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Abstract. We extend the notion of canonical orderings to cylindric triangula-
tions. This allows us to extend the incremental straight-line drawing algorithm

of de Fraysseix, Pach and Pollack to this setting. Our algorithm yields in linear

time a crossing-free straight-line drawing of a cylindric triangulation G with n
vertices on a regular grid Z/wZ× [0..h], with w ≤ 2n and h ≤ n(2d+1), where

d is the (graph-) distance between the two boundaries. As a by-product, we

can also obtain in linear time a crossing-free straight-line drawing of a toroidal
triangulation with n vertices on a periodic regular grid Z/wZ × Z/hZ, with

w ≤ 2n and h ≤ 1 + n(2c + 1), where c is the length of a shortest non-

contractible cycle. Since c ≤ √2n, the grid area is O(n5/2). Our algorithms

apply to any triangulation (whether on the cylinder or on the torus) with no
loops nor multiple edges in the periodic representation.

1. Introduction

The problem of efficiently computing straight-line drawings of planar graphs has
attracted a lot of attention over the last two decades. Two combinatorial concepts
for planar triangulations turn out to be the basis of many classical straight-line
drawing algorithms: the canonical ordering (a special ordering of the vertices ob-
tained by a shelling procedure) and the closely related Schnyder wood (a partition
of the inner edges of a triangulation into 3 spanning trees with specific incidence
conditions). Algorithms based on canonical ordering [7, 10] are typically incre-
mental, adding vertices one by one while keeping the drawing planar. Algorithms
based on Schnyder woods [14] are more global, the (barycentric) coordinates of each
vertex have a clear combinatorial meaning (typically the number of faces in cer-
tain regions associated to the vertex). Algorithms of both types make it possible to
draw in linear time a planar triangulation with n vertices on a grid of size O(n×n).
They can also both be extended to obtain (weakly) convex drawings of 3-connected
maps on a grid of size O(n × n). The problem of obtaining planar drawings of
higher genus graphs has been addressed less frequently [11, 9, 12, 13, 4, 6, 15], from
both the theoretical and algorithmic point of view. Recently some methods for the
straight-line planar drawing of genus g graphs with polynomial grid area (of size
O(n3), in the worst case) have been described in [4, 6] (to apply these methods
the graph needs to be unfolded planarly along a cut-graph). However, it does not
yield (at least easily) periodic representations: for example, in the case of a torus,
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the boundary vertices (on the boundary of the rectangular polygon) might not be
aligned, so that the drawing does not give rise to a periodic tiling.

Our main contribution is to generalize the notion of canonical ordering and the
incremental straight-line drawing algorithm of de Fraysseix, Pach and Pollack [7]
(shortly called FPP algorithm thereafter) to triangulations on the cylinder. For any
triangulation G of the cylinder, our algorithm yields in linear time a crossing-free
straight-line drawing of G on a regular grid (on the flat cylinder) of the form Z/wZ×
[0..h], with w ≤ 2n and h ≤ n(2d+ 1), where n is the number of vertices of G and
d is the (graph-) distance between the two boundaries of G. By a reduction to the
cylindric case (the reduction is done with the help of a so-called tambourine [2]), we
also get a drawing algorithm on the torus. Precisely, for any toroidal triangulation
G, we can obtain in linear time a crossing-free straight-line drawing ofG on a regular
grid (on the flat torus) Z/wZ× Z/hZ, with w ≤ 2n and h ≤ 1 + n(2c− 1), where
n is the number of vertices of G and c is the length of a shortest non-contractible
cycle. Since c ≤ (2n)1/2 as shown in [1], we have h ≤ (2n)3/2, so that the grid area
is O(n5/2).

For the toroidal case we mention that a notion of canonical ordering has been
introduced in [5] (this actually works in any genus and yields an efficient encoding
procedure) but we do not use it here. We also mention that, independently, an
elegant periodic straight-line drawing algorithm for toroidal triangulations has been
very recently described in [8], based on so-called toroidal Schnyder woods and face-
counting operations; in their case the area of the periodic grid is O(n4).

2. Preliminaries

Graphs embedded on surfaces. A map of genus g is a connected graph G embedded
on the compact orientable surface S of genus g, such that all components of S\G
are topological disks, which are called the faces of the map. The map is called
planar for g = 0 (embedding on the sphere) and toroidal for g = 1 (embedding on
the torus). The dual of a map G is the map G∗ representing the adjacencies of the
faces of G, i.e., there is a vertex vf of G∗ in each face f of G, and each edge e of
G gives rise to an edge e∗ = {vf , vf ′} in G∗, where f and f ′ are the faces on each
side of e. A cylindric map is a planar map with two marked faces B1 and B2 whose
boundaries C(B1) and C(B2) are simple cycles (possibly C(B1) and C(B2) share
vertices and edges). The faces B1 and B2 are called the boundary-faces. Boundary
vertices and edges are those belonging to C(B1) (black circles in Fig. 1) or C(B2)
(gray circles in Fig. 1); the other ones are called inner vertices (white circles in
Fig. 1) and edges.
Periodic drawings. Here we consider the problem of drawing a cylindric triangu-
lation on the flat cylinder and drawing a toroidal triangulation on the flat torus.
For w > 0 and h > 0, the flat cylinder of width w and height h is the rectangle
[0, w] × [0, h] where the vertical sides are identified. A point on this cylinder is
located by two coordinates x ∈ R/wZ and y ∈ [0, h]. The flat torus of width w
and height h is the rectangle [0, w] × [0, h] where both pairs of opposite sides are
identified. A point on this torus is located by two coordinates x ∈ R/wZ and
y ∈ R/hZ. Assume from now on that w and h are positive integers. For a cylindric
triangulation G, a periodic straight-line drawing of G of width w and height h is
a crossing-free straight-line drawing (edges are drawn as segments, two edges can
meet only at common end-points) of G on the flat cylinder of width w and height h,
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Figure 1. A cylindric triangulation with boundary faces B1 =
{a, b, c, d} and B2 = {h, i, j, k}. Left: annular representation.
Right: x-periodic representation.

such that the vertex-coordinates are in Z/wZ× [0..h] (i.e., are integers). Similarly
for a toroidal triangulation G, a periodic straight-line drawing of G of width w and
height h is a crossing-free straight-line drawing (edges are drawn as segments, two
edges can meet only at common end-points) of G on the flat torus of width w and
height h, such that the vertex-coordinates are in Z/wZ× Z/hZ (i.e., are integers).

3. Periodic drawings of cylindric triangulations

A cylindric triangulation is a cylindric map with no loops nor multiple edges
and such that all non-boundary faces are triangles (in Section 5 we will allow such
triangulations to have 1-cycles or 2-cycles separating the two boundary-faces). We
introduce at first a notion of canonical ordering for cylindric triangulations:

Definition 1. Let G be a cylindric triangulation with boundary-faces B1 and B2,
and such that the cycle C(B1) has no chords (i.e., there is no edge that is not
on C(B1) and has both ends on C(B1)). An ordering π = {v1, v2, . . . , vn} of the
vertices of G\C(B1) is called a (cylindric) canonical ordering if it satisfies:

• For each k ≥ 0 the map Gk induced by C(B1) and by the vertices {v1, . . . , vk}
is a cylindric triangulation.

• The other boundary-face B′ of Gk (the one different from B1), whose con-
tour is denoted Ck, contains B2 (to clarify the meaning of “B′ contains
B2”, remember that a cylindric map is a special kind of map on the sphere;
since Gk is a submap of G, any face of Gk is made of a set of faces of G).

• The vertex vk is on Ck, and its neighbours in Gk−1 are consecutive on
Ck−1.

The notion of canonical ordering makes it possible to construct a cylindric tri-
angulation G incrementally, starting from G0 = C(B1) and adding one vertex (and
incident edges) at each step. This is similar to canonical orderings for planar trian-
gulations, as introduced by de Fraysseix, Pach and Pollack [7] (the main difference
is that for a planar triangulation one starts with G0 being an edge, called the base-
edge, whereas here one starts with G0 being a cycle, seen as a cylindric map without
non-boundary faces).

Shelling procedure. We now describe a shelling procedure to compute a canonical
ordering of a cylindric triangulation G with boundary-faces B1, B2. At each step the
graph formed by the remaining vertices is a cylindric triangulation, one boundary
face remains B1 all the way, while the other boundary-face (initially B2) has its
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Figure 2. Shelling procedure to compute a canonical ordering of a
given cylindric triangulation. The underlying forest is computed on
the fly; the last drawing shows the underlying forest superimposed
with the dual forest. The graph is the one of Fig. 1.

contour, denoted by Ck, getting closer to C(B1). A vertex v ∈ Ck is free if v is
incident to no chord of Ck and if v /∈ C(B1) (see Fig. 2 top left). The shelling
procedure goes as follows (n is the number of vertices in G\C(B1)): for k from n
to 1, choose a free vertex v on Ck, assign vk ← v, and then delete v together with
all its incident edges. The existence of a free vertex at each step follows from the
same argument as in the planar case [3]. Indeed, if there is no chord incident to
Ck, then any vertex v ∈ Ck\C(B1) is free, while if there is a chord e for Ck, then
the set of chords incident to Ck forms a system of archs (relative to Ck). If we look
at a chord e = {u, v} that is “innermost” (i.e., seen as an arch, no other arch is
nested inside), then the path between u and v on Ck contains at least one vertex,
which has to be free (see Fig. 2 top right).

Underlying forest and dual forest. Given a cylindric triangulation G (with
boundary faces B1 and B2) endowed with a canonical ordering π, define the un-
derlying forest F for π as the oriented subgraph of G where each vertex v ∈ C(B2)
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Figure 3. One step of the incremental drawing algorithm. Two
vertical strips of width 1 (each one along a path in the dual forest)
are inserted in order to make the slopes of e` and er smaller than
1 in absolute value. Then the new vertex and its edges connected
to the upper boundary can be drawn in a planar way.

has outdegree 0, and where each v /∈ C(B2) has exactly one outgoing edge, which
is connected to the adjacent vertex of v of largest label in π. The forest F can be
computed on the fly during the shelling procedure: when treating a free vertex vk,
for each neighbour v of vk such that v /∈ Ck, add the edge {v, vk} to F , and orient
it from v to vk. Since the edges are oriented in increasing labels, F is an oriented
forest; it spans all vertices of G\C(B2) and has its roots on C(B2). The augmented
map Ĝ is obtained from G by adding a vertex w1 inside B1, a vertex w2 inside B2,
and connecting all vertices around B1 to w1 and all vertices around B2 to w2 (thus
triangulating the interiors of B1 and B2, see Fig. 2 bottom middle). Define F̂ as F
plus all edges incident to w1 and all edges incident to w2. Define the dual forest F ∗

for π as the graph formed by the vertices of Ĝ∗ (the dual of Ĝ) and by the edges of
Ĝ∗ that are dual to edges not in F̂ . Since F̂ is a spanning connected subgraph of Ĝ,
F ∗ is a spanning forest of Ĝ∗. Precisely, each of the trees (connected components)
of F ∗ is rooted at a vertex “in front of” each edge of B1, and the edges of the tree
can be oriented toward this root-vertex (see Fig. 2 bottom right).

Drawing algorithm. Given a cylindric triangulation G such that C(B1) has
no chord, we first compute a canonical ordering of G, and then draw G in an
incremental way. We start with a cylinder of width 2|C(B1)| and height 0 (i.e.,
a circle of length 2|C(B1)|) and draw the vertices of C(B1) equally spaced on the
circle (space 2 between two consecutive vertices). Then the strategy for each k ≥ 1
is to compute the drawing of Gk out of the drawing of Gk−1 by first stretching the
cylinder (increasing the width by 2) and then placing the vertex vk and its incident
edges (in Gk) in a planar way. Define the x-span of an edge e in the cylindric
drawing as the number of columns [i, i+1]× [0,+∞] that meet the interior of e (we
have no need for a more complicated definition since, in our drawings, a column
will never meet an edge more than once).

Consider the dual forest F ∗ for the canonical ordering restricted to Gk−1. Note
that the set of vertices of Ck−1 that are neighbours of vk form a path on Ck−1.
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Figure 4. Algorithm (Prop. 2) to compute an x-periodic drawing
of a cylindric triangulation (no chordal edges incident to B1). The
vertices are treated in increasing label (the canonical ordering is
the one computed in Fig. 2).

Traversing this path γ with the boundary-face of Gk−1 (the one different from B1)
to the left, let e` be the first edge of γ and er be the last edge of γ. Let also ak be
the starting vertex and let bk be the ending vertex of γ. Let P` (resp. Pr) be the
path in F ∗ from e∗` (resp. e∗r) to the root in its connected component (which is a
vertex “in front of” an edge of B1)). We stretch the cylinder by inserting a vertical
strip of length 1 along P` and another along Pr (see Fig. 3). This comes down
to increasing by 1 the x-span of each edge of Gk dual to an edge in P`, and then
increasing by 1 the x-span of each edge dual to an edge in Pr (note that P` and Pr

are not necessarily disjoint, in which case the x-span of an edge dual to an edge in
P`∩Pr is increased by 2). After these stretching operations, whose effect is to make
the slopes of e` and er strictly smaller than 1 in absolute value, we insert (as in the
planar case) the vertex vk at the intersection of the ray of slope 1 starting from ak

and the ray of slope −1 starting from bk, and we connect vk to all vertices of γ by
segments1. These two rays actually intersects at a grid point since the Manhattan
distance between any two vertices on Ck−1 is even. Fig. 4 shows the execution of
the algorithm on the example of Fig. 1.

Proposition 2. For each cylindric triangulation G with no chord incident to
C(B1), one can compute in linear time a crossing-free straight-line drawing of G on

1In the FPP algorithm for planar triangulations, the step to make the (absolute value of) slopes

of e` and er smaller than 1 is formulated as a shift of certain subgraphs described in terms of the

underlying forest F . The extension of this formulation to the cylinder would be quite cumbersome.
We find the alternative formulation with strip insertions more convenient for the cylinder (it also

gives rise to a very easy linear-time implementation).
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an x-periodic regular grid Z/wZ× [0..h] where —with n the number of vertices of G
and d the (graph-)distance between the two boundaries— w = 2n and h ≤ n(2d+1),
such that: every v ∈ C(B1) has y(v) = 0 (so every edge in C(B1) has slope 0), and
every edge belonging to C(B2)\C(B1) has slope ±1.

Proof. The fact that the drawing remains crossing-free relies on the slope-property
for the upper boundary and on the following inductive property, which is easily
shown to be maintained at each step k from 1 to n:

Pl: for each edge e on Ck (the upper boundary of Gk), let Pe be the
path in F ∗ from e∗ to the root, let Ee be the set of edges dual to edges
in Pe, and let δe be any nonnegative integer. Then the drawing remains
planar when successively increasing by δe the x-span of all edges of Ee,
for all e ∈ Ck.

We now prove the bounds on the grid-size. If |C(B1)| = t then the initial cylinder
is 2t × 0; and at each vertex insertion, the grid-width grows by 2. Hence w = 2n.
In addition, due to the slope conditions (slopes of boundary-edges are at most 1 in
absolute value), the y-span (vertical span) of every edge e is not larger than the
current width at the time when e is inserted in the drawing. Hence, if we denote
by v the vertex of C(B2) that is closest (at distance d) to C(B1), then the ordinate
of v is at most d · (2n). And due to the slope conditions, the vertical span of C(B2)
is at most w/2 ≤ n. Hence the grid-height is at most n(2d + 1). The linear-time
complexity is shown next. �

Linear-time implementation. An important remark is that, instead of comput-
ing the x-coordinates and y-coordinates of vertices in the drawing, one can compute
the y-coordinates of vertices and the x-span of edges (as well as the knowledge of
which extremity is the left-end vertex and which extremity is the right-end vertex).
In a first pass (for k from 1 to n) one computes the y-coordinate of vertices and
the x-span re of each edge e ∈ G at the time t = k when it appears on Gk (as well
one gets to know which extremity of e is the left-end vertex). Afterwards if e /∈ F ,
the x-span of e might further increase due to insertion of new vertices. Precisely,
let vj be a vertex inserted afterwards (i.e., j > t), and (with the notations aj , bj of
the drawing algorithm description) let ε` = {vj , aj} and εr = {vj , bj}. Note that
e is stretched due to the insertion of the strip along P` iff ε∗` is in the subtree Te

of F ∗ formed by the edges descending from e∗. Similarly e is stretched due to the
insertion of the strip along Pr iff ε∗r is in Te. To state it more clearly, each edge in
Te is responsible for an increase (by 1) of the x-span of e. Hence the total x-span
of each edge e ∈ G is given by re + se, where se = 0 if e ∈ F , and, if e /∈ F , se is
the number of edges in Te. Since all quantities se can easily be computed in linear
time, this gives a linear-time implementation.
Allowing for chordal edges at C(B1). We finally explain how to draw a cylindric
triangulation when allowing for chords incident to C0 = C(B1); it is good to view
B2 as the top boundary-face and B1 as the bottom-boundary face (and imagine a
standing cylinder). For each chordal edge e for the cycle C0, the component under
e is the face-connected part of G that lies below e; such a component is a quasi-
triangulation (polygonal outer face, triangular inner faces) rooted at the edge e. A
chordal edge e of C0 is maximal if the component Qe under e is not strictly included
in the component under another chordal edge for C0. The size of such an edge e
is defined as |e| = 2|V (Qe)| − 4. (the size |e| is actually the width of the drawing
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e2

e1

Figure 5. Drawing a cylindric triangulation with chords at B1.
To make enough space to place the component under e2, one takes
8 (instead of 2) as the initial x-span of e2.

of Qe using the FPP algorithm). If we delete the component under each maximal
chordal edge (i.e., delete everything from the component except for the chordal edge
itself) we get a new bottom cycle C ′0 that is chordless, so we can draw the reduced
cylindric triangulation G′ using the algorithm of Proposition 2. As we have seen in
Section 3 (implementation paragraph), for each edge e of C ′0, the initial x-stretch
is re = 2 and then the further increase se of the x-stretch equals the number of
edges descending from e∗ in the dual forest F ∗. Note that we have actually some
freedom to choose the initial x-stretch re of each edge e ∈ C ′0 (just it has to be a
positive even number since at each step of the incremental algorithm the vertices of
the current upper boundary have to be at even Manhattan distance). If e ∈ C ′0 is
on C0 we take re = 2. If e ∈ C ′0 is not on C0 (i.e., e was a maximal chordal edge for
C0), we take for re the minimal even positive number such that re + se ≥ |e|, i.e.,
re = 2 ·max(1, d(|e| − se)/2e). Hence, at the end of the execution of the drawing
of G′, the length `e = re + se of each maximal chord e satisfies `e ≥ |e|. Then for
each maximal chord e of C0, we draw the component Qe under e using the FPP
algorithm. This drawing has width |e|, with e as horizontal bottom edge of length
|e| and with the other outer edges of slopes ±1. We shift the left-extremity of e so
that the drawing of Qe gets width `(e), then we rotate the drawing of Qe by 180
degrees and plug it into the drawing of G′ (see Fig. 5). The overall drawing of G is
clearly planar. We obtain:

Theorem 3. For each cylindric triangulation G, one can compute in linear time a
crossing-free straight-line drawing of G on an x-periodic regular grid Z/wZ× [0, h],
where —with n the number of vertices and d the (graph-) distance between the
two boundaries— w ≤ 2n and h ≤ n(2d + 1). The drawing is x-monotone (the
intersection with any vertical line is an interval) and the slopes of boundary-edges
are at most 1 in absolute value.
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Figure 6. The main steps for drawing of a toroidal triangulation:
1) remove the edges inside a tambourine, (2) draw the obtained
cylindric triangulation, 3) insert the edges of the tambourine back
into the drawing.

4. Periodic drawings of toroidal triangulations

Let G be a toroidal triangulation. A non-contractible cycle of G is a cycle of edges
of G that does not delimit a topological disk. Note that a pair Γ1,Γ2 of oriented
noncontractible cycles that are parallel (i.e., are homotopic and are oriented in a
parallel way) delimits a cylindric triangulation T , which is formed by the faces to
the right of Γ1 and to the left of Γ2. The pair Γ1,Γ2 is called a tambourine if the
edges dual to those of T\{Γ1,Γ2} form a non-contractible cycle Γ′ that is homotopic
to Γ1 and Γ2 (see dark-blue faces and dashed edges in Fig. 6 top-middle). The edges
of T\{Γ1,Γ2} are said to be inside the tambourine. It can be shown (see [2], the
master’s thesis of the third author Arnaud Labourel, and the next paragraph) that
for each non-contractible cycle Γ of G, there exists a tambourine whose two cycles
are parallel to Γ. Deleting the edges that are strictly inside the tambourine, one
obtains a cylindric triangulation G′ with Γ1 and Γ2 as the contours of the boundary-
faces. Note also that the distance d between Γ1 and Γ2 is smaller than the length of
a shortest non-contractible cycle not parallel to Γ. We now apply the algorithm of
Theorem 3 to G′. If we augment the height h of the drawing to h′ = h+w+ 1, and
then wrap the x-periodic grid Z/wZ × [0..h] into a periodic grid Z/wZ × Z/h′Z,
and finally insert the edges inside the tambourine as segments2, then the slope
properties (edges on Γ1 and Γ2 have slope at most 1 in absolute value while edges

2We insert the edges in the tambourine T in the unique way such that, looking from bottom

to top, at least one edge in T goes strictly to the right, and all edges going strictly to the right
have x-span at most w; in this way it is easy to check that the x-span of all edges in T is at most

w.
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inside the tambourine have slopes greater than 1 in absolute value) ensure that the
resulting drawing is crossing-free (see Fig. 6). Observe that we can choose Γ so that
the graph-distance between the two boundaries Γ1 and Γ2 (in G′) is smaller than
the length γ of a shortest non-contractible cycle in G; and this choice for Γ can be
done without computing a shortest non-contractible cycle. Indeed, let {Γa,Γb} be
a basis of non-contractible cycles (computable in linear time, using for instance a
cut-graph). Denoting by Γmin a shortest non-contractible cycle of G, for sure at
least one of Γa or Γb is not parallel to Γmin. Hence, for Γa or for Γb, the distance
between the boundary-cycles (after deleting edges of the parallel tambourine) is
smaller than |Γmin|. In other words if we choose the one cycle (among {Γa,Γb})
that yields the smaller distance between the two boundaries of G′, then this distance
will be smaller than γ. We obtain:

Theorem 4. For each toroidal triangulation G, one can compute in linear time a
crossing-free straight-line drawing of G on a periodic regular grid Z/wZ × Z/hZ,
where (with n the number of vertices and γ the length of a shortest non-contractible
cycle) w ≤ 2n and h ≤ 1 + n(2γ + 1). Since γ ≤

√
2n (as shown in [1]), the grid

area is O(n5/2).

Existence of a tambourine. For the sake of completeness we include a proof of
existence of a tambourine, which slightly extends the proof given in the master’s
thesis of Arnaud Labourel. A toroidal map is called weakly 3-connected if its pe-
riodic representation in the plane is 3-connected. Let G be such a map and let Γ
be a non-contractible cycle of G. We are going to show that G has a tambourine
parallel to Γ. Let G′ be the cylindric map obtained after cutting G along Γ; we
take the annular representation of G′, calling Γ1 (resp. Γ2) the copy of Γ that is the
outer (resp. inner) boundary. Let Γ′ be the smallest (in terms of the enclosed area)
cycle that strictly encloses Γ2 (i.e., encloses Γ2 and is vertex-disjoint from Γ2). Let
Γ′′ be the largest (in terms of the enclosed area) cycle that is strictly enclosed in
Γ′ (i.e., is enclosed by Γ′ and is vertex-disjoint from Γ′). Note that by minimality
Γ′ has no chord inside, and by maximality Γ′′ has no chord outside. Hence, if we
can show that there is no vertex in the area A (strictly) between Γ′ and Γ′′, then
we can conclude that, in G, Γ′ and Γ′′ form a tambourine parallel to Γ. Assume
there is a vertex v in A. Call vertex of attachment for Γ′ a vertex w ∈ Γ′ such that
there is a path from v to w visiting only vertices of A before reaching w. Again by
minimality of Γ′ it is easy to see that there is a unique vertex of attachment v′ for
Γ′. Similarly (by maximality of Γ′′) there is a unique vertex of attachment v′′ for
Γ′′. Then (again by minimality of Γ′ and maximality of Γ′′) there is a closed curve
γ that meets G′ only at the vertices v′, v′′, and such that the interior of γ contains
v but does not contain any of the two boundary-faces. Such a curve γ yields a
2-separator in the periodic representation of G, a contradiction.

5. Allowing for non-contractible 1- and 2-cycles

For a cylindric map, a non-contractible cycle is a cycle that separates the two
boundary-faces (i.e., there is a boundary-face on one side and a boundary-face on
the other side of the cycle). Other cycles are called contractible. A weakly simple
cylindric triangulation is a cylindric map whose non-boundary faces are triangles,
whose contractible cycles have length at least 3, and such that each vertex has
at most one incident non-contractible loop. A weakly-simple toroidal triangulation
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1

Figure 7. Top line: canonical ordering of a weakly simple cylin-
dric triangulation (with some non-contractible 1- and 2-cycles).
Middle line: iterative drawing algorithm. Bottom line: dealing
with chordal edges.

is a toroidal map with triangular faces, with all contractible cycles of length at
least 3, and such that any two (non-contractible) loops incident to the same vertex
can not be homotopic. These are the necessary and sufficient conditions for the
triangulation (whether on the cylinder or on the torus) to have no loops nor multiple
edges in the periodic representation; hence these are the conditions under which
one can aim at a periodic crossing-free straight-line drawing. For weakly simple
cylindric triangulations without loops (nor chords incident to C(B1)), exactly the
same shelling procedure and iterative drawing algorithm can be taken as for simple
cylindric triangulations. In case there are loops we have to explain how to deal with
them (see Fig. 7 for an example). For the shelling procedure, if the current upper
boundary Ck is a loop —call v the incident vertex— then one deletes the loop and
immediately takes v as the next free vertex (the fact that v is free is due to the fact
that there is no other loop at v). In the drawing procedure (how to insert v and its
incident loop into the drawing), one first adds v without its loop (by a classical one-
step iteration of the drawing algorithm, involving two strip insertions), and then
one draws the loop at v as an horizontal segment spreading over the whole width
of the current periodic drawing (the loop is added without inserting any vertical
strip). Finally one can deal with chords incident to C(B1) in the same way as for
simple cylindric triangulations. About weakly simple toroidal triangulated maps,
the procedure is also the same as for simple toroidal triangulations since the above
proof of existence of a tambourine holds in that case. And the grid bounds (for the
cylindre and for the torus) are the same as for simple triangulations.
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