ′(f) = −3

H ′H

(a) (b)
σ′(v) = 1

Figure 41. (a) The hypermap H ′ obtained from H by adding a dark face of
degree 2 along each outer edge. (b) The contour of a simply connected light
region R of H ′ containing the outer face f ′0 but not all outer vertices. Here
deg(f0) = 9, b = 6, d = 6 and k = 3

Claim 71. The charge function σ′ fits H ′.

Proof. First observe that the charge σ′(v) of any vertex v is positive, and σ′(f ′0) = deg(f ′0).
Moreover,

σ′total = σtotal − σ(f0) + σ′(f ′0) +
∑

v outer vertex

σ′(v) +
∑

f outer digon

σ′(f) = 0

because σtotal = 0, −σ(f0) = σ′(f ′0) = deg(f0) and there are deg(f0) outer vertices and outer
digons.

We now prove that H ′ satisfies the σ′-girth condition. Let R be a light region of H ′. We want to
prove |∂R| ≥ σ′(R) with strict inequality if an outer edge is strictly contained in R. By Lemma 32
we can assume that R is simply connected. If f ′0 /∈ R, then none of the outer digons is in R. Hence
in this case R is a light region of H, and |∂R| ≥ σ(R) = σ′(R) as wanted. We now assume that
f ′0 ∈ R. First suppose that every outer vertex is strictly inside R. In this case, all the outer digons
are in R, and we consider the light region R of H obtained from R by replacing the outer face f ′0
and the outer digons by f0. We get |∂R| > σ(R) = σ′(R) as wanted. Now assume that f ′0 ∈ R but
b > 0 outer vertices are incident to ∂R (so that deg(f0) − b outer-vertices are strictly inside R).
Let d be the number of outer digons in R. By deleting from R the outer face f ′0 and the d outer
digons in R, one get a light region of H which decomposes as a disjoint union of k (non-empty)
simply connected light regions R1, R2, . . . , Rk; see Figure 41(b). The number k is determined by
k+ (deg(f0)− d) = b. Indeed the contour D of the outer face of f0 of H decomposes into b paths
(joining consecutive vertices incident to ∂R) which are either edges of one of the deg(f0)−d digons
not in R, or part of the boundary of one of the light regions R1, R2, . . . , Rk (recall that R is simply
connected so that the light regions R1, . . . , Rk corresponding to different paths of D are distinct).
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We have

|∂R| =
k∑

i=1

|∂Ri|+ deg(f0)− 2d,

and

σ′(R) =

k∑

i=1

σ(Ri) + σ′(f ′0)− 3d+ deg(f0)− b =

k∑

i=1

σ(Ri) + 2 deg(f0)− 3d− b,

hence

|∂R| − σ′(R) =

( k∑

i=1

|∂Ri| − σ(Ri)

)
+ b+ d− deg(f0) =

( k∑

i=1

|∂Ri| − σ(Ri)

)
+ k ≥ k.

Thus, |∂R| ≥ σ′(R) and if one of the outer edges is strictly inside R, then k ≥ 1 and |∂R| >
σ′(R). �

Since σ′ fits H ′, Theorem 26 ensures that H ′ has a unique σ′-weighted hyperorientation Ω′ in
H+. Let Ω be the hyperorientation of H such that the weights and orientations of the inner edges
of H are the same as in Ω′, and the outer edges of H form a counterclockwise directed cycle of
1-way edges of weight 1.

Claim 72. The hyperorientation Ω is the unique σ-weighted hyperorientation of H in H−.

Proof. Let w′(a) be the weight of a vertex, edge or face in Ω′. Let D1, . . . , Ddeg(f0) be the
outer digons of H ′ in clockwise order, and let ei, e

′
i be the outer and inner edges incident to Di

respectively. We will first prove that w′(ei) = 1 and w′(e′i) = 0 for all i ∈ {1, . . . ,deg(f0)}.
First note that for all i ∈ {1, . . . ,deg(f0)}, the weight condition on the outer digon Di gives
w′(ei) + w′(e′i) = w′(Di) = −σ′(Di) − 2 = 1. Moreover, since the weight of every outer vertex u
is w′(u) = σ′(u) = 1, we get w′(ei) ≤ 1 and w′(e′i) ≤ 1. Hence w′(ei) ≥ 0 and w′(e′i) ≥ 0, and
w′(ei−1) + w′(e′i) ≤ 1 for all i ∈ {1, . . . ,deg(f0)} with the convention that e0 = edeg(f0). Hence
w′(ei−1) ≤ w′(ei) for all i ∈ {1, . . . ,deg(f0)}. Thus w′(ei−1) = w′(ei) and w′(e′i−1) = w′(e′i) for
all i ∈ {1, . . . ,deg(f0)}. Moreover, the hyperorientation Ω′ has no counterclockwise directed cycle
(since Ω′ ∈ H+), hence w′(e′i) = 0 for all i ∈ {1, . . . ,deg(f0)}, and w′(ei) = 1.

Since w′(ei) = 1 and w′(e′i) = 0 for all i ∈ {1, . . . ,deg(f0)}, the weight of any vertex, or face
of H is the same in Ω as in Ω′. Moreover, the weight of every outer vertex and outer edge of
H in Ω is 1. Thus Ω is σ-weighted. Moreover, because the hyperorientation Ω′ is minimal and
accessible from the outer vertices, the hyperorientation Ω is also minimal and accessible from the
outer vertices. Thus Ω is in H−.

Lastly, suppose there is another σ-weighted hyperorientation Ω̃ 6= Ω of H in H−. We then

consider the hyperorientation Ω̃′ of H ′ defined as follows: the weight of the inner edges of H in Ω̃′

are the same as in Ω̃′, while the weight of the edges ei, e
′
i of the outer digon in Ω̃′ are w̃′(ei) = 1 and

w̃′(e′i) = 0 for all i ∈ {1, . . . ,deg(f0)}. It is easily seen that Ω̃′ is a σ-weighted hyperorientation of

H ′ distinct from Ω′. Moreover Ω̃′ is in H+ (it is minimal, accessible from the outer vertices and
the outer face of H ′ is a clockwise directed cycle). This contradicts the uniqueness of Ω′ given by
Theorem 26. �

Claim 72 ensures that any dark-rooted charged hypermap (H,σ) satisfying the conditions of
Theorem 25 admits a unique σ-weighted hyperorientation in H−. This together with Lemma 56
completes the proof of Theorem 25.

We now prove Theorem 27 by a reduction to Theorem 25. Let H be a vertex-rooted hypermap,
and let σ be a charge function fitting H. We want to prove that there exists a unique σ-weighted
hyperorientation of H in H0. Let v0 be the root-vertex of H, and let f0 be a light face incident to
v0. Let H ′ be the dark-rooted hypermap (with outer degree 1) obtained from H by adding a loop
edge e0 incident to v0 inside f0 as indicated in Figure 42. The face of degree 1 incident to e0 thus
created (which is dark) is taken as the outer face of H ′, and is denoted by f1. The light face of
H ′ incident to e0 is denoted by f2. We define a charge function σ′ of H ′ by setting σ′(f1) = −1,
σ′(f2) = σ(f0) + 1 and σ′(a) = σ(a) for any other face or vertex of H ′.

Claim 73. The charge function σ′ fits the dark-rooted hypermap H ′.
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H H ′

v0

f2
f0

f1
e0

Figure 42. The dark-rooted hypermap H ′ obtained from H by adding a loop
edge e0.

Proof. Since σ fits H, the charge σ′(v) of every inner vertex v of H ′ is positive. Moreover the
charge of the outer vertex v0 is σ′(v0) = σ(v0) = 0, and the charge of the dark outer face f1 is
σ′(f1) = −1 = −deg(f1). Furthermore,

σ′total = σtotal − σ(f0) + σ′(f1) + σ′(f2) = 0.

It remains to prove that H ′ satisfies the σ′-girth condition. Let R′ be a light region of H ′. First
suppose that f2 /∈ R′. In this case f1 /∈ R′, hence R′ is a light region of H and |∂R′| ≥ σ(R′) =
σ′(R′) as wanted. Next suppose that both f1 and f2 are in R′. In this case, we consider the
light region R of H obtained from R′ by replacing f1 and f2 by f0. Since ∂R = ∂R′, we get
|∂R′| = |∂R| ≥ σ(R) = σ′(R′) with strict inequality if v0 is strictly inside R′. Lastly, suppose that
f2 ∈ R′ and f1 /∈ R′. We consider the light region R of H obtained from R′ by replacing f2 by
f0. Note that e0 ∈ ∂R′, and ∂R = ∂R′ \ {e0}. Thus |∂R′| = |∂R| + 1 ≥ σ(R) + 1 = σ′(R′), as
wanted. �

Since σ′ fits H ′, Theorem 25 implies that H ′ has a unique σ′-weighted hyperorientation Ω′ in
H−. Let Ω be the the restriction to H of the hyperorientation Ω′.

Claim 74. The hyperorientation Ω is the unique σ-weighted hyperorientation of H in H0.

Proof. By definition, the weight of v0 and e0 in Ω′ is 1. Hence the weight of v0 in Ω is 0 and the
weight w(f0) of f0 in Ω is the same as the weight w′(f2) of f2 in Ω′. Hence w(f0) = w′(f2) =
σ′(f2)−deg(f2) = σ(f0)−deg(f0). Hence the hyperorientation Ω is σ-weighted. Moreover because
the hyperorientation Ω′ is minimal and accessible from v0, the hyperorientation Ω is also minimal
and accessible from v0. Thus Ω is in H0.

Conversely, suppose that there is another σ-weighted hyperorientation Ω̃ 6= Ω of H in H0. We

then consider the hyperorientation Ω̃′ of H ′ defined as follows: the weight of e0 is 1 and the weight

of the other edges is as in Ω̃. It is easily seen that Ω̃′ is a σ-weighted hyperorientation of H ′ distinct

from Ω′. Moreover Ω̃′ is in H−. This contradicts the uniqueness of Ω′ given by Theorem 25. �

Claim 74 shows that if a charge function σ fits a vertex-rooted map H, then H admits a
unique σ-weighted hyperorientation in H0. This together with Lemma 56 completes the proof of
Theorem 27.
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suggestions.
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